JPH0762199B2 - A1-based alloy - Google Patents
A1-based alloyInfo
- Publication number
- JPH0762199B2 JPH0762199B2 JP62111982A JP11198287A JPH0762199B2 JP H0762199 B2 JPH0762199 B2 JP H0762199B2 JP 62111982 A JP62111982 A JP 62111982A JP 11198287 A JP11198287 A JP 11198287A JP H0762199 B2 JPH0762199 B2 JP H0762199B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- strength
- alloys
- toughness
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、粉末冶金法によって製造されるAl−Cr系合金
に関するものであり、詳細にはAl−Cr系合金においてCr
の添加量を規定すると共に、更にTi及びFeを必要量添加
することにより耐熱性、塑性加工性、靱性及び強度の調
和のとれた合金を提供するものである。TECHNICAL FIELD The present invention relates to an Al—Cr alloy produced by a powder metallurgy method, and more specifically, in an Al—Cr alloy, Cr is used.
In addition to defining the addition amount of Ti and Fe and further adding Ti and Fe in the required amounts, an alloy having a good balance of heat resistance, plastic workability, toughness and strength is provided.
[従来の技術] Al合金は軽量で塑性加工性が良好であるなど優れた特徴
を有しており、自動車や航空機等の軽量化要求が厳しい
産業分野において、Feに代わり得る材料として用途の拡
大が期待されている。例えば自動車産業分野において
は、とくにコンロッドなどの高温雰囲気下で可動する部
分を軽量化しエンジンの高性能化を図ろうとする動きが
あり、従来の鉄に代わり得る軽量で且つ高強度な材料の
出現が待ち望まれている。[Prior Art] Al alloys have excellent characteristics such as light weight and good plastic workability, and are expanding their applications as materials that can replace Fe in industrial fields such as automobiles and aircraft where there is a strong demand for weight reduction. Is expected. For example, in the automobile industry, there is a movement to reduce the weight of parts such as connecting rods that move in a high temperature atmosphere to improve the performance of engines, and the emergence of lightweight and high-strength materials that can replace conventional iron. Long-awaited.
しかしながら、各種のエンジン部品など高温雰囲気下で
一定の強度が要求される部品には、従来型の溶解鋳造Al
合金(I/M合金;ingot metallurgy)を適用することは困
難であった。たとえば従来型I/M合金のうち最も耐熱強
度が高いとされる2000系合金の場合、その強度は主とし
て主要添加元素であるCuおよびMgの析出相によってもた
らされており、析出相の粗大化を招く150℃以上の温度
域においては急激な軟化が起こるためもはや強度部材と
しての使用が困難となる。However, for parts that require a certain level of strength in a high temperature atmosphere, such as various engine parts, conventional fusion cast Al
It was difficult to apply an alloy (I / M alloy; ingot metallurgy). For example, in the case of the 2000 series alloy, which is said to have the highest heat resistance strength among conventional I / M alloys, its strength is mainly brought about by the precipitation phases of the main additive elements Cu and Mg, and the precipitation phase becomes coarse. In the temperature range of 150 ° C or higher, which causes heat generation, abrupt softening occurs and it is no longer possible to use it as a strength member.
こうした事情の下で各産業分野の要求に応えるため、近
年急冷凝固法を適用した各種のAl基合金が開発されてき
た。即ちFe,Cr,Mn,Ni,Ti,Zr,V等の金属元素を含む溶融A
l合金を粉末等の微小体に急冷凝固させ、これを粉末冶
金法により塊状に固化させれば、上記金属元素を含む高
温でも安定な化合物がAlマトリックス中に微細に分散さ
れるため、高温強度の著しい改善が期待できるのであ
る。Under these circumstances, various Al-based alloys to which the rapid solidification method has been applied have been developed in recent years to meet the demands of each industrial field. That is, molten A containing metallic elements such as Fe, Cr, Mn, Ni, Ti, Zr, V
If the alloy is rapidly solidified into fine particles such as powder and solidified into a lump by powder metallurgy, stable compounds containing the above metal elements even at high temperatures are finely dispersed in the Al matrix, resulting in high temperature strength. It is possible to expect a marked improvement in
このような急冷粉末冶金合金としては、これまで主とし
てAl−Fe系をベースとしたものが盛んに研究されてお
り、Al−Fe−Ce合金などすぐれた耐熱強度を有する合金
が開発されている。またとくに最近においては、たとえ
ばL.Katgermanらの報告(P/M Aerospace Materials 12
−14Nov.1984)にあるようにAl−Cr系をベースとする合
金の優れた耐熱性が注目を集めるにいたっている。As such a quenched powder metallurgy alloy, one mainly based on Al-Fe system has been extensively studied so far, and alloys having excellent heat resistance such as Al-Fe-Ce alloy have been developed. In addition, especially recently, for example, a report by L. Katgerman et al. (P / M Aerospace Materials 12
-14Nov.1984), the excellent heat resistance of Al-Cr based alloys has attracted attention.
[発明が解決しようとする課題] Al−Crをベースとする合金としては、米国特許第403379
3号や特開昭59−116352号に開示されたものを挙げるこ
とができ、これらは各々優れた特徴を有している。[Problems to be Solved by the Invention] As an Al-Cr based alloy, US Pat.
Examples thereof include those disclosed in JP-A-59-116352 and JP-A-59-116352, each of which has excellent characteristics.
しかしながら実用材料として考えた場合、要求される特
性は耐熱性のみならず、塑性加工性が良好でまた靱世及
び強度が高いことが重要である。例えばコンロッド等複
雑形状の部品にこれらの合金を適用しようとした場合、
熱間鍛造加工が可能であることはコスト上の観点から必
要条件であるし、同時に一定の応力集中を不可避的に受
けることから切り欠き感受性は低いほど好ましい。However, when considered as a practical material, it is important that the required properties are not only heat resistance but also good plastic workability and high toughness and strength. For example, if you try to apply these alloys to parts with complicated shapes such as connecting rods,
The fact that hot forging is possible is a necessary condition from the viewpoint of cost, and at the same time, a certain stress concentration is inevitably received, and the lower the notch sensitivity, the better.
これ迄に研究開発が行なわれてきた合金はこのような実
用上不可欠な諸特性を同時に兼ね備えるまでには至って
おらず、上述の諸特性のバランスのとれた合金を開発す
ることは極めて意義の深いことである。そこで本発明者
等はAl−Crベース合金の高い耐熱性に着目し、この系を
基本に各種添加元素の種類および添加量について検討を
行ない本発明を完成するに至ったものである。The alloys that have been researched and developed so far have not yet possessed the characteristics that are indispensable for practical use at the same time, and it is extremely significant to develop an alloy with the above characteristics balanced. That is. Therefore, the present inventors have paid attention to the high heat resistance of the Al-Cr base alloy, and based on this system, studied the types and addition amounts of various additive elements, and completed the present invention.
[課題を解決するための手段] 本発明に係る耐熱性、塑性加工性、靱性に優れ高強度な
Al基合金とは、粉末冶金法により製造されるAl基合金で
あって、Cr:5〜10%、Ti:0.5〜3%、及びFe:1%超2.5
%未満を含み、残部Al及び不可避不純物から構成され、
且つ条件式Cr+Fe+Ti≦10.5%及びCr+1.2Fe+0.6Ti≦
10%を満足するところにその要旨が存在するものであ
る。さらに条件式Cr+2.4Fe+1.2Ti≧10%を満足させる
ことによって、より一層高い強度を有するAl基合金を得
ることができる。[Means for Solving the Problems] Heat resistance, plastic workability, toughness and high strength according to the present invention are high.
Al-based alloy is an Al-based alloy manufactured by powder metallurgy, Cr: 5-10%, Ti: 0.5-3%, and Fe: more than 1% and 2.5
%, Including the balance Al and unavoidable impurities,
And conditional expression Cr + Fe + Ti ≦ 10.5% and Cr + 1.2Fe + 0.6Ti ≦
The gist is that where 10% is satisfied. Further, by satisfying the conditional expression Cr + 2.4Fe + 1.2Ti ≧ 10%, an Al-based alloy having higher strength can be obtained.
[作用] 本発明は基本的にはAlに対するCrの耐熱性付与効果に着
目し、これを利用するものであるが、Ti及びFeを添加し
てこれらの特性を高めるとともに、それらの配合量を適
正に調整することにより塑性加工性、靱性の良好なAl基
合金を提供したものである。[Operation] The present invention basically focuses on the heat resistance imparting effect of Cr to Al and utilizes this. However, Ti and Fe are added to enhance these characteristics, and the compounding amount thereof is By properly adjusting, an Al-based alloy having good plastic workability and toughness is provided.
尚本発明に係るAl基合金は、前述の説明からも明らかな
様に粉末冶金法で製造されることを前提とするものであ
って、粉末冶金法の採用により特有の作用効果を発揮す
るものである。It should be noted that the Al-based alloy according to the present invention is premised on being manufactured by the powder metallurgy method as is clear from the above description, and exhibits a specific action and effect by adopting the powder metallurgy method. Is.
即ち本発明Al合金はAlマトリックス中に合金元素が微細
分散されたものである必要があるが、溶解鋳造法では冷
却速度が緩やかである為微細分散組織の形成は困難であ
る。これに対し粉末冶金法は溶融Al合金を急冷凝固して
微細な粉末、箔片、フレーク、リボン等を製造し、これ
らを材料として所望形状の塊状Al合金に固化成形する方
法であり、急冷凝固法を採用するので金属間化合物がマ
トリックス中に微細分散した組織を得ることができる。That is, the Al alloy of the present invention needs to be one in which alloy elements are finely dispersed in an Al matrix, but it is difficult to form a finely dispersed structure in the melt casting method because the cooling rate is slow. On the other hand, the powder metallurgy method is a method of rapidly solidifying molten Al alloy to produce fine powder, foil pieces, flakes, ribbons, etc., and solidifying and forming them into a lumpy Al alloy having a desired shape by using these as a material. Since the method is adopted, a structure in which the intermetallic compound is finely dispersed in the matrix can be obtained.
ただし合金元素が高温条件下で拡散性の大きい元素であ
ると、たとえ急冷凝固法を採用して微細組織の粉末材料
を形成しても焼結時あるいは高温使用環境下においては
合金元素が拡散してミクロ組織の粗大化を招き、高温強
度等が低下する。従って高温Alマトリックス中での拡散
性が小さい合金元素を選択することが必要であり、Crを
はじめとしてTi及びFeもこうした観点から選択されてい
る。しかるにこれらの合金元素の多量添加は加工性等を
阻害するのでそのマイナス面も考慮する必要があり、合
金元素の選択並びにその添加量の設計はこれらの観点か
ら総合的に決定されている。However, if the alloying element has a high diffusibility under high temperature conditions, even if the rapid solidification method is used to form a powder material with a fine structure, the alloying element diffuses during sintering or under high temperature use environment. As a result, the microstructure is coarsened, and the high temperature strength and the like decrease. Therefore, it is necessary to select an alloy element having low diffusivity in a high temperature Al matrix, and Cr and Ti and Fe are also selected from this viewpoint. However, addition of a large amount of these alloy elements impairs workability and the like, so it is necessary to consider their negative aspects, and the selection of alloy elements and the design of their addition amounts are comprehensively determined from these viewpoints.
一方急冷凝固時の冷却速度に関しても粗大化合物の晶出
を防止する配慮が必要であり、冷却速度は103K/sec以上
に設定することが望まれる。これは上記各元素の平衡固
溶限が極めて小さく、上記冷却速度未満で冷却した場合
著しく粗大な化合物の晶出を招き、目的とする微細分散
金属組織を得ることができないからである。尚103K/sec
以上の冷却速度を得る手段については特に制限はない
が、いずれにせよAl合金溶湯を熱容量の小さな微細固体
として凝固させる必要があり、該微細凝固体を塊状固体
とするには粉末冶金の手法が必要となることから本発明
Al基合金は粉末冶金法で製造されたものであることを必
須要件としている。尚103K/sec以上の冷却速度を得る具
体的手段としてはロール法やアトマイズ法が例示され
る。又アトマイズ法の実施に当たってはその種類や条件
について何ら制限を受けないが、アトマイズ粉末材表面
の酸化の抑制することによって成形性をより一層向上せ
しめることができるので、アトマイズ用流体として不活
性ガスを用いることが推奨される。但し液体アトマイズ
や空気アトマイズ等の適用も勿論可能である。On the other hand, regarding the cooling rate at the time of rapid solidification, it is necessary to consider to prevent crystallization of coarse compounds, and it is desirable to set the cooling rate to 10 3 K / sec or more. This is because the equilibrium solid solution limit of each of the above elements is extremely small, and when cooled at a rate lower than the above cooling rate, a remarkably coarse compound is crystallized and the desired finely dispersed metal structure cannot be obtained. 10 3 K / sec
The means for obtaining the above cooling rate is not particularly limited, but in any case, it is necessary to solidify the Al alloy molten metal as a fine solid having a small heat capacity, and the method of powder metallurgy is used to make the fine solidified body into a solid mass. The present invention because it is necessary
Al-based alloys are required to be manufactured by powder metallurgy. A roll method and an atomizing method are exemplified as specific means for obtaining a cooling rate of 10 3 K / sec or more. Also, in carrying out the atomizing method, there is no restriction on the type and conditions thereof, but since the moldability can be further improved by suppressing the oxidation of the surface of the atomized powder material, an inert gas is used as the fluid for atomizing. Recommended to use. However, it is of course possible to apply liquid atomization, air atomization, or the like.
以下本発明Al基合金における各元素の作用および数値限
定の理由について説明する。The action of each element and the reason for the numerical limitation in the Al-based alloy of the present invention will be described below.
Cr;5〜10% CrはAl中における拡散速度が小さい元素である。従って
急冷凝固法によってAlマトリックス中に強制的に固溶さ
れたCr乃至微細分散されたAl−Cr化合物は、常温におい
ては勿論のこと、高温においても凝集、粗大化されにく
く、従って高温下における強度低下を防ぐ効果が著し
い。この効果を期する為には、少なくとも5%以上の添
加が必要であるが、10%を超えて添加すると如何に急冷
凝固に依ったといえども、粗大な晶出物の形成を防止で
きず、期待される効果が得られないばかりか、むしろ塑
性加工性、靱性の低下を招く。Cr; 5-10% Cr is an element having a low diffusion rate in Al. Therefore, Cr or a finely dispersed Al-Cr compound which is forcibly solid-solved in the Al matrix by the rapid solidification method does not easily aggregate or coarsen at high temperature as well as at room temperature, and therefore has strength at high temperature. The effect of preventing the deterioration is remarkable. In order to achieve this effect, it is necessary to add at least 5% or more, but if it is added in excess of 10%, it cannot prevent the formation of coarse crystallized matter, no matter how it depends on the rapid solidification. Not only the expected effect cannot be obtained, but rather the plastic workability and toughness are deteriorated.
Ti;0.5〜3% TiはCrとの共存下において、Al合金の常温ならびに高温
下における強度を高める効果を有する。この効果は後述
するFeの効果に比べて小さく、Ti量が0.5%を越える領
域において顕著化する。また同時にTiはその添加量の増
大に伴う合金の靱性低下が緩やかであり、耐熱性向上の
効果に比べ靱性を阻害することが少ない。Ti; 0.5-3% Ti, in the coexistence with Cr, has the effect of increasing the strength of the Al alloy at room temperature and high temperature. This effect is smaller than the effect of Fe described later, and becomes remarkable in the region where the Ti content exceeds 0.5%. At the same time, Ti has a gradual decrease in toughness of the alloy as the amount of Ti added increases, and it does not hinder the toughness more than the effect of improving heat resistance.
しかしながらTiは高融点金属のため合金の液相線を著し
く高める作用を有し、3%を越える添加を行おうとする
と、溶解温度が著しく高温となりAlの著しい酸化、るつ
ぼ等の耐火物と合金の反応などの問題点を招き製造に困
難を来す。However, since Ti is a refractory metal, it has the effect of remarkably increasing the liquidus of the alloy, and if it is added in excess of 3%, the melting temperature will become extremely high and the oxidation of Al will be remarkable, and refractory materials such as crucibles and alloys It causes problems such as reaction and makes manufacturing difficult.
Fe;1%超2.5%未満 FeはCrとの共存下において、Al合金の常温ならびに高温
下における強度を著しく高める効果を有する。この効果
は前述したTiの効果に比べて大きいが、同時にFeは合金
の靱性を低下させる作用を有する。従って、本発明では
Feを1%超2.5%未満含有させることとするが、より好
ましくは1%超2.0%以下である。Fe; more than 1% and less than 2.5% Fe, in the coexistence with Cr, has the effect of significantly increasing the strength of the Al alloy at room temperature and high temperature. This effect is greater than the effect of Ti described above, but at the same time Fe has the effect of reducing the toughness of the alloy. Therefore, in the present invention,
Fe is contained in an amount of more than 1% and less than 2.5%, more preferably more than 1% and 2.0% or less.
残部;Alおよび不可避不純物 本発明に係る合金の製造に用いるAl地金は、Al地金とし
て市販される純度97%以上(再生地金を含む)のもので
あればその如何を問わないが、純度99%以上の1次地金
を用いることが好ましい。Remainder; Al and unavoidable impurities The Al ingot used for the production of the alloy according to the present invention may be any commercially available Al ingot with a purity of 97% or more (including recycled ingot). It is preferable to use a primary metal having a purity of 99% or more.
Cr+Fe+Tiの合計;10.5(好ましくは10)以下 本発明の合金において上式の合計が10.5を越えると、塑
性加工に重要な伸びおよび絞りが著しく低下する。した
がって塑性加工性が要求される場合、上式の合計が10.5
を越えない範囲で配合を設定することが必要である。ま
た上式の合計が10.5の場合には伸びおよび絞り値がばら
つくため、これを防ぐ意味で上式の合計は10以下である
ことが望ましい。Cr + Fe + Ti total; 10.5 (preferably 10) or less When the total of the above formula exceeds 10.5 in the alloy of the present invention, elongation and drawing, which are important for plastic working, are significantly reduced. Therefore, when plastic workability is required, the sum of the above equation is 10.5.
It is necessary to set the composition within the range not exceeding. Further, when the sum of the above formula is 10.5, the elongation and the drawing value vary, so in order to prevent this, the sum of the above formula is preferably 10 or less.
Cr+1.2Fe+0.6Tiの合計;10以下 本発明の合金において上式の合計が10を越えると、合金
の靱性が著しく低下する。したがって靱性が要求される
場合、上式の合計が10を越えない範囲で配合を設定する
ことが必要である。Cr + 1.2Fe + 0.6Ti total; 10 or less In the alloy of the present invention, when the above total exceeds 10, the toughness of the alloy is significantly reduced. Therefore, when toughness is required, it is necessary to set the composition within the range where the sum of the above formulas does not exceed 10.
本発明に係るAl基合金は、上記構成要件を満足すること
によって、優れた耐熱性、塑性加工性、靱性を発揮する
と共に、強度としては従来の構造用合金並以上の常温強
度、具体的には30Kg/mm2以上を示すものであるが、さら
に常温強度を従来の高力合金並以上(具体的には40Kg/m
m2以上)にしたい場合には、Cr+2.4Fe+1.2Ti≧10% を満足する様に、Cr,Fe,Ti量を設定すれば良い。The Al-based alloy according to the present invention, by satisfying the above-mentioned constitutional requirements, exhibits excellent heat resistance, plastic workability, and toughness, and has strength at room temperature strength equal to or higher than that of conventional structural alloys, specifically Although shows a 30 Kg / mm 2 or more, further cold strength conventional high-strength alloys parallel above (specifically 40 Kg / m
m 2 or more), the Cr, Fe, and Ti contents should be set so that Cr + 2.4Fe + 1.2Ti ≧ 10% is satisfied.
[実施例] 以下実施例に基づき本発明に係るAl基合金についてさら
に詳細に説明する。[Examples] The Al-based alloy according to the present invention will be described in more detail based on the following examples.
第1表に掲げる各組成(残部Alおよび不可避不純物)の
合金を大気炉で溶製し、この溶湯を窒素雰囲気中でアト
アイズして微細な合金粉末を得た。尚No.15,16で示す合
金は従来のI/M材である。これら合金粉末を、回収後篩
分法により200メッシュアンダー(74μm以下)に分級
して粒度分布を調整した。この際の粉末の平均粒度は30
〜40μmであった。Alloys having the respective compositions (remaining Al and unavoidable impurities) listed in Table 1 were melted in an atmospheric furnace, and the melt was atomized in a nitrogen atmosphere to obtain fine alloy powder. The alloys shown in Nos. 15 and 16 are conventional I / M materials. After recovering these alloy powders, they were classified into 200 mesh under (74 μm or less) by a sieving method to adjust the particle size distribution. The average particle size of the powder at this time is 30
Was about 40 μm.
次に粒度調整された粉末を5052合金製の缶(外径70mm;
長さ200mm)中に充填し、缶の一端に設けられた脱気孔
より真空ポンプで缶内を吸引脱気しつつ350℃の雰囲気
中で約2時間の加熱を行なった。尚この脱気処理終了時
の到達真空度は約1×10-3Torrであった。Next, the powder of which particle size was adjusted was made into a can made of 5052 alloy (outer diameter 70 mm;
The length of the can was 200 mm), and the inside of the can was sucked and degassed with a vacuum pump from a degassing hole provided at one end of the can and heated in an atmosphere of 350 ° C. for about 2 hours. The ultimate vacuum at the end of this degassing process was about 1 × 10 −3 Torr.
脱気処理の完了した粉末をさらに缶ごと480℃の雰囲気
中で2時間加熱し静水圧押出法により、押出比約20で熱
間押出加工して実質的に緻密な押出丸棒(外径15.5mm)
を得た。The degassed powder is heated with the can for 2 hours in an atmosphere of 480 ° C and is subjected to hot extrusion at an extrusion ratio of about 20 by a hydrostatic extrusion method to obtain a substantially dense extruded round bar (external diameter 15.5). mm)
Got
このようにして得られた丸棒について以下に示す各種の
引張試験を実施した。Various tensile tests shown below were carried out on the round bar thus obtained.
1)常温引張試験 試験片形状……平行部径6mm×平行部長さ36mm(標点間
距離30mm) 試験方法……ASTM B557Mによる 2)切欠引張試験 試験片形状……試験部長さ30mm、バレル径12.7mm ノッチ部谷径8.96mm ノッチ角60゜ ノッチ先端R0.018mm以下 試験方法、条件……ASTM E602による 3)高温引張試験 試験片形状……平行部径6mm×平径部長さ36mm 試験方法……試験温度300℃ 保持時間20分間 その他の条件 ASTM E21による 以上の方法ならびに条件により得られた各種引張試験の
結果を第1表に併記する。1) Normal temperature tensile test Specimen shape …… Parallel part diameter 6 mm × parallel part length 36 mm (gage length 30 mm) Test method …… by ASTM B557M 2) Notch tensile test Specimen shape …… Test part length 30 mm, barrel diameter 12.7mm Notch valley diameter 8.96mm Notch angle 60 ° Notch tip R0.018mm or less Test method and conditions …… ASTM E602 3) High temperature tensile test Specimen shape …… Parallel diameter 6mm × flat diameter 36mm Test method… ... Test temperature 300 ° C Holding time 20 minutes Other conditions According to ASTM E21, the results of various tensile tests obtained by the above methods and conditions are also shown in Table 1.
尚、表中においてσ0.2は耐力、σBは引張強さ、δは
伸び、ψは絞りを示す。またσNTS/σ0.2は、切欠引張
強度と常温耐力の比であり、該σNTS/σ0.2値は引張荷
重に対する切欠感受性の程度(値が小さいほど切欠感受
性は高い)を示すと同時に、靱性評価のパラメータの1
つとしてはしばしば採用されており、通常σNTS/σ0.2
値は1以上が要求されている。 In the table, σ 0.2 is proof stress, σ B is tensile strength, δ is elongation, and ψ is drawing. Further, σ NTS / σ 0.2 is the ratio of notch tensile strength and room temperature proof stress, and the σ NTS / σ 0.2 value indicates the degree of notch sensitivity to tensile load (the smaller the value, the higher the notch sensitivity), and at the same time, the toughness Evaluation parameter 1
It is often used as a standard and is usually σ NTS / σ 0.2
A value of 1 or more is required.
No.1〜6は本発明の条件をすべて満足する実施例であ
り、従来のI/M材(No.15,16)と比較して優れた特性を
示し、耐熱性、塑性加工性、靱性、強度のいずれも優れ
ていることが分かる。Nos. 1 to 6 are examples satisfying all the conditions of the present invention, exhibiting excellent properties as compared with the conventional I / M materials (Nos. 15 and 16), heat resistance, plastic workability, and toughness. It can be seen that both the strength and the strength are excellent.
No.7はFeを含有していないAl−6Cr−1Ti合金であり、N
o.8,9はこれにFeを添加した合金であり、常温強度なら
びに高温強度を比較すると第1図が得られた。この図よ
りFeの添加による強度および耐熱性向上の効果が明らか
に認められる。但し、No.8,9は、パラメータの[Cr+
1.2Fe+0.6Ti]量が10を越えており、σNTS/σ0.2の値
が1未満であり、靱性が低い。No.10〜14はパラメータ
の[Cr+Fe+Ti]量が本発明範囲外であり、伸び
(δ)及び絞り(ψ)の値が小さく、塑性加工性に乏し
い。第2図は第1表のデータに基づいてパラメータの
[Cr+Fe+Ti]量と常温引張試験における伸び(δ)、
絞り(ψ)の関係をプロットしたものであるが、[Cr+
Fe+Ti]量が10.5を越える領域においては伸び及び絞り
が夫々極端に低下いており、[Cr+Fe+Ti]量が10.5以
下に設定すべきことが分かる。No. 7 is an Al-6Cr-1Ti alloy that does not contain Fe, N
o.8 and 9 are alloys in which Fe is added to these alloys. Fig. 1 was obtained by comparing room temperature strength and high temperature strength. From this figure, the effect of improving the strength and heat resistance by adding Fe is clearly recognized. However, No. 8 and 9 are the parameters [Cr +
1.2Fe + 0.6Ti] amount exceeds 10, the value of σ NTS / σ 0.2 is less than 1, and the toughness is low. In Nos. 10 to 14, the amount of [Cr + Fe + Ti] as a parameter is out of the range of the present invention, the values of elongation (δ) and reduction (ψ) are small, and plastic workability is poor. Fig. 2 shows the amount of [Cr + Fe + Ti] as a parameter and the elongation (δ) in the normal temperature tensile test based on the data in Table 1.
It is a plot of the relation of the diaphragm (ψ),
In the region where the amount of Fe + Ti] exceeds 10.5, the elongation and the reduction are extremely reduced, and it is clear that the amount of [Cr + Fe + Ti] should be set to 10.5 or less.
また第3図は、パラメータの[Cr+1.2Fe+0.6Ti]量
とσNTS/σ0.2値をプロットしたグラフであり、σNTS/
σ0.2値は[Cr+1.2Fe+0.6Ti]量に対しほぼ直線的に
変化しており、σNTS/σ0.2値が1以上となるように
(即ち切欠による応力集中下においても強度低下がほと
んど起こらないように)するためには[Cr+1.2Fe+0.6
Ti]量を10以下にすべきことが分かる。In addition, Fig. 3 is a graph plotting the amount of [Cr + 1.2Fe + 0.6Ti] and σ NTS / σ 0.2 value of the parameter, σ NTS /
The σ 0.2 value changes almost linearly with respect to the [Cr + 1.2 Fe + 0.6 Ti] amount, so that the σ NTS / σ 0.2 value becomes 1 or more (that is, strength reduction almost occurs even under stress concentration due to notch). (Cr + 1.2Fe +0.6)
It turns out that the amount of Ti] should be 10 or less.
更に第1表のデータを解析した結果、常温ならびに高温
強度は、パラメータの[Cr+2.4Fe+1.2Ti]量に対し
ほぼ直線的に変化することが判明した(第4図参照)。
尚、構造材として多用される5000系合金の常温強度は約
30Kg/mm2前後であるが、本発明合金No.1〜6はいずれも
上記5000径合金より常温強度が高いことが分かる。また
従来耐熱系の高力材として多用される2000系合金の常温
強度が約40Kg/mm2前後であることを考慮すれば、第4図
から[Cr+2.4Fe+1.2Ti]量を10以上にすることが好ま
しいと言える。尚第1表において、300℃における強度
を比較すれば、本発明の合金はいずれも2000系合金の2
倍以上の高温強度を有しており、その優位性が確認され
る。Furthermore, as a result of analyzing the data in Table 1, it was found that the room temperature and high temperature strengths change almost linearly with respect to the parameter [Cr + 2.4Fe + 1.2Ti] amount (see FIG. 4).
The room temperature strength of 5000 series alloys, which are often used as structural materials, is about
Although it is around 30 kg / mm 2 , it can be seen that the alloys Nos. 1 to 6 of the present invention all have higher room temperature strength than the above 5000 diameter alloy. Considering that the normal temperature strength of the 2000 series alloy, which is often used as a heat resistant high strength material, is around 40 Kg / mm 2, it is possible to set the [Cr + 2.4 Fe + 1.2 Ti] amount to 10 or more from Fig. 4. It can be said that it is preferable. In Table 1, comparing the strengths at 300 ° C., the alloys of the present invention are all 2000 series alloys.
It has more than twice the high temperature strength, and its superiority is confirmed.
上記の関係式をまとめると第2表のようになる。The above relational expressions are summarized in Table 2.
[発明の効果] 本発明は以上の様に構成されており、以下の効果を得る
ことができる。 [Effects of the Invention] The present invention is configured as described above, and the following effects can be obtained.
(1)塑性加工性や靱性等が良好であり、且つ常温強度
並びに高温強度の優れたAl基合金を得ることができる。(1) It is possible to obtain an Al-based alloy having good plastic workability, toughness, and the like, and having excellent room temperature strength and high temperature strength.
(2)自動車分野ではエンジン部品の軽量化が促進さ
れ、燃費向上、出力の向上等の効果を得ることができ
る。(2) In the field of automobiles, weight reduction of engine parts is promoted, and effects such as improvement in fuel consumption and output can be obtained.
(3)航空機分野では外板、脚部(特にホイール)やエ
ンジン部品等の軽量化が促進され、燃費向上、出力向上
等の効果を得ることができる。(3) In the field of aircraft, weight reduction of outer plates, legs (particularly wheels), engine parts, etc. is promoted, and effects such as improved fuel economy and improved output can be obtained.
(4)高温雰囲気下で使用される各種機械部品、電気製
品用部品等の軽量化並びに高強度化を達成することがで
きる。(4) It is possible to reduce the weight and increase the strength of various mechanical parts used in a high temperature atmosphere, parts for electric appliances, and the like.
第1図はAl−6Cr−1Ti合金においてFeの添加が常温強度
及び高温強度に及ぼす影響を示すグラフ、第2図は本発
明合金におけるCr+Fe+Ti量と伸び及び絞りの相関を示
すグラフ、第3図は本発明合金におけるCr+1.2Fe+0.6
Ti量と靱性の相関を示すグラフ、第4図は本発明合金に
おけるCr+2.4Fe+1.2Ti量と常温強度並びに高温強度の
相関を示すグラフである。FIG. 1 is a graph showing the effect of addition of Fe on the room temperature strength and high temperature strength in the Al-6Cr-1Ti alloy, and FIG. 2 is a graph showing the correlation between the amount of Cr + Fe + Ti and elongation and drawing in the alloy of the present invention, FIG. Is Cr + 1.2Fe + 0.6 in the alloy of the present invention
FIG. 4 is a graph showing the correlation between the Ti amount and the toughness, and FIG. 4 is a graph showing the correlation between the Cr + 2.4Fe + 1.2Ti amount and the room temperature strength and the high temperature strength in the alloy of the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭35−301(JP,B1) 特公 昭40−4129(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-B 35-301 (JP, B1) JP-B 40-4129 (JP, B1)
Claims (2)
って、Cr:5〜10%(重量%の意味、以下同じ)、Ti:0.5
〜3%、及びFe:1%超2.5%未満を含み、残部Al及び不
可避不純物から構成され、且つ条件式Cr+Fe+Ti≦10.5
%(但し条件式における各元素は夫々%値を示す、以下
同じ)及びCr+1.2Fe+0.6Ti≦10%を満足することを特
徴とする耐熱性、塑性加工性、靱性に優れ高強度なAl基
合金。1. An Al-based alloy produced by a powder metallurgy method, wherein Cr: 5-10% (meaning weight%; the same applies hereinafter), Ti: 0.5
~ 3% and Fe: more than 1% and less than 2.5%, consisting of balance Al and unavoidable impurities, and conditional expression Cr + Fe + Ti ≤ 10.5
% (However, each element in the conditional expression shows a% value, the same applies hereinafter) and Cr + 1.2Fe + 0.6Ti ≦ 10%, which is a high-strength Al base with excellent heat resistance, plastic workability, and toughness. alloy.
特許請求の範囲第1項に記載のAl基合金。2. The Al-based alloy according to claim 1, which satisfies the conditional expression Cr + 2.4Fe + 1.2Ti ≧ 10%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62111982A JPH0762199B2 (en) | 1987-05-07 | 1987-05-07 | A1-based alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62111982A JPH0762199B2 (en) | 1987-05-07 | 1987-05-07 | A1-based alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63277738A JPS63277738A (en) | 1988-11-15 |
JPH0762199B2 true JPH0762199B2 (en) | 1995-07-05 |
Family
ID=14574986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62111982A Expired - Lifetime JPH0762199B2 (en) | 1987-05-07 | 1987-05-07 | A1-based alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0762199B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147038A (en) * | 1987-12-02 | 1989-06-08 | Honda Motor Co Ltd | Heat-resistant al alloy for powder metallurgy |
JP4704723B2 (en) * | 2004-10-08 | 2011-06-22 | 株式会社神戸製鋼所 | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties and vibration damping |
WO2006040938A1 (en) * | 2004-10-08 | 2006-04-20 | Kabushiki Kaisha Kobe Seiko Sho | HEAT RESISTANT Al BASE ALLOY EXCELLING IN HIGH-TEMPERATURE FATIGUE PROPERTY, DUMPING PROPERTY, ABRASION RESISTANCE AND WORKABILITY |
JP4704721B2 (en) * | 2004-10-08 | 2011-06-22 | 株式会社神戸製鋼所 | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties |
JP4704722B2 (en) * | 2004-10-08 | 2011-06-22 | 株式会社神戸製鋼所 | Heat-resistant Al-based alloy with excellent wear resistance and workability |
JP4704720B2 (en) * | 2004-10-08 | 2011-06-22 | 株式会社神戸製鋼所 | Heat-resistant Al-based alloy with excellent high-temperature fatigue properties |
JP5010196B2 (en) * | 2006-07-18 | 2012-08-29 | 株式会社神戸製鋼所 | Heat-resistant aluminum alloy shape manufacturing method, heat-resistant aluminum alloy shape material and heat-resistant aluminum alloy shape forming apparatus |
-
1987
- 1987-05-07 JP JP62111982A patent/JPH0762199B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63277738A (en) | 1988-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63157831A (en) | Heat-resisting aluminum alloy | |
JPH0347941A (en) | High strength magnesium base alloy | |
JP3391636B2 (en) | High wear-resistant aluminum-based composite alloy | |
JP4764094B2 (en) | Heat-resistant Al-based alloy | |
JP2965774B2 (en) | High-strength wear-resistant aluminum alloy | |
US4822414A (en) | Al-based alloy comprising Cr and Ti | |
EP0558977B1 (en) | High-strength, rapidly solidified alloy | |
JPH0762199B2 (en) | A1-based alloy | |
JPS6342344A (en) | Al alloy for powder metallurgy excellent in high temperature strength characteristic | |
JP2807374B2 (en) | High-strength magnesium-based alloy and its solidified material | |
JPH05255780A (en) | High strength titanium alloy having uniform and fine structure | |
JPH07197164A (en) | Aluminum alloy having high strength and high workability and its production | |
JPS6244547A (en) | Composite aluminum alloy material | |
JP2711296B2 (en) | Heat resistant aluminum alloy | |
EP0137180B1 (en) | Heat-resisting aluminium alloy | |
JP2602893B2 (en) | Aluminum alloy member with high strength and excellent forgeability | |
JP2752971B2 (en) | High strength and heat resistant aluminum alloy member and method of manufacturing the same | |
JPH0892680A (en) | High strength aluminum-based alloy | |
JPH02194142A (en) | Al-base alloy powder for sintering | |
JP3104309B2 (en) | Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness | |
JPS6223952A (en) | Al-fe-ni heat-resisting alloy having high toughness and its production | |
JPH06228697A (en) | Rapidly solidified al alloy excellent in high temperature property | |
JPH10298684A (en) | Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance | |
US5174955A (en) | Heat-resisting aluminum alloy | |
JPH05140685A (en) | Aluminum base alloy laminated and compacted material and its manufacture |