JPS6247447A - Heat resistant aluminum alloy for powder metallurgy and its manufacture - Google Patents

Heat resistant aluminum alloy for powder metallurgy and its manufacture

Info

Publication number
JPS6247447A
JPS6247447A JP60188123A JP18812385A JPS6247447A JP S6247447 A JPS6247447 A JP S6247447A JP 60188123 A JP60188123 A JP 60188123A JP 18812385 A JP18812385 A JP 18812385A JP S6247447 A JPS6247447 A JP S6247447A
Authority
JP
Japan
Prior art keywords
alloy
added element
weight
additive
additive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60188123A
Other languages
Japanese (ja)
Inventor
Jun Shimizu
清水 遵
Akimori Tanaka
昭衛 田中
Masahiko Kawai
川井 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP60188123A priority Critical patent/JPS6247447A/en
Publication of JPS6247447A publication Critical patent/JPS6247447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide characteristics such as superior strength and elongation at high temp. as well as ordinary temp. to an Al alloy for powder metallurgy by adding specified elements to an Al alloy contg. Fe as the principal added element, melting the resulting alloy and cooling the molten alloy under specified conditions. CONSTITUTION:The composition of a molten Al alloy is composed of 5-17wt% Fe as the 1st added element, 1-7wt% Mo as the 2nd added element, 1-7wt% one or more among Mn, Cr, W, Co and Ni as the 3rd added element and the balance Al with inevitable impurities. In the composition, the amount of the 1st added element is made larger than the amount of the 2nd added element and the amount of the 3rd added element. The molten Al alloy is cooled at <=10<5> deg.C/sec cooling rate to form granules, flakes, a fine wire or a ribbonlike thin strip. This product is worked as is or after it is broken into pieces as required.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐熱アルミニウム粉末冶金合金に関する。本
発明による合金製品は、高温における長時間使用後にも
強度及び伸びの低下が少ないので、航空機部材、自動車
用エンジン部品、電気機器部品、油圧及び空気圧機器部
品、さらには高温用構造材料としても有用でおる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to heat-resistant aluminum powder metallurgical alloys. The alloy products according to the present invention have little loss in strength and elongation even after long-term use at high temperatures, so they are useful as aircraft parts, automobile engine parts, electrical equipment parts, hydraulic and pneumatic equipment parts, and even as high-temperature structural materials. I'll go.

従来技術及びその問題点 アルミニウム及びその合金は、一般に高温での強度が低
く、特に室温での強度が高い、いわゆる高力アルミニウ
ム合金の高温にお(プる強度低下は、甚だしい。又、一
般に耐熱用とされているアルミニウム合金(AA201
8.2218.2618.4032等)においても、2
00℃を越える場合には、その強度は著しく低下する。
Prior art and its problems Aluminum and its alloys generally have low strength at high temperatures, and especially high strength at room temperature. Aluminum alloy (AA201
8.2218.2618.4032 etc.), 2
If the temperature exceeds 00°C, the strength will drop significantly.

熱安定性についても、例えば150’C以上の温度に長
時間暴露した後には、室温での強度が大巾に低下するこ
とは避(プ難い。
As for thermal stability, it is inevitable that the strength at room temperature will decrease significantly after long-term exposure to temperatures of 150'C or higher, for example.

アルミニウム中にアルミニウム酸化物を均一に分散させ
たSAPの場合にも、耐焼鈍軟化性には優れてはいるも
のの、強度、じん性等の点で満足すべきものとは言い難
く、実用性にとぼしい。
In the case of SAP, which has aluminum oxide uniformly dispersed in aluminum, although it has excellent annealing softening resistance, it is difficult to say that it is satisfactory in terms of strength, toughness, etc., and is of little practical use. .

近年アルミニウム中に種々の遷移元素を固溶限を上回る
量添加し、溶湯を冷却速度10”°C/秒以上で超急速
凝固させ、得られる粉末又はリボン状薄帯を粉末冶金法
により成形してアルミニウム合金とする方法が提案され
ている(米国特許第4347076号及び446419
9号)。この様にして得られたアルミニウム粉末冶金合
金は、たしかに高温における強度及び熱安定性には優れ
ているが、伸びが低く、延性に欠けるのが大きな欠点で
おる。
In recent years, various transition elements have been added to aluminum in amounts exceeding the solid solubility limit, the molten metal is solidified ultra-rapidly at a cooling rate of 10"°C/sec or more, and the resulting powder or ribbon-shaped thin strip is formed by powder metallurgy. A method of making an aluminum alloy has been proposed (U.S. Pat. Nos. 4,347,076 and 4,464,19
No. 9). Although the aluminum powder metallurgical alloy thus obtained has excellent strength and thermal stability at high temperatures, its major drawbacks are low elongation and lack of ductility.

問題点を解決するための手段 本発明は、上記の如き技術の現状に鑑みて種々研究を重
ねた結果、鉄を主な添加元素とするアル。
Means for Solving the Problems The present invention was developed as a result of various researches in view of the current state of the technology as described above.

ミニラム合金に更に特定の添加元素を配合し、且つ溶湯
の冷却を特定の条件下に行なって得たアルミニウム粉末
冶金合金が、高温における強度に優れているのみならず
、高温暴露後における強度及び伸びの低下が極めて小さ
いという特異な性質を備えていることを見出した。即ち
、本発明は、下記の合金及びその製造方法を提供するも
ので必る。
The aluminum powder metallurgy alloy obtained by adding specific additive elements to Minilam alloy and cooling the molten metal under specific conditions not only has excellent strength at high temperatures, but also has excellent strength and elongation after exposure to high temperatures. It has been found that this material has the unique property of having an extremely small decrease in That is, the present invention provides the following alloy and method for producing the same.

[1](i)第1添加元素としてFe5〜17重囲%、
(ii)第2添加元素としてMo1〜7重量%、及び (iii)第3添加元素としてMn、Cr、W、Co及
びNiの少なくとも1種1〜7重量%を含み、残部はA
l及び不可避的不純物からなり、第1添加元素の含有量
は、第2及び第3添加元素の夫々の含有間よりも大でお
り、引張強度が40 kg/mm2以上で且つ伸びか5
%以上であることを特徴とする耐熱アルミニウム粉末冶
金合金。
[1] (i) 5 to 17% Fe as the first additional element,
(ii) 1 to 7% by weight of Mo as the second additive element, and (iii) 1 to 7% by weight of at least one of Mn, Cr, W, Co, and Ni as the third additive element, with the remainder being A.
1 and unavoidable impurities, the content of the first additive element is greater than the respective contents of the second and third additive elements, the tensile strength is 40 kg/mm2 or more, and the elongation is 5
% or more.

[2](i)第1添加元素としてFe5〜17重量%、
(ii)第2添加元素としてMo1〜7重量%、及び (iii >第3添加元素としてMrl、Cr、W、C
O及びNiの少なくとも1種1〜7重量%を含み、残部
はAl及び不可避的不純物からなり、第1添加元素の含
有量は、第2及び第3添加元素の夫々の含有量よりも大
でおるAl合金溶湯から、実質的に10”°C/ 5e
lC未満の冷却速度で粒子状物、フレーク状物、細線状
物又はリボン状薄帯状物を形成し、これをそのまま又は
必要に応じてさらに細片化したものを成形加工すること
を特徴とする耐熱アルミニウム粉末冶金合金の製造方法
[2] (i) 5 to 17% by weight of Fe as the first additional element,
(ii) 1 to 7% by weight of Mo as the second additive element, and (iii > Mrl, Cr, W, C as the third additive element)
Contains 1 to 7% by weight of at least one of O and Ni, the remainder consists of Al and unavoidable impurities, and the content of the first additive element is greater than the content of each of the second and third additive elements. From the molten Al alloy, it is practically 10”°C/5e
It is characterized by forming particulates, flakes, thin wires, or ribbon-like thin strips at a cooling rate of less than 1C, and molding them as they are or further cut into pieces as necessary. A method for producing heat-resistant aluminum powder metallurgy alloys.

本発明においては、アルミニウム中に第1添加元素とし
てのFe5〜17重量%、第2添加元素としてのMO1
〜7重量%及び第3添加元素としてのMn、Cr、W、
Co及びN1(7)少なくとも1種1〜7重量%を含有
させること及び第1添加元素の含有間を第2及び第3の
添加元素の夫々の含有間よりも大とすることを必須とす
る。若しこれ等の条件のいずれかが充足されない場合に
は、後記実施例及び比較例からも明らかな如く、所望の
効果は得られない。
In the present invention, Fe5 to 17% by weight as the first additive element and MO1 as the second additive element are added to the aluminum.
~7% by weight and Mn, Cr, W as the third additional element,
It is essential to contain 1 to 7% by weight of at least one of Co and N1 (7) and to make the content interval of the first additive element larger than the content interval of each of the second and third additive elements. . If any of these conditions are not satisfied, the desired effect cannot be obtained, as is clear from the Examples and Comparative Examples described later.

本発明のアルミニウム粉末冶金合金は、例えば、以下の
様にして製造される。第1、第2及び第3添加元素を所
定の割合で含むアルミニウム合金溶湯を]05°C/秒
未満の冷却速度で凝固させて得た材料を常法に従って冷
間予備成形した後、熱間加工することにより、密度はぼ
100%の製品とする。冷却速度は、102°C/秒を
下限とすることが好ましい。溶湯の冷却方法は、特に限
定されないが、アトマイズ法が代表的なものとして例示
される。又、超急冷凝固法に属するメルトスピニング法
、メルトエキストラクション法等によっても、形成され
るリボン状薄帯物、細線状物又はフレーク状物の厚さ又
は径を大きくする条件を採用することにより、105°
C/秒未満の冷却速度とし、所望の特性を有する材料を
得ることが可能である。この場合には必要ならば、引続
く成形加工に先立ち、リボン状薄帯物等の生成物を破砕
する。
The aluminum powder metallurgy alloy of the present invention is produced, for example, as follows. A material obtained by solidifying a molten aluminum alloy containing the first, second, and third additive elements in a predetermined ratio at a cooling rate of less than 05°C/sec is cold preformed according to a conventional method, and then hot Through processing, a product with almost 100% density can be obtained. The lower limit of the cooling rate is preferably 102°C/sec. The method for cooling the molten metal is not particularly limited, but an atomization method is exemplified as a typical method. In addition, by adopting conditions that increase the thickness or diameter of ribbon-like thin strips, thin wire-like objects, or flake-like objects formed by melt spinning methods, melt extraction methods, etc. that belong to ultra-rapid solidification methods, , 105°
It is possible to obtain materials with desired properties with cooling rates of less than C/sec. In this case, if necessary, the product, such as a ribbon, is crushed prior to the subsequent shaping process.

更に、双ロール法或いは回転するドラムにアトマイズ粒
子を衝突させて急冷凝固材を得る噴霧ロール法において
も、ロールやドラムの材質、ロール間距離、アトマイズ
粒子の大きざ等を調整することにより、所定の冷却速度
として所望の特性を有するフレーク状物を(qることが
できる。尚、これ等の製法により得られた材料中には極
微細な粒子も含まれており、これ等の極微細粒子の冷却
速度は105℃/秒以上となっている場合もおり得る。
Furthermore, in the twin-roll method or the spray roll method in which a rapidly solidified material is obtained by colliding atomized particles with a rotating drum, it is possible to obtain a predetermined result by adjusting the materials of the rolls and drums, the distance between the rolls, the size of the atomized particles, etc. It is possible to produce a flake-like material having the desired characteristics as a cooling rate of The cooling rate may be 105° C./second or more in some cases.

しかしながら、本発明においては、この様な粒子が多少
含まれていても所期の効果を奏することが出来る。
However, in the present invention, even if such particles are contained to some extent, the desired effect can be achieved.

成形加工に際しての冷間予備成形及び熱間加工。Cold preforming and hot processing during forming processing.

条件は、特に限定されないが、通常粒度40メツシュ以
下程度の材料を700 kM cm2 ・0以上で成形
した後、温度200℃程度で熱間加工すれば良い。冷間
予備成形は、引続く熱間加工工程に移行する際にハンド
リング可能な成形体が得られる方法で必れば良く、例え
ば、機械的プレス、静水圧プレス等により、行なわれる
。熱間加工法としては、熱間押出し、熱間圧延、熱間鍛
造、ホットプレス、熱間静水圧プレス等の方法が例示さ
れる。
Although the conditions are not particularly limited, it is sufficient to form a material with a particle size of about 40 mesh or less at a particle size of 700 km cm2.0 or more, and then hot work it at a temperature of about 200°C. The cold preforming may be performed by any method that allows a molded product to be handled when proceeding to the subsequent hot working step, and may be performed, for example, by mechanical pressing, isostatic pressing, or the like. Examples of hot working methods include hot extrusion, hot rolling, hot forging, hot pressing, and hot isostatic pressing.

又、成形加工は、冷間予備成形工程を経ることなく直接
押出しを行なうコンフォーム法によっても良く、この場
合にも、密度はぼ100%の成形体を得ることが可能で
ある。
Further, the molding process may be carried out by a conform method in which direct extrusion is performed without going through a cold preforming process, and in this case as well, it is possible to obtain a molded product with a density of approximately 100%.

発明の効果 本発明のアルミニウム粉末冶金合金は、常温においての
みならず高温においても強度、伸び等の各種の特性に優
れており、又長時間高温に暴露した後にもその優れた特
性をほとんど損うことなく維持することができる。
Effects of the Invention The aluminum powder metallurgical alloy of the present invention has excellent properties such as strength and elongation not only at room temperature but also at high temperatures, and almost loses its excellent properties even after being exposed to high temperatures for a long time. It can be maintained without any problems.

実   施   例 以下、実施例及び比較例を示し、本発明の特徴とすると
ころをより一層明らかにする。
EXAMPLES Hereinafter, Examples and Comparative Examples will be shown to further clarify the characteristics of the present invention.

実施例1 第1表に示す添加元素を含む溶湯をアトマイズ法により
噴霧して、冷却速度約10’℃/秒で100メツシユ程
度以下の粉体を得た。
Example 1 A molten metal containing the additive elements shown in Table 1 was atomized by an atomization method to obtain a powder of about 100 meshes or less at a cooling rate of about 10'C/sec.

注:試料No、3.6.10及び12は、本発明の範囲
外の組成を有するものであり、No。
Note: Samples No. 3.6.10 and 12 have compositions outside the scope of the present invention.

11は、No、5と同一組成を有するが冷却速度105
〜b グ床により得られたものでおる。
No. 11 has the same composition as No. 5, but the cooling rate is 105
~b This is obtained from the bed.

上記で得られた粉体を圧力2830kg/cm”で冷間
予備成形して直径3 cmx高ざ7.6cmの成形体と
した後、押出比9で400’Cで圧力0.6×10’ 
〜1.2X10’ kMcm2F押出材ヲ得り。
The powder obtained above was cold preformed at a pressure of 2830 kg/cm'' to form a molded body with a diameter of 3 cm x height of 7.6 cm, and then extruded at 400'C and a pressure of 0.6 x 10' at an extrusion ratio of 9.
~1.2X10' kmMcm2F extruded material was obtained.

第2表に該押出材並びに該押出材を350’Cで100
時間及び400’Cで64時間焼鈍した場合の室温にお
【プる引張強度及び伸びを示す。尚、試料N0.12に
ついては、直径3 cmx高ざ7.6cmの鋳塊を押出
した。
Table 2 shows the extruded material and the extruded material at 350'C.
The tensile strength and elongation at room temperature when annealed at 400'C for 64 hours are shown. For sample No. 12, an ingot with a diameter of 3 cm and a height of 7.6 cm was extruded.

第  2  表 第2表に示す結果から明らかな如く、本発明の範囲外の
組成を有する合金は、伸びが小さく、熱間押出しが困難
でおり、利用分野が限定される。
Table 2 As is clear from the results shown in Table 2, alloys having compositions outside the range of the present invention have low elongation and are difficult to hot extrude, which limits their field of use.

又、合金の融点が非常に高くなるので、アトマイズ法に
よる粉体の調製も困難となる。
Furthermore, since the melting point of the alloy becomes very high, it becomes difficult to prepare powder by the atomization method.

更に、試料No、5と11との対比からも明らかな如く
、本発明の組成範囲内にあっても粉体製造時の冷却速度
がi Q5°C/秒を上回る場合には、押出材の伸びが
小さい。
Furthermore, as is clear from the comparison between samples Nos. 5 and 11, even if the composition is within the composition range of the present invention, if the cooling rate during powder production exceeds iQ5°C/sec, the extruded material Elongation is small.

これに対し、本発明のアルミニウム粉末冶金合金は、ア
トマイズ法による原料粉体の調製も容易で、熱間押出し
等による加工も容易に行なうことが出来、更に高温に長
時間暴露後にも優れた強度及び伸び特性を維持し続ける
In contrast, the aluminum powder metallurgical alloy of the present invention can be easily prepared as a raw material powder by the atomization method, can be easily processed by hot extrusion, etc., and has excellent strength even after long-term exposure to high temperatures. and continues to maintain elongation properties.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】 [1](i)第1添加元素としてFe5〜17重量%、
(ii)第2添加元素としてMo1〜7重量%、及び (iii)第3添加元素としてMn、Cr、W、Co及
びNiの少なくとも1種1〜7重量%を含み、残部はA
l及び不可避的不純物からなり、第1添加元素の含有量
は、第2及び第3添加元素の夫々の含有量よりも大であ
り、引張強度が40kg/mm^2以上で且つ伸びが5
%以上であることを特徴とする耐熱アルミニウム粉末冶
金合金。 [2](i)第1添加元素としてFe5〜17重量%、
(ii)第2添加元素としてMo1〜7重量%、及び (iii)第3添加元素としてMn、Cr、W、Co及
びNiの少なくとも1種1〜7重量%を含み、残部はA
l及び不可避的不純物からなり、第1添加元素の含有量
は、第2及び第3添加元素の夫々の含有量よりも大であ
るAl合金溶湯から、実質的に10^5℃/sec未満
の冷却速度で粒子状物、フレーク状物、細線状物又はリ
ボン状薄帯状物を形成し、これをそのまま又は必要に応
じてさらに細片化したものを成形加工することを特徴と
する耐熱アルミニウム粉末冶金合金の製造方法。
[Claims] [1] (i) 5 to 17% by weight of Fe as the first additional element;
(ii) 1 to 7% by weight of Mo as the second additive element, and (iii) 1 to 7% by weight of at least one of Mn, Cr, W, Co, and Ni as the third additive element, with the remainder being A.
1 and unavoidable impurities, the content of the first additive element is larger than the respective contents of the second and third additive elements, the tensile strength is 40 kg/mm^2 or more, and the elongation is 5
% or more. [2] (i) 5 to 17% by weight of Fe as the first additional element,
(ii) 1 to 7% by weight of Mo as the second additive element, and (iii) 1 to 7% by weight of at least one of Mn, Cr, W, Co, and Ni as the third additive element, with the remainder being A.
1 and unavoidable impurities, and the content of the first additive element is higher than the content of each of the second and third additive elements. A heat-resistant aluminum powder that forms particulates, flakes, thin wires, or ribbons at a cooling rate, and molds the same as it is or further breaks it into pieces as necessary. Method of manufacturing metallurgical alloys.
JP60188123A 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy and its manufacture Pending JPS6247447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60188123A JPS6247447A (en) 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60188123A JPS6247447A (en) 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy and its manufacture

Publications (1)

Publication Number Publication Date
JPS6247447A true JPS6247447A (en) 1987-03-02

Family

ID=16218114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60188123A Pending JPS6247447A (en) 1985-08-26 1985-08-26 Heat resistant aluminum alloy for powder metallurgy and its manufacture

Country Status (1)

Country Link
JP (1) JPS6247447A (en)

Similar Documents

Publication Publication Date Title
US2967351A (en) Method of making an aluminum base alloy article
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPS6312926B2 (en)
WO2019034506A1 (en) Copper-based alloy for the production of bulk metallic glasses
US4452652A (en) Electrical contact materials and their production method
JPH0819496B2 (en) Method for manufacturing aluminum alloy parts that retains high fatigue strength even after being kept at high temperature for a long time
US4127426A (en) Method of making electrical conductors of aluminum-iron alloys
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JP3622989B2 (en) Molded member made of magnesium alloy and manufacturing method thereof
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
US3958987A (en) Aluminum iron cobalt silicon alloy and method of preparation thereof
JPH05179383A (en) Aluminum alloy having fine crystallized grain manufacture by spray deposition method
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS6247448A (en) Heat resistant aluminum alloy for powder metallurgy adn its manufacture
JPS6247447A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPS60234936A (en) Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
US3445920A (en) Aluminum base alloy production
JPS6233738A (en) Heat resistant aluminum alloy for powder metallurgical processing and its manufacture
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH0518891B2 (en)
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same