JPH02194102A - Al base alloy powder for sintering - Google Patents

Al base alloy powder for sintering

Info

Publication number
JPH02194102A
JPH02194102A JP1275089A JP1275089A JPH02194102A JP H02194102 A JPH02194102 A JP H02194102A JP 1275089 A JP1275089 A JP 1275089A JP 1275089 A JP1275089 A JP 1275089A JP H02194102 A JPH02194102 A JP H02194102A
Authority
JP
Japan
Prior art keywords
alloy powder
strength
sintered body
base alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1275089A
Other languages
Japanese (ja)
Other versions
JP2572832B2 (en
Inventor
Hidetoshi Inoue
秀敏 井上
Toshihisa Suemitsu
末光 利久
Shigenori Kusumoto
栄典 楠本
Tsukasa Shiomi
塩見 司
Katsuyuki Yoshikawa
吉川 克之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1012750A priority Critical patent/JP2572832B2/en
Publication of JPH02194102A publication Critical patent/JPH02194102A/en
Application granted granted Critical
Publication of JP2572832B2 publication Critical patent/JP2572832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain Al base alloy powder having excellent formability after extrusion-working and improving strength at room temp. and high temp. with heat treatment after forming by using the Al base alloy powder of the specific composition. CONSTITUTION:The composition of the Al base alloy powder is specified so as to contain 2 - 5wt.% Cr and 1 - 2.8% Zr as essential components and 0.5 - 5% the total content of one or two elements selected from 0.5 - 5% Cu and 0.5 - 5% Ni and the balance of Al and inevitable impurities. In these elements, Cr and Zr are made to solid solution under condition of supersaturation in Al matrix at the time of rapidly cooling and solidifying, but precipitated in the matrix at the time of solid-formation in hot-state and heat treatment after that and have action promoting the strength of the sintered body at the room temp. and the high temp. Further, Cu and Ni have action promoting age- hardening with Cr and Zr and increases the peak hardness after age-hardening. Then, this sintered body is most suitable to use for material having complicate shape and needing high strength at the high temp. and the room temp., such as various kinds of engine parts including connecting rod, outer shell of airplane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動車、航空機、鉄道車輌、船舶等の各種産
業機械分野で広く使用されているAl基合金粉末焼結体
の原料素材となる焼結用Al基台金粉末に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention serves as a raw material for Al-based alloy powder sintered bodies that are widely used in various industrial machinery fields such as automobiles, aircraft, railway vehicles, and ships. This invention relates to Al-based metal powder for sintering.

[従来の技術] 近年、Al粉末冶金の新しい技術として、急冷凝固法を
応用してAlに各種の遷移元素を含有させたAl基合金
粉末を得、該Al基合金粉末を用いて焼結体を成形する
ことにより熱間強度の高い焼結体を製造する技術が数多
く開発されている。
[Prior art] In recent years, as a new technology of Al powder metallurgy, a rapid solidification method has been applied to obtain Al-based alloy powder in which Al contains various transition elements, and the Al-based alloy powder has been used to form a sintered body. Many technologies have been developed to produce sintered bodies with high hot strength by molding.

上記技術は、急冷凝固粉末を用いると平衡状態では得ら
れない組成のAl−Fe、Al−Cr。
The above technology uses Al-Fe and Al-Cr whose compositions cannot be obtained in an equilibrium state when rapidly solidified powder is used.

Al−Zr、Al−5t等の合金の製造が可能となるの
を応用したものであり、また結晶粒の大きさや微細混合
物を調節することができ、耐熱性。
It is an application of the fact that alloys such as Al-Zr and Al-5t can be manufactured, and the size of crystal grains and fine mixture can be adjusted, and it is heat resistant.

耐摩耗性及び疲れ強さの優れた新素材を得ることができ
るものである。
This makes it possible to obtain a new material with excellent wear resistance and fatigue strength.

例えば、特開昭59−43802号公報、同60−23
4936号公報、同60−248860号公報、同61
−49551号公報、同61−96051号公報、同5
1−130451号公報等に数多くの技術が開示されて
おり、更には米国特許第4,464,199号にも同様
の技術が開示されている。
For example, JP-A-59-43802, JP-A-60-23
No. 4936, No. 60-248860, No. 61
-49551 publication, 61-96051 publication, 5
Many techniques are disclosed in Japanese Patent No. 1-130451, and similar techniques are also disclosed in US Pat. No. 4,464,199.

上記文献に見られる技術はいずれも、概ね8〜12%の
Feを含む他、Ce等の希土類元素若しくはV、Zr、
Mo等の遷移金属元素をAl中に含有させたAl−Fe
系合金粉末を急冷凝固法によフて得、該粉末を焼結して
Alマトリックス中にAl−Fe−X化合物(×は前記
Ce、V。
All of the techniques found in the above documents contain approximately 8 to 12% Fe, as well as rare earth elements such as Ce or V, Zr,
Al-Fe containing transition metal elements such as Mo in Al
A system alloy powder is obtained by a rapid solidification method, and the powder is sintered to form an Al-Fe-X compound in an Al matrix (x represents Ce, V as described above).

Zr、Mo等)を分散させ、熱間強度を高めたAl基合
金粉末焼結体に関するものである。
The present invention relates to an Al-based alloy powder sintered body in which hot strength is increased by dispersing Zr, Mo, etc.).

上に見られるA l−Fe系合金粉末以外のAl基合金
粉末についても多くの研究開発が行なわれており、例え
ば特開昭59−116352号公報にはAl中にCrや
Zr等を含有させたAl−Cr−Zr系合金粉末につい
て開示されている。
Much research and development has been conducted on Al-based alloy powders other than the Al-Fe-based alloy powders shown above. Al-Cr-Zr based alloy powder is disclosed.

[発明が解決しようとする課題] 前記Al−Fe系合金粉末から得られる焼結体は、いず
れも常温から300℃程度までの温度範囲では高い引張
強度を有している。又これらの焼結体はAl中において
Feや他の合金元素が比較的高温でも拡散しにくい点を
応用し、合金元素の化合物をAlマトリックス中に微細
分散させることによって高温域での強度を向上させた分
散強化型焼結体であることも知られている。
[Problems to be Solved by the Invention] All of the sintered bodies obtained from the Al-Fe alloy powder have high tensile strength in the temperature range from room temperature to about 300°C. In addition, these sintered bodies take advantage of the fact that Fe and other alloying elements are difficult to diffuse in Al even at relatively high temperatures, and by finely dispersing compounds of alloying elements in the Al matrix, the strength at high temperatures is improved. It is also known that it is a dispersion-strengthened sintered body.

しかしながら上記焼結体における分散相は、急冷凝固の
過程若しくは粉末を熱間で固化成形する際の初期の段階
でAlマトリックス中に分散されるものと考えられてお
り、従って塑性変形を伴なう固化成形工程において焼結
体の変形抵抗を著しく高める要因となっている。それば
かりか上記分散相においては個々の分散粒子(金属間化
合物)が脆性を有しているので、塑性加工の際に該分散
相が割れの発生源となり易く、焼結体の変形能を低下さ
せる原因となっている。
However, the dispersed phase in the above sintered body is thought to be dispersed in the Al matrix during the rapid solidification process or at an early stage when the powder is hot solidified and formed, and therefore is accompanied by plastic deformation. This is a factor that significantly increases the deformation resistance of the sintered body during the solidification molding process. Moreover, since individual dispersed particles (intermetallic compounds) in the above-mentioned dispersed phase are brittle, the dispersed phase easily becomes a source of cracks during plastic working, reducing the deformability of the sintered body. It is the cause of this.

Al基合金粉末焼結体は前述した趣旨のもとで開発され
たものであり、焼結・熱間成形後において普通の鋳塊と
同様に熱間の鍛造、圧延及び押出し等の加工が行なわれ
るのが一般的であり(従って本発明に招ける「焼結体」
とは製品に加工する前の成形材の意味である)、Al−
Fe系合金粉末焼結体を各種形状の製品(又は部品)に
塑性加工しようとすれば、大きな変形抵抗に見合った大
きな力量を備えた押出機や鍛造機等のプレス装置を必要
とするばかりか、塑性変形時の割れ発生防止という観点
から温度やプレス速度等の加工条件を微妙に選定する必
要がある。
The Al-based alloy powder sintered body was developed based on the purpose mentioned above, and after sintering and hot forming, it can be processed by hot forging, rolling, extrusion, etc. in the same way as ordinary ingots. (Therefore, the term “sintered body” that can be used in the present invention)
(means the molded material before being processed into a product), Al-
If we try to plastically process Fe-based alloy powder sintered bodies into products (or parts) of various shapes, we not only need press equipment such as extruders and forging machines that have a large capacity commensurate with large deformation resistance. From the viewpoint of preventing cracking during plastic deformation, processing conditions such as temperature and press speed must be carefully selected.

一方前記Al−Cr−Zr系合金粉末については、急?
4I凝固する際にCr及びZrがAl中に強制的に固溶
した過飽和固溶体を形成するものである。そしてこの様
な粉末を焼結した後熱処理すると、過飽和固溶体が相分
解して強化に寄与し、所謂析出強化型At基合金焼結体
を形成することが知られている。しかしながらAl−C
r−Zr系合金粉末についてのこれまでの研究は、その
ほとんどがAl−Cr−Zrの3元合金自体に関するも
のであり、Al−Cr−Zr3元合金粉末を用いて固化
成形された製品についての特性を調査した例はあまり存
在しない。
On the other hand, regarding the Al-Cr-Zr alloy powder, is it sudden?
When 4I solidifies, Cr and Zr are forcibly dissolved in Al to form a supersaturated solid solution. It is known that when such a powder is heat-treated after sintering, the supersaturated solid solution phase decomposes and contributes to strengthening, forming a so-called precipitation-strengthened At-based alloy sintered body. However, Al-C
Most of the research to date on r-Zr alloy powders has focused on the Al-Cr-Zr ternary alloy itself, and has not focused on products solidified using Al-Cr-Zr ternary alloy powders. There are not many examples of investigating the characteristics.

本発明者らが、Al−Cr−Zrのみを各種割合で配合
したAl−Cr−Zr系合金粉末焼結体についてその特
性について調査したところ、上記3成分のみでは実用上
充分な強度が得られないことが判明した。
The present inventors investigated the properties of Al-Cr-Zr alloy powder sintered bodies containing only Al-Cr-Zr in various proportions, and found that sufficient strength for practical use could be obtained with only the above three components. It turns out there isn't.

前記特開昭59−116352号公報に開示された技術
は、Al−Cr−Zrの3元合金に更にMnを添加し、
得られる焼結体の強度を高めたものであるが、この焼結
体には次に示す様な問題点があった。
The technique disclosed in JP-A-59-116352 further adds Mn to the ternary alloy of Al-Cr-Zr,
Although the resulting sintered body has increased strength, this sintered body has the following problems.

例えば1986年4月に発行されたMaterials
Science and Technology、Va
l、2の第394〜399頁には、Al−Cr−Zr−
Mn合金粉末に関する研究が発表されており、それによ
るとこの合金粉末から得られる焼結体は熱間押出等にお
ける加熱条件の影晋を受は易いことが開示されている。
For example, Materials published in April 1986
Science and Technology, Va.
1, 2, pages 394-399, Al-Cr-Zr-
Research on Mn alloy powder has been published, and it is disclosed that the sintered body obtained from this alloy powder is easily affected by the heating conditions during hot extrusion or the like.

従ってこのAl基合金粉末から得られる焼結体に所期の
特性を発現させるには、常温押出し等の比較的低温度の
加工を必要とするので大きな力量の押出しプレスを必要
とする。そればかりか当該焼結体は、低温押出しを行な
った場合に、押出しままの状態における強度及び変形抵
抗が高くなりすぎ、押出棒を素材として複雑な形状の部
品に鍛造加工する際に、必要とされる鍛造プレスカ量が
大きくなり、又割れも発生し易くなる。更に本発明者ら
の研究によれば、上記鍛造加工を実施すると、鍛造材に
おける強度は押出素材の強度と比べてかなり低下するこ
とが明らかになった。
Therefore, in order to develop the desired characteristics in a sintered body obtained from this Al-based alloy powder, processing at a relatively low temperature such as room temperature extrusion is required, which requires an extrusion press with great power. Moreover, when the sintered body is subjected to low-temperature extrusion, its strength and deformation resistance in the as-extruded state become too high, making it difficult to forge parts with complex shapes using extruded rods. The amount of forging presses to be applied increases, and cracks are more likely to occur. Furthermore, according to the research conducted by the present inventors, it has been revealed that when the forging process is performed, the strength of the forged material is considerably lower than that of the extruded material.

本発明はこうした技術的課題を解決する為になされたも
のであって、その目的とするところは、押出加工後の成
形性に優れ且つ成形後の熱処理によって常温及び高温で
の強度を高めることのできる焼結体の原料素材となるA
l基合金粉末を提供する点にある。
The present invention was made to solve these technical problems, and its purpose is to have excellent formability after extrusion processing and to increase strength at room temperature and high temperature by heat treatment after forming. A, which is the raw material for the resulting sintered body
The object of the present invention is to provide l-based alloy powder.

[課題を解決する為の手段] 上記目的を達成し得た本発明のAl基合金粉末とは、C
r:2〜5%及びZ r : 1〜2.6%を必須成分
として含む他、Cu : 0.5〜5%及びNi:0.
5〜5%から選ばれる1種又は2種を合計で0.5〜5
%含み、残部がAl及び不可避不純物からなる点に要旨
を有するものである。
[Means for solving the problem] The Al-based alloy powder of the present invention that achieves the above object is
In addition to containing r: 2 to 5% and Zr: 1 to 2.6% as essential components, Cu: 0.5 to 5% and Ni: 0.
5 to 5% of one or two types selected from 0.5 to 5% in total
%, and the remainder consists of Al and unavoidable impurities.

又上記各成分に加え、B : 0.1〜0.5%、F 
e : 0.5〜2.0%、T i : 0.5〜2%
及びM n : 0.1〜1%からなる群から選択され
る1 fl又は2種以上を合計で0.1〜2%含有させ
れば、本発明の目的が更に有効に達成される。
In addition to the above components, B: 0.1 to 0.5%, F
e: 0.5-2.0%, Ti: 0.5-2%
The object of the present invention can be more effectively achieved by containing 1 fl or two or more selected from the group consisting of 0.1 to 1% in a total of 0.1 to 2%.

[作用] 本発明者らは、前記Al−Cr−Zr系合金粉末焼結体
が有する時効硬化性に着目し、Al−Cr−Zra元合
金に及ぼす各種第4元素の作用・効果について、前記従
来技術におけるMnの作用効果をも含めて種々検討を重
ねた。
[Function] The present inventors focused on the age hardenability of the Al-Cr-Zr based alloy powder sintered body, and investigated the actions and effects of various fourth elements on the Al-Cr-Zra base alloy as described above. Various studies were conducted, including the effects of Mn in conventional techniques.

まずAl−Cr−Zr系に対するMn元素の添加は、時
効硬化能を高める作用を有さず、むしろ転移組織に作用
して加工硬化に寄与することが判明した。従ってMnの
添加によって焼結体の強度を向上させるには、Mnの析
出が開始する前に塑性変形を加えて高密度の転移を導入
しておく必要があり、その為には焼結・熱間成形を行な
う前に粉末を冷間で加工するか或は常温押出の様な低温
加工を行なうことによって、粉末を加工硬化させること
が不可欠となる。即ちAl−Cr−Zr−Mn系合金粉
末から得られる焼結体の強度は、合金粉末中における複
雑に絡み合った高密度の転移組織と密接な関係があり、
これが前述した様な複雑な問題を提起する原因になって
いると考えられる。
First, it has been found that the addition of Mn element to the Al-Cr-Zr system does not have the effect of increasing age hardenability, but rather acts on the transition structure and contributes to work hardening. Therefore, in order to improve the strength of a sintered body by adding Mn, it is necessary to introduce high-density dislocation by adding plastic deformation before the precipitation of Mn starts. It is essential to work harden the powder by cold processing the powder or by performing low temperature processing such as cold extrusion before interforming. That is, the strength of the sintered body obtained from the Al-Cr-Zr-Mn alloy powder is closely related to the intricately intertwined high-density dislocation structure in the alloy powder.
This is considered to be the cause of the complicated problems mentioned above.

一方本発明者らはAl−Cr−Zr系合金に対するCu
やNiの作用効果について調査した。
On the other hand, the present inventors have investigated the effects of Cu on Al-Cr-Zr alloys.
We investigated the effects of and Ni.

それによると、これらの元素は時効硬化能を高める作用
を有することが判明した。即ちこれらの元素の少なくと
も1種を適量配合すれば、前記焼結体における成形性に
悪影響を及ぼすことなく、成形後の熱処理によって時効
硬化能を有効に発揮させることができ、得られる製品の
常温及び高温強度を高め得ことを見出した。
According to this study, it was found that these elements have the effect of increasing age hardening ability. That is, by blending an appropriate amount of at least one of these elements, the age hardening ability can be effectively exhibited through heat treatment after forming without adversely affecting the formability of the sintered body, and the resulting product can be heated at room temperature. It has been found that the high temperature strength can be increased.

本発明に係るAl基合金粉末における各成分の作用及び
それらの数値限定理由は次の通りである。
The effects of each component in the Al-based alloy powder according to the present invention and the reasons for limiting their numerical values are as follows.

Cr:2〜5% Zr:1〜2.5 % Cr及びZrは急冷凝固時にAlマトリックス中に過飽
和に固溶するが、その後の熱間における固化成形時及び
熱処理時にマトリックス中に析出し、焼結体の常温及び
高温強度を高める作用を有する。この時効硬化作用を発
揮させる為には2%以上のCrと1%以上のZrを同時
に添加する必要がある。しかしながらCrが5%を超え
たり或はZrが2.5%を超えると靭性の低下を招く。
Cr: 2 to 5% Zr: 1 to 2.5% Cr and Zr form a supersaturated solid solution in the Al matrix during rapid solidification, but precipitate in the matrix during subsequent hot solidification and heat treatment, resulting in sintering. It has the effect of increasing the strength of the compact at room temperature and high temperature. In order to exhibit this age hardening effect, it is necessary to simultaneously add 2% or more Cr and 1% or more Zr. However, if Cr exceeds 5% or Zr exceeds 2.5%, toughness decreases.

Cu : 0.5〜5%及び N i : 0.5〜5% から選ばれる1種又は2種(但し合計で0.5〜5%) Cu及びNiはCrとZrによる上記時効硬化作用を助
長する作用を有し、時効硬化後のピーク硬さを高める。
One or two types selected from Cu: 0.5-5% and Ni: 0.5-5% (however, the total is 0.5-5%) Cu and Ni have the above-mentioned age hardening effect caused by Cr and Zr. It has a promoting effect and increases the peak hardness after age hardening.

そしてこの作用を得る為にはCu、Niの1 fffi
又は2種を合計で少なくとも0.5%添加する必要があ
るが、5%を超えると靭性が低下する。
In order to obtain this effect, 1 fffi of Cu and Ni is required.
Alternatively, it is necessary to add at least 0.5% of the two types in total, but if it exceeds 5%, the toughness will decrease.

B  :0.1〜0.5% F e : 0.5〜2% Ti:0.5〜2%及び Mn:0.1〜1% からなる群から選択される1 fffi又は2種以上(
但し合計で0.1〜2%) 上記Cu、Niの添加によって時効硬化能を高めること
ができるのであるが、これらの元素に加え、B、Fe、
Ti及びMnからなる群から選択される1種又は2種以
上を含有させれば、本発明の効果が更に有効に達成され
る。即ちB、Fe。
B: 0.1-0.5% Fe: 0.5-2% Ti: 0.5-2% and Mn: 0.1-1% 1 fffi or two or more selected from the group consisting of (
However, the age hardenability can be increased by adding Cu and Ni (total of 0.1 to 2%), but in addition to these elements, B, Fe,
By containing one or more selected from the group consisting of Ti and Mn, the effects of the present invention can be achieved more effectively. That is, B, Fe.

Ti、Mn等の元素はマトリックス中に金属間化合物と
して分散し、転穆の移動を阻止して強化に寄与するばか
りか、粒界に析出することによって粒界移動を阻止して
再結晶化による強度低下を防止する。この作用を発揮さ
せる為には上記範囲で添加する必要があるが、これらの
範囲を超えて添加すると靭性の低下を招く。
Elements such as Ti and Mn are dispersed as intermetallic compounds in the matrix and not only contribute to strengthening by preventing the movement of translocation, but also prevent grain boundary movement by precipitating at grain boundaries and promote recrystallization. Prevent strength loss. In order to exhibit this effect, it is necessary to add it within the above range, but if it is added beyond these ranges, it will lead to a decrease in toughness.

尚本発明に係るAl基合金粉末は前述した如く、平衡状
態では固溶限の小さな元素を大量に添加する目的で、溶
解した合金を急冷凝固法によって微細な粉末にするもの
であり、その具体的な手段については各種のアトマイズ
法が例示でき何ら限定するものではないが、希望する微
細粉末を得るには急冷速度を102deg/sec以上
とするのが好ましい。
As mentioned above, the Al-based alloy powder according to the present invention is made by turning a melted alloy into a fine powder by a rapid solidification method in order to add a large amount of an element that has a small solid solubility limit in an equilibrium state. Various atomization methods can be used as examples, but the method is not limited in any way, but in order to obtain the desired fine powder, it is preferable to set the quenching rate to 102 deg/sec or more.

[実施例] 実施例1 下記第1表に示した各種組成の合金を溶製し、N2ガス
アトマイズ法によって急冷凝固して粒径74μm以下の
粉末を得た。尚このときの冷却速度は、同一方法によっ
て作成された7075合金のミクロ組織観察結果から1
03deg/sec以上と推定された。
[Examples] Example 1 Alloys having various compositions shown in Table 1 below were melted and rapidly solidified by N2 gas atomization to obtain powders with a particle size of 74 μm or less. The cooling rate at this time is 1 based on the microstructure observation results of 7075 alloy made by the same method.
It was estimated to be 0.03 deg/sec or more.

第 表 得られた各粉末をフOmmφのアルミニウム合金(AA
規格5052)製カプセルに充填し、該カプセルごと3
00℃に加熱しつつ、カプセルの一端に設けられた脱気
管より内部を真空脱気して前記粉末をカプセル内に真空
封入した。尚脱気に要した時間は約2時間であった。
Each powder obtained in Table 1 is mixed with an aluminum alloy (AA) of Ommφ.
Standard 5052) capsules are filled, and each capsule is filled with 3
While heating the capsule to 00° C., the inside of the capsule was vacuum degassed through a degassing tube provided at one end of the capsule, and the powder was vacuum sealed in the capsule. The time required for deaeration was approximately 2 hours.

次に前記カプセルを熱間押出加工し、得られた押出棒か
らカプセルの外皮を旋削・除去して約15mmφの丸棒
(Al基合金粉末焼結体)を得た。尚カプセル加熱温度
は350℃であり、加熱に要した時間は約1時間であっ
た。
Next, the capsule was subjected to hot extrusion processing, and the outer skin of the capsule was turned and removed from the obtained extruded rod to obtain a round rod (Al-based alloy powder sintered body) with a diameter of about 15 mm. The capsule heating temperature was 350°C, and the time required for heating was about 1 hour.

この様にして得られた各丸棒試料について、下記の各種
試験を実施した。
The following various tests were conducted on each round bar sample thus obtained.

まず最適な熱処理条件を探索する目的で各試料を350
℃で各種時間保持したときの常温ビッカース硬度(Hv
)の変化について測定した。
First, in order to find the optimal heat treatment conditions, each sample was
Vickers hardness at room temperature (Hv) when kept at ℃ for various times
) was measured.

その結果を粉末のNo、と対応させて下記第2表に示す
が、第2表中F及びTの記号は押出しまま及び熱処理材
の夫々のピーク硬度を意味している。又代表例として、
No、1.2(実施例粉末によるもの)及びNo、12
. 13 (比較例粉末によるもの)における測定結果
を第1図に示した。
The results are shown in Table 2 below, in correspondence with the powder numbers. In Table 2, the symbols F and T mean the respective peak hardnesses of the as-extruded and heat-treated materials. Also, as a representative example,
No. 1.2 (based on example powder) and No. 12
.. The measurement results for No. 13 (using the comparative powder) are shown in FIG.

その結果、いずれの試料についてもほぼ350℃×24
時間でピーク強度が得られることが判明した。
As a result, for all samples, approximately 350℃×24
It was found that the peak intensity can be obtained by time.

そこで本発明者らはすべての試料について350℃×2
4時間の熱処理を施しこれらの熱処理材について引張試
験を実施した。この結果を下記第2表に併記した。尚引
張試験は、ASTMB557M、ASTM  602及
びASTM  E21に準拠して実施し、常温における
平滑試験片の耐力(σ。、2)と強度(σa)、切欠試
験片の強度(087g)及び250℃における高温強度
(σ、)を測定した。そして靭性の評価には、前記強度
(σNTS)及び耐力(σ。2)の比(σsrs/σ。
Therefore, the present inventors conducted a test at 350°C x 2 for all samples.
A tensile test was conducted on these heat-treated materials after heat treatment for 4 hours. The results are also listed in Table 2 below. The tensile test was conducted in accordance with ASTM B557M, ASTM 602, and ASTM E21, and the yield strength (σ., 2) and strength (σa) of the smooth test piece at room temperature, the strength (087 g) of the notched test piece, and the strength at 250°C High temperature strength (σ,) was measured. For evaluation of toughness, the ratio (σsrs/σ) of the strength (σNTS) and proof stress (σ.2) is used.

、2)を用いた。, 2) was used.

第1図の結果から次の様に考察できる。まずNo、13
のAl−Cr−Zr3元合金粉末焼結体は明瞭な時効硬
化性を示すものの、その強度レベルは低いものである。
The following considerations can be made from the results shown in Figure 1. First, No. 13
Although the Al-Cr-Zr ternary alloy powder sintered body exhibits clear age hardenability, its strength level is low.

またNo、12のAl−Cr−Zr−Mn合金粉末焼結
体は押出しままの状態においても高い強度を示しく成形
性が悪い)、時効硬化能も認められない。
Moreover, the Al-Cr-Zr-Mn alloy powder sintered body No. 12 shows high strength even in the as-extruded state and has poor formability), and no age hardenability is observed.

これに対しNo、1.2(実施例粉末によるもの)の焼
結体は、押出し状態における硬度はAl−Cr−Zr−
Mn系に比べて低く(成形性が良い)、又ピーク硬度が
高くなり、Cu及びNiの添加効果が顕著である。
On the other hand, the hardness of the sintered body No. 1.2 (based on the example powder) in the extruded state was Al-Cr-Zr-
The peak hardness is lower (good moldability) than Mn-based hardness, and the peak hardness is higher, and the effect of adding Cu and Ni is significant.

また第2表の結果からも明らかであるが、本発明の合金
粉末から得られる焼結体は押出しままでの硬度が低く、
熱処理後においては高い強度を有し、且つ高い靭性を有
していることが理解される。
Furthermore, as is clear from the results in Table 2, the sintered body obtained from the alloy powder of the present invention has low hardness as extruded;
It is understood that it has high strength and high toughness after heat treatment.

太溝J1ス 前述の方法で作成したNo、1. No、2 (実施例
粉末によるもの)及びNo、12(比較例粉末によるも
の)の各押出材(F材)を用い、350℃に加熱したと
きの変形抵抗を測定すると共に、同温度で板厚5mmに
熱間鍛造加工した。尚加熱に要した保持時間は約1時間
であった。又変形抵抗は、15mm* X 30mmh
の試料におもりを落下し、おもりの位置エネルギーと試
料の変形量の相関から算出する落槌法によった。
Thick groove J1 No. 1 created by the method described above. Using each extruded material (F material) No. 2 (made using the example powder) and No. 12 (made using the comparative example powder), the deformation resistance when heated to 350°C was measured, and the deformation resistance was measured at the same temperature. It was hot forged to a thickness of 5 mm. The holding time required for heating was about 1 hour. Also, the deformation resistance is 15mm* x 30mmh
A weight was dropped onto the sample, and the drop hammer method was used to calculate the correlation between the potential energy of the weight and the amount of deformation of the sample.

そして上記鍛造加工によって得られた板材を、350℃
で更に24時間時効処理した後、常温強度を測定した。
Then, the plate material obtained by the above forging process was heated to 350°C.
After further aging treatment for 24 hours, the room temperature strength was measured.

この結果を下記第3表に示すが、この結果からNo、1
2のAl−Cr−Zr−Mn合金粉末から得られる押出
材は、本発明の合金粉末から得られる押出材に比べて変
形抵抗が高いことが理解される。又前記第2表と下記第
3表の結果を対比して考察すると明らかであるが、No
、12の合金粉末から得られるものは、鍛造材の熱処理
後の強度が押出材の強度に比べて低いのに対し、No、
1.2の本発明材においてはこの強度低下が認められな
いのが理解される。
The results are shown in Table 3 below, and from this result No. 1
It is understood that the extruded material obtained from the Al-Cr-Zr-Mn alloy powder of No. 2 has higher deformation resistance than the extruded material obtained from the alloy powder of the present invention. Also, it is clear when comparing and considering the results in Table 2 above and Table 3 below, that No.
, 12, the strength after heat treatment of forged material is lower than that of extruded material, whereas No.
It is understood that this decrease in strength is not observed in the material of the present invention of No. 1.2.

第   3   表 [発明の効果コ 以上述べた如く本発明によれば、上記組成のAl基合金
粉末を用いることによって、常温及び高温における強度
向上を達成し、しかも成形性及び靭性の優れたAl基合
金粉末焼結体が実現できた。そしてこの焼結体はコンロ
ッドを始めとする各種エンジン部品や航空機及び各種飛
翔体の外皮等、形状が複雑で且つ常温及び高温での高強
度が要求される各種用途に最適である。
Table 3 [Effects of the Invention] As described above, according to the present invention, by using the Al-based alloy powder having the above composition, it is possible to achieve improved strength at room temperature and high temperature, and to obtain an Al-based alloy powder with excellent formability and toughness. An alloy powder sintered body was realized. This sintered body is ideal for various uses such as connecting rods and other engine parts, and the outer skins of aircraft and flying objects, which have complex shapes and require high strength at room and high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種At−Cr−Zr系合金粉末焼結体の時効
硬化曲線を示すグラフである。
FIG. 1 is a graph showing age hardening curves of various At-Cr-Zr based alloy powder sintered bodies.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr:2〜5%(重量%の意味、以下同じ)及び
Zr:1〜2.8%を必須成分として含む他、Cu:0
.5〜5%及びNi:0.5〜5%から選ばれる1種又
は2種を合計で0.5〜5%含み、残部がAl及び不可
避不純物からなることを特徴とする焼結用Al基合金粉
末。
(1) In addition to containing Cr: 2 to 5% (meaning by weight %, the same applies hereinafter) and Zr: 1 to 2.8% as essential components, Cu: 0
.. 5-5% and one or two selected from Ni: 0.5-5% in a total of 0.5-5%, with the remainder consisting of Al and inevitable impurities. Alloy powder.
(2)B:0.1〜0.5%、Fe:0.5〜2%、T
i:0.5〜2%及びMn:0.1〜1%からなる群か
ら選択される1種又は2種以上を合計で0.1〜2%含
む請求項(1)に記載の焼結用Al基合金粉末。
(2) B: 0.1-0.5%, Fe: 0.5-2%, T
The sintered material according to claim (1), wherein the sintered product contains a total of 0.1 to 2% of one or more selected from the group consisting of i: 0.5 to 2% and Mn: 0.1 to 1%. Al-based alloy powder for use.
JP1012750A 1989-01-21 1989-01-21 Al-based alloy powder for sintering Expired - Lifetime JP2572832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012750A JP2572832B2 (en) 1989-01-21 1989-01-21 Al-based alloy powder for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012750A JP2572832B2 (en) 1989-01-21 1989-01-21 Al-based alloy powder for sintering

Publications (2)

Publication Number Publication Date
JPH02194102A true JPH02194102A (en) 1990-07-31
JP2572832B2 JP2572832B2 (en) 1997-01-16

Family

ID=11814095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012750A Expired - Lifetime JP2572832B2 (en) 1989-01-21 1989-01-21 Al-based alloy powder for sintering

Country Status (1)

Country Link
JP (1) JP2572832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210269896A1 (en) * 2018-07-09 2021-09-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247449A (en) * 1985-08-26 1987-03-02 Toyo Alum Kk Heat resistant aluminum alloy for powder metallurgy and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247449A (en) * 1985-08-26 1987-03-02 Toyo Alum Kk Heat resistant aluminum alloy for powder metallurgy and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210269896A1 (en) * 2018-07-09 2021-09-02 C-Tec Constellium Technology Center Process for manufacturing an aluminum alloy part

Also Published As

Publication number Publication date
JP2572832B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
US4661172A (en) Low density aluminum alloys and method
US4946500A (en) Aluminum based metal matrix composites
US3767385A (en) Cobalt-base alloys
US4135922A (en) Metal article and powder alloy and method for producing metal article from aluminum base powder alloy containing silicon and manganese
JPS627828A (en) Al alloy with high li and si content and its production
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
KR19990072038A (en) Manufacturing method of thin strip of aluminum alloy with high strength and excellent moldability
US3971677A (en) Low expansion alloys
US5468310A (en) High temperature abrasion resistant copper alloy
US6805759B2 (en) Shaped part made of an intermetallic gamma titanium aluminide material, and production method
JPH0116292B2 (en)
US6962673B2 (en) Heat-resistant, creep-resistant aluminum alloy and billet thereof as well as methods of preparing the same
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
US3816187A (en) Processing copper base alloys
Schelleng et al. Superplasticity and residual tensile properties of a microduplex copper-nickel-zinc alloy
US4430115A (en) Boron stainless steel powder and rapid solidification method
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JPH02194102A (en) Al base alloy powder for sintering
Park et al. Microstructure and mechanical properties of rapidly solidified Al-Si-Fe-X base alloys
JPH02194142A (en) Al-base alloy powder for sintering
Webster et al. Mechanical properties and microstructure of argon atomized aluminum-lithium powder metallurgy alloys
US3544394A (en) Aluminum-copper-magnesium-zinc powder metallurgy alloys
JP2711296B2 (en) Heat resistant aluminum alloy
US4731129A (en) Superplastic zinc/aluminum alloy
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties