JPH0651895B2 - Heat-resistant aluminum powder metallurgy alloy - Google Patents

Heat-resistant aluminum powder metallurgy alloy

Info

Publication number
JPH0651895B2
JPH0651895B2 JP60188125A JP18812585A JPH0651895B2 JP H0651895 B2 JPH0651895 B2 JP H0651895B2 JP 60188125 A JP60188125 A JP 60188125A JP 18812585 A JP18812585 A JP 18812585A JP H0651895 B2 JPH0651895 B2 JP H0651895B2
Authority
JP
Japan
Prior art keywords
powder metallurgy
alloy
aluminum powder
elongation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60188125A
Other languages
Japanese (ja)
Other versions
JPS6247449A (en
Inventor
遵 清水
昭衛 田中
正彦 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP60188125A priority Critical patent/JPH0651895B2/en
Publication of JPS6247449A publication Critical patent/JPS6247449A/en
Publication of JPH0651895B2 publication Critical patent/JPH0651895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐熱アルミニウム粉末冶金合金に関する。本
発明による合金製品は、高温における長時間使用後にも
強度及び伸びの低下が少ないので、航空機部材、自動車
用エンジン部品、電気機器部品、油圧及び空気圧機器部
品、さらには高温用構造材料としても有用である。
FIELD OF THE INVENTION The present invention relates to refractory aluminum powder metallurgy alloys. Since the alloy product according to the present invention has little decrease in strength and elongation even after long-term use at high temperature, it is useful as an aircraft member, an automobile engine part, an electric equipment part, a hydraulic and pneumatic equipment part, and a structural material for high temperature. Is.

従来技術及びその問題点 アルミニウム及びその合金は、一般に高温での強度が低
く、特に室温での強度が高い、いわゆる高力アルミニウ
ム合金の高温における強度低下は、甚だしい。又、一般
に耐熱用とされているアルミニウム合金(AA201
8、2218、2618、4032等)においても、2
00℃を越える場合には、その強度は著しく低下する。
熱安定性についても、例えば150℃以上の温度に長時
間暴露した後には、室温での強度が大巾に低下すること
は避け難い。
Prior art and its problems Aluminum and its alloys generally have low strength at high temperatures, and particularly high strength at room temperature. So-called high-strength aluminum alloys are extremely low in strength at high temperatures. In addition, aluminum alloys that are generally used for heat resistance (AA201
8, 2218, 2618, 4032, etc.)
When the temperature exceeds 00 ° C, the strength is remarkably reduced.
Regarding the thermal stability, it is unavoidable that the strength at room temperature greatly decreases after being exposed to a temperature of 150 ° C. or higher for a long time.

アルミニウム中にアルミニウム酸化物を均一に分散させ
たSAPの場合にも、耐焼鈍軟化性には優れてはいるも
のの、強度、じん性等の点で満足すべきものとは言い難
く、実用性にとぼしい。
Even in the case of SAP in which aluminum oxide is uniformly dispersed in aluminum, although it is excellent in annealing softening resistance, it is hard to say that it is satisfactory in terms of strength, toughness, etc. .

近年アルミニウム中に種々の遷移元素を固溶限を上回る
量添加し、溶湯を冷却速度10℃/秒以上で超急速凝
固させ、得られる粉末又はリボン状薄帯を粉末冶金法に
より成形してアルミニウム合金とする方法が提案されて
いる(米国特許第4347076号及び4464199
号)。この様にして得られたアルミニウム粉末冶金合金
は、たしかに高温における強度及び熱安定性には優れて
いるが、伸びが低く、延性に欠けるのが大きな欠点であ
る。
In recent years, various transition elements have been added to aluminum in an amount exceeding the solid solubility limit, the molten metal is rapidly solidified at a cooling rate of 10 5 ° C / sec or more, and the obtained powder or ribbon ribbon is formed by powder metallurgy. A method of making an aluminum alloy has been proposed (US Pat. Nos. 4,347,076 and 4,464,199).
issue). The aluminum powder metallurgy alloy obtained in this manner is certainly excellent in strength and thermal stability at high temperatures, but its major drawbacks are low elongation and lack of ductility.

問題点を解決するための手段 本発明は、上記の如き技術の現状に鑑みて種々研究を重
ねた結果、ニツケルを主な添加元素とするアルミニウム
合金に更に特定の添加元素を配合し、且つ溶湯の冷却を
特定の条件下に行なつて得たアルミニウム粉末冶金合金
が、高温における強度に優れているのみならず、高温暴
露後における強度及び伸びの低下が極めて小さいという
特異な性質を備えていることを見出した。即ち、本発明
は、下記の耐熱アルミニウム粉末冶金合金を提供するも
のである; 耐熱アルミニウム粉末冶金合金であって、 (1)第1添加元素としてNi13〜30重量%、 (2)第2添加元素としてZr1〜10重量%、 および (3)第3添加元素としてFe、Mn、Cr、W、Co、
MoおよびTiの少なくとも1種1〜10重量% を含み、残部はAlおよび不可避的不純物からなり、引
張強度が50kg/mm2以上で且つ伸びが5%以上であるこ
とを特徴とする合金。
Means for Solving the Problems The present invention has been carried out as a result of various studies in view of the current state of the art as described above, and as a result, an aluminum alloy containing nickel as a main additive element was further blended with a specific additive element, and the molten metal was melted. The aluminum powder metallurgy alloy obtained by cooling the alloy under special conditions has not only excellent strength at high temperature, but also unique property that the decrease in strength and elongation after exposure to high temperature is extremely small. I found that. That is, the present invention provides the following heat-resistant aluminum powder metallurgy alloys: (1) Ni-13 to 30 wt% as the first additive element, (2) Second additive element 1 to 10% by weight of Zr, and (3) Fe, Mn, Cr, W and Co as third additive elements,
An alloy containing 1 to 10% by weight of at least one of Mo and Ti, the balance being Al and inevitable impurities, having a tensile strength of 50 kg / mm 2 or more and an elongation of 5% or more.

本発明においては、アルミニウム中に第1添加元素とし
てのNi13〜30重量%、第2添加元素としてのZr
1〜10重量%及び第3添加元素としてのFe、Mn、
Cr、W、Co、Mo及びTiの少なくとも1種1〜1
0重量%を含有させること及び第1添加元素の含有量を
第2及び第3の添加元素の夫々の含有量よりも大とする
ことを必須とする。若しこれ等の条件のいずれかが充足
されない場合には、後記実施例及び比較例からも明らか
な如く、所望の効果は得られない。
In the present invention, 13 to 30% by weight of Ni as a first additive element and Zr as a second additive element in aluminum are used.
1 to 10 wt% and Fe, Mn as the third additive element,
At least one of Cr, W, Co, Mo and Ti 1-1
It is essential to contain 0 wt% and to make the content of the first additional element larger than the content of each of the second and third additional elements. If any of these conditions is not satisfied, the desired effect cannot be obtained, as is apparent from the examples and comparative examples described below.

本発明では、これら3成分の相乗的な作用によってはじ
めて本発明の効果を発揮し得るものであるから各元素の
作用を明確に区別することはできないが、各元素の作用
の一応の目安を示すと以下の通りである。
In the present invention, since the effect of the present invention can be exhibited only by the synergistic action of these three components, the action of each element cannot be clearly distinguished, but a tentative guide of the action of each element is shown. And as follows.

第1添加元素は、主としてAlNiの析出により、本
発明合金の伸びを維持しつつ、耐熱性を高めることがで
きる。従って、その添加量が13重量%未満の場合には
耐熱性の向上が不十分となり、30重量%を超える場合
には伸び等の低下を招くおそれがあるので好ましくな
い。
The first additive element can improve the heat resistance while maintaining the elongation of the alloy of the present invention mainly by the precipitation of Al 3 Ni. Therefore, if the addition amount is less than 13% by weight, the heat resistance is insufficiently improved, and if it exceeds 30% by weight, elongation and the like may be deteriorated, which is not preferable.

第2添加元素は、主として立方晶AlZrの析出によ
り、本発明合金の伸びを損なうことなく、耐熱性を向上
させることができる。従って、その添加量が1重量%未
満の場合には耐熱性の向上に寄与できず、10重量%を
超える場合には伸び等が低下するおそれがあるので好ま
しくない。
The second additive element can improve the heat resistance without impairing the elongation of the alloy of the present invention mainly due to the precipitation of cubic Al 9 Zr. Therefore, if the addition amount is less than 1% by weight, it cannot contribute to the improvement of heat resistance, and if it exceeds 10% by weight, the elongation and the like may decrease, which is not preferable.

第3添加元素は、主として上記の第1及び第2添加元素
の添加による耐熱性の向上を補助する役割をもつ。この
添加量が1%を下回る場合には耐熱性向上に寄与するこ
とができず、10重量%を上回る場合には伸び等が低下
するおそれがあるので好ましくない。
The third additive element mainly has a role of assisting the improvement of heat resistance due to the addition of the first and second additive elements. If the addition amount is less than 1%, it cannot contribute to the improvement of heat resistance, and if it exceeds 10% by weight, the elongation and the like may be decreased, which is not preferable.

本発明のアルミニウム粉末冶金合金は、例えば、以下の
様にして製造される。第1、第2及び第3添加元素を所
定の割合で含むアルミニウム合金溶湯を10℃/秒未
満の冷却速度で凝固させて得た材料を常法に従つて冷間
予備成形した後、熱間加工することにより、密度ほぼ1
00%の製品とする。冷却速度は、10℃/秒を下限
とすることが好ましい。溶湯の冷却方法は、特に限定さ
れないが、アトマイズ法が代表的なものとして例示され
る。又、超急冷凝固法に属するメルトスピニング法、メ
ルトエキストラクシヨン法等によつても、形成されるリ
ボン状薄帯物、細線状物又はフレーク状物の厚さ又は径
を大きくする条件を採用することにより、10℃/秒
未満の冷却速度とし、所望の特性を有する材料を得るこ
とが可能である。この場合には必要ならば、引続く成形
加工に先立ち、リボン状薄帯物等の生成物を破砕する。
更に、双ロール法或いは回転するドラムにアトマイズ粒
子を衝突させて急冷凝固材を得る噴霧ロール法において
も、ロールやドラムの材質、ロール間距離、アトマイズ
粒子の大きさ等を調整することにより、所定の冷却速度
として所望の特性を有するフレーク状物を得ることがで
きる。尚、これ等の製法により得られた材料中には極微
細な粒子も含まれており、これ等の極微細粒子の冷却速
度は10℃/秒以上となつている場合もあり得る。し
かしながら、本発明においては、この様な粒子が多少含
まれていても所期の効果を奏することが出来る。
The aluminum powder metallurgy alloy of the present invention is produced, for example, as follows. A material obtained by solidifying an aluminum alloy melt containing the first, second and third additive elements in a predetermined ratio at a cooling rate of less than 10 5 ° C / sec is cold preformed according to a conventional method, and then heat-treated. By processing between the two, the density is almost 1
00% product. The cooling rate preferably has a lower limit of 10 2 ° C / sec. The method of cooling the molten metal is not particularly limited, but the atomizing method is exemplified as a typical method. In addition, the conditions for increasing the thickness or diameter of the ribbon-shaped ribbon, the thin wire or the flake formed by the melt spinning method, the melt extraction method, etc. By doing so, it is possible to obtain a material having desired properties with a cooling rate of less than 10 5 ° C / sec. In this case, if necessary, products such as ribbon ribbons are crushed prior to the subsequent forming process.
Further, even in the twin roll method or the spray roll method in which atomized particles are collided with a rotating drum to obtain a rapidly solidified material, by adjusting the material of the roll or the drum, the distance between the rolls, the size of the atomized particles, and the like It is possible to obtain flakes having desired properties as the cooling rate of. It should be noted that the materials obtained by these manufacturing methods also include ultrafine particles, and the cooling rate of these ultrafine particles may be 10 5 ° C / sec or more. However, in the present invention, the desired effect can be obtained even if such particles are contained in some amount.

成形加工に際しての冷間予備成形及び熱間加工条件は、
特に限定されないが、通常粒度40メツシユ以下程度の
材料を700kg/cm2・G以上で成形した後、温度200
℃程度で熱間加工すれば良い。冷間予備成形は、引続く
熱間加工工程に移行する際にハンドリング可能な成形体
が得られる方法であれば良く、例えば、機械的プレス、
静水圧プレス等により、行なわれる。熱間加工法として
は、熱間押出し、熱間圧延、熱間鍛造、ホツトプレス、
熱間静水圧プレス等の方法が例示される。又、成形加工
は、冷間予備成形工程を経ることなく直接押出しを行な
うコンフオーム法によつても良く、この場合にも、密度
ほぼ100%の成形体を得ることが可能である。
Cold preforming and hot working conditions for forming are
Although not particularly limited, a material having a grain size of 40 mesh or less is molded at 700 kg / cm 2 · G or more, and then the temperature is 200.
Hot working may be performed at about ℃. Cold preforming may be a method by which a handleable molded body is obtained when shifting to the subsequent hot working step, for example, mechanical pressing,
It is performed by a hydrostatic press or the like. Hot working methods include hot extrusion, hot rolling, hot forging, hot pressing,
Examples of the method include hot isostatic pressing. Further, the molding may be carried out by a conform method in which extrusion is directly carried out without passing through a cold preforming step, and in this case, it is possible to obtain a molded article having a density of almost 100%.

発明の効果 本発明のアルミニウム粉末冶金合金は、常温においての
みならず高温においても強度、伸び等の各種の特性に優
れており、又長時間高温に暴露した後にもその優れた特
性をほとんど損うことなく維持することができる。
EFFECTS OF THE INVENTION The aluminum powder metallurgy alloy of the present invention is excellent in various properties such as strength and elongation not only at room temperature but also at high temperature, and almost loses its excellent properties even after being exposed to high temperature for a long time. Can be maintained without.

実施例 以下、実施例及び比較例を示し、本発明の特徴とすると
ころをより一層明らかにする。
Examples Hereinafter, examples and comparative examples will be shown to further clarify the features of the present invention.

実施例1 第1表に示す添加元素を含む溶湯をアトマイズ法により
噴霧して、冷却速度約10℃/秒で100メツシユ程
度以下の粉体を得た。
Example 1 A molten metal containing the additional element shown in Table 1 was sprayed by an atomizing method to obtain a powder having a cooling rate of about 10 4 ° C / sec and a particle size of about 100 mesh or less.

注:試料NO.1,2,9,13および14は、本発明の
範囲外の組成を有するものである。
Note: Samples Nos. 1, 2, 9, 13 and 14 have compositions outside the scope of the present invention.

上記で得られた粉体を圧力2830kg/cm2で冷間予備成
形して直径3cm×高さ7.6cmの成形体とした後、押出
比9で400℃で圧力0.6×10〜1.2×10
kg/cm2で押出材を得た。第2表に該押出材そのもの(条
件−1)ならびに該押出材を350℃で100時間焼鈍
した場合(条件−2)および該押出材を400℃で64
時間焼鈍した場合(条件−2)のそれぞれについて、室
温における引張強度 (kg/mm2)および伸び(%)を示す。なお、試料NO.14
については、直径3cm×高さ7.6cmの鋳塊を押出して
試料とした。
The powder obtained above was cold preformed at a pressure of 2830 kg / cm 2 to give a compact having a diameter of 3 cm and a height of 7.6 cm, and the extrusion ratio was 9 at 400 ° C. and the pressure was 0.6 × 10 4 . 1.2 x 10 4
An extruded material was obtained at kg / cm 2 . Table 2 shows the extruded material itself (condition-1), the extruded material annealed at 350 ° C for 100 hours (condition-2), and the extruded material at 400 ° C at 64 ° C.
The tensile strength (kg / mm 2 ) and the elongation (%) at room temperature are shown for each of the cases annealed for time (condition-2). Sample No.14
For, a sample having a diameter of 3 cm and a height of 7.6 cm was extruded as a sample.

第2表に示す結果から明らかな如く、本発明の範囲外の
組成を有する合金は、伸びが小さく、熱間押出しが困難
であり、利用分野が限定される。又、合金の融点が非常
に高くなるので、アトマイズ法による粉体の調製も困難
となる。
As is clear from the results shown in Table 2, alloys having a composition outside the range of the present invention have small elongation, are difficult to hot extrude, and have limited fields of use. Further, since the melting point of the alloy becomes extremely high, it becomes difficult to prepare powder by the atomizing method.

更に、試料NO.5と12との対比からも明らかな如
く、本発明の組成範囲内にあつても粉体製造時の冷却速
度が10℃/秒を上回る場合には、押出材の伸びが小
さい。
Further, the sample No. As is clear from the comparison of 5 and 12, even within the composition range of the present invention, the elongation of the extruded material is small when the cooling rate during powder production exceeds 10 5 ° C / sec.

これに対し、本発明のアルミニウム粉末冶金合金は、ア
トマイズ法による原料粉体の調製も容易で、熱間押出し
等による加工も容易に行なうことが出来、更に高温に長
時間暴露後にも優れた強度及び伸び特性を維持し続け
る。
On the other hand, the aluminum powder metallurgy alloy of the present invention is easy to prepare the raw material powder by the atomizing method, can be easily processed by hot extrusion, etc., and has excellent strength even after being exposed to high temperature for a long time. And continue to maintain elongation characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】耐熱アルミニウム粉末冶金合金であって、 (1)第1添加元素としてNi13〜30重量%、 (2)第2添加元素としてZr1〜10重量%、 および (3)第3添加元素としてFe、Mn、Cr、W、Co、
MoおよびTiの少なくとも1種1〜10重量% を含み、残部はAlおよび不可避的不純物からなり、引
張強度が50kg/mm2以上で且つ伸びが5%以上であるこ
とを特徴とする合金。
1. A heat-resistant aluminum powder metallurgy alloy comprising: (1) 13 to 30% by weight of Ni as a first additive element, (2) 1 to 10% by weight of Zr as a second additive element, and (3) a third additive element. As Fe, Mn, Cr, W, Co,
An alloy containing 1 to 10% by weight of at least one of Mo and Ti, the balance being Al and inevitable impurities, having a tensile strength of 50 kg / mm 2 or more and an elongation of 5% or more.
JP60188125A 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy Expired - Lifetime JPH0651895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188125A JPH0651895B2 (en) 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188125A JPH0651895B2 (en) 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy

Publications (2)

Publication Number Publication Date
JPS6247449A JPS6247449A (en) 1987-03-02
JPH0651895B2 true JPH0651895B2 (en) 1994-07-06

Family

ID=16218150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188125A Expired - Lifetime JPH0651895B2 (en) 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy

Country Status (1)

Country Link
JP (1) JPH0651895B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572832B2 (en) * 1989-01-21 1997-01-16 株式会社神戸製鋼所 Al-based alloy powder for sintering
JPH02217666A (en) * 1989-02-17 1990-08-30 Honda Motor Co Ltd Piston ring for internal combustion engine
JP2538692B2 (en) * 1990-03-06 1996-09-25 ワイケイケイ株式会社 High strength, heat resistant aluminum base alloy
KR100432448B1 (en) * 2001-08-16 2004-05-24 (주)진일금속 Manufacturing method for Aluminum alloy plate containing Cr and Ni
CN105970030B (en) * 2016-07-04 2018-03-13 江阴恩特莱特镀膜科技有限公司 It is a kind of to be used to spray alloy of sial target prime coat and preparation method thereof
FR3083479B1 (en) * 2018-07-09 2021-08-13 C Tec Constellium Tech Center METHOD OF MANUFACTURING AN ALUMINUM ALLOY PART
FR3083478B1 (en) * 2018-07-09 2021-08-13 C Tec Constellium Tech Center METHOD OF MANUFACTURING AN ALUMINUM ALLOY PART

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234936A (en) * 1984-05-09 1985-11-21 Sumitomo Light Metal Ind Ltd Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JPS6223952A (en) * 1985-07-22 1987-01-31 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Al-fe-ni heat-resisting alloy having high toughness and its production

Also Published As

Publication number Publication date
JPS6247449A (en) 1987-03-02

Similar Documents

Publication Publication Date Title
US4347076A (en) Aluminum-transition metal alloys made using rapidly solidified powers and method
CN110872658B (en) High-performance copper alloy and powder preparation method thereof
JPH1081924A (en) Production of iron aluminide by thermochemical treatment for element powder
DE3043503A1 (en) CRYSTALINE METAL ALLOY
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPS63157831A (en) Heat-resisting aluminum alloy
US4127426A (en) Method of making electrical conductors of aluminum-iron alloys
JP2705996B2 (en) High strength magnesium based alloy
EP0564814B1 (en) Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
JPH0651895B2 (en) Heat-resistant aluminum powder metallurgy alloy
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JP3622989B2 (en) Molded member made of magnesium alloy and manufacturing method thereof
WO2019034506A1 (en) Copper-based alloy for the production of bulk metallic glasses
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
US4395464A (en) Copper base alloys made using rapidly solidified powders and method
US4402745A (en) New iron-aluminum-copper alloys which contain boron and have been processed by rapid solidification process and method
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
US4404028A (en) Nickel base alloys which contain boron and have been processed by rapid solidification process
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPS6247448A (en) Heat resistant aluminum alloy for powder metallurgy adn its manufacture
JPH0518891B2 (en)
JPS6233738A (en) Heat resistant aluminum alloy for powder metallurgical processing and its manufacture
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JP3245652B2 (en) High temperature aluminum alloy and method for producing the same