JPS6247449A - Heat resistant aluminum alloy for powder metallurgy and its manufacture - Google Patents

Heat resistant aluminum alloy for powder metallurgy and its manufacture

Info

Publication number
JPS6247449A
JPS6247449A JP60188125A JP18812585A JPS6247449A JP S6247449 A JPS6247449 A JP S6247449A JP 60188125 A JP60188125 A JP 60188125A JP 18812585 A JP18812585 A JP 18812585A JP S6247449 A JPS6247449 A JP S6247449A
Authority
JP
Japan
Prior art keywords
alloy
added element
weight
additive element
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60188125A
Other languages
Japanese (ja)
Other versions
JPH0651895B2 (en
Inventor
Jun Shimizu
清水 遵
Akimori Tanaka
昭衛 田中
Masahiko Kawai
川井 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP60188125A priority Critical patent/JPH0651895B2/en
Publication of JPS6247449A publication Critical patent/JPS6247449A/en
Publication of JPH0651895B2 publication Critical patent/JPH0651895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide characteristics such as superior strength and elongation at high temp. as well as ordinary temp. to an Al alloy for powder metallurgy by adding specified elements to an Al alloy contg. Ni as the principal added element, melting the resulting alloy and cooling the molten alloy under specified conditions. CONSTITUTION:The composition of a molten Al alloy is composed of 5-30wt% Ni as the 1st added element, 1-10wt% Zr as the 2nd added element, 1-10wt% one or more among Fe, Mn, Cr, W, Co, Mo and Ti as the 3rd added element and the balance Al with inevitable impurities. In the composition, the amount of the 1st added element is made larger than the amount of the 2nd added element and the amount of the 3rd added element. The molten Al alloy is cooled at <=10<5> deg.C/sec cooling rate to form granules, flakes, a fine wire or a ribbonlike thin strip. This product is worked as is or after it is broken into pieces as required.

Description

【発明の詳細な説明】 l象よ五五皿光1 本発明は、耐熱アルミニウム粉末冶金合金に関する。本
発明による合金製品は、高温における長時間使用後にも
強度及び伸びの低下が少ないので、航空機部材、自動車
用エンジン部品、電気機器部品、油圧及び空気圧機器部
品、さらには高温用構造材料としても有用である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant aluminum powder metallurgy alloy. The alloy products according to the present invention have little loss in strength and elongation even after long-term use at high temperatures, so they are useful as aircraft parts, automobile engine parts, electrical equipment parts, hydraulic and pneumatic equipment parts, and even as high-temperature structural materials. It is.

従来技術及びその問題点 アルミニウム及びその合金は、一般に高温での強度が低
く、特に室温での強度が高い、いわゆる高力アルミニウ
ム合金の高温における強度低下は、甚だしい。又、一般
に耐熱用とされているアルミニウム合金(AA2018
.221B、261B、4032等〉においてもミ20
0′Cを越える場合には、その強度は著しく低下する。
Prior art and its problems Aluminum and its alloys generally have low strength at high temperatures, and particularly high strength at room temperature.The strength of so-called high-strength aluminum alloys at high temperatures is significantly reduced. In addition, aluminum alloy (AA2018
.. 221B, 261B, 4032 etc.)
When the temperature exceeds 0'C, the strength is significantly reduced.

熱安定性についても、例えば150’C以上の温度に長
時間暴露した後には、室温での強度が大巾に低下するこ
とは避は難い。
As for thermal stability, it is inevitable that the strength at room temperature will decrease significantly after being exposed to a temperature of 150'C or higher for a long time, for example.

アルミニウム中にアルミニウム酸化物を均一に分散さけ
たSAPの場合にも、耐焼鈍軟化性には優れてはいるも
のの、強度、じん性等の点て満足すべきものとは言い難
く、実用性にとぼしい。
Even in the case of SAP, in which aluminum oxide is uniformly dispersed in aluminum, although it has excellent annealing softening resistance, it is difficult to say that it is satisfactory in terms of strength, toughness, etc., and is of little practical use. .

近年アルミニウム中に種々の遷移元素を固溶限を上回る
量添加し、溶湯を冷却速度105°C/秒以上で超急速
凝固させ、得られる粉末又はリボン状薄帯を粉末冶金法
により成形してアルミニウム合金とする方法が提案され
ている(米国特許第4347076M及び446419
9号)。この様にして得られたアルミニウム粉末冶金合
金は、たしかに高温における強度及び熱安定性には優れ
ているが、伸びが低く、延性に欠けるのが大きな欠点で
ある。
In recent years, various transition elements have been added to aluminum in amounts exceeding the solid solubility limit, the molten metal is solidified ultra-rapidly at a cooling rate of 105°C/sec or more, and the resulting powder or ribbon-shaped thin strip is formed by powder metallurgy. A method of forming an aluminum alloy has been proposed (U.S. Pat. Nos. 4,347,076M and 4,46419).
No. 9). Although the aluminum powder metallurgical alloy thus obtained has excellent strength and thermal stability at high temperatures, its major drawbacks are low elongation and lack of ductility.

問題点を解決するための手段 本発明は、上記の如き技術の現状に鑑みて種々研究を重
ねた結果、ニッケルを主な添加元素とするアルミニウム
合金に更に特定の添加元素を配合し、且つ溶湯の冷却を
特定の条件下に行なって得たアルミニウム粉末冶金合金
が、高温における強度に優れているのみならず、高温暴
露後における強度及び伸びの低下が極めて小さいという
特異な性質を協えていることを見出した。即ち、本発明
は、下記の合金及びその製造方法を提供するものでおる
Means for Solving the Problems As a result of various studies conducted in view of the current state of the technology as described above, the present invention has been developed by adding specific additive elements to an aluminum alloy containing nickel as the main additive element, and adding specific additive elements to the molten metal. The aluminum powder metallurgical alloy obtained by cooling under specific conditions not only has excellent strength at high temperatures, but also has the unique property of having extremely small decreases in strength and elongation after exposure to high temperatures. I found out. That is, the present invention provides the following alloy and method for producing the same.

■(i)第1添加元素としてNi5〜30重量%、(1
1)第2添加元素としてZr1〜10重量%、及び (iii )第3添加元素としてFe、Mn、Cr、W
、Co、Mo及び7−iの少なくとも1種1〜10重量
% を含み、残部はAl及び不可避的不純物からなり、第1
添加元素の含有量は、第2及び第3添加元素の夫々の含
有量よりも大であり、引張強度が40 kg/ mn+
2以上で且つ伸びが5%以上であることを特徴とする耐
熱アルミニウム粉末冶金合金。
■(i) 5 to 30% by weight of Ni as the first additive element, (1
1) 1 to 10% by weight of Zr as the second additive element, and (iii) Fe, Mn, Cr, W as the third additive element.
, Co, Mo and 7-i, and the remainder consists of Al and inevitable impurities.
The content of the additive element is larger than the content of each of the second and third additive elements, and the tensile strength is 40 kg/mn+
A heat-resistant aluminum powder metallurgical alloy characterized by an elongation of 2 or more and an elongation of 5% or more.

■(i>第1添加元素としてNi5〜30重量%、(i
i)第2添加元索としてZr1〜10ffiffi%、
及び (iii>第3添加元素としてFe、 Mn、 Cr、
W、Co、Mo及びTiの少なくとも1種1〜7重量% を含み、残部はAl及び不可避的不純物からなり、第1
添加元素の含有量は、第2及び第3添加元素の夫々の含
有量よりも大であるAl合金溶湯から、実質的に105
°C/ SeC未満の冷却速度で粒子状物、フレーク状
物、細線状物又はリボン状薄帯状物を形成し、これをそ
のまま又は必要に応じてさらに細片化したものを成形加
工することを特徴とする耐熱アルミニウム粉末冶金合金
の製造方法。
■(i>Ni5 to 30% by weight as the first additive element, (i
i) Zr1 to 10ffiffi% as the second added source,
and (iii> Fe, Mn, Cr as the third additional element,
Contains 1 to 7% by weight of at least one of W, Co, Mo, and Ti, with the remainder consisting of Al and unavoidable impurities;
The content of the additive element is substantially 105
Forming particulates, flakes, thin wires, or ribbons at a cooling rate of less than °C/SeC, and molding them as they are or further broken into pieces if necessary. A method for producing a heat-resistant aluminum powder metallurgy alloy.

本発明においては、アルミニウム中に第1添加元素とし
てのNi5〜30重量%、第2添加元素としてのZr1
〜10重量%及び第3添加元素としてのFeSMnXC
,rlw、Co、Mo及びTiの少なくとも1種1〜1
0重量%を含有させること及び第1添加元素の含有量を
第2及び第3の添加元素の夫々の含有量よりも大とする
ことを必須とする。若しこれ等の条件のいずれかが充足
されない場合には、復配実施例及び比較例からも明らか
な如く、所望の効果は得られない。
In the present invention, 5 to 30% by weight of Ni as the first additive element and Zr1 as the second additive element are added to the aluminum.
~10 wt% and FeSMnXC as third additive element
, rlw, at least one of Co, Mo and Ti 1-1
It is essential that the content of the first additive element be 0% by weight and that the content of the first additive element be greater than the content of each of the second and third additive elements. If any of these conditions are not met, the desired effects cannot be obtained, as is clear from the redistribution examples and comparative examples.

本発明のアルミニウム粉末冶金合金は、例えば、以下の
様にして製造される。第1、第2及び第3添加元素を所
定の割合で含むアルミニウム合金溶湯を105℃/秒未
満の冷却速度で凝固させて得た材料を常法に従って冷間
予備成形した1多、熱間加工することにより、密度はぼ
100%の製品とする。冷却速度は、102℃/秒を下
限と覆ることが好ましい。溶湯の冷却方法は、特に限定
されないが、アトマイズ法が代表的なものとして例示さ
れる。又、超急冷凝固法に属するメルトスピニング法、
メルトエキストラクション法等によっても、形成される
リボン状薄帯物、細線状物又はフレーク状物の厚さ又は
径を大きくする条件を採用することにより、105°C
/秒未満の冷却速度とし、所望の特性を有する材料を得
ることが可能である。この場合には必要ならば、引続く
成形加工に先立ち、リボン状薄帯物等の生成物を破砕す
る。
The aluminum powder metallurgy alloy of the present invention is produced, for example, as follows. A material obtained by solidifying a molten aluminum alloy containing the first, second, and third additive elements in a predetermined ratio at a cooling rate of less than 105°C/second is cold preformed according to a conventional method, and then hot worked. By doing so, the density of the product is almost 100%. The lower limit of the cooling rate is preferably 102°C/sec. The method for cooling the molten metal is not particularly limited, but an atomization method is exemplified as a typical method. Also, the melt spinning method, which belongs to the ultra-rapid solidification method,
105°C by adopting conditions that increase the thickness or diameter of ribbon-like thin strips, thin wire-like objects, or flake-like objects formed by the melt extraction method, etc.
It is possible to obtain materials with desired properties with cooling rates of less than 1/2 seconds. In this case, if necessary, the product, such as a ribbon, is crushed prior to the subsequent shaping process.

更に、双ロール法或いは回転するドラムにアトマイズ粒
子を衝突させて急冷凝固材を得る噴霧ロール法において
も、ロールやドラムの材質、ロール間距離、アトマイズ
粒子の大きさ等を調整することにより、所定の冷却速度
として所望の特性を有するフレーク状物を得ることがで
きる。尚、これ等の製法により得られた材料中には極微
細な粒子も含まれており、これ等の極微細粒子の冷却速
度は10”℃/秒以上となっている場合もあり得る。
Furthermore, in the twin roll method or the spray roll method in which a rapidly solidified material is obtained by colliding atomized particles with a rotating drum, it is possible to achieve a predetermined value by adjusting the materials of the rolls and drums, the distance between the rolls, the size of the atomized particles, etc. It is possible to obtain flakes having the desired properties as the cooling rate increases. Note that the materials obtained by these manufacturing methods also contain extremely fine particles, and the cooling rate of these extremely fine particles may be 10''°C/second or more.

しかしながら、本発明においては、この様な粒子が多少
含まれていても所期の効果を奏することが出来る。
However, in the present invention, even if such particles are contained to some extent, the desired effect can be achieved.

成形加工に際しての冷間予備成形及び熱間加工条件は、
特に限定されないが、通常粒度40メツシュ以下程度の
材料を700 kg/ cm2 ・G以上で成形した後
、温度200 ’C程度で熱間加工すれば良い。冷間予
備成形は、引続く熱間加工工程に移行する際にハンドリ
ング可能な成形体が得られる方法であれば良く、例えば
、機械的プレス、静水圧プレス等により、行なわれる。
Cold preforming and hot processing conditions during forming processing are as follows:
Although not particularly limited, a material with a particle size of about 40 mesh or less may be formed at a pressure of 700 kg/cm2.G or more, and then hot worked at a temperature of about 200'C. The cold preforming may be carried out by any method that allows a molded body to be obtained that can be handled when proceeding to the subsequent hot working step, and may be carried out, for example, by mechanical pressing, isostatic pressing, or the like.

熱間加工法としては、熱間押出し、熱間圧延、熱間鍛造
、ホン1〜プレス、熱間静水圧プレス等の方法が例示さ
れる。
Examples of hot working methods include hot extrusion, hot rolling, hot forging, hot pressing, and hot isostatic pressing.

又、成形加工は、冷間予備成形工程を経ることなく直接
押出しを行なうコンフォーム法によっても良く、この場
合にも、密度はぼ100%の成形体を得ることが可能で
おる。
Further, the molding process may be carried out by a conform method in which direct extrusion is performed without going through a cold preforming process, and in this case as well, it is possible to obtain a molded product with a density of approximately 100%.

発明の効果 本発明のアルミニウム粉末冶金合金は、常温においての
みならず高温においても強度、伸び等の各種の特性に優
れており、又長時間高温に暴露した後にもその優れた特
性をほとんど損うことなく維持することができる。
Effects of the Invention The aluminum powder metallurgical alloy of the present invention has excellent properties such as strength and elongation not only at room temperature but also at high temperatures, and almost loses its excellent properties even after being exposed to high temperatures for a long time. It can be maintained without any problems.

以下、実施例及び比較例を示し、本発明の特徴とすると
ころをより一層明らかにする。
Examples and comparative examples will be shown below to further clarify the features of the present invention.

実施例1 第1表に示す添加元素を含む溶湯をアトマイズ法により
噴霧して、冷却速度約10’°C/秒で100メツシユ
程度以下の粉体を1qだ。
Example 1 A molten metal containing the additive elements shown in Table 1 was atomized by the atomization method to form 1 q of powder of about 100 mesh or less at a cooling rate of about 10'°C/sec.

注:試料No、3.6.9.11及び13は、本発明の
範囲外の組成を有するものであり、No、12は、No
、5と同一組成を有するが冷却速度105〜b ピニング法により得られたものでおる。
Note: Samples Nos. 3, 6, 9, 11 and 13 have compositions outside the scope of the present invention;
, 5, but was obtained by the pinning method at a cooling rate of 105~b.

上記で得られた粉体を圧力2830 kMCm2で冷間
予備成形して直径3 cmx高ざ7.5cmの成形体と
した後、押出比9で400’Cで圧力0.6X10’ 
〜1 、2X 10’ kg/cm2で押出材を得た。
The powder obtained above was cold preformed at a pressure of 2830 kmCm2 to form a compact with a diameter of 3 cm x height of 7.5 cm, and then extruded at an extrusion ratio of 9 at 400'C and a pressure of 0.6 x 10'.
Extrusions were obtained at ~1,2×10' kg/cm2.

第2.表に該押出材並びに該押出材を350’Cで10
0時間及び400℃で64時間焼鈍した場合・の室温に
おける引張強度及び伸びを示す。尚、試料No、13に
ついては、直径3 cmx高さ7.6Cmの鋳塊を押出
した。
Second. The table shows the extruded material and the extruded material at 350'C.
It shows the tensile strength and elongation at room temperature when annealed for 0 hours and at 400°C for 64 hours. For sample No. 13, an ingot with a diameter of 3 cm and a height of 7.6 cm was extruded.

第  2  表 第2表に示す結果から明らかな如く、本発明の範囲外の
組成を有する合金は、伸びが小さく、熱間押出しが困難
であり、利用分野が限定される。
Table 2 As is clear from the results shown in Table 2, alloys having compositions outside the range of the present invention have low elongation, are difficult to hot extrude, and have limited fields of application.

又、合金の融点が非常に高くなるので、アトマイズ法に
よる粉体の調製も困難となる。
Furthermore, since the melting point of the alloy becomes very high, it becomes difficult to prepare powder by the atomization method.

更に、試料No、5と12との対比からも明らかな如く
、本発明の組成範囲内にあっても粉体製造時の冷却速度
が105℃/秒を上回る場合には、押出材の伸びが小さ
い。
Furthermore, as is clear from the comparison between samples No. 5 and 12, even if the composition is within the composition range of the present invention, if the cooling rate during powder production exceeds 105°C/sec, the elongation of the extruded material will decrease. small.

これに対し、本発明のアルミニウム粉末冶金合金は、ア
トマイズ法による原料粉体の調製も容易で、熱間押出し
等による加工も容易に行なうことが出来、更に高温に長
時間暴露後にも優れた強度及び伸び特性を維持し続ける
In contrast, the aluminum powder metallurgical alloy of the present invention can be easily prepared as a raw material powder by the atomization method, can be easily processed by hot extrusion, etc., and has excellent strength even after long-term exposure to high temperatures. and continues to maintain elongation properties.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】 [1](i)第1添加元素としてNi5〜30重量%、
(ii)第2添加元素としてZr1〜10重量%、及び (iii)第3添加元素としてFe、Mn、Cr、W、
Co、Mo及びTiの少なくとも1種1〜10重量% を含み、残部はAl及び不可避的不純物からなり、第1
添加元素の含有量は、第2及び第3添加元素の夫々の含
有量よりも大であり、引張強度が40kg/mm^2以
上で且つ伸びが5%以上であることを特徴とする耐熱ア
ルミニウム粉末冶金合金。 [2](i)第1添加元素としてNi5〜30重量%、
(ii)第2添加元素としてZr1〜10重量%、及び (iii)第3添加元素としてFe、Mn、Cr、W、
Co、Mo及びTiの少なくとも1種1〜10重量% を含み、残部はAl及び不可避的不純物からなり、第1
添加元素の含有量は、第2及び第3添加元素の夫々の含
有量よりも大であるAl合金溶湯から、実質的に10^
5℃/sec未満の冷却速度で粒子状物、フレーク状物
、細線状物又はリボン状薄帯状物を形成し、これをその
まま又は必要に応じてさらに細片化したものを成形加工
することを特徴とする耐熱アルミニウム粉末冶金合金の
製造方法。
[Claims] [1] (i) 5 to 30% by weight of Ni as the first additional element;
(ii) 1 to 10% by weight of Zr as the second additive element, and (iii) Fe, Mn, Cr, W, as the third additive element.
Contains 1 to 10% by weight of at least one of Co, Mo, and Ti, with the remainder consisting of Al and unavoidable impurities;
A heat-resistant aluminum characterized in that the content of the additive element is greater than the content of each of the second and third additive elements, the tensile strength is 40 kg/mm^2 or more, and the elongation is 5% or more. Powder metallurgy alloy. [2] (i) 5 to 30% by weight of Ni as the first additional element,
(ii) 1 to 10% by weight of Zr as the second additive element, and (iii) Fe, Mn, Cr, W, as the third additive element.
Contains 1 to 10% by weight of at least one of Co, Mo, and Ti, with the remainder consisting of Al and unavoidable impurities;
The content of the additive element is substantially 10^ from the Al alloy molten metal which is higher than the content of each of the second and third additive elements.
Forming a particulate material, a flake-like material, a thin wire-like material, or a ribbon-like thin strip material at a cooling rate of less than 5 ° C./sec, and molding the material as it is or further cut into pieces as necessary. A method for producing a heat-resistant aluminum powder metallurgy alloy.
JP60188125A 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy Expired - Lifetime JPH0651895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188125A JPH0651895B2 (en) 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188125A JPH0651895B2 (en) 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy

Publications (2)

Publication Number Publication Date
JPS6247449A true JPS6247449A (en) 1987-03-02
JPH0651895B2 JPH0651895B2 (en) 1994-07-06

Family

ID=16218150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188125A Expired - Lifetime JPH0651895B2 (en) 1985-08-26 1985-08-26 Heat-resistant aluminum powder metallurgy alloy

Country Status (1)

Country Link
JP (1) JPH0651895B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194102A (en) * 1989-01-21 1990-07-31 Kobe Steel Ltd Al base alloy powder for sintering
JPH02217666A (en) * 1989-02-17 1990-08-30 Honda Motor Co Ltd Piston ring for internal combustion engine
US5334266A (en) * 1990-03-06 1994-08-02 Yoshida Kogyo K.K. High strength, heat resistant aluminum-based alloys
KR100432448B1 (en) * 2001-08-16 2004-05-24 (주)진일금속 Manufacturing method for Aluminum alloy plate containing Cr and Ni
CN105970030A (en) * 2016-07-04 2016-09-28 江阴恩特莱特镀膜科技有限公司 Alloy for being sprayed onto bottom coating of silicon-aluminum target material and preparation method of alloy
WO2019155180A1 (en) * 2018-07-09 2019-08-15 C-Tec Constellium Technology Center Process for manufacturing aluminium alloy parts
FR3083478A1 (en) * 2018-07-09 2020-01-10 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068199A2 (en) * 2018-06-20 2020-04-02 NanoAI LLC HIGH-PERFORMANCE Al-Zn-Mg-Zr BASE ALUMINUM ALLOYS FOR WELDING AND ADDITIVE MANUFACTURING

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234936A (en) * 1984-05-09 1985-11-21 Sumitomo Light Metal Ind Ltd Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JPS6223952A (en) * 1985-07-22 1987-01-31 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Al-fe-ni heat-resisting alloy having high toughness and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60234936A (en) * 1984-05-09 1985-11-21 Sumitomo Light Metal Ind Ltd Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JPS6223952A (en) * 1985-07-22 1987-01-31 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Al-fe-ni heat-resisting alloy having high toughness and its production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194102A (en) * 1989-01-21 1990-07-31 Kobe Steel Ltd Al base alloy powder for sintering
JPH02217666A (en) * 1989-02-17 1990-08-30 Honda Motor Co Ltd Piston ring for internal combustion engine
US5334266A (en) * 1990-03-06 1994-08-02 Yoshida Kogyo K.K. High strength, heat resistant aluminum-based alloys
KR100432448B1 (en) * 2001-08-16 2004-05-24 (주)진일금속 Manufacturing method for Aluminum alloy plate containing Cr and Ni
CN105970030A (en) * 2016-07-04 2016-09-28 江阴恩特莱特镀膜科技有限公司 Alloy for being sprayed onto bottom coating of silicon-aluminum target material and preparation method of alloy
CN105970030B (en) * 2016-07-04 2018-03-13 江阴恩特莱特镀膜科技有限公司 It is a kind of to be used to spray alloy of sial target prime coat and preparation method thereof
WO2019155180A1 (en) * 2018-07-09 2019-08-15 C-Tec Constellium Technology Center Process for manufacturing aluminium alloy parts
FR3083479A1 (en) * 2018-07-09 2020-01-10 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
FR3083478A1 (en) * 2018-07-09 2020-01-10 C-Tec Constellium Technology Center PROCESS FOR PRODUCING AN ALUMINUM ALLOY PART
WO2020012098A1 (en) * 2018-07-09 2020-01-16 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part
CN112384636A (en) * 2018-07-09 2021-02-19 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
JP2021531398A (en) * 2018-07-09 2021-11-18 シーテック コンステリウム テクノロジー センターC−Tec Constellium Technology Center Manufacturing method of parts made of aluminum alloy

Also Published As

Publication number Publication date
JPH0651895B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
US4127426A (en) Method of making electrical conductors of aluminum-iron alloys
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JP3622989B2 (en) Molded member made of magnesium alloy and manufacturing method thereof
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPS60208443A (en) Aluminum alloy material
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS60234936A (en) Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPS6247448A (en) Heat resistant aluminum alloy for powder metallurgy adn its manufacture
JPS6233738A (en) Heat resistant aluminum alloy for powder metallurgical processing and its manufacture
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JPS6247447A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPH0518891B2 (en)
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same
JPH01316434A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0565568B2 (en)
JPH05195130A (en) Aluminum alloy containing fine crystallized matter
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production