JP2009035766A - HIGH-FATIGUE-STRENGTH Al ALLOY AND PRODUCTION METHOD THEREFOR - Google Patents

HIGH-FATIGUE-STRENGTH Al ALLOY AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
JP2009035766A
JP2009035766A JP2007199599A JP2007199599A JP2009035766A JP 2009035766 A JP2009035766 A JP 2009035766A JP 2007199599 A JP2007199599 A JP 2007199599A JP 2007199599 A JP2007199599 A JP 2007199599A JP 2009035766 A JP2009035766 A JP 2009035766A
Authority
JP
Japan
Prior art keywords
alloy
strength
fatigue strength
mass
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007199599A
Other languages
Japanese (ja)
Other versions
JP5111005B2 (en
Inventor
Hideo Hatake
英雄 畠
Shigenobu Nanba
茂信 難波
Hiroyuki Takeda
裕之 武田
Mamoru Nagao
護 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007199599A priority Critical patent/JP5111005B2/en
Priority to PCT/JP2008/060710 priority patent/WO2009016890A1/en
Publication of JP2009035766A publication Critical patent/JP2009035766A/en
Application granted granted Critical
Publication of JP5111005B2 publication Critical patent/JP5111005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Extrusion Of Metal (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al alloy which exhibits high ductility considering its high strength, has high fatigue strength as well, and shows excellent reliability as a structural part or a member, and to provide a production method therefor. <P>SOLUTION: The Al alloy having the high strength, high ductility and also high fatigue strength is produced through refining crystallized products and precipitates which exist in the structure of Al-Zn-Mg-Cu 7000 series Al alloy obtained by a rapid cooling solidification method and tend to be coarsened by the segregation of alloy elements, by controlling the deposition rate, G/M ratio and the like of a sprayed molten metal by a spray forming operation with the use of an inert gas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、急冷凝固法により得られたAl−Zn−Mg−Cu系の7000系Al合金であって、高強度な割に高延性であるとともに、疲労強度も高く、構造用部品や部材としての信頼性に優れたAl合金およびその製造方法に関するものである。   The present invention is an Al-Zn-Mg-Cu-based 7000-series Al alloy obtained by a rapid solidification method, and has high ductility for high strength, high fatigue strength, and is used as a structural component or member. The present invention relates to an Al alloy having excellent reliability and a method for producing the same.

本発明で言う、急冷凝固法により得られたAl合金とは、Al合金溶湯をガスアトマイズにより急冷凝固させた粉末乃至プリフォーム体を固化させたAl合金である。この固化させたAl合金とは、急冷凝固粉末乃至プリフォーム体を、押出、鍛造、圧延などの熱間塑性加工により緻密化させたAl合金のことであり、緻密化後に、溶体化処理、時効処理などの調質処理が施された、種々の形状を有するAl合金材のことである。そして、その用途に応じて、高延性を利して所望の形状に冷間などで成形加工され、高強度を利して所望の部材、部品とされるAl合金材のことを言う。   The Al alloy obtained by the rapid solidification method referred to in the present invention is an Al alloy obtained by solidifying a powder or preform obtained by rapidly solidifying an Al alloy molten metal by gas atomization. The solidified Al alloy is an Al alloy obtained by densifying rapidly solidified powder or preform by hot plastic working such as extrusion, forging, rolling, etc., and after densification, solution treatment, aging It is an Al alloy material having various shapes subjected to a tempering treatment such as a treatment. And depending on the use, it refers to an Al alloy material that is formed into a desired shape by using high ductility, such as cold, and is used as a desired member or component by using high strength.

近年、軽量化の要求が高まっている自動車部品、電子材料用端末機械、精密機械部品などには、高強度で軽量なAl合金材料が幅広く使用されている。   In recent years, high-strength and lightweight Al alloy materials are widely used in automobile parts, electronic material terminal machines, precision machine parts, and the like, which have been increasingly demanded for weight reduction.

ただ、Al合金の常温での機械的特性は、近年飛躍的に向上しているとはいうものの、高強度鋼に比べると未だ十分とはいえず、その使用も制限されている。例えば、高力Al合金として広く用いられている、所謂A7000系Al合金でさえも、その強度は不十分であり、その使用範囲は限られている。   However, although the mechanical properties of Al alloys at room temperature have improved dramatically in recent years, they are still not sufficient compared to high-strength steels, and their use is also limited. For example, even the so-called A7000 Al alloy, which is widely used as a high-strength Al alloy, has insufficient strength and its use range is limited.

これに対して、従来の溶解鋳造合金では、その強度などの機械的特性の飛躍的な向上には限界がある。このため、A7000系Al合金の強度を一層高めることを目的として、アトマイズ法による急冷凝固粉末として得る方法が、従来から提案されている。この急冷凝固法によれば、合金元素の含有量を、前記溶解鋳造Al合金よりも増すことができる。したがって、これら合金元素を多量に含有したAl合金を急冷凝固によって粉末化し、これを固化成形することで、強度に優れたAl合金を得ることができる。   On the other hand, the conventional melt cast alloy has a limit in dramatically improving the mechanical properties such as strength. For this reason, for the purpose of further increasing the strength of the A7000 series Al alloy, a method of obtaining rapidly solidified powder by an atomizing method has been proposed. According to this rapid solidification method, the content of the alloy element can be increased as compared with the melting cast Al alloy. Therefore, an Al alloy having a high strength can be obtained by pulverizing an Al alloy containing a large amount of these alloy elements by rapid solidification and solidifying the Al alloy.

例えば、特許文献1では、A7000系Al合金の成分組成を特定量のAgを配合したものとし、空気アトマイズ法により得た、この成分組成の急冷凝固合金粉末を押出による粉末冶金法により固化成形体としている。因みに、この成形体を均質化処理および時効硬化処理したT6調質後の成形体材の引張強度は、約900MPaまで増大することが開示されている。この特許文献1では、A7000系Al合金のより具体的な組成として、Zn5〜11%、Mg2〜4.5%、Cu0.5〜2%およびAg0.01〜0.5%含み、残部が実質的にAlからなるA7000系Al合金急冷凝固粉末が開示されている。
また、急冷凝固法により得られるAl合金ではなく、通常の鋳塊の圧延により得られる、構造部材用Al合金の疲労強度を向上させることも従来から提案されている。例えば、特許文献2では、航空機部材用などのAl−Cu系のA2000系Al合金の疲労強度を向上させるために、このAl合金組織中の鋳造の際に生じる晶出物間の距離を大きくすることも、提案されている。
特開平7−316601号公報 特開平8−283892号公報
For example, in Patent Document 1, a component composition of an A7000 series Al alloy is blended with a specific amount of Ag, and a rapidly solidified alloy powder of this component composition obtained by air atomization is solidified by powder metallurgy by extrusion. It is said. Incidentally, it is disclosed that the tensile strength of the molded body material after T6 tempering in which the molded body is homogenized and age-hardened is increased to about 900 MPa. In this Patent Document 1, as a more specific composition of the A7000 series Al alloy, Zn 5 to 11%, Mg 2 to 4.5%, Cu 0.5 to 2% and Ag 0.01 to 0.5% are included, and the balance is substantially In particular, an A7000 Al alloy rapidly solidified powder made of Al is disclosed.
In addition, it has been conventionally proposed to improve the fatigue strength of an Al alloy for structural members obtained by rolling an ordinary ingot instead of an Al alloy obtained by a rapid solidification method. For example, in Patent Document 2, in order to improve the fatigue strength of an Al-Cu-based A2000-based Al alloy for aircraft members and the like, the distance between crystallized substances generated during casting in this Al alloy structure is increased. It has also been proposed.
JP 7-316601 A Japanese Patent Laid-Open No. 8-283892

この特許文献1には、高強度となったA7000系Al合金の開示はあるものの、この高強度Al合金の伸びの開示が無い。ただ、この特許文献1のようなA7000系Al合金の急冷凝固粉末であっても、高強度になるほど伸びが大きく低下することは、やはり避けられない。例えば、文献などに公開されたデータとして、Al−Zn−Mg−Cu系の7000系Al合金におけるA7090のAl合金急冷凝固粉末固化成形材の引張強度が625MPaの場合の伸びは約6%程度でしかない。また、通常の鋳造材であるA7075Al合金押出材であっても、引張強度が570MPaの場合の全伸びは11%程度である。   Although this Patent Document 1 discloses an A7000 Al alloy having high strength, there is no disclosure of the elongation of this high strength Al alloy. However, even with the rapidly solidified powder of A7000 series Al alloy as in Patent Document 1, it is inevitable that the elongation decreases greatly as the strength increases. For example, as data published in the literature, the elongation when the tensile strength of the Al70Zn rapidly solidified powder solidified molding material of A7090 in the Al-Zn-Mg-Cu-based 7000-based Al alloy is about 625 MPa is about 6%. There is only. Moreover, even if it is an A7075Al alloy extrusion material which is a normal casting material, the total elongation when the tensile strength is 570 MPa is about 11%.

このような低い伸びでは、その用途に応じて、所望の部材乃至部品形状に冷間にて成形加工する際の成形性が著しく低く、冷間加工が困難となる。例えば転造などの加工率が高い冷間成形加工の際には特に割れが発生しやすい。このため、このような冷間成形加工の制約からも、高強度な7000系Al合金の用途は大幅に制約されていたのが実情である。   With such a low elongation, the formability when cold forming into a desired member or part shape is extremely low depending on the application, and cold working becomes difficult. For example, cracks are particularly likely to occur during cold forming with a high processing rate such as rolling. For this reason, the actual situation is that the use of the high-strength 7000 series Al alloy has been greatly restricted due to such restrictions on cold forming.

また、Zn、Mg、Cuなどの合金元素量が、Al合金の中でも最も多い7000系Al合金では、急冷凝固法により製造した際に、特にスプレイフォーミング法で得られたAl合金中において、他のAl合金系よりも、これら合金元素が偏析しやすいという、7000系Al合金特有の問題がある。更に、同じ7000系Al合金であっても、通常の鋳塊の圧延により得られるAl合金の鋳造時よりも、スプレイフォーミング法で得られる7000系Al合金の方が、冷却条件によっては、合金元素が偏析しやすいという特有の問題もある。   Further, in the case of a 7000 series Al alloy having the largest amount of alloy elements such as Zn, Mg, Cu, etc., among other Al alloys, when manufactured by the rapid solidification method, other Al alloys obtained by the spray forming method have other There is a problem peculiar to the 7000 series Al alloy that these alloy elements are more easily segregated than the Al alloy series. Furthermore, even if it is the same 7000 series Al alloy, the 7000 series Al alloy obtained by the spray forming method is more alloy element depending on the cooling conditions than the casting of the Al alloy obtained by normal ingot rolling. There is also a peculiar problem that segregation tends to occur.

このように合金元素が偏析した場合には、急冷凝固時に生じる晶出物や、加熱処理時に生じる析出物など、製造過程で7000系Al合金組織中に生じる晶析出物(晶出物や析出物の総称)の粗大化が生じやすい。即ち、急冷凝固法により製造した7000系Al合金組織中に、数μmを超える粗大な晶析出物が存在するようになる。このため、例え、静的な機械的特性としての強度、延性が例え高かったとしても、疲労強度のような動的な機械的特性では、粗大な晶析出物が破壊の起点となって、疲労強度が低くなる。この結果、急冷凝固法により製造した7000系Al合金の、構造用部品や部材としての、信頼性が下がるという問題につながる。   When alloy elements are segregated in this way, crystal precipitates generated during rapid solidification and precipitates generated during heat treatment, such as crystal precipitates generated in the 7000 series Al alloy structure (crystallized products and precipitates). Is a general term). That is, coarse crystal precipitates exceeding several μm are present in the 7000 series Al alloy structure produced by the rapid solidification method. For this reason, even if the strength and ductility as static mechanical properties are high, for example, in dynamic mechanical properties such as fatigue strength, coarse crystal precipitates become the starting point of fracture and fatigue. The strength is lowered. As a result, the reliability of the 7000 series Al alloy produced by the rapid solidification method as a structural component or member is reduced.

本発明は、かかる問題に鑑みなされたもので、高強度な割に高延性であるとともに、疲労強度も高く、構造用部品や部材としての信頼性に優れたAl合金およびその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and provides an Al alloy having high ductility for high strength, high fatigue strength, and excellent reliability as a structural component or member, and a method for producing the same. For the purpose.

この目的を達成するために、本発明の高疲労強度Al合金の要旨は、急冷凝固法により得られたAl合金であって、質量%で、Zn:5〜12%、Mg:2〜4%、Cu:1〜2%を各々含み、残部がAlおよび不可避的不純物からなり、このAl合金組織の反射電子法による倍率5000倍のSEMにて観察される各晶析出物の、面積が等価な円の直径に換算した大きさの内、最大の大きさが0.5μm以下とすることである。   In order to achieve this object, the gist of the high fatigue strength Al alloy of the present invention is an Al alloy obtained by a rapid solidification method, and is in mass%, Zn: 5-12%, Mg: 2-4% , Cu: each containing 1 to 2%, the balance is made of Al and inevitable impurities, and the area of each crystal precipitate observed by SEM with a magnification of 5000 times by the backscattered electron method of this Al alloy structure is equivalent Of the size converted into the diameter of the circle, the maximum size is 0.5 μm or less.

本発明の高強度、高延性Al合金は、高強度化のために、更に、Agを0.01〜0.1質量%含有してもよく、また、更に、Si、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVから選ばれた一種または二種以上を合計で0.1〜0.5質量%含有してもよい。   The high-strength and high-ductility Al alloy of the present invention may further contain 0.01 to 0.1% by mass of Ag in order to increase the strength. Further, Si, Fe, Mn, Cr, One or more selected from Co, Ni, Zr, Ti and V may be contained in a total amount of 0.1 to 0.5% by mass.

また、上記目的を達成するために、本発明の高疲労強度Al合金の製造方法の要旨は、質量%で、Zn:5〜12%、Mg:2〜4%、Cu:1〜2%を各々含み、更に、Agを0.01〜0.1質量%か、Si、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVから選ばれた一種または二種以上を合計で0.1〜0.5質量%を選択的に含有し、残部がAlおよび不可避的不純物からなるAl合金溶湯を、G/M比を4〜15Nm3 /kgの範囲とした不活性ガスによって、噴霧された溶湯のプリフォーム上への堆積速度が1〜2.5g/mm2 /sの範囲で、スプレイフォーミングし、これによって得たプリフォーム体を金属容器に入れて真空封入した上で、熱間押出加工して固化させ、その後調質処理してAl合金を得るとともに、このAl合金組織の反射電子法による倍率5000倍のSEMにて観察される各晶析出物の、面積が等価な円の直径に換算した大きさの内、最大の大きさを0.5μm以下とすることである。 Moreover, in order to achieve the said objective, the summary of the manufacturing method of the high fatigue strength Al alloy of this invention is mass%, Zn: 5-12%, Mg: 2-4%, Cu: 1-2%. In addition, 0.01 to 0.1% by mass of Ag, or one or two or more kinds selected from Si, Fe, Mn, Cr, Co, Ni, Zr, Ti and V in total are 0.1. A molten Al alloy containing selectively 0.5% by mass and the balance consisting of Al and inevitable impurities was sprayed with an inert gas having a G / M ratio in the range of 4 to 15 Nm 3 / kg. Spray forming was performed at a deposition rate of the molten metal on the preform in the range of 1 to 2.5 g / mm 2 / s, and the preform body thus obtained was placed in a metal container and vacuum-sealed, and then hot extrusion was performed. Processed and solidified, then tempered to obtain an Al alloy The maximum size of each crystal precipitate observed in an SEM with a magnification of 5000 times by the backscattered electron method of this Al alloy structure is 0.5 μm or less in terms of the area converted into the equivalent circle diameter. It is to be.

本発明では、ガスアトマイズにより急冷凝固させた粉末乃至プリフォーム体を固化させたAl−Zn−Mg−Cu系の7000系Al合金組織中の特定晶析出物の最大の大きさを規制する。これによって、7000系Al合金組織中に、数μmを超える粗大な晶析出物を含まず、組織中に含まれる晶析出物を微細化する。   In the present invention, the maximum size of the specific crystal precipitate in the Al-Zn-Mg-Cu-based 7000-series Al alloy structure obtained by solidifying a powder or preform that has been rapidly solidified by gas atomization is regulated. As a result, the 7000 series Al alloy structure does not include coarse crystal precipitates exceeding several μm, and the crystal precipitates included in the structure are refined.

前記した通り、急冷凝固法により製造した7000系Al合金は、合金元素が偏析しやすく、製造過程で7000系Al合金組織中に生じる晶析出物(晶出物や析出物の総称)の粗大化が生じやすい、この合金特有の問題を有する。そして急冷凝固法により製造した7000系Al合金組織中に、数μmを超える粗大な晶析出物が含まれると、破壊の起点となり、疲労強度のような動的な機械的特性が低くなり、構造用部品や部材としてのAl合金の信頼性が低くなる。また、伸びを低下させ、冷間加工における成形性も阻害する。   As described above, the 7000 series Al alloy produced by the rapid solidification method tends to segregate the alloy elements, and the coarsening of crystal precipitates (generic name for crystallization and precipitates) generated in the 7000 series Al alloy structure during the production process. Has a problem peculiar to this alloy. And if the 7000 series Al alloy structure manufactured by the rapid solidification method contains coarse crystal precipitates exceeding several μm, it becomes the starting point of fracture, and dynamic mechanical properties such as fatigue strength are lowered, The reliability of the Al alloy as a part or member for use is reduced. Moreover, elongation is reduced and the moldability in cold working is also inhibited.

一方、このような粗大な晶析出物を含まなければ、急冷凝固法により製造した7000系Al合金組織中に含まれる晶析出物が微細化されるので、動的な機械的特性としての疲労強度も高くなり、構造用部品や部材としての信頼性に優れたAl合金を提供できる。と同時に、静的な機械的特性としての強度、延性も高めることができる。   On the other hand, if such coarse crystal precipitates are not included, the crystal precipitates contained in the 7000 series Al alloy structure produced by the rapid solidification method are refined, so that fatigue strength as a dynamic mechanical property is obtained. Therefore, it is possible to provide an Al alloy having excellent reliability as a structural component or member. At the same time, the strength and ductility as static mechanical properties can be increased.

このような本発明の疲労強度向上効果を定量的に説明すると、従来の急冷凝固法により得られた7000系Al合金において、疲労強度は、引張強度の30%程度であり、引張強度の40%以上となることはない。これに対して、本発明によれば、急冷凝固法により得られた7000系Al合金の疲労強度を、引張強度の40〜50%程度にまで、著しく向上させることが可能となる。   Quantitatively explaining the effect of improving the fatigue strength of the present invention, in the 7000 series Al alloy obtained by the conventional rapid solidification method, the fatigue strength is about 30% of the tensile strength and 40% of the tensile strength. No more. On the other hand, according to the present invention, the fatigue strength of the 7000 series Al alloy obtained by the rapid solidification method can be remarkably improved to about 40 to 50% of the tensile strength.

(Al合金組成)
本発明Al合金の化学成分組成(単位:質量%)について、各元素の限定理由を含めて、以下に説明する。なお、各元素の含有量の%表示は全て質量%の意味である。
(Al alloy composition)
The chemical composition (unit: mass%) of the Al alloy of the present invention will be described below, including the reasons for limiting each element. In addition,% display of content of each element means the mass% altogether.

本発明Al合金の化学成分組成は、後述する急冷凝固法により得られたAl−Zn−Mg−Cu系の7000系Al合金として、本発明で意図する疲労強度や機械的な特性を保証するために決定される。この観点から、本発明Al合金の化学成分組成は、質量%で、Zn:5〜12%、Mg:2〜4%、Cu:1〜2%を各々含み、残部がAlおよび不可避的不純物からなるものとする。この組成に対し、選択的な添加元素として、更に、Agを0.1〜0.01%の範囲で、Si、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVから選ばれた一種または二種以上を合計で0.1〜0.5%の範囲で、各々含有させても良い。   The chemical composition of the Al alloy of the present invention is the Al-Zn-Mg-Cu-based 7000-based Al alloy obtained by the rapid solidification method to be described later, in order to guarantee the fatigue strength and mechanical properties intended by the present invention. To be determined. From this point of view, the chemical composition of the Al alloy of the present invention includes, in mass%, Zn: 5 to 12%, Mg: 2 to 4%, and Cu: 1 to 2%, respectively, with the balance being Al and inevitable impurities. Shall be. As a selective additive element for this composition, Ag is further selected from Si, Fe, Mn, Cr, Co, Ni, Zr, Ti and V in the range of 0.1 to 0.01% Ag. Or you may contain 2 or more types in 0.1 to 0.5% of total, respectively.

(Zn、Mg)
必須の合金元素であるZn、Mgは、T6処理後にGPゾーンあるいは中間析出相と呼ばれるMgZn2 、Mg32AlZn49などの微細分散相を形成して強度や疲労強度を向上させる。Znが5%未満、Mgが2%未満など、Zn、Mgの含有量が少な過ぎると、これら微細分散相が不足して、強度や疲労強度が低下する。
(Zn, Mg)
The essential alloy elements Zn and Mg form a fine dispersed phase such as a GP zone or an intermediate precipitation phase such as MgZn 2 and Mg 32 AlZn 49 after the T6 treatment to improve strength and fatigue strength. If the Zn and Mg contents are too small, such as Zn is less than 5% and Mg is less than 2%, these finely dispersed phases are insufficient and the strength and fatigue strength are reduced.

一方、Znが12%超え、Mgが4%超えなど、Zn、Mgの含有量が多過ぎると、溶湯の急冷凝固を経たとしても、これらの元素は、Al中に固溶できないため、粗大な晶出物を形成し、Al合金の強度や疲労強度低下の原因となる。また、冷間加工性も著しく低下する。更に、Znの含有量が多過ぎると、溶体化処理中に、溶体化処理温度にもよるが、液相が生成しやすくなり、温度を下げて溶体化効果を犠牲にする必要が生じるなど、溶体化処理自体が困難となる。したがって、これらの含有量は、Zn:5〜12%、Mg:2〜4%の範囲とする。   On the other hand, if the Zn and Mg contents are too large, such as Zn exceeding 12% and Mg exceeding 4%, these elements cannot be dissolved in Al even if the molten metal undergoes rapid solidification. A crystallized substance is formed, which causes a decrease in strength and fatigue strength of the Al alloy. Also, cold workability is significantly reduced. Furthermore, if the content of Zn is too large, depending on the solution treatment temperature during the solution treatment, a liquid phase is likely to be generated, and it is necessary to lower the temperature to sacrifice the solution effect. The solution treatment itself becomes difficult. Therefore, these contents are made into the range of Zn: 5-12% and Mg: 2-4%.

(Cu)
必須の合金元素であるCuは、固溶強化によって強度を向上させる。Cuが1%未満と、Cuの含有量が少な過ぎると、固溶Cu量が減って、強度や疲労強度が低下する。一方、Cuの含有量が2%を超えて多過ぎると、析出物が粗大化し、耐応力腐食割れ性などの耐食性が著しく低下し、また、強度や疲労強度も低下する。したがって、Cuの含有量は、1〜2%の範囲とする。
(Cu)
Cu, which is an essential alloy element, improves the strength by solid solution strengthening. If the Cu content is less than 1% and the Cu content is too small, the amount of solid solution Cu decreases, and the strength and fatigue strength decrease. On the other hand, if the Cu content exceeds 2%, the precipitates become coarse, the corrosion resistance such as stress corrosion cracking resistance is remarkably lowered, and the strength and fatigue strength are also lowered. Therefore, the Cu content is in the range of 1 to 2%.

(Ag)
選択的な添加元素であるAgは、析出物の微細化効果があり、Al合金の強度や疲労強度を向上させる。この効果を発揮させるために含有させる場合には0.01%以上含有させ、0.1%を超えて含有させる必要は無い。したがって、Agを選択的に含有させる場合は0.1〜0.01%の範囲とする。
(Ag)
Ag, which is a selective additive element, has an effect of refining precipitates, and improves the strength and fatigue strength of the Al alloy. When it is contained in order to exert this effect, it is contained in an amount of 0.01% or more, and it is not necessary to contain more than 0.1%. Therefore, when Ag is selectively contained, the content is made 0.1 to 0.01%.

(Si、Fe、Mn、Cr、Co、Ni、Zr、Ti、V)
選択的な添加元素であるSi、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVは、析出効果によって、Al合金の強度や疲労強度を向上させることができる。この効果を発揮させるために含有させる場合には、Si、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVから選ばれた一種または二種以上を合計で0.1%以上を含有させる。但し、これらの含有量が合計で0.5%を超えた場合、これらの元素の粗大析出物が形成され、むしろ強度や疲労強度、延性の低下の原因となる。したがって、これらの元素から選ばれた一種または二種以上を選択的に含有させる場合は、合計量(総量)で0.1〜0.5%の範囲とする。
(Si, Fe, Mn, Cr, Co, Ni, Zr, Ti, V)
The selective additive elements Si, Fe, Mn, Cr, Co, Ni, Zr, Ti and V can improve the strength and fatigue strength of the Al alloy by the precipitation effect. When contained in order to exert this effect, one or more selected from Si, Fe, Mn, Cr, Co, Ni, Zr, Ti and V are contained in a total of 0.1% or more. . However, when these contents exceed 0.5% in total, coarse precipitates of these elements are formed, which rather causes a decrease in strength, fatigue strength, and ductility. Therefore, when one or more selected from these elements are selectively contained, the total amount (total amount) is set to a range of 0.1 to 0.5%.

(不純物)
以上記載した元素以外のその他の元素は、基本的に不可避的不純物であり、本発明の意図する特性を阻害しない範囲において、通常のAl−Zn−Mg−Cu系の7000系Al合金に含まれる範囲までは許容する。ただ、酸素はAl合金組織中に酸素系介在物を生じて、破壊の起点となり、疲労強度や伸びを低下させる可能性があるので、できるだけ少なくすることが好ましい。このためには、急冷凝固において、後述する通り、噴霧ガスには、空気を用いずに、窒素、ArまたはHeなどの、不活性な噴霧ガスを用いる。
(impurities)
Other elements other than the elements described above are basically unavoidable impurities, and are included in ordinary Al-Zn-Mg-Cu-based 7000-series Al alloys within a range that does not impair the intended characteristics of the present invention. To the extent allowed. However, it is preferable that oxygen be reduced as much as possible because oxygen-containing inclusions are generated in the Al alloy structure, which may become a starting point of fracture and reduce fatigue strength and elongation. For this purpose, in rapid solidification, as will be described later, an inert spray gas such as nitrogen, Ar or He is used as the spray gas without using air.

(組織)
以上のような7000系Al合金組成を前提として、本発明では、特に疲労強度を向上させるために、このAl合金組織の粗大な晶析出物を抑制するよう、晶析出物の最大の大きさを規制する。即ち、このAl合金組織の反射電子法による倍率5000倍のSEMにて観察される各晶析出物の、面積が等価な円の直径に換算した大きさの内、最大の大きさが0.5μm以下とする。
(Organization)
Assuming the above 7000 series Al alloy composition, in the present invention, in order to improve the fatigue strength, the maximum size of the crystal precipitates is set so as to suppress the coarse crystal precipitates of the Al alloy structure. regulate. That is, the maximum size of each crystal precipitate observed by SEM with a magnification of 5000 times by the backscattered electron method of this Al alloy structure is 0.5 μm in the size converted into the equivalent circle diameter. The following.

これによって、急冷凝固法により製造した7000系Al合金組織中に含まれる晶析出物が微細化され、動的な機械的特性としての疲労強度も高くなり、構造用部品や部材としての信頼性を高めることができる。前記した通り、従来の急冷凝固法により得られた7000系Al合金の疲労強度は、引張強度の30%程度であり、引張強度の40%以上となることはない。これに対して、本発明によれば、急冷凝固法により得られた7000系Al合金の疲労強度を、引張強度の40〜50%程度にまで、著しく向上させることが可能となる。   As a result, the crystal precipitates contained in the 7000 series Al alloy structure produced by the rapid solidification method are refined, the fatigue strength as dynamic mechanical characteristics is increased, and the reliability as a structural component or member is improved. Can be increased. As described above, the fatigue strength of the 7000 series Al alloy obtained by the conventional rapid solidification method is about 30% of the tensile strength and never exceeds 40% of the tensile strength. On the other hand, according to the present invention, the fatigue strength of the 7000 series Al alloy obtained by the rapid solidification method can be remarkably improved to about 40 to 50% of the tensile strength.

また、同時に、静的な機械的特性としての強度、延性も高めることもできる。本発明によれば、急冷凝固法により得られた7000系Al合金の常温での機械的な特性として、高強度化としては600MPa以上の引張強度を有する。そして、強度−延性バランスとしては、引張強度が600MPa以上、800MPa未満の場合には、15%以上の伸びを有する。また、引張強度が800MPa以上、950MPa以下の高強度の範囲の場合には、10%以上の伸びを有する。この強度−延性バランスは、高強度なAl−Zn−Mg−Cu系の7000系Al合金としては、かなり画期的である。   At the same time, the strength and ductility as static mechanical properties can be increased. According to the present invention, the mechanical properties at room temperature of the 7000 series Al alloy obtained by the rapid solidification method have a tensile strength of 600 MPa or more for increasing the strength. As the strength-ductility balance, when the tensile strength is 600 MPa or more and less than 800 MPa, it has an elongation of 15% or more. In addition, when the tensile strength is in a high strength range of 800 MPa or more and 950 MPa or less, it has an elongation of 10% or more. This strength-ductility balance is quite epoch-making for a high-strength Al-Zn-Mg-Cu-based 7000-based Al alloy.

通常、強度−延性バランスは、Al−Zn−Mg−Cu系の7000系Al合金の急冷凝固粉末であっても、前記特許文献1のように、通常は、高強度になるほど伸びの大幅な低下は避けがたい。それゆえ、前記特許文献1を含めて、従来の高強度なAl−Zn−Mg−Cu系の7000系Al合金は、冷間加工性が著しく悪かったものである。これに対して、本発明では、Al−Zn−Mg−Cu系の7000系Al合金において、引張強度が600MPaの場合の伸びを、従来の約6%程度から15%以上、引張強度が800MPa以上の場合の伸びを、従来の約2〜3%程度から10%以上に、飛躍的に向上させることができる。これは転造などの厳しい冷間加工が、今までは出来なかったのを可能とすることを意味する。したがって、このような効果は、Al−Zn−Mg−Cu系の7000系Al合金の急冷凝固粉末における高強度になるほど避け難い伸びの大幅な低下の常識からすると、画期的であると言える。   Usually, even if the strength-ductility balance is a rapidly solidified powder of an Al-Zn-Mg-Cu-based 7000-based Al alloy, as in Patent Document 1, usually, the higher the strength, the greater the decrease in elongation. Is inevitable. Therefore, the conventional high-strength Al—Zn—Mg—Cu-based 7000-series Al alloys including the above-mentioned Patent Document 1 have extremely poor cold workability. On the other hand, in the present invention, in the Al-Zn-Mg-Cu-based 7000 series Al alloy, the elongation when the tensile strength is 600 MPa is about 15% or more from the conventional about 6%, and the tensile strength is 800 MPa or more. In this case, the elongation can be drastically improved from about 2-3% to 10% or more. This means that rigorous cold working such as rolling makes it impossible to do so far. Therefore, it can be said that such an effect is epoch-making based on the common knowledge that the elongation of the Al—Zn—Mg—Cu-based 7000-based Al alloy rapidly solidified powder that cannot be avoided as the strength becomes higher.

(晶析出物の大きさ測定方法)
晶析出物の大きさ測定は、Al合金組織を、反射電子法による倍率5000倍のSEM(走査型電子顕微鏡)による観察にて行う。この反射電子法による倍率5000倍のSEMでは、マトリックス中に存在する晶析出物(晶出物や析出物)は、無地のマトリックスに対して散在する、白い不定形の小さな模様として観察される。これを画像処理して、視野内に観察される各晶析出物(各白い模様)の大きさを、面積が等価な円の直径に換算した大きさとして、50視野程度を観察する。そして、これら視野内に、前記面積が等価な円の直径に換算した大きさの内、最大の大きさが0.5μmを超えるものが全く無ければ、最大の大きさが0.5μm以下である(本発明内)と判断する。一方、これら視野内に、前記最大の大きさが0.5μmを超えるものが1個でもあれば、最大の大きさが0.5μmを超えるものである(本発明外)と判断する。
(Method for measuring the size of crystal precipitates)
The size of the crystal precipitates is measured by observing the Al alloy structure with an SEM (scanning electron microscope) with a magnification of 5000 times by the backscattered electron method. In the SEM with a magnification of 5000 times by this backscattered electron method, crystal precipitates (crystallized products and precipitates) present in the matrix are observed as small white irregularly shaped patterns scattered on the solid matrix. This is image-processed, and about 50 visual fields are observed with the size of each crystal precipitate (each white pattern) observed in the visual field converted into a diameter of a circle with an equivalent area. If none of these visual fields has a maximum size exceeding 0.5 μm, the maximum size is 0.5 μm or less. (Within the present invention). On the other hand, if at least one of the visual fields has a maximum size exceeding 0.5 μm, it is determined that the maximum size exceeds 0.5 μm (outside of the present invention).

ここで、本発明で言う晶析出物は、晶析出物組成で言うと、合金元素であるZn、Mg、Cuなどの金属間化合物(前記Zn、Mgの微細分散相や、Alとの金属間化合物を含む)である。また、前記したAgやSi、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVなどの選択的な添加元素を含有させた場合には、これらを含めた金属間化合物である。ただ、本発明では、これら晶析出物の種類や、また晶出物か析出物かも問わず、前記した反射電子法による倍率5000倍のSEMで、無地のマトリックスに対して散在する、白い不定形の小さな模様として観察されるもの全てを、特に疲労強度に影響する晶析出物と扱う。   Here, the crystal precipitates referred to in the present invention are, in terms of crystal precipitate composition, intermetallic compounds such as alloy elements such as Zn, Mg, and Cu (the finely dispersed phase of Zn and Mg, and the intermetallic compounds with Al). Compound). Further, when selective additive elements such as Ag, Si, Fe, Mn, Cr, Co, Ni, Zr, Ti, and V are contained, the intermetallic compound includes these. However, in the present invention, regardless of the type of these crystal precipitates, or whether the crystal precipitates are precipitates, white irregular shapes scattered on a plain matrix in the SEM with a magnification of 5000 times by the above-described backscattered electron method. All of these observed as small patterns are treated as crystal precipitates that particularly affect fatigue strength.

(製造方法)
以下に、本発明Al合金の製造方法を説明する。本発明Al−Zn−Mg−Cu系の7000系Al合金は、Zn、Mg系の金属間化合物を多く析出させ、高強度化させるために、通常の溶解鋳造方法ではなく、急冷凝固法によって製造する。この急冷凝固法は、Al合金溶湯をガスアトマイズにより急冷凝固させた粉末乃至プリフォーム体を固化させるものである。この固化は緻密化であり、急冷凝固粉末乃至プリフォーム体を押出、鍛造、圧延などの熱間塑性加工により、種々の形状に加工して行なう。そして、この緻密化(固化)後に、溶体化処理、時効処理などの調質処理が施される。
(Production method)
Below, the manufacturing method of this invention Al alloy is demonstrated. The Al-Zn-Mg-Cu-based 7000-based Al alloy of the present invention is produced by a rapid solidification method instead of the usual melt casting method in order to precipitate a large amount of Zn and Mg-based intermetallic compounds and increase the strength. To do. This rapid solidification method solidifies a powder or preform obtained by rapidly solidifying an Al alloy molten metal by gas atomization. This solidification is densification, and the rapidly solidified powder or preform is processed into various shapes by hot plastic processing such as extrusion, forging and rolling. Then, after this densification (solidification), tempering treatment such as solution treatment and aging treatment is performed.

急冷凝固法:
急冷凝固法は、通常の溶解鋳造法(インゴットメイキング) よりも、格段に速い冷却・凝固速度を有するために、微細な金属間化合物(上記分散相)を密度高く形成させることができる。また、この分散相の時効析出硬化によって、Al−Zn−Mg−Cu系の7000系Al合金の強度をさらに向上させることができる。更に、Al合金溶湯を急冷凝固させることにより、合金元素の晶出、偏析を抑制し、また、Al中にできるだけ多く固溶させることができ(合金元素の固溶範囲を高濃度側へ大きく拡張でき)、この面からもAl合金の強度をさらに向上させることができる。
Rapid solidification method:
The rapid solidification method has a much faster cooling and solidification rate than a normal melt casting method (ingot making), and therefore, a fine intermetallic compound (the dispersed phase) can be formed with high density. Moreover, the strength of the Al—Zn—Mg—Cu-based 7000-based Al alloy can be further improved by aging precipitation hardening of the dispersed phase. Furthermore, by rapidly solidifying the Al alloy melt, crystallization and segregation of the alloy elements can be suppressed, and as much as possible can be dissolved in Al (the alloy element solid solution range is greatly expanded to the high concentration side). From this aspect, the strength of the Al alloy can be further improved.

急冷凝固法においては、前記した通り、酸素を低減する、あるいは酸素を増加させないことが重要となる。酸素を低減するためには、スプレイフォーミング法によるにせよ、アトマイズ粉末法(急冷粉末冶金法)によるにせよ、前提として、噴霧ガスには、空気を用いずに、窒素、ArまたはHeなどの、不活性な噴霧ガスを用いる。噴霧ガスに空気を用いた場合には、高強度化は図れるものの、酸素が本発明のように低減できず、伸びを向上させることができない。また、窒素を噴霧ガスとして用いた場合には、噴霧の過程で窒素(N)がAl合金に含有されるために、高強度、高延性に加えて、更にAl合金の靱性を向上させることができる。窒素を噴霧ガスとして用いた場合、Al合金に含有される窒素の量は、後述するガス/メタル比(G/M比)にもよるが、概ね0.0005〜0.01質量%の範囲である。Al合金に含有される窒素は、AlNとして微細に析出しており、脱気、溶体化、人工時効の熱処理などのAl合金製造工程において、Al合金結晶粒の粗大化を防止して、微細結晶粒組織とし、Al合金の靱性を向上させるものと推考される。   In the rapid solidification method, as described above, it is important to reduce oxygen or not increase oxygen. In order to reduce oxygen, whether by the spray forming method or the atomized powder method (quenched powder metallurgy method), as a premise, the atomizing gas does not use air, such as nitrogen, Ar or He, Use an inert atomizing gas. When air is used as the atomizing gas, the strength can be increased, but oxygen cannot be reduced as in the present invention, and the elongation cannot be improved. In addition, when nitrogen is used as a spray gas, nitrogen (N) is contained in the Al alloy during the spraying process, so that in addition to high strength and high ductility, the toughness of the Al alloy can be further improved. it can. When nitrogen is used as the atomizing gas, the amount of nitrogen contained in the Al alloy is generally in the range of 0.0005 to 0.01% by mass, although it depends on the gas / metal ratio (G / M ratio) described later. is there. Nitrogen contained in the Al alloy is finely precipitated as AlN. In the Al alloy manufacturing process such as deaeration, solution treatment, and artificial aging heat treatment, the Al alloy crystal grains are prevented from coarsening and fine crystallized. It is assumed that the grain structure is improved and the toughness of the Al alloy is improved.

アトマイズ粉末法:
急冷凝固法の一つであるアトマイズ粉末法(急冷粉末冶金法)によって、本発明Al合金を製造する場合、アトマイズ粉末法自体は、常法に従って製造することができる。例えば、本発明による組成を有するAl合金を高周波溶解炉において800〜1100℃の温度で溶解、出湯させる。このAl合金溶湯をるつぼに流し込み、このるつぼ底部の開口部からアトマイズノズルの溶湯噴出口まで導いてアトマイズする。
Atomized powder method:
When the Al alloy of the present invention is manufactured by the atomized powder method (rapidly cooled powder metallurgy method) which is one of the rapid solidification methods, the atomized powder method itself can be manufactured according to a conventional method. For example, an Al alloy having the composition according to the present invention is melted and discharged at a temperature of 800 to 1100 ° C. in a high-frequency melting furnace. This Al alloy molten metal is poured into a crucible and guided from the opening at the bottom of the crucible to the molten metal outlet of the atomizing nozzle for atomization.

したがって、Al合金溶湯がアトマイズノズル溶湯噴出口に達する直前に、ノズル穴から、高圧の窒素、ArまたはHeなどの、不活性な噴霧ガスを噴出させこのガスの圧力により、溶湯噴出口から出てきたAl合金溶湯を細かく粉砕する。この様に細かく粉砕された溶湯は、高圧のガスおよび/または雰囲気により、直ちに冷却され、凝固することにより、Al合金急冷凝固粉末が得られる。   Therefore, immediately before the Al alloy molten metal reaches the atomized nozzle molten metal outlet, an inert spray gas such as high-pressure nitrogen, Ar, or He is ejected from the nozzle hole, and the pressure of this gas comes out of the molten metal outlet. Finely pulverize the molten Al alloy. The molten metal finely pulverized in this way is immediately cooled and solidified by a high-pressure gas and / or atmosphere to obtain an Al alloy rapidly solidified powder.

アトマイズされたAl合金粉末は、用途に応じてふるい分けされる。この際、平均粒径が150μm以下、好ましくは100μm以下の微粒粉を分級して使用することが好ましい。このような微粒粉のみをCIPやHIPで固化成型することで、本発明のAl合金が得られやすい。平均粒径が20μmを超える粗大なアトマイズ粉末は、冷却速度が遅いため、Cu、Agなどの固溶量を確保できておらず、用いると、強度が向上しない可能性がある。   The atomized Al alloy powder is sieved according to the application. At this time, it is preferable to classify and use fine particles having an average particle size of 150 μm or less, preferably 100 μm or less. The Al alloy of the present invention can be easily obtained by solidifying and molding only such fine particles by CIP or HIP. Coarse atomized powder having an average particle size exceeding 20 μm has a slow cooling rate, so that a solid solution amount of Cu, Ag or the like cannot be secured, and if used, strength may not be improved.

スプレイフォーミング法:
本発明合金を得る場合、上記アトマイズ粉末法(急冷粉末冶金法)よりも、スプレイフォーミング法の方が好適である。急冷凝固法の一つであるスプレイフォーミング法は、ガスを噴出させこのガスの圧力によりスプレイする点は、アトマイズ粉末法と機構は同じである。ただ、アトマイズ粉末法は、アトマイズ時には不活性な噴霧ガスを用いたとしても、粉末のハンドリングは大気中で行なわざるを得ず、酸化により、Al合金中の酸素が増加しやすくなる。これに対して、スプレイフォーミング法は、ハンドリングを大気中で行なったとしても、ある程度の密度を有するプリフォーム体が得られており、酸化しにくく、Al合金中の酸素が増加しにくい。
Spray forming method:
When obtaining the alloy of the present invention, the spray forming method is more preferable than the atomizing powder method (quenching powder metallurgy method). The spray forming method, which is one of the rapid solidification methods, has the same mechanism as the atomized powder method in that gas is ejected and sprayed by the pressure of the gas. However, in the atomized powder method, even when an inert atomizing gas is used during atomization, the powder must be handled in the atmosphere, and oxygen in the Al alloy tends to increase due to oxidation. In contrast, in the spray forming method, even if the handling is performed in the atmosphere, a preform body having a certain density is obtained, and it is difficult to oxidize and oxygen in the Al alloy hardly increases.

また、スプレイフォーミング法は、ある程度の密度を有するプリフォーム体が得られ、CIPやHIPでの予備的な固化成型が不要な点でも、アトマイズ粉末法に比して有利となる。アトマイズ粉末は、固化する前に、CIPやHIPでの予備的な固化成型が必要となる。更に、スプレイフォーミング法は、アトマイズ粉末法に比して、冷却凝固速度をより大きくとれるので、組織(金属間化合物相)を微細化できる利点もある。   The spray forming method is advantageous over the atomized powder method in that a preform body having a certain density can be obtained and preliminary solidification molding with CIP or HIP is unnecessary. The atomized powder needs to be preliminarily solidified with CIP or HIP before solidifying. Furthermore, the spray forming method has an advantage that the structure (intermetallic compound phase) can be made finer because the cooling solidification rate can be increased as compared with the atomized powder method.

但し、このスプレイフォーミング法でも、用いる噴霧ガスは、高圧の窒素、ArまたはHeなどの不活性な噴霧ガスとし、空気など酸素を含む噴霧ガスは、Al合金中の酸素を増すために、これを用いない。また、その冷却凝固速度の最適化も必要である。スプレイフォーミング法による好ましい態様は、上記本発明成分組成のAl合金を800〜1100℃で溶解後、この温度範囲で、スプレイフォーミング法により、溶湯の不活性ガスによるスプレイを開始して、下方の回転床上にプリフォーム体を作製する。   However, even in this spray forming method, the spray gas to be used is an inert spray gas such as high-pressure nitrogen, Ar, or He, and the spray gas containing oxygen such as air is used to increase oxygen in the Al alloy. Do not use. It is also necessary to optimize the cooling and solidification rate. In a preferred embodiment by the spray forming method, the Al alloy having the above-described component composition of the present invention is melted at 800 to 1100 ° C., and spraying with the inert gas of the molten metal is started in this temperature range by the spray forming method. A preform body is produced on the floor.

(G/M比)
スプレイフォーミングにおける(スプレイ過程中の)冷却凝固速度は、先ず、ガス/メタル比〔G/M比:単位質量(kg)あたりの溶湯に吹き付けるガスの量(Nm 3)比〕によって制御する。本発明では、このG/M比が高いほど、冷却速度を速くでき、微細な金属間化合物が得られ、金属Alマトリックッス中にCu、Agを所定量固溶させることができる。
(G / M ratio)
The cooling and solidification rate in spray forming (during the spray process) is first controlled by the gas / metal ratio [G / M ratio: the amount of gas blown onto the molten metal per unit mass (kg) (Nm 3 )]. In the present invention, the higher the G / M ratio, the faster the cooling rate, the finer intermetallic compound can be obtained, and a predetermined amount of Cu and Ag can be dissolved in the metal Al matrix.

このG/M比が低過ぎると冷却凝固速度が不足する。このため、合金元素による金属間化合物も粗大となり強度が不足する。一方で、G/M比が高過ぎると、プリフォームの歩留まり(溶湯の堆積効率)が低下したり、不活性ガスの使用量が増加し、製造コストが高くなる。また、7000系Al合金の合金元素が偏析しやすくなり、製造過程で7000系Al合金組織中に生じる晶析出物の粗大化が生じやすくなる。この結果、製造した7000系Al合金組織中に、数μmを超える粗大な晶析出物が含まれ、破壊の起点となり、疲労強度のような動的な機械的特性が低くなり、構造用部品や部材としてのAl合金の信頼性が低くなる。また、伸びを低下させ、冷間加工における成形性も阻害する。   If this G / M ratio is too low, the cooling and solidification rate is insufficient. For this reason, the intermetallic compound by an alloy element also becomes coarse, and intensity | strength is insufficient. On the other hand, if the G / M ratio is too high, the yield of the preform (melting efficiency of the molten metal) decreases, the amount of inert gas used increases, and the manufacturing cost increases. In addition, alloy elements of the 7000 series Al alloy are easily segregated, and crystal precipitates generated in the 7000 series Al alloy structure during the manufacturing process are likely to be coarsened. As a result, the produced 7000 series Al alloy structure contains coarse crystal precipitates exceeding several μm, which is a starting point of fracture, and dynamic mechanical properties such as fatigue strength are lowered, and structural parts and The reliability of the Al alloy as a member is lowered. Moreover, elongation is reduced and the moldability in cold working is also inhibited.

これらの条件を満足するG/M比は、好ましくは4〜15Nm3 /kgの範囲とする。G/M比の下限は好ましくは4Nm3 /kg以上、さらに好ましくは6Nm3 /kg以上であり、G/M比の上限は、15Nm3 /kg以下、好ましくは13Nm3 /kg以下とすることが推奨される。 The G / M ratio that satisfies these conditions is preferably in the range of 4 to 15 Nm 3 / kg. The lower limit of G / M ratio is preferably 4 Nm 3 / kg or more, more preferably 6 Nm 3 / kg or more, the upper limit of the G / M ratio, 15 Nm 3 / kg or less, preferably to less 13 Nm 3 / kg Is recommended.

(堆積速度)
そして、こうのようなG/M比範囲とした不活性ガスによって、噴霧された溶湯のプリフォーム上への堆積速度が1〜2.5g/mm2 /sの範囲で、スプレイフォーミングすることが好ましい。なお、本発明において規定する「堆積速度」とは、噴霧された溶湯がプリフォームとして堆積する速度のことであり、プリフォームの堆積が進行している部分の単位面積・単位時間当たりに堆積するAl合金の重量(g/mm2 /s)で表す。この堆積速度が2.5g/mm2 /sを超えて速くなると、次々と堆積する溶湯によって、先に堆積した溶湯やプリフォーム上が冷却しにくくなり、冷却速度が著しく低下する。この結果、7000系Al合金の合金元素が偏析しやすくなり、製造過程で7000系Al合金組織中に生じる晶析出物の粗大化が生じやすくなる。したがって、製造した7000系Al合金組織中に、数μmを超える粗大な晶析出物が含まれるようになり、このAl合金組織の晶析出物の前記最大の大きさを0.5μm以下とすることができない。このため、疲労強度のような動的な機械的特性が低くなり、構造用部品や部材としてのAl合金の信頼性が低くなる。また、伸びを低下させ、冷間加工における成形性も阻害する。
(Deposition rate)
Further, spray forming can be performed in such a range that the deposition rate of the sprayed molten metal on the preform is in the range of 1 to 2.5 g / mm 2 / s by the inert gas having such a G / M ratio range. preferable. The “deposition rate” defined in the present invention is a rate at which the sprayed molten metal is deposited as a preform, and is deposited per unit area / unit time of a portion where the deposition of the preform is progressing. It is expressed by the weight (g / mm 2 / s) of the Al alloy. When this deposition rate exceeds 2.5 g / mm 2 / s, the molten metal deposited one after another makes it difficult to cool the previously deposited molten metal and the preform, and the cooling rate is significantly reduced. As a result, the alloy elements of the 7000 series Al alloy are easily segregated, and the crystal precipitates generated in the 7000 series Al alloy structure during the manufacturing process are likely to be coarsened. Therefore, the produced 7000 series Al alloy structure includes coarse crystal precipitates exceeding several μm, and the maximum size of the crystal precipitates of this Al alloy structure is 0.5 μm or less. I can't. For this reason, dynamic mechanical characteristics such as fatigue strength are lowered, and the reliability of the Al alloy as a structural component or member is lowered. Moreover, elongation is reduced and the moldability in cold working is also inhibited.

一方、上記堆積速度が1g/mm2 /s未満では、スプレイフォーミングの効率が低下して、プリフォームの歩留まり(プリフォームとして得られたAl合金の重量を、溶解したAl合金の重量で割って計算される、溶湯の堆積効率)が低下したり、不活性ガスの使用量が増加し、製造コストが高くなる。 On the other hand, when the deposition rate is less than 1 g / mm 2 / s, the efficiency of spray forming is reduced, and the yield of the preform (the weight of the Al alloy obtained as the preform is divided by the weight of the dissolved Al alloy). The calculated melt deposition efficiency is reduced, the amount of inert gas used is increased, and the production cost is increased.

(固化、緻密化)
このような条件でのスプレイフォーミング法より得られたAl合金プリフォーム体は、気孔率が例えば10体積%程度のままが得られる。因みに、このプリフォームのままでは気孔率が高く、靱性が不足するため、プリフォームを脱気あるいはプリフォームの空孔を圧潰して緻密化するプリフォームの固化を行なう必要がある。
(Solidification, densification)
The Al alloy preform obtained by the spray forming method under such conditions can have a porosity of, for example, about 10% by volume. Incidentally, since the preform has a high porosity and lacks toughness, it is necessary to deaerate the preform or to solidify the preform so that the pores of the preform are crushed and densified.

この固化の方法としては、プリフォーム体をAlなどの金属容器に入れて真空封入した上で、熱間で押出加工して固化(緻密化)させることが好ましい。この際は、Al合金の酸化を防止して、酸素が低い状態を維持するために、プリフォーム体を直接熱間加工するのではなく、純アルミニウムや適宜のアルミニウム合金などの金属製の収容容器に入れて、真空封入した上で熱間加工することが好ましい。   As the solidification method, it is preferable to place the preform in a metal container such as Al and vacuum-enclose it, and then extrude it hot to solidify (densify). In this case, in order to prevent oxidation of the Al alloy and maintain a low oxygen state, the preform body is not directly hot-worked, but a metal container such as pure aluminum or an appropriate aluminum alloy. It is preferable to perform hot working after putting in a vacuum.

この他、プリフォーム体や前記急冷粉末冶金法によって得られた粉末は、鍛造、圧延、あるいは、押出、鍛造、圧延を適宜組み合わせた熱間加工によって、固化(緻密化)させても良い。   In addition, the preform body and the powder obtained by the rapid powder metallurgy method may be solidified (densified) by forging, rolling, or hot working appropriately combined with extrusion, forging, and rolling.

この際、熱間加工の前に、上記得られたプリフォーム体や粉末を、一旦真空容器中に密封するなどしてCIPやHIP処理を行なって固化(空孔、気孔の圧潰)成型し、予め(予備的に)緻密化しても良い。但し、HIP処理などは、高温に長時間Al合金(プリフォーム体)を曝すことになるので、金属間化合物が粗大化しやすくなる。このため、前記した通り、スプレイフォーミング法よるプリフォーム体では、このHIP処理などの予備的な緻密化処理はしない方が好ましい。   At this time, before the hot working, the preform body and the powder obtained above are sealed in a vacuum container, etc. and subjected to CIP or HIP treatment to solidify (vacancy, pore crushing), You may densify beforehand (preliminarily). However, HIP treatment or the like exposes the Al alloy (preform body) to a high temperature for a long time, so that the intermetallic compound is easily coarsened. For this reason, as described above, it is preferable not to perform preliminary densification processing such as HIP processing in the preform body by the spray forming method.

前記した鍛造、押出、圧延の熱間加工における加工温度は425〜500℃の範囲と、比較的低くすることが好ましい。このような加工温度範囲において熱間加工すると、Al基金属間化合物相を含めた金属間化合物が微細化されるとともに、均一に分散される。熱間加工における加工温度が高すぎると、金属間化合物が粗大化する。一方、加工温度が低過ぎると、熱間加工による緻密化が達成できない。   It is preferable that the processing temperature in the hot processing of the forging, extrusion, and rolling described above is relatively low in the range of 425 to 500 ° C. When hot working in such a working temperature range, the intermetallic compound including the Al-based intermetallic compound phase is refined and uniformly dispersed. If the processing temperature in the hot processing is too high, the intermetallic compound becomes coarse. On the other hand, if the processing temperature is too low, densification by hot processing cannot be achieved.

同様の主旨で、これらの熱間加工における加工率はできるだけ大きくする。熱間押出の場合は、押出比を6以上、好ましくは8以上、より好ましくは10以上として、また、熱間圧延や熱間鍛造の場合には、加工率を70%以上とする。押出比や加工率がこれより小さ過ぎると、熱間加工による緻密化が達成できない可能性が高い。   For the same purpose, the processing rate in these hot workings is made as large as possible. In the case of hot extrusion, the extrusion ratio is 6 or more, preferably 8 or more, more preferably 10 or more. In the case of hot rolling or hot forging, the processing rate is 70% or more. If the extrusion ratio and the processing rate are too small, it is highly possible that densification by hot working cannot be achieved.

この熱間加工後の固化(緻密化)したAl合金は、更に、480〜520℃×2〜8時間程度の溶体化処理および100〜150℃×10〜50時間程度の時効硬化処理を行なうT6処理(調質処理)を施されて、本発明Al合金である、Al−Zn−Mg−Cu系の7000系製品Al合金(部品、部材などの素材)を得る。   The solidified (densified) Al alloy after the hot working is further subjected to a solution treatment at about 480 to 520 ° C. for about 2 to 8 hours and an age hardening treatment at about 100 to 150 ° C. for about 10 to 50 hours. A treatment (tempering treatment) is performed to obtain an Al-Zn-Mg-Cu-based 7000-series product Al alloy (material for parts, members, etc.), which is an Al alloy of the present invention.

この製品Al合金は、自動車部品、電子材料用端末機械、精密機械部品などの用途に応じて、所望の部材乃至部品形状に、転造などの冷間にて成形加工されて、その用途の部材乃至部品とされる。   This product Al alloy is formed into a desired member or part shape by cold rolling such as rolling according to the use such as automobile parts, terminal machines for electronic materials, precision machine parts, etc. Or parts.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す各成分組成のAl−Zn−Mg−Cu系の7000系Al合金溶湯をスプレイフォーミングするが、下記表2に示すように、噴霧ガスの種類、G/M比、堆積速度などのスプレイ条件を変えて、最終的に得られるAl合金組織中の晶析出物の大きさなどを制御、変化させて、このAl合金の機械的特性と疲労強度への影響を調査、評価した。   Spray forming is performed on Al-Zn-Mg-Cu-based 7000-series Al alloy melts having the component compositions shown in Table 1 below. As shown in Table 2 below, the type of spray gas, G / M ratio, deposition rate, etc. The effect of the Al alloy on the mechanical properties and fatigue strength was investigated and evaluated by changing the spray conditions to control and change the size of crystal precipitates in the finally obtained Al alloy structure.

具体的には、下記表1に示すA〜Tまでの各成分組成(A〜Mが発明例組成、N〜Tが比較例組成)のAl合金の溶湯を、共通して1000℃の溶解温度で溶解してスプレイフォーミングした。   Specifically, the melting temperature of 1000 ° C. is commonly used for the molten Al alloy of each component composition from A to T shown in Table 1 below (A to M are composition examples of the invention and N to T are comparative example compositions). Dissolved and spray-formed.

これによって得た各プリフォーム体を、共通して、HIP処理などの予備的な緻密化処理をせずに、アルミ容器に入れて真空封入した上で、加工温度460℃、押出比を15として、直接熱間押出加工して固化させ、10mmφの丸棒を得た。その後このAl合金丸棒を、やはり共通して、500℃×5時間の溶体化処理を行なった後、125℃×30時間の時効硬化処理を行なうT6処理(調質処理)を施して、Al−Zn−Mg−Cu系の7000系製品Al合金を得た。   Each preform body obtained in this manner is not subjected to preliminary densification treatment such as HIP treatment, but is placed in an aluminum container and vacuum-sealed, and then the processing temperature is 460 ° C. and the extrusion ratio is 15. Then, it was directly hot-extruded and solidified to obtain a 10 mmφ round bar. Thereafter, this Al alloy round bar is also commonly treated by solution treatment at 500 ° C. for 5 hours, and then subjected to T6 treatment (tempering treatment) for age-hardening treatment at 125 ° C. for 30 hours. -Zn-Mg-Cu based 7000 series product Al alloy was obtained.

これら得られたAl合金から試験片を採取して、これらのAl合金に含まれる晶析出物の大きさを各々調査するとともに、これらのAl合金の機械的特性と疲労強度を以下のようにして調査した。これらの結果を各々表2、3に示す。   Test specimens were collected from the obtained Al alloys, and the sizes of crystal precipitates contained in these Al alloys were investigated, and the mechanical properties and fatigue strength of these Al alloys were as follows. investigated. These results are shown in Tables 2 and 3, respectively.

(晶析出物)
試験片のAl合金組織を、前記した反射電子法による倍率5000倍のSEM(走査型電子顕微鏡)により50視野観察し、視野内に観察される各晶析出物を画像処理して、個々の大きさを、面積が等価な円の直径に換算して算出し、この換算した大きさ(μm)の内の、最大の大きさのものを、最大の寸法として各々表2、3に示す。
(Crystal precipitate)
The Al alloy structure of the test piece was observed in 50 fields of view with an SEM (scanning electron microscope) with a magnification of 5000 by the reflection electron method described above, and each crystal precipitate observed in the field of view was image-processed to obtain individual sizes. Table 2 and Table 3 show the maximum size of the converted size (μm) as the maximum dimension.

(強度、伸び)
各例とも、前記得られたAl合金を切断して得た、8.0mmφ、長さ90mmの丸棒試験片の押出方向(試験片長手方向)の室温引張り試験を行い、引張強度(MPa)、全伸び(%)を測定した。室温引張り試験はJIS Z2241(1980)に基づき、室温20℃で試験を行った。引張り速度は5mm / 分で、試験片が破断するまで一定の速度で行った。
(Strength, elongation)
In each case, a room temperature tensile test in the extrusion direction (longitudinal direction of the test piece) of a round bar test piece of 8.0 mmφ and 90 mm length obtained by cutting the obtained Al alloy was performed, and the tensile strength (MPa). The total elongation (%) was measured. The room temperature tensile test was performed at room temperature of 20 ° C. based on JIS Z2241 (1980). The tensile speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke.

(疲労強度)
各例とも、前記得られたAl合金を切断して得た、8.0mmφ、長さ90mmの丸棒の、中央部の長さ20mm部分を、各々両側からテーパ(各5mm長さ)を設けて、5.0mmφの小径に切削した試験片とした。この試験片を、材料の耐久性評価に汎用される小野式回転曲げ試験機により、試験片を曲げながら(応力を負荷しながら)107 回の回転数だけ回転させた際の、破断しない最低応力(MPa)を疲労強度とした。
(Fatigue strength)
In each example, a 8.0 mmφ, 90 mm long round bar obtained by cutting the Al alloy obtained above was provided with a 20 mm length at the center and a taper (each 5 mm long) from both sides. The test piece was cut to a small diameter of 5.0 mmφ. When this specimen is rotated by 10 7 rotations while bending the specimen (loading stress) with the Ono rotary bending tester, which is widely used for evaluating the durability of materials, the minimum value that does not break. Stress (MPa) was defined as fatigue strength.

表1、2から明らかなように、各発明例1〜18は、本発明組成のAl合金(溶湯)A〜Mを用い、発明例16、19を除き、窒素ガスによる好ましいG/M比、堆積速度などのスプレイ条件下でスプレイフォーミングを行なっている。   As is apparent from Tables 1 and 2, each of Invention Examples 1 to 18 uses Al alloys (molten metal) A to M of the present invention composition, except for Invention Examples 16 and 19, and a preferable G / M ratio by nitrogen gas, Spray forming is performed under spray conditions such as deposition rate.

この結果、各発明例1〜18は、Al合金に含まれる晶析出物の最大の大きさが0.5μm以下である。それゆえ、Al合金の疲労強度として、破断しない最低応力が350MPa以上であり、引張強度の50%近く(48%程度)にまで著しく向上させている。また、各発明例1〜18は、常温での機械的な特性としても、700MPa以上の引張強度を有し、かつ、引張強度が700MPa以上、800MPa未満の場合には15%以上の伸びを有するとともに、引張強度が800MPa以上の場合には10%以上の伸びを有する。したがって、構造材として要求される強度や疲労強度、あるいは構造材への冷間加工性などを満足できる。   As a result, in each of Invention Examples 1 to 18, the maximum size of the crystal precipitates contained in the Al alloy is 0.5 μm or less. Therefore, as the fatigue strength of the Al alloy, the minimum stress that does not break is 350 MPa or more, which is remarkably improved to nearly 50% (about 48%) of the tensile strength. In addition, each of Invention Examples 1 to 18 has a tensile strength of 700 MPa or more as mechanical properties at room temperature, and has an elongation of 15% or more when the tensile strength is 700 MPa or more and less than 800 MPa. At the same time, when the tensile strength is 800 MPa or more, it has an elongation of 10% or more. Therefore, the strength and fatigue strength required for the structural material, or the cold workability to the structural material can be satisfied.

ただ、発明例の中でも、スプレイフォーミングの際の、G/M比が比較的低い発明例14や、堆積速度が比較的速い発明例18は、他の発明例に比して、疲労強度が比較的低い。また、発明例16、19も、疲労強度や常温での機械的な特性に優れているものの、発明例16はG/M比が好ましい条件からすると高すぎ、発明例19は堆積速度が好ましい条件からすると遅すぎ、生産性が低い。   However, among the inventive examples, the inventive example 14 with a relatively low G / M ratio during spray forming and the inventive example 18 with a relatively high deposition rate are compared with other inventive examples in terms of fatigue strength. Low. Inventive Examples 16 and 19 are also excellent in fatigue strength and mechanical properties at room temperature, but Inventive Example 16 is too high when the G / M ratio is preferable, and Inventive Example 19 is a condition where the deposition rate is preferable. Therefore, it is too slow and productivity is low.

これに対して、比較例20〜26は、合金組成が範囲から外れる表1の合金N〜Tを用いている。この内、比較例20はZnが下限に外れる合金Nを用いている。比較例22はMgが下限に外れる合金Pを用いている。比較例24はCuが下限に外れる合金Rを用いている。また、比較例21はZnが上限に外れる合金Oを用いている。比較例23はMgが上限に外れる合金Qを用いている。比較例25はCuが上限に外れる合金Sを用いている。   On the other hand, Comparative Examples 20 to 26 use Alloys N to T in Table 1 whose alloy composition is out of the range. Among these, the comparative example 20 uses the alloy N from which Zn falls outside the lower limit. Comparative Example 22 uses an alloy P in which Mg falls below the lower limit. In Comparative Example 24, an alloy R in which Cu falls below the lower limit is used. Moreover, the comparative example 21 uses the alloy O from which Zn remove | deviates from an upper limit. In Comparative Example 23, an alloy Q in which Mg deviates from the upper limit is used. Comparative Example 25 uses an alloy S in which Cu is out of the upper limit.

このため、これら比較例は、好ましい製造方法で製造され、Al合金に含まれる晶析出物の最大の大きさが0.5μm以下であるものの、疲労強度や常温での機械的な特性が劣っている。即ち、疲労強度は、引張強度の50%近くあるものの、引張強度自体が700MPa未満、疲労強度も340MPa未満と低く過ぎる。したがって、これら比較例は、構造材として要求される強度や疲労強度を満足できていない。   For this reason, these comparative examples are manufactured by a preferable manufacturing method, and although the maximum size of the crystal precipitates contained in the Al alloy is 0.5 μm or less, the fatigue strength and mechanical properties at room temperature are inferior. Yes. That is, although the fatigue strength is close to 50% of the tensile strength, the tensile strength itself is less than 700 MPa and the fatigue strength is too low, less than 340 MPa. Therefore, these comparative examples do not satisfy the strength and fatigue strength required as a structural material.

また、比較例26はFeとMnの合計含有量が、積極的に含有させるにしても多すぎる合金Tを用いている。このため、比較例26は、好ましい製造方法で製造されているものの、FeとMnの作用によって、Al合金に含まれる晶析出物の最大の大きさが0.5μmを超え、疲労強度や常温での機械的な特性が劣っている。   Moreover, the comparative example 26 uses the alloy T whose total content of Fe and Mn is too much even if it makes it contain positively. For this reason, although Comparative Example 26 is manufactured by a preferable manufacturing method, the maximum size of crystal precipitates contained in the Al alloy exceeds 0.5 μm due to the action of Fe and Mn. The mechanical properties of are inferior.

比較例27は、合金組成が範囲内である表1の合金Aを用いているが、G/M比が低すぎる。このため、比較例27は、Al合金に含まれる晶析出物の最大の大きさが0.5μmを超え、疲労強度や常温での機械的な特性が劣っている。   Comparative Example 27 uses Alloy A in Table 1 whose alloy composition is within the range, but the G / M ratio is too low. For this reason, in Comparative Example 27, the maximum size of the crystal precipitates contained in the Al alloy exceeds 0.5 μm, and the fatigue strength and mechanical properties at room temperature are inferior.

比較例28は、合金組成が範囲内である表1の合金Aを用いているが、堆積速度が速すぎる。このため、比較例28は、Al合金に含まれる晶析出物の最大の大きさが0.5μmを超え、引張強度は高いものの、疲労強度が劣っている。   Comparative Example 28 uses Alloy A in Table 1 whose alloy composition is within the range, but the deposition rate is too fast. For this reason, in Comparative Example 28, the maximum size of the crystal precipitates contained in the Al alloy exceeds 0.5 μm and the tensile strength is high, but the fatigue strength is inferior.

比較例29は、合金組成が範囲内である表1の合金Aを用いているが、噴霧ガスとして空気を用いている。このため、比較例29は、スプレイフォーミングの際の条件は好ましい範囲内で、Al合金に含まれる晶析出物の最大の大きさが0.5μm以下であり、引張強度は高いものの、特に疲労強度が劣っている。   Comparative Example 29 uses Alloy A in Table 1 whose alloy composition is within the range, but uses air as the atomizing gas. For this reason, in Comparative Example 29, the conditions during spray forming are within a preferable range, and the maximum size of the crystal precipitates contained in the Al alloy is 0.5 μm or less. Is inferior.

以上の結果から、Al−Zn−Mg−Cu系の7000系Al合金が高強度と高延性、および高疲労強度を満足するための、本発明各要件や好ましい各要件の、臨界的な意義が裏付けられる。   From the above results, the critical significance of the requirements and preferred requirements of the present invention for the Al-Zn-Mg-Cu-based 7000-based Al alloy to satisfy high strength, high ductility, and high fatigue strength is demonstrated. It is supported.

Figure 2009035766
Figure 2009035766

Figure 2009035766
Figure 2009035766

Figure 2009035766
Figure 2009035766

以上説明したように、本発明は、急冷凝固粉末乃至プリフォーム体を固化させたAl−Zn−Mg−Cu系の7000系Al合金であって、高強度な割に高延性であるとともに、疲労強度も高く、構造用部品や部材としての信頼性に優れたAl合金およびその製造方法を提供できる。したがって、その用途に応じて、高延性を利して所望の形状に冷間などで成形加工され、高強度を利して所望の部材、部品とされる、自動車部品、電子材料用端末機械、精密機械部品などに好適である。   As described above, the present invention is an Al-Zn-Mg-Cu-based 7000-series Al alloy obtained by solidifying a rapidly solidified powder or a preform body, and has high ductility for high strength and fatigue. It is possible to provide an Al alloy having high strength and excellent reliability as a structural component or member and a method for producing the same. Therefore, depending on its application, it is molded into a desired shape with high ductility and cold processed, etc., and is made into desired members and parts with high strength. Automotive parts, terminal machines for electronic materials, Suitable for precision machine parts.

Claims (4)

急冷凝固法により得られたAl合金であって、質量%で、Zn:5〜12%、Mg:2〜4%、Cu:1〜2%を各々含み、残部がAlおよび不可避的不純物からなり、このAl合金組織の反射電子法による倍率5000倍のSEMにて観察される各晶析出物の、面積が等価な円の直径に換算した大きさの内、最大の大きさが0.5μm以下であることを特徴とする高疲労強度Al合金。   An Al alloy obtained by a rapid solidification method and containing, by mass%, Zn: 5 to 12%, Mg: 2 to 4%, Cu: 1 to 2%, with the balance being Al and inevitable impurities The maximum size of each crystal precipitate observed in an SEM with a magnification of 5,000 times by the backscattered electron method of this Al alloy structure is 0.5 μm or less in terms of the area converted into an equivalent circle diameter. A high fatigue strength Al alloy characterized by 前記Al合金が、更に、Agを0.01〜0.1質量%含有する請求項1に記載の高疲労強度Al合金。   The high fatigue strength Al alloy according to claim 1, wherein the Al alloy further contains 0.01 to 0.1 mass% of Ag. 前記Al合金が、更に、Si、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVから選ばれた一種または二種以上を合計で0.1〜0.5質量%含有する請求項1または2に記載の高疲労強度Al合金。   The Al alloy further contains 0.1 to 0.5% by mass in total of one or more selected from Si, Fe, Mn, Cr, Co, Ni, Zr, Ti and V. Or the high fatigue strength Al alloy according to 2; 質量%で、Zn:5〜12%、Mg:2〜4%、Cu:1〜2%を各々含み、更に、Agを0.01〜0.1質量%か、Si、Fe、Mn、Cr、Co、Ni、Zr、TiおよびVから選ばれた一種または二種以上を合計で0.1〜0.5質量%を選択的に含有し、残部がAlおよび不可避的不純物からなるAl合金溶湯を、G/M比を4〜15Nm3 /kgの範囲とした不活性ガスによって、噴霧された溶湯のプリフォーム上への堆積速度が1〜2.5g/mm2 /sの範囲で、スプレイフォーミングし、これによって得たプリフォーム体を金属容器に入れて真空封入した上で、熱間押出加工して固化させ、その後調質処理してAl合金を得るとともに、このAl合金組織の反射電子法による倍率5000倍のSEMにて観察される各晶析出物の、面積が等価な円の直径に換算した大きさの内、最大の大きさを0.5μm以下とすることを特徴とする高疲労強度Al合金の製造方法。 In mass%, Zn: 5 to 12%, Mg: 2 to 4%, Cu: 1 to 2%, respectively, and further Ag is 0.01 to 0.1% by mass, Si, Fe, Mn, Cr , Co, Ni, Zr, Ti and V selected from a total of 0.1 to 0.5% by mass, with the balance being Al and unavoidable impurities. With an inert gas having a G / M ratio in the range of 4 to 15 Nm 3 / kg, the deposition rate of the sprayed molten metal on the preform is in the range of 1 to 2.5 g / mm 2 / s. After forming, the preform body thus obtained is placed in a metal container and vacuum-sealed, and then hot-extruded and solidified, then tempered to obtain an Al alloy, and the reflected electrons of this Al alloy structure Crystallization observed by SEM with a magnification of 5000 times Things of, among area size in terms of the diameter of a circle equivalent, the method of producing a high fatigue strength Al alloy, characterized in that the maximum size and 0.5μm or less.
JP2007199599A 2007-07-31 2007-07-31 Manufacturing method of high fatigue strength Al alloy Expired - Fee Related JP5111005B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007199599A JP5111005B2 (en) 2007-07-31 2007-07-31 Manufacturing method of high fatigue strength Al alloy
PCT/JP2008/060710 WO2009016890A1 (en) 2007-07-31 2008-06-11 High-fatigue-strength al alloy and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007199599A JP5111005B2 (en) 2007-07-31 2007-07-31 Manufacturing method of high fatigue strength Al alloy

Publications (2)

Publication Number Publication Date
JP2009035766A true JP2009035766A (en) 2009-02-19
JP5111005B2 JP5111005B2 (en) 2012-12-26

Family

ID=40304128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007199599A Expired - Fee Related JP5111005B2 (en) 2007-07-31 2007-07-31 Manufacturing method of high fatigue strength Al alloy

Country Status (2)

Country Link
JP (1) JP5111005B2 (en)
WO (1) WO2009016890A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122090A (en) * 2010-12-07 2012-06-28 Toyota Central R&D Labs Inc Rolled material, raw material for rolled material and manufacturing method of the same
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength
JP2017186651A (en) * 2016-02-11 2017-10-12 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Al-Mg-Zn ALLOY WITH SCANDIUM FOR INTEGRAL CONSTRUCTION OF ALM STRUCTURES
WO2019124554A1 (en) * 2017-12-22 2019-06-27 日本発條株式会社 Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
CN111872404A (en) * 2020-06-30 2020-11-03 同济大学 Aluminum-copper alloy powder for 3D printing and preparation method thereof
JP2021527758A (en) * 2018-06-20 2021-10-14 ナノアル エルエルシー High-performance Al-Zn-Mg-Zr-based aluminum alloy for welding and additive manufacturing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059512B2 (en) * 2007-02-28 2012-10-24 株式会社神戸製鋼所 High strength, high ductility Al alloy and method for producing the same
CN110257659B (en) * 2018-10-17 2020-05-19 天津师范大学 Method for improving purity of Al-Zn-Mg-Cu alloy melt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240399A (en) * 1993-02-16 1994-08-30 Honda Motor Co Ltd Heat resistant aluminum alloy excellent in notch fatigue strength
JPH07316601A (en) * 1994-03-28 1995-12-05 Toyo Alum Kk Production of rapidly solidified aluminum powder and aluminum alloy compact
JP2007039748A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd HEAT RESISTANT Al-BASED ALLOY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240399A (en) * 1993-02-16 1994-08-30 Honda Motor Co Ltd Heat resistant aluminum alloy excellent in notch fatigue strength
JPH07316601A (en) * 1994-03-28 1995-12-05 Toyo Alum Kk Production of rapidly solidified aluminum powder and aluminum alloy compact
JP2007039748A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd HEAT RESISTANT Al-BASED ALLOY

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012032462; WANG,Feng et al.: 'Microstructure and mechanical properties ofspray-deposited Al-Zn-Mg-Cu alloy' Materials & Design Vol.28 No.4, 20060316, Page.1154-1158 *
JPN6012032466; SHARMA,M.M et al.: 'Mesoscopic structure control of sprayformed high strength Al-Zn-Mg-Cu alloys' Acta Materials Vol.53 No.10, 20050421, Page.2919-2924 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012122090A (en) * 2010-12-07 2012-06-28 Toyota Central R&D Labs Inc Rolled material, raw material for rolled material and manufacturing method of the same
CN102554214A (en) * 2010-12-07 2012-07-11 株式会社丰田中央研究所 Deformable Material, Raw Material For The Same, And Manufacturing Method Thereof
CN102554214B (en) * 2010-12-07 2015-05-13 株式会社丰田中央研究所 Deformable material, raw material for the same, and manufacturing method thereof
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength
JP2017186651A (en) * 2016-02-11 2017-10-12 エアバス・ディフェンス・アンド・スペース・ゲーエムベーハー Al-Mg-Zn ALLOY WITH SCANDIUM FOR INTEGRAL CONSTRUCTION OF ALM STRUCTURES
WO2019124554A1 (en) * 2017-12-22 2019-06-27 日本発條株式会社 Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
JP6602508B1 (en) * 2017-12-22 2019-11-06 日本発條株式会社 Aluminum alloy, aluminum alloy spring and aluminum alloy fastening member
EP3730639A4 (en) * 2017-12-22 2021-07-28 NHK Spring Co., Ltd. Aluminum alloy, spring made of aluminum alloy, and fastening member made of aluminum alloy
US11505851B2 (en) 2017-12-22 2022-11-22 Nhk Spring Co., Ltd. Aluminum alloy, aluminum alloy spring, and fastening member made of aluminum alloy
JP2021527758A (en) * 2018-06-20 2021-10-14 ナノアル エルエルシー High-performance Al-Zn-Mg-Zr-based aluminum alloy for welding and additive manufacturing
CN111872404A (en) * 2020-06-30 2020-11-03 同济大学 Aluminum-copper alloy powder for 3D printing and preparation method thereof

Also Published As

Publication number Publication date
JP5111005B2 (en) 2012-12-26
WO2009016890A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5059512B2 (en) High strength, high ductility Al alloy and method for producing the same
JP5111005B2 (en) Manufacturing method of high fatigue strength Al alloy
WO2010122960A1 (en) High-strength copper alloy
KR101457774B1 (en) Aluminum alloy material for storage container for high-pressure hydrogen gas
EP4083244A1 (en) Heat-resistant powdered aluminium material
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
EP1882753A1 (en) Aluminium alloy
US20220205067A1 (en) Aluminum Alloy for Additive Technologies
EP1882754B1 (en) Aluminium alloy
WO2013144343A1 (en) Alloy and method of production thereof
JP4764094B2 (en) Heat-resistant Al-based alloy
US20230160038A1 (en) Metal matrix composites and methods of making and use thereof
JP4925028B2 (en) Aluminum alloy molding material
JPH07316601A (en) Production of rapidly solidified aluminum powder and aluminum alloy compact
KR102407828B1 (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JP3987471B2 (en) Al alloy material
Salamci et al. Microstructure and mechanical properties of spray deposited and extruded 7000 series aluminium alloys
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
KR101639590B1 (en) Grain refiner for magnesium alloy and grain refinement method for magnesium alloy
US20240149348A1 (en) Alsimgmn alloy for additive manufacturing
JP4704721B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
KR102076800B1 (en) Method for manufacturing aluminum-silicon alloy extruded material and aluminum-silicon alloy extruded material manufactured using the same
JP4704722B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and workability
KR20160120688A (en) Magnesium alloy sheet and method for the same
JPH11269592A (en) Aluminum-hyper-eutectic silicon alloy low in hardening sensitivity, and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees