JPS6247448A - Heat resistant aluminum alloy for powder metallurgy adn its manufacture - Google Patents

Heat resistant aluminum alloy for powder metallurgy adn its manufacture

Info

Publication number
JPS6247448A
JPS6247448A JP60188124A JP18812485A JPS6247448A JP S6247448 A JPS6247448 A JP S6247448A JP 60188124 A JP60188124 A JP 60188124A JP 18812485 A JP18812485 A JP 18812485A JP S6247448 A JPS6247448 A JP S6247448A
Authority
JP
Japan
Prior art keywords
alloy
added element
weight
additive
additive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60188124A
Other languages
Japanese (ja)
Inventor
Jun Shimizu
清水 遵
Akimori Tanaka
昭衛 田中
Masahiko Kawai
川井 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP60188124A priority Critical patent/JPS6247448A/en
Publication of JPS6247448A publication Critical patent/JPS6247448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide characteristics such as superior strength and elongation at high temp. as well as ordinary temp. to an Al alloy for powder metallurgy by adding specified elements to an Al alloy contg. Fe as the principal added element, melting the resulting alloy and cooling the molten alloy under specified conditions. CONSTITUTION:The composition of a molten Al alloy is composed of 5-17wt% Fe as the 1st added element, 1-7wt% Ti as the 2nd added element, 1-7wt% one or more among Mo, Cr, W, Co and Ni as the 3rd added element and the balance Al with inevitable impurities. In the composition, the amount of the 1st added element is made larger than the amount of the 2nd added element and the amount of the 3rd added element. The molten Al alloy is cooled at <=10<5> deg.C/sec cooling rate to form granules, flakes, a fine wire or a ribbonlike thin strip. This product is worked as is or after it is broken into pieces as required.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐熱アルミニウム粉末冶金合金に関する。本
発明による合金製品は、高温におりる長時間使用後にも
強度及び伸びの低下が少ないので、航空機部材、自動車
用エンジン部品、電気機器部品、油圧及び空気圧機器部
品、さらには高温用構造材料としても有用である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to heat-resistant aluminum powder metallurgical alloys. The alloy products according to the present invention have little decline in strength and elongation even after long-term use at high temperatures, so they can be used as aircraft parts, automobile engine parts, electrical equipment parts, hydraulic and pneumatic equipment parts, and even as structural materials for high temperatures. is also useful.

従来技術及びその問題点 アルミニウム及びその合金は、一般に高温での強度が低
く、特に室温での強度が高い、いわゆる高力アルミニウ
ム合金の高温における強度低下は、甚だしい。又、一般
に耐熱用とされているアルミニウム合金(AA2018
.221B、2618.4032等)においても、20
0’Cを越える場合には、その強度は著しく低下する。
Prior art and its problems Aluminum and its alloys generally have low strength at high temperatures, and particularly high strength at room temperature.The strength of so-called high-strength aluminum alloys at high temperatures is significantly reduced. In addition, aluminum alloy (AA2018
.. 221B, 2618.4032, etc.), 20
When the temperature exceeds 0'C, the strength is significantly reduced.

熱安定性についても、例えば150℃以上の温度に艮時
聞暴露した後には、室温での強度が大巾に低下すること
は避(プ難い。
Regarding thermal stability, for example, after being exposed to temperatures of 150° C. or higher for a long period of time, it is inevitable that the strength at room temperature will decrease significantly.

アルミニウム中にアルミニウム酸化物を均一に分散させ
たSAPの場合にも、耐焼鈍軟化性には優れてはいるも
のの、強度、じん性等の点で満足すべきものとは言い難
く、実用性にとぼしい。
In the case of SAP, which has aluminum oxide uniformly dispersed in aluminum, although it has excellent annealing softening resistance, it is difficult to say that it is satisfactory in terms of strength, toughness, etc., and is of little practical use. .

近年アルミニウム中に種々の遷移元素を固溶限を上回る
最添加し、溶湯を冷却速度105℃/秒以上で超急速凝
固させ、1ワられる粉末又はリボン状薄帯を粉末冶金法
により成形してアルミニウム合金とする方法が提案され
ている(米国特許第4347076号及び446419
9号)。この様にして得られたアルミニウム粉末冶金合
金は、たしかに高温にお()る強度及び熱安定性には優
れているが、伸びが低く、延性に欠【プるのが大ぎな欠
点である。
In recent years, various transition elements have been added to aluminum in amounts exceeding the solid solubility limit, the molten metal is solidified ultra-rapidly at a cooling rate of 105°C/second or more, and powder or ribbon-like thin strips are formed by powder metallurgy. A method of forming an aluminum alloy has been proposed (U.S. Pat. Nos. 4,347,076 and 4,46419).
No. 9). Although the aluminum powder metallurgical alloy thus obtained has excellent strength and thermal stability at high temperatures, its major drawbacks are low elongation and lack of ductility.

問題点を解決するだめの手段 本発明は、上記の如き技術の現状に鑑みて種々研究を重
ねた結果、鉄を主な添加元素とするアル。
Means for Solving the Problems The present invention was developed as a result of various studies in view of the current state of the technology as described above.

ミニラム合金に更に特定の添加元素を配合し、且つ溶湯
の冷却を特定の条件下に行なって得たアルミニウム粉末
冶金合金が、高温にお()る強度に優れているのみなら
ず、高′a1暴露後にお【ノる強度及び伸びの低下が(
かめで小さいという特異な性質を備えていることを見出
した。即ら、本発明は、下記の合金及びその製造方法を
提供するものである。
An aluminum powder metallurgical alloy obtained by adding specific additive elements to Minilam alloy and cooling the molten metal under specific conditions not only has excellent strength at high temperatures, but also has a high After exposure, there was a decrease in strength and elongation.
It was discovered that it has the unique property of being small in size. That is, the present invention provides the following alloy and method for producing the same.

■(i)第1添加元素としてFe5〜17重但%、(1
1〉第2添加元素としてTi1〜7重量%、及び (iii >第3添加元素としてMO,Cr、W、Co
及びNiの少なくとも1種1〜7重量%を含み、残部は
Al及び不可避的不純物からなり、第1添加元素の含有
量は、第2及び第3添加元素の夫々の含有量よりも大で
あり、引張強度が40 kM mm2以上で且つ伸びが
5%以上であることを特徴とする耐熱アルミニウム粉末
冶金合金。
■(i) Fe5-17% as the first additive element, (1
1> 1 to 7% by weight of Ti as the second additive element, and (iii > MO, Cr, W, Co as the third additive element)
and 1 to 7% by weight of at least one of Ni, the remainder consists of Al and unavoidable impurities, and the content of the first additive element is greater than the content of each of the second and third additive elements. A heat-resistant aluminum powder metallurgy alloy having a tensile strength of 40 kM mm2 or more and an elongation of 5% or more.

[2](i)第1添加元素としてFe5〜17重量%、
(11)第2添加元素としてTil〜7重伍%、及び (iii )第3添加元素としてMO,Cr、W、CO
及びNiの少なくとも1種1〜7重但%を含み、残部は
Al及び不可避的不純物からなり、第1添加元素の含有
量は、第2及び第3添加元素の夫々の含有量よりも大で
あるA9合金溶湯から、実質的に10”°C/ sec
未満の冷却速度で粒子状物、フレーク状物、細線状物又
はリボン状薄帯状物を形成し、これをそのまま又は必要
に応じてさらに細片化したものを成形加工することを特
徴とする耐熱アルミニウム粉末冶金合金の製造方法。
[2] (i) 5 to 17% by weight of Fe as the first additional element,
(11) Til to 7% by weight as the second additive element, and (iii) MO, Cr, W, CO as the third additive element.
and 1 to 7% by weight of at least one of Ni, the remainder consists of Al and unavoidable impurities, and the content of the first additive element is greater than the content of each of the second and third additive elements. From a certain A9 alloy molten metal, substantially 10”°C/sec
A heat-resistant product characterized by forming particles, flakes, thin wires, or ribbons at a cooling rate of less than Method for producing aluminum powder metallurgy alloy.

本発明においては、アルミニウム中に第1添加元素とし
てのFe 5〜17重量%、第2添加元素としてのTi
1〜7重量%及び第3添加元素としてのMo、Cr、W
、c○及びNiの少なくとも1種1〜7重量%を含有さ
せること及び第1添加元素の含有量を第2及び第3の添
加元素の夫々の含有量よりも大とすることを必須とする
。若しこれ等の条件のいずれかが充足されない場合には
、後記実施例及び比較例からも明らかな如く、所望の効
果は得られない。
In the present invention, 5 to 17% by weight of Fe as the first additive element and Ti as the second additive element are added to the aluminum.
1 to 7% by weight and Mo, Cr, W as the third additional element
, c○, and Ni in an amount of 1 to 7% by weight, and the content of the first additive element is required to be greater than the content of each of the second and third additive elements. . If any of these conditions are not satisfied, the desired effect cannot be obtained, as is clear from the Examples and Comparative Examples described later.

本発明のアルミニウム粉末冶金合金は、例えば、以下の
様にして製造される。第1、第2及び第3添加元素を所
定の割合で含むアルミニウム合金溶湯を10”°C/秒
未満の冷却速度で凝固させて得た材料を常法に従って冷
間予備成形した後、熱間加工することにより、密度はぼ
100%の製品とする。冷却速度は、102°C/秒を
下限とすることが好ましい。溶湯の冷却方法は、特に限
定されないが、アトマイズ法が代表的なものとして例示
される。又、超急冷凝固法に属するメルトスピニング法
、メルトエキストラクション法等によっても、形成され
るリボン状薄帯物、細線状物又はフレーク状物の厚さ又
は径を大きくする条件を採用することにより、105℃
/秒未満の冷却速度とし、所望の特性を有する材料を1
qることが可能である。この場合には必要ならば、引続
く成形加工に先立ち、リボン状薄帯物等の生成物を破砕
する。
The aluminum powder metallurgy alloy of the present invention is produced, for example, as follows. A material obtained by solidifying a molten aluminum alloy containing the first, second, and third additive elements in a predetermined ratio at a cooling rate of less than 10"°C/sec is cold preformed according to a conventional method, and then hot By processing, the product has a density of almost 100%.The lower limit of the cooling rate is preferably 102°C/sec.The method of cooling the molten metal is not particularly limited, but the atomization method is a typical method. In addition, conditions for increasing the thickness or diameter of ribbon-like thin strips, thin wires, or flakes formed by melt spinning, melt extraction, etc., which belong to the ultra-rapid solidification method. By adopting 105℃
With a cooling rate of less than 1/sec, the material with the desired properties is
It is possible to In this case, if necessary, the product, such as a ribbon, is crushed prior to the subsequent shaping process.

更に、双ロール法或いは回転するドラムにアトマイズ粒
子を衝突させて急冷凝固材を得る噴霧ロール法において
も、ロールやドラムの材質、ロール間距離、アトマイズ
粒子の大きさ等を調整することにより、所定の冷却速度
として所望の特性を有するフレーク状物を得ることがで
きる。尚、これ等の製法により得られた材料中には極微
細な粒子も含まれており、これ等の極微細粒子の冷却速
度は105℃/秒以上となっている場合もあり得る。
Furthermore, in the twin roll method or the spray roll method in which a rapidly solidified material is obtained by colliding atomized particles with a rotating drum, it is possible to achieve a predetermined value by adjusting the materials of the rolls and drums, the distance between the rolls, the size of the atomized particles, etc. It is possible to obtain flakes having the desired properties as the cooling rate increases. Note that the materials obtained by these manufacturing methods also contain extremely fine particles, and the cooling rate of these extremely fine particles may be 105° C./second or more.

しかしながら、本発明においては、この様な粒子が多少
含まれていても所期の効果を奏することが出来る。
However, in the present invention, even if such particles are contained to some extent, the desired effect can be achieved.

成形加工に際しての冷間予備成形及び熱間加工条件は、
特に限定されないが、通常粒度40メツシュ以下程度の
材料を700 k(]/ cm2  ・G以上で成形し
た後、温度200’C程度で熱間加工すれば良い。冷間
予備成形は、引続く熱間加工工程に移行する際にハンド
リング可能な成形体が得られる方法であれば良く、例え
ば、機械的プレス、静水圧プレス等により、行なわれる
。熱間加工法としては、熱間押出し、熱間圧延、熱間鍛
造、ホットプレス、熱間静水圧プレス等の方法が例示さ
れる。
Cold preforming and hot processing conditions during forming processing are as follows:
Although not particularly limited, it is sufficient to form a material with a particle size of about 40 mesh or less at a temperature of 700 k(]/cm2・G or more and then hot-process it at a temperature of about 200'C. Any method may be used as long as it can obtain a molded product that can be handled when moving to the hot working process, such as mechanical pressing, isostatic pressing, etc.Hot working methods include hot extrusion, hot hot working, etc. Examples include methods such as rolling, hot forging, hot pressing, and hot isostatic pressing.

又、成形加工は、冷間予備成形工程を経ることなく直接
押出しを行なうコンフォーム法によっても良く、この場
合にも、密度はぼ100%の成形体を得ることが可能で
必る。
Further, the molding process may be carried out by a conform method in which direct extrusion is performed without going through a cold preforming process, and in this case as well, it is possible to obtain a molded product with a density of approximately 100%.

発明の効果 本発明のアルミニウム粉末冶金合金は、常温においての
みならず高温においても強度、伸び等の各種の特性に優
れてa3す、又長時間高温に別置した後にもその優れた
特性をほとんど損うことなく維持することができる。
Effects of the Invention The aluminum powder metallurgical alloy of the present invention has excellent properties such as strength and elongation not only at room temperature but also at high temperatures, and also retains most of its excellent properties even after being left separately at high temperatures for a long time. It can be maintained without damage.

実   施   例 以下、実施例及び比較例を示し、本発明の特徴とすると
ころをより一層明らかにする。
EXAMPLES Hereinafter, Examples and Comparative Examples will be shown to further clarify the characteristics of the present invention.

実施例1 第1表に示す添加元素を含む溶湯をアトマイズ法により
噴霧して、冷却速度約104°C/秒で100メツシユ
程度以下の粉体を得た。
Example 1 A molten metal containing the additive elements shown in Table 1 was atomized by an atomization method to obtain a powder of about 100 meshes or less at a cooling rate of about 104°C/sec.

第  1  表 ■ ■ [ 注:試料No、3.7.11及び13は、本発明の範囲
外の組成を有するものであり、No。
Table 1 ■ ■ [Note: Sample Nos. 3.7.11 and 13 have compositions outside the scope of the present invention;

12は、No、6と同一組成を有するが冷却速度10”
〜107℃/秒のメルトスピニング法により得られたも
のである。
No. 12 has the same composition as No. 6 but has a cooling rate of 10"
It was obtained by melt spinning at ~107°C/sec.

上記で得られた粉体を圧力2830kMcm”で冷間予
備成形して直径3 cmx高さ7.5cmの成形体とし
た後、押出比9で400’Cで圧力0.6×10’ 〜
1.2X10’ kMcm2で押出材ヲ得り。
The powder obtained above was cold preformed at a pressure of 2830 kmcm'' to form a compact with a diameter of 3 cm x height of 7.5 cm, and then extruded at an extrusion ratio of 9 at 400'C and a pressure of 0.6 x 10' ~
Obtain extruded material with 1.2X10' kmcm2.

第2表に該押出材並びに該押出材を350’Cで100
時間及び400 ’Cで64時間焼鈍した場合の室温に
おける引張強度及び伸びを示す。尚、試料N0.13に
ついては、直径3 cmx高ざ7.6cmの鋳塊を押出
した。
Table 2 shows the extruded material and the extruded material at 350'C.
Figure 2 shows the tensile strength and elongation at room temperature when annealing at 400'C for 64 hours. For sample No. 13, an ingot with a diameter of 3 cm and a height of 7.6 cm was extruded.

第  2  表 第2表に示す結果から明らかな如く、本発明の範囲外の
組成を有する合金は、伸びが小さく、熱間押出しが困難
であり、利用分野が限定される。
Table 2 As is clear from the results shown in Table 2, alloys having compositions outside the range of the present invention have low elongation, are difficult to hot extrude, and have limited fields of application.

又、合金の融点が非常に高くなるので、アトマイズ法に
よる粉体の調製も困難となる。
Furthermore, since the melting point of the alloy becomes very high, it becomes difficult to prepare powder by the atomization method.

更に、試料N096と12との対比からも明らかな如く
、本発明の組成範囲内にあっても粉体製造時の冷却速度
が105°C/秒を上回る場合には、押出材の伸びが小
さい。
Furthermore, as is clear from the comparison between Samples No. 096 and 12, even within the composition range of the present invention, if the cooling rate during powder production exceeds 105°C/sec, the elongation of the extruded material is small. .

これに対し、本発明のアルミニウム粉末冶金合金は、ア
トマイズ法による原お1粉体の調製も容易で、熱間押出
し等による加工も容易に行なうことか出来、更に高温に
長時間暴露後にも優れた強度及び伸び特性を維持し続(
プる。
In contrast, the aluminum powder metallurgical alloy of the present invention can be easily prepared as a raw powder by the atomization method, can be easily processed by hot extrusion, and has excellent properties even after long-term exposure to high temperatures. Maintains the same strength and elongation properties (
Pull.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】 [1](i)第1添加元素としてFe5〜17重量%、
(ii)第2添加元素としてTi1〜7重量%、及び (iii)第3添加元素としてMo、Cr、W、Co及
びNiの少なくとも1種1〜7重量%を含み、残部はA
l及び不可避的不純物からなり、第1添加元素の含有量
は、第2及び第3添加元素の夫々の含有量よりも大であ
り、引張強度が40kg/mm^2以上で且つ伸びが5
%以上であることを特徴とする耐熱アルミニウム粉末冶
金合金。 [2](i)第1添加元素としてFe5〜17重量%、
(ii)第2添加元素としてTi1〜7重量%、及び (iii)第3添加元素としてMo、Cr、W、Co及
びNiの少なくとも1種1〜7重量%を含み、残部はA
l及び不可避的不純物からなり、第1添加元素の含有量
は、第2及び第3添加元素の夫々の含有量よりも大であ
るAl合金溶湯から、実質的に10^5℃/sec未満
の冷却速度で粒子状物、フレーク状物、細線状物又はリ
ボン状薄帯状物を形成し、これをそのまま又は必要に応
じてさらに細片化したものを成形加工することを特徴と
する耐熱アルミニウム粉末冶金合金の製造方法。
[Claims] [1] (i) 5 to 17% by weight of Fe as the first additional element;
(ii) 1 to 7% by weight of Ti as a second additive element, and (iii) 1 to 7% by weight of at least one of Mo, Cr, W, Co, and Ni as a third additive element, with the remainder being A.
1 and unavoidable impurities, the content of the first additive element is larger than the respective contents of the second and third additive elements, the tensile strength is 40 kg/mm^2 or more, and the elongation is 5
% or more. [2] (i) 5 to 17% by weight of Fe as the first additional element,
(ii) 1 to 7% by weight of Ti as a second additive element, and (iii) 1 to 7% by weight of at least one of Mo, Cr, W, Co, and Ni as a third additive element, with the remainder being A.
1 and unavoidable impurities, and the content of the first additive element is higher than the content of each of the second and third additive elements. A heat-resistant aluminum powder that forms particulates, flakes, thin wires, or ribbons at a cooling rate, and molds the same as it is or further breaks it into pieces as necessary. Method of manufacturing metallurgical alloys.
JP60188124A 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy adn its manufacture Pending JPS6247448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188124A JPS6247448A (en) 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy adn its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188124A JPS6247448A (en) 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy adn its manufacture

Publications (1)

Publication Number Publication Date
JPS6247448A true JPS6247448A (en) 1987-03-02

Family

ID=16218132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188124A Pending JPS6247448A (en) 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy adn its manufacture

Country Status (1)

Country Link
JP (1) JPS6247448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119618A (en) * 2016-08-29 2016-11-16 江苏华企铝业科技股份有限公司 A kind of evanohm and powder metallurgy forming method thereof
JP2022517058A (en) * 2018-11-02 2022-03-04 エーエム・メタルス・ゲーエムベーハー High-strength aluminum alloy for laminated modeling of three-dimensional bodies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248860A (en) * 1983-10-03 1985-12-09 アライド・コ−ポレ−シヨン Aluminum-transition metal alloy with high strength at high temperature
JPS6152343A (en) * 1984-08-21 1986-03-15 Sumitomo Light Metal Ind Ltd Formed material having superior strength at high temperature, made of aluminum alloy material solidified by rapid cooling
JPS6223952A (en) * 1985-07-22 1987-01-31 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Al-fe-ni heat-resisting alloy having high toughness and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248860A (en) * 1983-10-03 1985-12-09 アライド・コ−ポレ−シヨン Aluminum-transition metal alloy with high strength at high temperature
JPS6152343A (en) * 1984-08-21 1986-03-15 Sumitomo Light Metal Ind Ltd Formed material having superior strength at high temperature, made of aluminum alloy material solidified by rapid cooling
JPS6223952A (en) * 1985-07-22 1987-01-31 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Al-fe-ni heat-resisting alloy having high toughness and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119618A (en) * 2016-08-29 2016-11-16 江苏华企铝业科技股份有限公司 A kind of evanohm and powder metallurgy forming method thereof
JP2022517058A (en) * 2018-11-02 2022-03-04 エーエム・メタルス・ゲーエムベーハー High-strength aluminum alloy for laminated modeling of three-dimensional bodies

Similar Documents

Publication Publication Date Title
US2967351A (en) Method of making an aluminum base alloy article
US4702885A (en) Aluminum alloy and method for producing the same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
US4373970A (en) Copper base spinodal alloy strip and process for its preparation
JPS6312926B2 (en)
JPH0819496B2 (en) Method for manufacturing aluminum alloy parts that retains high fatigue strength even after being kept at high temperature for a long time
WO2019034506A1 (en) Copper-based alloy for the production of bulk metallic glasses
US4127426A (en) Method of making electrical conductors of aluminum-iron alloys
JP3622989B2 (en) Molded member made of magnesium alloy and manufacturing method thereof
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS6247448A (en) Heat resistant aluminum alloy for powder metallurgy adn its manufacture
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPS60234936A (en) Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPS6233738A (en) Heat resistant aluminum alloy for powder metallurgical processing and its manufacture
US3445920A (en) Aluminum base alloy production
JPS6247447A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
EP0137180B1 (en) Heat-resisting aluminium alloy
JPS6347343A (en) Powder metallurgical production of processed product made of heat resistant aluminum alloy
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same