JPH10298684A - Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance - Google Patents

Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance

Info

Publication number
JPH10298684A
JPH10298684A JP11616397A JP11616397A JPH10298684A JP H10298684 A JPH10298684 A JP H10298684A JP 11616397 A JP11616397 A JP 11616397A JP 11616397 A JP11616397 A JP 11616397A JP H10298684 A JPH10298684 A JP H10298684A
Authority
JP
Japan
Prior art keywords
strength
alloy
composite material
aluminum
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11616397A
Other languages
Japanese (ja)
Inventor
Masahiro Oguchi
昌弘 小口
Akihisa Inoue
明久 井上
Yoshihito Kawamura
能人 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Piston Ring Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP11616397A priority Critical patent/JPH10298684A/en
Publication of JPH10298684A publication Critical patent/JPH10298684A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an Al matrix alloy-hard particle composite material excellent in heat resistance, room temp. strength, high temp. strength and hardness, high in specific strength and having wear resistance by dispersing hard fine particles into an Al matrix essentially consisting of α-Al phases and having strength and elongation. SOLUTION: The molten metal of an Al alloy having a compsn. shown by the general formula of Albal Ma Xb where M denotes one or two kinds of Fe and Co, X denotes one or >= two kinds among Ti, rare earth metals including Y and misch metals, and as for (a) and (b), by atomic, 3<=a<=8 and 0<=b<=5 are satisfied} is solidified by a melt quenching method such as a single roll method or the like to produce an α-Al solid solution. The matrix essentially consisting of the powder of the α-Al solid solution is mixed with the hard particles of carbide, nitride, oxide, boride or the like of <=10 μm average particle size by 3 to 20 vol.% by a ball mill or the like, and they are dispersed and incorporated therein. This powdery mixture material is solidified by a hot pressing or the like to obtain the Al matrix alloy-hard particle composite material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度などの機械的
特性、耐摩耗性及び耐熱性に優れたアルミニウム基合金
−硬質粒子複合材料に関する。
TECHNICAL FIELD The present invention relates to an aluminum-based alloy-hard particle composite material having excellent mechanical properties such as strength, abrasion resistance and heat resistance.

【0002】[0002]

【従来の技術】従来より、高強度及び耐熱性を有するア
ルミニウム基合金が液体急冷法等の急冷凝固手段によっ
て製造されている。特に特開平1−275732号公報
に開示されている、急冷凝固手段によって得られるアル
ミニウム基合金は、非晶質合金又は非晶質と微結晶質の
複合組織合金である。
2. Description of the Related Art Conventionally, an aluminum-based alloy having high strength and heat resistance has been manufactured by rapid solidification means such as a liquid rapid cooling method. Particularly, the aluminum-based alloy obtained by the rapid solidification means disclosed in Japanese Patent Application Laid-Open No. 1-275732 is an amorphous alloy or a composite structure alloy of amorphous and microcrystalline.

【0004】次に、従来から耐摩耗性アルミニウム基合
金として知られている共晶あるいは過共晶Al−Si合
金は、基地中に硬いSiを分散していることから優れた
耐摩耗性を示す。しかしながら、鋳造Al−Si合金の
初晶Siの大きさが数十μm以上と粗大であるため加工
が困難であるので、できるだけ最終製品に近い形状に鋳
造品を仕上げる必要がある。ところが、Al−Si合金
は鋳造性が悪いので製造上の問題が多かった。
Next, a eutectic or hypereutectic Al-Si alloy conventionally known as a wear-resistant aluminum-based alloy exhibits excellent wear resistance because hard Si is dispersed in a matrix. . However, since the size of the primary crystal Si of the cast Al-Si alloy is as coarse as several tens of μm or more, it is difficult to process the cast Al-Si alloy. Therefore, it is necessary to finish the cast product as close as possible to the final product. However, Al-Si alloys have poor production properties, and thus have many manufacturing problems.

【0005】また、粉末冶金法として35%Si程度の
高Si−Al合金をアトマイズ法によ冷却速度を高め初
晶Siを微細に分散した合金も知られているが、この合
金は耐摩耗性は優れているが硬度が低く、しかもその割
りには脆いために実用合金としての適性は鋳造材より不
満足であった。
[0005] Further, as a powder metallurgy method, there is known an alloy in which a high Si-Al alloy of about 35% Si is increased in cooling rate by an atomizing method and primary Si is finely dispersed. However, because of its low hardness and its brittleness, its suitability as a practical alloy was less satisfactory than that of a cast material.

【0006】上記問題を解決するために高強度、耐摩耗
性を有するSi含有アルミニウム基合金が液体急冷法等
の急冷凝固手段によって製造されている。特に特開平5
−222478号公報に開示されているアルミニウム基
合金は、微結晶質のアルミニウム基地相、安定又は準安
定な金属間化合物相及びSi粒子で構成された複合組織
を有し、強度及び耐摩耗性が高く、かつ加工性も高強度
材料としては良好なレベルに保っている。しかしなが
ら、高強度を狙うための急冷凝固の過程を経て晶出する
Si粒子サイズおよび金属間化合物粒子サイズが小さく
耐摩耗性の点で改善の余地を残している。
[0006] In order to solve the above-mentioned problems, Si-containing aluminum-based alloys having high strength and wear resistance have been manufactured by rapid solidification means such as a liquid quenching method. In particular, JP-A-5
The aluminum-based alloy disclosed in JP-A-222478 has a composite structure composed of a microcrystalline aluminum base phase, a stable or metastable intermetallic compound phase, and Si particles, and has strength and wear resistance. It is high and has good workability as a high-strength material. However, the size of Si particles and intermetallic compound particles that are crystallized through the process of rapid solidification for high strength is small, leaving room for improvement in terms of wear resistance.

【0007】また、硬質粒子分散合金に属する特公昭6
3−20298号公報に記載された合金は、Al−Ni
系アルミニウム基合金にSi,SiC,Si34 等を
分散させることにより耐熱性及び耐摩耗性を向上させて
いるが、強度は30kg/mm2 以下であり、薄肉の部
材では強度的に問題がある。また伸びも室温では1%以
下であり加工するのが困難な場合が生じる。
[0007] Japanese Patent Publication No. Sho 6
The alloy described in Japanese Patent Publication No.
Heat resistance and abrasion resistance are improved by dispersing Si, SiC, Si 3 N 4 etc. in aluminum-based alloys, but the strength is 30 kg / mm 2 or less. There is. Further, the elongation is 1% or less at room temperature, and it is sometimes difficult to process.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、強
度及び伸びのあるα−Al相を主体としたAl基地中に
10μm以下の硬質粒子を分散することにより、耐熱性
に優れ、室温強度及び高温強度ならびに硬度に優れ、比
強度が高く、しかも耐摩耗性のあるアルミニウム基合金
−硬質粒子複合材料を提供することを目的とするもので
ある。
Accordingly, the present invention provides an excellent heat resistance and a room temperature strength by dispersing hard particles of 10 μm or less in an Al matrix mainly composed of an α-Al phase having strength and elongation. It is another object of the present invention to provide an aluminum-based alloy-hard particle composite material having excellent high-temperature strength and hardness, high specific strength, and abrasion resistance.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
本発明は一般式:Albalab (但し、M:Fe,
Coから選ばれる1種もしくは2種以上、X:Ti,Y
(イットリウム)を含む希土類元素又はミッシュメタル
(Mm)から選ばれる1種もしくは2種以上の元素であ
り、a,bは原子%で3≦a≦8,0≦b≦5)で示さ
れる組成を有し、α−Al相を主体とした基地中に平均
粒径10μm以下の硬質粒子をが3〜20体積%分散し
ていることを特徴とする強度、耐摩耗性及び耐熱性に優
れたアルミニウム基合金−硬質粒子複合材料を提供す
る。
Means for Solving the Problems] To solve the above problems the present invention have the general formula: Al bal M a X b (where, M: Fe,
One or more selected from Co, X: Ti, Y
A rare earth element containing (yttrium) or one or more elements selected from misch metal (Mm), wherein a and b are atomic percentages and are represented by 3 ≦ a ≦ 8, 0 ≦ b ≦ 5) Excellent in strength, abrasion resistance and heat resistance, characterized in that 3 to 20% by volume of hard particles having an average particle size of 10 μm or less are dispersed in a matrix mainly composed of an α-Al phase. An aluminum-based alloy-hard particle composite is provided.

【0010】本発明のアルミニウム基合金−硬質粒子複
合材料の基地は、α−Al(過飽和固溶体)相からな
る。ここでM元素が3原子%以上では平衡状態における
固溶量を超えるために溶質を含有するα−Alは過飽和
固溶体になる。また、基地は、α−Alと、アルミニウ
ムとその他の元素(M,X)とが生成する種々の金属間
化合物、又はその他の元素(M,X)どうしが生成する
金属間化合物が1種又は2種以上の二次相としてAl過
飽和固溶体結晶粒内に含まれている複合相からなること
もある。ここで、金属間化合物は基地の強化及び結晶粒
の制御をするのに有効である。
The matrix of the aluminum-based alloy-hard particle composite material of the present invention comprises an α-Al (supersaturated solid solution) phase. Here, when the amount of the M element is 3 atomic% or more, the amount of solid solution in the equilibrium state is exceeded, so that α-Al containing a solute becomes a supersaturated solid solution. In addition, the matrix is composed of one or more kinds of intermetallic compounds generated by α-Al, aluminum and other elements (M, X), or one or more intermetallic compounds generated by other elements (M, X). It may be composed of a composite phase contained in Al supersaturated solid solution crystal grains as two or more secondary phases. Here, the intermetallic compound is effective for strengthening the matrix and controlling the crystal grains.

【0011】本発明の複合材料は、上記一般式の組成を
有するAl合金の溶湯を単ロール法、双ロール法、各種
アトマイズ法、スプレー法などの液体急冷法により凝固
させ、作製した急冷凝固材を酸化物、炭化物、窒化物、
硼化物等の硬質粒子とボールミルなどにより混合し硬質
微粒子をを均一分散させることにより得ることができ
る。これらの方法の場合、合金組成によって多少異なる
が、基地となる合金は102 〜104 K/sec程度の
冷却速度により過飽和固溶体あるいは過飽和固溶体と金
属間化合物との複合組織とすることができる。
The composite material of the present invention is prepared by solidifying a molten Al alloy having the composition of the above general formula by a liquid quenching method such as a single roll method, a twin roll method, various atomizing methods, and a spraying method. The oxide, carbide, nitride,
It can be obtained by mixing hard particles such as boride with a ball mill or the like and uniformly dispersing the hard fine particles. In the case of these methods, the base alloy can be formed into a supersaturated solid solution or a composite structure of a supersaturated solid solution and an intermetallic compound at a cooling rate of about 10 2 to 10 4 K / sec, although it slightly varies depending on the alloy composition.

【0012】上記アルミニウム基合金粉末は平均粒子径
が好ましくは20〜30μmのものを、平均粒径が好ま
しくは1〜10μmの硬質粒子とボールミルなどで混合
する。ボールミル法としては乾式で行うことが効果的で
ある。湿式の場合粉末の酸化等があり、その後固化成形
した場合、硬質粒子と粉末との接合性が悪く硬質粒子が
脱落する可能性があり、耐摩耗性に寄与できないことが
考えられる。混合粉末は熱間押出、熱間プレス、HIP
などにより固化することにより複合材とする。複合材の
空孔率はできるだけ少ないほうがよく、特に2体積%以
下が好ましい。上記アルミニウム基合金は、例えば25
0〜450℃において30分以上熱処理して金属間化合
物を析出させることができる。ここで熱処理温度が45
0℃を超えると、ほとんど全量のX、M成分が析出して
しまうので、過飽和固溶体が維持されなくなり、一方熱
処理温度が250℃未満,熱処理時間が1時間未満であ
ると顕著な効果がない。なお熱処理は固化前後のいずれ
で行ってもよい。
The aluminum-based alloy powder having an average particle diameter of preferably 20 to 30 μm is mixed with hard particles having an average particle diameter of preferably 1 to 10 μm by a ball mill or the like. It is effective to perform the ball milling in a dry manner. In the case of the wet method, the powder may be oxidized, and then, when the powder is solidified and formed, the hard particles have poor bonding properties and the hard particles may fall off, which may not contribute to the wear resistance. Mixed powder hot extrusion, hot pressing, HIP
It is made into a composite material by solidifying it. The porosity of the composite material is preferably as small as possible, and particularly preferably 2% by volume or less. The aluminum-based alloy is, for example, 25
Heat treatment at 0 to 450 ° C. for 30 minutes or more can precipitate the intermetallic compound. Here, the heat treatment temperature is 45
When the temperature exceeds 0 ° C., almost all of the X and M components are precipitated, so that the supersaturated solid solution cannot be maintained. On the other hand, when the heat treatment temperature is less than 250 ° C. and the heat treatment time is less than 1 hour, there is no remarkable effect. The heat treatment may be performed before or after solidification.

【0013】以下、本発明の限定理由について詳細に説
明する。前記一般式Albalab において原子%で
M(Fe,Co)の含有量aを3〜8at%,X(T
i,希土類元素)bを0〜5at%の範囲にそれぞれ限
定したのは、その範囲内であると従来(市販)の高強度
アルミニウム合金より室温強度が高く、300℃以上の
高温強度も高く、ヤング率が高く、同時に実用の加工に
耐えうるだけの延性を備えているためである。a,bの
残部即ち100−a−bはAlである。
Hereinafter, the reasons for limitation of the present invention will be described in detail. 3~8At% content a of M (Fe, Co) in atomic% in the general formula Al bal M a X b, X (T
(i, the rare earth element) b is limited to the range of 0 to 5 at%, respectively, as long as it is within the range, the room temperature strength is higher than the conventional (commercially available) high-strength aluminum alloy, and the high-temperature strength at 300 ° C. or higher is higher. This is because it has a high Young's modulus and at the same time has ductility enough to withstand practical processing. The remainder of a and b, that is, 100-ab is Al.

【0014】M元素はFe,Coから選ばれる1種もし
くは2種の元素であり、熱的安定性を向上させる。ま
た、X元素はTi,Y(イットリウム)を含む希土類元
素又はミッシュメタル(Mm)から選ばれる1種又は2
種以上の元素である。これらの元素は、Alに対して拡
散能が小さい元素であるところ、急冷凝固中にアルミニ
ウム基地内で生じるX元素の濃度偏析は、高X濃度域に
おいては基地強化効果があり、一方低X濃度偏析域のA
l基地ではすぐれた伸びが維持される。したがって、X
元素の拡散能が小さいことは有益な性質である。さらに
X成分に含まれる元素は主元素のAl又はその他の元素
と種々の金属間化合物を形成し、合金の強度の向上及び
耐熱性に貢献する。その他に、X成分の元素は合金溶湯
の冷却中にAl溶湯から微細な結晶として多数晶出して
核となって、Al結晶を微細化させ、機械的特性を向上
させるとともに、合金の延性を向上させる。
The M element is one or two elements selected from Fe and Co, and improves the thermal stability. The X element is one or two selected from rare earth elements containing Ti and Y (yttrium) or misch metal (Mm).
More than one kind of element. Since these elements are elements having a low diffusivity with respect to Al, the concentration segregation of the X element in the aluminum matrix during rapid solidification has the effect of strengthening the matrix in a high X concentration region, whereas the low X concentration A in the segregation zone
Excellent growth is maintained at base l. Therefore, X
The low diffusivity of the elements is a beneficial property. Further, the elements contained in the X component form various intermetallic compounds with the main element Al or other elements, and contribute to improvement of the strength of the alloy and heat resistance. In addition, during cooling of the molten alloy, many of the elements of the X component crystallize out of the molten aluminum as fine crystals to form nuclei, refine the Al crystals, improve the mechanical properties, and improve the ductility of the alloy. Let it.

【0015】上述のように本発明において合金の基地組
織はα−Al(過飽和固溶体)単相もしくは上述の複合
相からなる。基地組織を構成することがある種々の金属
間化合物の平均粒子の大きさは10〜1000nmであ
ることが好ましい。平均粒子の大きさが10nm未満の
場合、合金の強度が高くならず、又単位面積当りの金属
間化合物の個数が必要以上多くなりすぎるために合金の
脆化を招く危険が生じる。一方金属間化合物の平均粒子
の大きさが1000nmを越えた場合、粒子が大きくな
りすぎて、強化要素として働きがなくなるため合金の強
度の維持ができなくなる。また強度、硬度及び延性を高
いレベルでバランスさせるために金属間化合物の平均粒
子間距離は10〜500nmであることが好ましい。分
散強化機構により強化を行う金属間化合物粒子の平均粒
子間距離が10nm〜500nmの範囲内であると強度
及び延性が特に良好となり、しかも高温で超塑性材とし
ての性質も付与される。
As described above, in the present invention, the base structure of the alloy comprises a single phase of α-Al (supersaturated solid solution) or the above-mentioned composite phase. The average particle size of various intermetallic compounds that may constitute the base structure is preferably from 10 to 1000 nm. When the average particle size is less than 10 nm, the strength of the alloy does not increase, and the number of intermetallic compounds per unit area becomes too large, which may cause the alloy to become brittle. On the other hand, when the average particle size of the intermetallic compound exceeds 1000 nm, the particles become too large and do not function as a reinforcing element, so that the strength of the alloy cannot be maintained. Further, in order to balance strength, hardness and ductility at a high level, the average interparticle distance of the intermetallic compound is preferably from 10 to 500 nm. When the average interparticle distance of the intermetallic compound particles to be strengthened by the dispersion strengthening mechanism is in the range of 10 nm to 500 nm, the strength and ductility are particularly good, and the properties as a superplastic material are imparted at a high temperature.

【0016】続いて、基地組織中に分散する分散相であ
る硬質粒子について説明する。硬質粒子とは、一般にH
v1000〜2000の硬度を有し、基地より硬度が実
質的に高い化合物(2種以上の化合物が複合した複化合
物も含む)の粒子である。硬度差は少なくとも3倍以
上、好ましくは5倍以上である。硬質粒子は、好ましく
は、炭化物、窒化物、酸化物及び硼化物から選択され
る。炭化物はTiC,SiC,WC,NbCなど、窒化
物はAlN,TiN,Si34 ,c−BNなど、酸化
物はAl23 ,SiO2 ,TiO2 など、硼化物はT
iB,FeBなどから選択される。分散する硬質粒子の
平均粒子径は10μm以下である。10μmを超えると
強度及び被削性が低下する。また硬質粒子の分散量(複
合材料全体に対する割合)を3〜20体積%に限定した
理由は、3体積%以下では耐摩耗性が不足し、20体積
%以上では強度及び靭性が低下するからである。
Next, the hard particles which are dispersed phases in the matrix will be described. Hard particles are generally H
Particles of a compound having a hardness of v1000 to 2000 and having a hardness substantially higher than that of the base (including a complex compound in which two or more compounds are compounded). The hardness difference is at least three times or more, preferably five times or more. The hard particles are preferably selected from carbides, nitrides, oxides and borides. Carbides TiC, SiC, WC, etc. NbC, nitrides AlN, TiN, etc. Si 3 N 4, c-BN , oxide such as Al 2 O 3, SiO 2, TiO 2, borides T
It is selected from iB, FeB and the like. The average particle size of the dispersed hard particles is 10 μm or less. If it exceeds 10 μm, the strength and machinability decrease. The reason why the dispersion amount of the hard particles (the ratio to the whole composite material) is limited to 3 to 20% by volume is that the wear resistance is insufficient at 3% by volume or less, and the strength and toughness decrease at 20% by volume or more. is there.

【0017】[0017]

【作用】上述のように、高温、室温強度、延性、疲労強
度、ヤング率などが高い基地合金に硬質粒子を分散させ
ることにより耐摩耗性を付加させることができる。これ
に対して、従来の硬質粒子を混合した複合Al合金は強
度などの特性は向上する一方伸びが激減するが、本発明
の合金は基地の優れた特性故に靭性が高い。
As described above, wear resistance can be added by dispersing hard particles in a base alloy having high temperature, room temperature strength, ductility, fatigue strength, Young's modulus and the like. On the other hand, the composite Al alloy mixed with the conventional hard particles has improved properties such as strength and sharply reduced elongation, but the alloy of the present invention has high toughness due to the excellent properties of the matrix.

【0018】本発明の複合材料の代表的な性質は以下の
とおりである。 引張強度(室温):750〜900MPa、鉄鋼材料と
同等 比重:3.0〜3.3、一般的アルミニウム合金展伸材
と比較して約20%重い 比強度:2.3×104 m〜3.0×104 m高強度ア
ルミニウム合金の代表である超々ジュラルミン(A70
75)と比較して1.5倍 延性:2〜5% 高温強度:400Kにおいて硬度換算でA7075の
1.5〜2倍 耐摩耗性:[0026]で述べる 本発明の複合材は高温で使用される軽量摺動材料として
適している。
Representative properties of the composite material of the present invention are as follows. Tensile strength (room temperature): 750 to 900 MPa, equivalent to steel material Specific gravity: 3.0 to 3.3, about 20% heavier than general aluminum alloy wrought material Specific strength: 2.3 × 10 4 m Ultra super duralumin (A70) which is a representative of 3.0 × 10 4 m high strength aluminum alloy
1.5) Ductility: 2 to 5% as compared with 75) High temperature strength: 1.5 to 2 times of A7075 in terms of hardness at 400K Abrasion resistance: described in [0026] The composite material of the present invention is used at high temperature It is suitable as a lightweight sliding material.

【0019】本発明のアルミニウム基合金は適当な製造
条件を選ぶことにより、合金組織、各相の粒径、分散状
態などを制御できる。すなわち、合金の組織は単相もし
くは複相の何れかをM,X成分の添加量と冷却速度制
御、及び熱処理により選択できる。各相の粒径は粉末粒
径により、分散状能はボールミル混合条件により制御す
ることができる。この制御により強度、硬度、延性、耐
熱性等を調整することができる。以下、実施例に基づき
本発明を具体的に説明する。
The aluminum alloy of the present invention can control the alloy structure, the particle size of each phase, the dispersion state, and the like by selecting appropriate production conditions. That is, the structure of the alloy can be selected from either a single phase or a multi-phase by controlling the addition amounts of the M and X components, controlling the cooling rate, and heat treatment. The particle size of each phase can be controlled by the powder particle size, and the dispersibility can be controlled by the ball mill mixing conditions. By this control, strength, hardness, ductility, heat resistance and the like can be adjusted. Hereinafter, the present invention will be specifically described based on examples.

【0020】[0020]

【実施例】【Example】

実施例1 Al93Fe3.5 Ti3.5 で示される組成(原子比)の母
合金を高周波溶解炉で溶製し、高圧ガス噴霧法(Arガ
ス)により平均粒径23μmの粉末を製造した。その際
のガス圧は80kg/cm2 であった。製造した粉末は
X線回折を行った結果、α−Al相からなる組織であっ
た。この粉末に平均粒径3μmのSiC粉末を5体積%
添加しボールミルで3時間混合した結果、基地中にSi
Cが均一に分散したAl基合金−SiCの混合粉末が得
られた。
Example 1 A master alloy having a composition (atomic ratio) represented by Al 93 Fe 3.5 Ti 3.5 was melted in a high-frequency melting furnace, and a powder having an average particle diameter of 23 μm was manufactured by a high-pressure gas atomization method (Ar gas). The gas pressure at that time was 80 kg / cm 2 . As a result of X-ray diffraction, the produced powder had a structure composed of an α-Al phase. 5% by volume of SiC powder having an average particle size of 3 μm
After mixing and mixing for 3 hours in a ball mill,
A mixed powder of Al-based alloy-SiC in which C was uniformly dispersed was obtained.

【0021】実施例2 実施例1で作製した粉末を、銅製カプセルに詰め400
℃で真空脱気(1×10-5ttor)後、360℃で押
出し比10で温間押出しにより直径が12mmの丸棒を
得た。この押出棒はα−Al相からなるAl基地中に、
SiC粒子が均一微細に分散した組織を有していた。図
1にこの複合材料を光学顕微鏡で観察した組織写真を示
す。またこの合金の引張強度、室温での伸びはそれぞれ
776MPa,2.8%であった。
Example 2 The powder prepared in Example 1 was packed in a copper
After vacuum deaeration (1 × 10 −5 torr) at ° C., a round bar having a diameter of 12 mm was obtained by warm extrusion at 360 ° C. at an extrusion ratio of 10. This extruded rod is placed in an Al matrix composed of an α-Al phase,
It had a structure in which SiC particles were uniformly and finely dispersed. FIG. 1 shows a structure photograph of the composite material observed with an optical microscope. The tensile strength and elongation at room temperature of this alloy were 776 MPa and 2.8%, respectively.

【0022】実施例3 表1に組成を示す本発明合金1〜19を実施例1と同様
に粉末として製造し、続いて表1に示す分散粒子とボー
ルミルにより3時間混合した。混合粉末を実施例2と同
様の方法により押出し成形し、得られたバルク材の硬
度、引張強度を調べた結果を図6(表1)に示す。
Example 3 Inventive alloys 1 to 19 having the compositions shown in Table 1 were produced as powders in the same manner as in Example 1, and then mixed with the dispersed particles shown in Table 1 by a ball mill for 3 hours. The mixed powder was extruded in the same manner as in Example 2, and the hardness and tensile strength of the obtained bulk material were examined. The results are shown in FIG. 6 (Table 1).

【0023】比較例1 図6(表1)に基地合金組成、分散粒子種類・量・径を
示すNo.20〜24につき実施例3と同様に成形し
た。図6(表1)より合金No.20は硬質粒子無添加
であるために、またNo.21は硬質粒子添加量が少な
いために、強度及び硬度が低い。No.22,24は硬
質粒子添加量が多いために又No.23硬質粒子径が大
きいために、硬度は高いが強度は低い。
Comparative Example 1 FIG. 6 (Table 1) shows the base alloy composition and the type, amount and diameter of the dispersed particles. 20 to 24 were molded in the same manner as in Example 3. From FIG. 6 (Table 1), the alloy No. No. 20 has no hard particles added. No. 21 has low strength and hardness due to a small amount of hard particles added. No. Nos. 22 and 24 were no. 23 Hardness is high but strength is low due to large hard particle diameter.

【0024】図6(表1)の組成は以下のとおりであ
り、比較材は*印を付して示す。 1 Al93Fe3.5 Ti3.5 2 Al93Fe3.5 Ti3.5 3 Al93Fe3.5 Ti3.5 4 Al93Fe3.5 Ti3.5 5 Al92.5Fe3.5 Ti3.5 Ce0.5 6 Al92.5Fe3.5 Ti3.5 Ce0.5 7 Al92.5Fe4 Co3 Nd0.5 8 Al92.5Fe3.5 Co3.5 Nd0.5 9 Al92.5Fe3 Co4 Nd0.5 10 Al92.5Fe4 Co3 Ce0.5 11 Al92Fe4 Co3 Nd0.5 Ti0.5 12 Al92.5Fe3.5 Co4 Ce0.5 Ti0.5 13 Al92.5Fe4 Co3 Ce0.5 Ti0.2 14 Al93Fe3.5 Ti3.5 15 Al93Fe3.5 Ti3.5 16 Al93Fe3.5 Ti3.5 17 Al93Fe3.5 Ti3.5 18 Al93Fe4 Co3 19 Al93Fe3 Co4 20* Al93Fe3.5 Ti3.5 21* Al93Fe3.5 Ti3.5 22* Al93Fe3.5 Ti3.5 23* Al93Fe3.5 Ti3.5 24* Al92.5Fe3.5 Ti3.5 Ce0.5
The composition of FIG. 6 (Table 1) is as follows, and comparative materials are indicated by *. 1 Al 93 Fe 3.5 Ti 3.5 2 Al 93 Fe 3.5 Ti 3.5 3 Al 93 Fe 3.5 Ti 3.5 4 Al 93 Fe 3.5 Ti 3.5 5 Al 92.5 Fe 3.5 Ti 3.5 Ce 0.5 6 Al 92.5 Fe 3.5 Ti 3.5 Ce 0.5 7 Al 92.5 Fe 4 Co 3 Nd 0.5 8 Al 92.5 Fe 3.5 Co 3.5 Nd 0.5 9 Al 92.5 Fe 3 Co 4 Nd 0.5 10 Al 92.5 Fe 4 Co 3 Ce 0.5 11 Al 92 Fe 4 Co 3 Nd 0.5 Ti 0.5 12 Al 92.5 Fe 3.5 Co 4 Ce 0.5 Ti 0.5 13 Al 92.5 Fe 4 Co 3 Ce 0.5 Ti 0.2 14 Al 93 Fe 3.5 Ti 3.5 15 Al 93 Fe 3.5 Ti 3.5 16 Al 93 Fe 3.5 Ti 3.5 17 Al 93 Fe 3.5 Ti 3.5 18 Al 93 Fe 4 Co 3 19 Al 93 Fe 3 Co 4 20 * Al 93 Fe 3.5 Ti 3.5 21 * Al 93 Fe 3.5 Ti 3.5 22 * Al 93 Fe 3.5 Ti 3.5 23 * Al 93 Fe 3.5 Ti 3.5 24 * Al 92.5 Fe 3.5 Ti 3.5 Ce 0.5

【0025】比較例2 耐摩耗性合金として知られているA390焼結材(調質
6 )の硬度及び試験結果を測定して結果を図6(表
1)に示す(No.25)。
Comparative Example 2 The hardness and test results of an A390 sintered material (tempered T 6 ) known as a wear-resistant alloy were measured, and the results are shown in FIG. 6 (Table 1) (No. 25).

【0026】実施例4及び比較例2 実施例3に示した合金No.1,2,5,8,18の押
出し材及び比較例1に示した合金No.20,21,2
2の押出し材を図2の様に試験片1として加工して図3
に示す様に相手材2(共晶鋳鉄)と接触させ荷重10k
gf/mm,速度1m/s,潤滑油=日石レフオイル
(NS−4GS),テスト時間20分の条件で摩耗試験
をした。その結果を図4に示す。なお、摩耗量の評価は
供試材は摩耗痕幅を、相手材は摩耗テスト前に摺動面に
ビッカースの圧痕(荷重:1kg)をつけ圧痕径を計
り、テスト後再び圧痕径を計りその差を摩耗量とした。
Example 4 and Comparative Example 2 The alloy No. 3 shown in Example 3 was used. 1, 2, 5, 8, and 18 and the alloy No. 1 shown in Comparative Example 1. 20, 21, 2
2 was processed into a test piece 1 as shown in FIG.
As shown in the figure, contact with the counterpart material 2 (eutectic cast iron) and load 10k
The wear test was performed under the conditions of gf / mm, speed 1 m / s, lubricating oil = Nisseki Refoil (NS-4GS), and test time 20 minutes. FIG. 4 shows the results. For the evaluation of the amount of wear, the test material was measured for the width of the wear mark, and the mating material was measured for the Vickers indentation (load: 1 kg) on the sliding surface before the abrasion test, and the indentation diameter was measured again after the test. The difference was taken as the amount of wear.

【0027】A390合金(No.25)及び比較例合
金No.22の場合は相手材をまた比較例合金20,2
1の場合は供試材自身が多く摩耗するが、本発明の場合
は自身と相手材双方の摩耗量が少なく、本発明材は相手
材と相性が良いことが分かる。
A390 alloy (No. 25) and Comparative alloy No. In the case of No. 22, the mating material was also used as the comparative alloy 20, 20
In the case of 1, the test material itself wears much, but in the case of the present invention, the wear amount of both itself and the mating material is small, and it is understood that the material of the present invention has good compatibility with the mating material.

【0028】実施例5 実施例3に示した押出し材のうち本発明合金No.2と
本発明合金No.7の高温硬さ試験結果を図5に示す。
比較材として実用高強度Al合金7075−T6処理材
の高温硬さも示す。7075−T6材に比べ本発明例の
材料は高い硬さを示し、耐熱性が向上していることが分
かる。
Example 5 Of the extruded materials shown in Example 3, Alloy No. 2 and the alloy No. 2 of the present invention. 7 shows the results of the high temperature hardness test.
As a comparative material, the high-temperature hardness of a practical high-strength Al alloy 7075-T6 treated material is also shown. It can be seen that the material of the example of the present invention has a higher hardness than the 7075-T6 material and has improved heat resistance.

【0029】[0029]

【発明の効果】以上のように本発明の合金は、室温にお
ける強度に優れ、耐熱性に優れているとともに、希土類
元素の添加量が少ないことにより、高強度で比重が小さ
いことにより高比強度材料を基地とし、ここに硬質粒子
を均一に分散することにより耐摩耗性を備えたアルミニ
ウム基合金を提供できる。また優れた耐熱性を有するこ
とにより、加工の際の熱的影響を受けても急冷凝固法に
よって作製された優れた特性及び熱処理又は熱加工によ
って作製された特性を維持することができる。
As described above, the alloy of the present invention is excellent in strength at room temperature and excellent in heat resistance, and has a high strength and a low specific gravity due to a small amount of rare earth element added. An aluminum-based alloy having wear resistance can be provided by using a material as a matrix and uniformly dispersing hard particles therein. In addition, by having excellent heat resistance, excellent characteristics produced by the rapid solidification method and characteristics produced by heat treatment or thermal processing can be maintained even under the influence of heat during processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例2における光学顕微鏡による金属組織
を示す写真である。
FIG. 1 is a photograph showing a metal structure by an optical microscope in Example 2.

【図2】 摩耗試験片の図である。FIG. 2 is a view of a wear test piece.

【図3】 摩耗試験方法の説明図である。FIG. 3 is an explanatory diagram of a wear test method.

【図4】 実施例4における摩耗試験結果を示すグラフ
である。
FIG. 4 is a graph showing the results of a wear test in Example 4.

【図5】 実施例5における高温硬さ試験結果を示すグ
ラフである。
FIG. 5 is a graph showing the results of a high-temperature hardness test in Example 5.

【図6】 実施例3,比較例1、2の組成及び試験結果
を示す図表(表1)である。
FIG. 6 is a table (Table 1) showing compositions and test results of Example 3 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 試験片(供試材) 2 相手材 1 Test piece (test material) 2 Counterpart material

フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 603 C22F 1/00 603 621 621 627 627 628 628 630 630D 650 650A 687 687 (72)発明者 小口 昌弘 東京都中央区八重洲1−9−9 帝国ピス トンリング株式会社内 (72)発明者 井上 明久 宮城県仙台市青葉区川内元支倉35番地 川 内住宅11−806 (72)発明者 河村 能人 宮城県仙台市青葉区片平2−1−1 東北 大学金属材料研究所内Continuation of the front page (51) Int.Cl. 6 identification symbol FI // C22F 1/00 603 C22F 1/00 603 621 621 627 627 628 628 628 630 630 630D 650 650A 687 687 (72) Inventor Masahiro Koguchi Chuo-ku, Tokyo 1-9-9 Yaesu Imperial Piston Ring Co., Ltd. (72) Inventor Akihisa Inoue 35-35 Kawachimoto Hasekura, Aoba-ku, Aoba-ku, Sendai City, Miyagi Prefecture 11-806 Kawauchi House (72) Inventor Noto Kawamura Aoba, Sendai-shi, Miyagi Prefecture 2-1-1 Katahira-ku, Tohoku University Institute for Materials Research

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式Albalab (但し、M:F
e,Coから選ばれる1種もしくは2種の元素、X:T
i,Y(イットリウム)を含む希土類元素またはミッシ
ュメタル(Mm)から選ばれる1種もしくは2種以上の
元素であり、a,bは原子%で3≦a≦8,0≦b≦
5)で示される組成を有し、α−Al固溶体を主体とし
た基地中に、平均粒径10μm以下の硬質粒子が3〜2
0体積%分散していることを特徴とする強度、耐摩耗性
及び耐熱性に優れたアルミニウム基合金−硬質粒子複合
材料。
1. A general formula Al bal M a X b (where, M: F
one or two elements selected from e and Co, X: T
one or more elements selected from the group consisting of rare earth elements containing i and Y (yttrium) or misch metals (Mm), and a and b are atomic percentages of 3 ≦ a ≦ 8, 0 ≦ b ≦
5) Hard particles having an average particle size of 10 μm or less are contained in a matrix mainly composed of α-Al solid solution having a composition represented by 5).
An aluminum-based alloy-hard particle composite material having excellent strength, abrasion resistance and heat resistance characterized by being dispersed in 0% by volume.
【請求項2】 前記硬質粒子が炭化物、窒化物、酸化物
及び硼化物から選ばれる1種もしくは2種以上である請
求項1記載の強度、耐摩耗性及び耐熱性に優れたアルミ
ニウム基合金−硬質粒子複合材料。
2. The aluminum-based alloy according to claim 1, wherein said hard particles are one or more selected from carbides, nitrides, oxides and borides. Hard particle composite material.
【請求項3】 前記基地が、前記α−Al相固溶体と、
前記元素M或はM及びXが、これら自身でもしくはアル
ミニウムと化合して生成する金属間化合物とからなる請
求項1又は2記載の強度、耐摩耗性及び耐熱性に優れた
アルミニウム基合金−硬質粒子複合材料。
3. The method according to claim 1, wherein the matrix comprises the α-Al phase solid solution,
The aluminum-based alloy having excellent strength, wear resistance and heat resistance according to claim 1 or 2, wherein the element M or M and X comprises an intermetallic compound formed by themselves or by combining with aluminum. Particle composite material.
【請求項4】 一般式Albalab の組成を有する
急冷凝固材の粉末を前記硬質粒子と固化成形した請求項
1から3まで何れか1項記載の強度、耐摩耗性及び耐熱
性に優れたアルミニウム基合金−硬質粒子複合材料。
Wherein the general formula Al bal M a X b strength according to any one of powder of rapidly solidified material from claim 1 which solidified molded with the hard particles up to 3 having a composition of, wear resistance and heat resistance Aluminum based alloy-hard particle composite material with excellent properties.
【請求項5】 前記急冷凝固材を固化成形前もしくは後
に250〜450℃で熱処理した請求項4記載の強度、
耐摩耗性及び耐熱性に優れたアルミニウム基合金−硬質
粒子複合材料。
5. The strength according to claim 4, wherein the rapidly solidified material is heat-treated at 250 to 450 ° C. before or after solidification molding.
Aluminum-based alloy-hard particle composite material with excellent wear resistance and heat resistance.
JP11616397A 1997-04-18 1997-04-18 Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance Pending JPH10298684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11616397A JPH10298684A (en) 1997-04-18 1997-04-18 Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11616397A JPH10298684A (en) 1997-04-18 1997-04-18 Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance

Publications (1)

Publication Number Publication Date
JPH10298684A true JPH10298684A (en) 1998-11-10

Family

ID=14680346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11616397A Pending JPH10298684A (en) 1997-04-18 1997-04-18 Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance

Country Status (1)

Country Link
JP (1) JPH10298684A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224942A (en) * 2010-10-08 2012-11-15 Kobe Steel Ltd Al-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
CN103924129A (en) * 2014-04-16 2014-07-16 同济大学 Rapid solidification aluminum alloy material and preparation method thereof
JP2021523011A (en) * 2018-05-08 2021-09-02 マテリオン コーポレイション How to Make Metal Matrix Composite Strip Products
JP2021523012A (en) * 2018-05-08 2021-09-02 マテリオン コーポレイション How to heat strip products
CN115725881A (en) * 2022-12-06 2023-03-03 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224942A (en) * 2010-10-08 2012-11-15 Kobe Steel Ltd Al-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
CN103924129A (en) * 2014-04-16 2014-07-16 同济大学 Rapid solidification aluminum alloy material and preparation method thereof
JP2021523011A (en) * 2018-05-08 2021-09-02 マテリオン コーポレイション How to Make Metal Matrix Composite Strip Products
JP2021523012A (en) * 2018-05-08 2021-09-02 マテリオン コーポレイション How to heat strip products
CN115725881A (en) * 2022-12-06 2023-03-03 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof
CN115725881B (en) * 2022-12-06 2023-11-24 山东创新金属科技有限公司 High-temperature-resistant aluminum alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7648593B2 (en) Aluminum based alloy
US5744254A (en) Composite materials including metallic matrix composite reinforcements
JP3929978B2 (en) Aluminum base alloy
EP0821072B1 (en) Highly wear-resistant aluminium-based composite alloy and wear-resistant parts
EP1111078A2 (en) High strength aluminium alloy
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
JPS63317653A (en) Aluminum alloy composite material
US8795448B2 (en) Wear resistant materials
US5435825A (en) Aluminum matrix composite powder
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
JP2965774B2 (en) High-strength wear-resistant aluminum alloy
JP2911708B2 (en) High-strength, heat-resistant, rapidly solidified aluminum alloy, its solidified material, and its manufacturing method
JP2798841B2 (en) High-strength and heat-resistant aluminum alloy solidified material and method for producing the same
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
JPH0610086A (en) Wear resistant aluminum alloy and working method therefor
JPS60204857A (en) Aluminum alloy and article using same
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
WO1992007676A1 (en) Hypereutectic aluminum/silicon alloy powder and production thereof
JP3485961B2 (en) High strength aluminum base alloy
JPH05311359A (en) High strength aluminum base alloy and its composite solidified material
JP2798840B2 (en) High-strength aluminum-based alloy integrated solidified material and method for producing the same
JPH05140685A (en) Aluminum base alloy laminated and compacted material and its manufacture
JPH10251788A (en) Aluminum alloy having high strength and wear resistance
JPH051346A (en) High strength aluminum-base alloy