JPH01316434A - Heat-resistant aluminum alloy material and its manufacture - Google Patents

Heat-resistant aluminum alloy material and its manufacture

Info

Publication number
JPH01316434A
JPH01316434A JP63148376A JP14837688A JPH01316434A JP H01316434 A JPH01316434 A JP H01316434A JP 63148376 A JP63148376 A JP 63148376A JP 14837688 A JP14837688 A JP 14837688A JP H01316434 A JPH01316434 A JP H01316434A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat
powder
alloy material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63148376A
Other languages
Japanese (ja)
Inventor
Hideki Matsumoto
松本 英幹
Minoru Hayashi
稔 林
Yoshisuke Asada
浅田 喜介
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP63148376A priority Critical patent/JPH01316434A/en
Publication of JPH01316434A publication Critical patent/JPH01316434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily manufacture the title Al alloy material suitable for a material in which high temp. strength is required by forming the molten metal of an Al alloy in which the content of Fe, Zn, etc., is limited into powder by a gas atomizing method, subjecting it to hot compacting and regulating the average size of an intermetallic compound. CONSTITUTION:An alloy contg., by weight, 5.5-15% Fe, 0.1-5% Zn and one or more kinds among 0.5-15% Co, 0.7-15% Cr, 0.3-10% Zr, 0.3-10% V, 0.5-10% Ce, 0.2-8% W, 0.5-10% Ti, 0.2-10% Mo, 0.5-15% Mn and 0.2-10% Cu, in which the total amt. of all elements to be added is regulated to <=25% and the balance Al with inevitable impurities is refined. The molten metal is subjected to rapid solidification by a gas atomizing method to form powder and is subjected to hot compacting by an ordinary method. The average size of an inermetallic compound contg. Fe finely dispersing at the time of the above rapid solidification is then regulated to the range of 0.07-1mum. By this method, the heat-resistant Al alloy material can easily be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性に優れるアルミニウム合金材及び粉末冶
金法によるその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aluminum alloy material with excellent heat resistance and a method for manufacturing the same using a powder metallurgy method.

(従来の技術) 自動車用エンジン部品、ガスタービンのインペラー、航
空機部材などの材料は100〜400℃での高温強度が
必要とされる。これらの材料をアルミニウム合金とすれ
ば、軽量化に伴う多くの利点が得られる。しかし、アル
ミニウム及びその合金は、一般に高温ての強度が低い0
例えば室温での強度に優れるアルミニウム合金(AA2
01B、2218.4032など)においても200℃
以上の温度では著しく強度が低下する。
(Prior Art) Materials for automobile engine parts, gas turbine impellers, aircraft parts, etc. are required to have high-temperature strength at 100 to 400°C. If these materials are aluminum alloys, many advantages associated with weight reduction can be obtained. However, aluminum and its alloys generally have low strength at high temperatures.
For example, aluminum alloy (AA2) has excellent strength at room temperature.
01B, 2218.4032, etc.) at 200℃
At temperatures above this, the strength decreases significantly.

これに対し、近年、アルミニウムに種々の遷移元素を多
量に添加し、溶湯な急冷凝固させて得られる粉末または
リボン状薄帯な高温圧縮加工して耐熱性アルミニウム合
金とするアルミニウム粉末冶金法が開発され、AJL−
8Fe−4Ce、AlAl1−8Fe−2,A文−8F
e−2Goなどの合金が提供されている。
In response to this, in recent years, an aluminum powder metallurgy method has been developed in which a heat-resistant aluminum alloy is produced by adding large amounts of various transition elements to aluminum and processing the powder or ribbon-like thin strip obtained by rapid solidification into a heat-resistant aluminum alloy. and AJL-
8Fe-4Ce, AlAl1-8Fe-2, A sentence-8F
Alloys such as e-2Go are provided.

アルミニウム合金系の粉末冶金法による製造工程は急冷
凝固法としてアトマイズ法、y、ロール法、又は噴霧ロ
ール法等により合金溶湯を急冷凝固して粉末状、リボン
状、又はフレーク状とし、これを冷間成形により密度比
(真密度に対する比率)70%以上の圧粉体とし封缶後
、真空脱ガス処理を行った後熱間加工により密度比10
0%のビレットを成形し、さらに粒子間の結合力を高め
るだめに押出し、鍛造等により成形する方法が一般的に
用いられている。
The manufacturing process using powder metallurgy for aluminum alloys involves rapid solidification of molten alloys into powder, ribbon, or flake shapes using the atomization method, y-roll method, or spray roll method, which is then cooled. After forming into a compact with a density ratio (ratio to true density) of 70% or more, the can is sealed, vacuum degassing is performed, and then hot processing is performed to form a compact with a density ratio of 10%.
A commonly used method is to form a 0% billet and further form it by extrusion, forging, etc. in order to increase the bonding force between particles.

(発明が解決しようとする課題) しかしながら上記A Jl −8F e −4Ce 、
 A Jl−8Fe−2M0.Al1−8Fe−2Go
などの合金は、溶湯を105°C/sec以上で超急冷
凝固させたものを圧縮成形加工することにより、はじめ
て優れた耐熱性を発揮する合金であり、製造が容易でか
つ安価なガスアトマイズ粉末(冷却速度102〜105
℃/ s e c )では、十分な強度および耐熱性が
得られないという問題があった。
(Problem to be solved by the invention) However, the above A Jl -8F e -4Ce,
A Jl-8Fe-2M0. Al1-8Fe-2Go
These alloys are alloys that exhibit excellent heat resistance only when the molten metal is ultra-rapidly solidified at 105°C/sec or higher and then compression molded. Cooling rate 102-105
℃/sec), there was a problem that sufficient strength and heat resistance could not be obtained.

一方、105°C/sea以上の冷却速度が達成できる
超急冷凝固法には、急冷ロール法メルトスピニング法な
どがあるが、いずれも特殊な製造装置及び凝固技術を必
要とするため、コスト上昇な   ゛もたらす、さらに
、急冷ロール法によって製造される超急冷凝固材は、リ
ボン状薄帯またはフレーク状であり、このままの形状で
は圧縮成形に不適であるため、これを細片化する必要も
生じ、そのためコスト高となるという問題があった。
On the other hand, ultra-rapid solidification methods that can achieve a cooling rate of 105°C/sea or higher include the quench roll method and melt spinning method, but all of them require special manufacturing equipment and solidification technology, so they do not increase costs. In addition, the ultra-rapidly solidified material produced by the quench roll method is in the form of ribbons or flakes, and as it is unsuitable for compression molding, it is necessary to cut it into small pieces. Therefore, there was a problem of high cost.

従って本発明の目的は、製造が容易でかつ安価を、ガス
アトマイズ粉末を圧縮成形加工して得られる耐熱性アル
ミニウム合金及びその製造方法を提供することにある。
Therefore, an object of the present invention is to provide a heat-resistant aluminum alloy that is easy to manufacture and inexpensive and can be obtained by compression molding a gas atomized powder, and a method for manufacturing the same.

(課題を解決するための手段) 本発明者らは上記課題を解決するため鋭意研究を行った
結果特定のアルミニウム合金組成の溶湯な用いてガスア
トマイズ粉末を形成することにより上記目的を達成しう
ろことを見出しこの知見に基づき本発明を完成するにい
たった。
(Means for Solving the Problems) The present inventors have conducted intensive research to solve the above problems, and as a result, they have achieved the above objects by forming gas atomized powder using a molten metal of a specific aluminum alloy composition. Based on this finding, the present invention was completed.

すなわち1本発明は (1) F e 5.0〜15重量%(以下、単に%と
記す、 ) 、 Zn 0.1〜5%を含み、かつ、N
i0.5〜15%、 Co 0.5〜15%、Cr0.
7S15%、Zr0.3〜IOX、 V  0.3〜1
0%;、   Ce   0.5−10%、 W0.2
〜8%、T i 0.5〜10%;、M o 002〜
10%、Mn 0.5〜15%及びCu 0.2〜10
%のうち1種又は2種以上を含み、添加元素の総量が2
5%以下であり残部Alと不可避的不純物を有してなり
、Feを含む金属間化合物の平均サイズが0.07〜I
gmであることを特徴とする耐熱性アルミニウム合金材
及び (2) F e 5.0〜15%、Zn0.1〜5%を
含み、かツ、 N i  0.5〜15%、 Co 0
.5〜15%、 Cr0.7〜15X、 Z r  0
.:l 〜10%、V 0.3〜10%、Ce  0.
5〜10%、W0.2〜8%、Ti0.5〜10%、M
o  0.2〜10%、 Mn 0.5〜15%及びC
uO12〜10%のうち1種又は2種以上を含み、添加
元素の総量が25%以下であり残部Alと不可避的不純
物を有してなるAJI合金溶湯を、ガスアトマイズ法に
よって急冷凝固させて粉末を形成し。
That is, 1 the present invention includes (1) Fe 5.0 to 15% by weight (hereinafter simply referred to as %), Zn 0.1 to 5%, and N
i0.5-15%, Co 0.5-15%, Cr0.
7S15%, Zr0.3~IOX, V0.3~1
0%;, Ce 0.5-10%, W0.2
~8%, Ti 0.5~10%;, Mo 002~
10%, Mn 0.5-15% and Cu 0.2-10
%, and the total amount of added elements is 2.
5% or less, the balance is Al and unavoidable impurities, and the average size of the intermetallic compound containing Fe is 0.07 to I
(2) A heat-resistant aluminum alloy material characterized by being gm, and (2) containing Fe 5.0-15%, Zn 0.1-5%, Ni 0.5-15%, Co 0
.. 5-15%, Cr0.7-15X, Z r 0
.. :l ~10%, V 0.3~10%, Ce 0.
5-10%, W0.2-8%, Ti0.5-10%, M
o 0.2-10%, Mn 0.5-15% and C
A molten AJI alloy containing one or more of 12 to 10% of uO, the total amount of added elements being 25% or less, and the remainder containing Al and unavoidable impurities is rapidly solidified by gas atomization to form a powder. Formed.

これを熱間で圧縮成形加工することを特徴とする前記組
成を有し、かつ、Feを含む金属間化合物の平均サイズ
が0.07〜IILmである耐熱性アルミニウム合金材
の製造方法を提供するものである。
Provided is a method for producing a heat-resistant aluminum alloy material having the above composition and having an average size of Fe-containing intermetallic compound of 0.07 to IILm, the method comprising hot compression molding the material. It is something.

本発明によるアルミニウム合金材中の各成分の作用及び
その含有量を限定した理由は次の通りである。
The action of each component in the aluminum alloy material according to the present invention and the reason for limiting its content are as follows.

Fe含有量は5.0〜15%とする。Feはガスアトマ
イズ法による急冷凝固中にFeを含む金属間化合物とし
て微細に分散して高温強度を高める作用をする。この作
用はFe含有量が5.0%より少ない場合は十分でなく
、Fe含有量が15%を越えるとその作用の度合が飽和
するばかりではなく、金属間化合物が粗大となってしま
う。
Fe content shall be 5.0-15%. Fe is finely dispersed as an intermetallic compound containing Fe during rapid solidification by gas atomization, and has the effect of increasing high-temperature strength. This effect is not sufficient when the Fe content is less than 5.0%, and when the Fe content exceeds 15%, not only is the degree of this effect saturated, but the intermetallic compound becomes coarse.

Zn含有量は0.1〜5%とする。Znは。Zn content shall be 0.1-5%. Zn is.

Al中に固溶することによって、強度を向上させる作用
があり、また一部はFeを含まない金属間化合物として
微細に析出し常温強度を向上させる作用がある。これら
の作用はZnの含有量が0.1%より少ない場合は十分
ではなく、他方5%を越えるとその作用が飽和するだけ
でコストの上昇をまねく。
By forming a solid solution in Al, it has the effect of improving the strength, and a part of it precipitates finely as an intermetallic compound that does not contain Fe, and has the effect of improving the room temperature strength. These effects are not sufficient when the Zn content is less than 0.1%, and on the other hand, when the Zn content exceeds 5%, the effects are saturated, leading to an increase in cost.

Ni、C0.Cr、Zr、V、Ce、W。Ni, C0. Cr, Zr, V, Ce, W.

Ti、Moは、Feを含む金属間化合物を熱的に安定化
させる作用があり、その作用によって高温強度を高める
。Mn、Crは、Znと同様にA4に固溶することによ
って強度を向上させる作用とその一部か微細に析出する
ことによって強度を向上させる作用かある。Ni、C0
.Cr、Zr、V、Ce、W、Ti、M0.Mn、Cu
はそれぞれ、Ni0.5〜15%、Co0.5〜15%
、Cr0.7〜15%、Zr  0.3〜10%、V 
0.3〜10%、Ce095〜10%、W (1,2〜
8%、Ti0.5〜10%、Mo 0.2〜10%、M
n 0.5〜15%、Cu 0.2〜10%の範囲で1
種又は2種以上複合添加する。添加量が下限よりも少な
いとその作用が十分ではなく、また上限を越えても作用
の度合が飽和するばかりではなく、コストの上昇をもた
らす。
Ti and Mo have the effect of thermally stabilizing the intermetallic compound containing Fe, and this effect increases the high-temperature strength. Like Zn, Mn and Cr have the effect of improving the strength by being dissolved in A4 as a solid solution, and the effect of improving the strength by partially precipitating finely. Ni, C0
.. Cr, Zr, V, Ce, W, Ti, M0. Mn, Cu
are respectively Ni0.5-15% and Co0.5-15%
, Cr0.7-15%, Zr 0.3-10%, V
0.3~10%, Ce095~10%, W (1,2~
8%, Ti 0.5-10%, Mo 0.2-10%, M
1 in the range of n 0.5-15%, Cu 0.2-10%
Add seeds or a combination of two or more. If the amount added is less than the lower limit, the effect will not be sufficient, and if it exceeds the upper limit, not only will the degree of effect become saturated, but the cost will increase.

また全添加元素の総量は25%以下とする。この総量が
25%を越えるとその作用は飽和するばかりではなく、
コストの上昇をもたらす。
Further, the total amount of all additive elements is 25% or less. When this total amount exceeds 25%, the effect not only becomes saturated, but also
resulting in increased costs.

またA2中にBe、B、Na、Ca等の不可避的不純物
か0,5〜500ppm含まれていても、その特性に何
ら影響を受けない。
Further, even if 0.5 to 500 ppm of unavoidable impurities such as Be, B, Na, and Ca are contained in A2, the characteristics are not affected in any way.

次に、本発明において上記組成を有するアルミニウム合
金のFeを含む金属間化合物の平均サイズは0.07〜
1μmとする。
Next, in the present invention, the average size of the intermetallic compound containing Fe in the aluminum alloy having the above composition is 0.07~
It is set to 1 μm.

本発明のアルミニウム合金材の製造に当り、上記組成を
有するアルミニウム合金溶湯からガスアトマイズ法によ
って好ましくは10〜105°C/ s e cの冷却
速度で急冷凝固させて粉末を形成し、これを熱間で圧縮
成形加工する。ガスアトマイズ法は、塗料用、ロケット
の固体燃料用の純Ai粉末製造方法としてすでに広く用
いられている方法であり、その製造装置を利用すること
によって容易にかつ大量の合金粉末の製造が可能である
。したがって、製造技術が確立しており、大量生産プラ
ントがすでにあるガスアトマイズ法を利用することは、
コスト面で多大の利益を有する。また、ガスアトマイズ
法で製造される急冷凝固材は粒子状の粉末であるので、
急冷ロール法等によって製造されるリボン状薄帯、フレ
ークなどの形状に比べて、その取扱、圧縮成形が容易で
あるという利点があり、製造コスト上有利となる。
In producing the aluminum alloy material of the present invention, a molten aluminum alloy having the above composition is rapidly solidified by gas atomization at a cooling rate of preferably 10 to 105°C/sec to form a powder, which is then hot heated. compression molding process. The gas atomization method is already widely used as a method for producing pure Al powder for paints and rocket solid fuel, and by using its production equipment, it is possible to easily produce large amounts of alloy powder. . Therefore, using the gas atomization method, which has established manufacturing technology and already has mass production plants, is
It has great benefits in terms of cost. In addition, since the rapidly solidified material produced by the gas atomization method is a particulate powder,
It has the advantage of being easier to handle and compression mold than ribbon-like thin strips, flakes, etc. produced by the quench roll method, etc., and is advantageous in terms of production cost.

しかし、ガスアトマイズ法では、急冷凝固時に微細分散
するFeを含む金属間化合物のサイズを0.077zm
より小さくすることは現在のところ困難である。一般に
急冷凝固材中の化合物サイズは凝固速度か大きくなれ小
さくなる。例えば粒径が54m以下の粉末では、Feを
含む金属間化合物のサイズが0.07JLm以下となる
が、ガスアトマイズ法で製造した粉末における5Bm以
下の粉末の割合は約2〜3%と低く、それのみを分級し
て使用することは著しいコスト上昇をもたらす。よって
この場合Feを含む金属間化合物の大きさを0.07g
mより小さくすることは実質的にできない。しかし1通
常、ガスアトマイズ粉末を圧1a成形した成形材中のF
eを含む金属間化合物の平均サイズは0.07〜1μm
である。Feを含む金属間化合物の大きさが0.07〜
IJLmの範囲であれば十分耐熱性を発揮する。
However, in the gas atomization method, the size of the intermetallic compound containing Fe that is finely dispersed during rapid solidification is reduced to 0.077zm.
It is currently difficult to make it smaller. Generally, the size of compounds in a rapidly solidified material decreases as the solidification rate increases. For example, in a powder with a particle size of 54 m or less, the size of the intermetallic compound containing Fe is 0.07 JLm or less, but the proportion of powder of 5 Bm or less in powder produced by the gas atomization method is as low as about 2 to 3%. Classifying and using only this results in a significant increase in cost. Therefore, in this case, the size of the intermetallic compound containing Fe is 0.07g.
It is virtually impossible to make it smaller than m. However, 1. Normally, F
The average size of intermetallic compounds containing e is 0.07 to 1 μm
It is. The size of the intermetallic compound containing Fe is 0.07~
If it is in the range of IJLm, sufficient heat resistance will be exhibited.

次に粉末の熱間圧縮成形加工自体は常法に従って行うこ
とかできるが温度は400°C以下とするのが好ましい
。成形加工性の点からは加工温度は高いほど良い。しか
し、Ni、C0.Cr、Zr、V、Ce、W、Ti、M
oの添加がFeを含む金属間化合物を熱的に安定させ粗
大化するのを防止するとはいえ、400℃を越えた加工
温度では金属間化合物が粗大化し、強度及び耐熱性が低
下することがある。また高温加工した成形材は −加工
後直ちに水焼入れ等により急冷するのが好ましい、これ
によりZn、Mn、Cuの固溶量が増加してよりいっそ
うの強度向上がはかれる。
Next, hot compression molding of the powder itself can be carried out according to a conventional method, but the temperature is preferably 400°C or less. From the viewpoint of moldability, the higher the processing temperature, the better. However, Ni, C0. Cr, Zr, V, Ce, W, Ti, M
Although the addition of o thermally stabilizes intermetallic compounds containing Fe and prevents them from becoming coarse, processing temperatures exceeding 400°C may cause the intermetallic compounds to coarsen, resulting in a decrease in strength and heat resistance. be. Further, it is preferable that the molded material processed at high temperature is rapidly cooled by water quenching or the like immediately after processing.This increases the amount of solid solution of Zn, Mn, and Cu, thereby further improving the strength.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例 第1表に示す組成を有するアルミニウム合金(N0.1
〜N0.20)をそれぞれ常法により溶湯とし、この溶
湯からArガスアトマイズ法によって平均粒径70JL
mの粉末を製造した。このアトマイズにおける冷却速度
は10〜104°C/secであった番 次いで得られた各合金粉末を用いてそれぞれ、冷間予備
成形(密度比80%まで圧縮、直径100mm、長さ1
20mm)+アルミニウム缶封入→高温真空脱ガス(3
00℃)→熱間プレス成形(真密度まで)→外削・脱臼
の工程により、直径80 m m 、長さ150mmの
ビレットを作製し、これを300℃において押出し、直
径30mmの押出棒とした。
Example Aluminum alloy (N0.1) having the composition shown in Table 1
~N0.20) were each made into a molten metal by a conventional method, and from this molten metal, an average particle size of 70 JL was obtained by Ar gas atomization method.
m powder was produced. The cooling rate in this atomization was 10 to 104°C/sec. Each of the obtained alloy powders was cold preformed (compressed to a density ratio of 80%, diameter 100 mm, length 1
20mm) + aluminum can enclosure → high temperature vacuum degassing (3
A billet with a diameter of 80 mm and a length of 150 mm was produced by the steps of 00°C) → hot press molding (up to true density) → external grinding and dislocation, and this was extruded at 300°C to make an extruded rod with a diameter of 30 mm. .

以上のようにして得られた各合金押出材について、室温
および300℃(保持時間100hr)における引張試
験及びFeを含む金属間化合物の平均サイズの測定を行
った。その結果を第2表に示す。
For each of the alloy extruded materials obtained as described above, a tensile test was performed at room temperature and 300° C. (holding time: 100 hr), and the average size of the intermetallic compound containing Fe was measured. The results are shown in Table 2.

なお、Feを含む金属間化合物の平均サイズは次のよう
にして求めた。すなわち、各押出材組織を透過型電子顕
微鏡を用いて観察し、その組織写真から化合物の大きさ
を画像解析を用いて測定する。多数(1000個以上)
の化合物について測定を行い、その大きさを平均して化
合物の平均サイズとする。
Note that the average size of the intermetallic compound containing Fe was determined as follows. That is, the structure of each extruded material is observed using a transmission electron microscope, and the size of the compound is measured from a photograph of the structure using image analysis. Large number (1000 or more)
The size of the compound is measured and the size is averaged to obtain the average size of the compound.

第2表の結果から明らかなように、本発明方法によるア
ルミニウム合金(N0.1〜N0.17)に!超急冷凝
固法において用いられていた枇較例(N0.18〜N0
.20)4m比し、室温及び高温保持後の強度の双方に
おいて優れている。
As is clear from the results in Table 2, aluminum alloys (N0.1 to N0.17) produced by the method of the present invention! Comparative examples used in the ultra-rapid solidification method (N0.18 to N0
.. 20) Superior in both room temperature and high temperature strength compared to 4m.

(発明の効果) 本発明によれば、超急冷凝固法によらず、ガスアトマイ
ズ法により、耐熱強度(高温強度)を必要とするエンジ
ン部品、タービンインペラー、航空機部材などの材料に
好適な耐熱性アルミニウム合金を得ることができる。し
かも、本発明によるアルミニウム合金急冷凝固材は製造
が容易であるばかりでなく、アトマイズ粉末として得ら
れるのでそのまま圧縮成形に用いることができ上記材料
の量産及びコスト低下に顕著な優れた効果を奏する。
(Effects of the Invention) According to the present invention, heat-resistant aluminum suitable for materials such as engine parts, turbine impellers, and aircraft parts that require heat-resistant strength (high-temperature strength) can be produced by the gas atomization method without using the ultra-rapid solidification method. Alloys can be obtained. Furthermore, the aluminum alloy rapidly solidified material according to the present invention is not only easy to manufacture, but also can be used as is for compression molding since it is obtained as an atomized powder, which has a remarkable effect on mass production and cost reduction of the above-mentioned material.

Claims (2)

【特許請求の範囲】[Claims] (1)Fe5.0〜15%、Zn0.1〜5%を含み、
かつ、Ni0.5〜15%、Co0.5〜15%、Cr
0.7〜15%、Zr0.3〜10%、V0.3〜10
%、Ce0.5〜10%、W0.2〜8%、Ti0.5
〜10%、Mo0.2〜10%、Mn0.5〜15%及
びCu0.2〜10%のうち1種又は2種以上を含み、
添加元素の総量が25%以下(以上、%は重量%を示す
。)であり残部Alと不可避的不純物を有してなり、F
eを含む金属間化合物の平均サイズが0.07〜1μm
であることを特徴とする耐熱性アルミニウム合金材。
(1) Contains Fe5.0-15%, Zn0.1-5%,
and Ni0.5-15%, Co0.5-15%, Cr
0.7-15%, Zr0.3-10%, V0.3-10
%, Ce0.5-10%, W0.2-8%, Ti0.5
-10%, Mo0.2-10%, Mn0.5-15% and Cu0.2-10%, containing one or more types,
F
The average size of intermetallic compounds containing e is 0.07 to 1 μm
A heat-resistant aluminum alloy material characterized by:
(2)Fe5.0〜15%、Zn0.1〜5%を含み、
かつ、Ni0.5〜15%、Co0.5〜15%、Cr
0.7〜15%、Zr0.3〜10%、V0.3〜10
%、Ce0.5〜10%、W0.2〜8%、Ti0.5
〜10%、Mo0.2〜10%、Mn0.5〜15%及
びCu0.2〜10%のうち1種又は2種以上を含み、
添加元素の総量が25%以下(以上、%は重量%を示す
。)であり残部Alと不可避的不純物を有してなるAl
合金溶湯を、ガスアトマイズ法によって急冷凝固させて
粉末を形成し、これを熱間で圧縮成形加工することを特
徴とする前記組成を有し、かつ、Feを含む金属間化合
物の平均サイズが0.07〜1μmである耐熱性アルミ
ニウム合金材の製造方法。
(2) Contains Fe5.0-15%, Zn0.1-5%,
and Ni0.5-15%, Co0.5-15%, Cr
0.7-15%, Zr0.3-10%, V0.3-10
%, Ce0.5-10%, W0.2-8%, Ti0.5
-10%, Mo0.2-10%, Mn0.5-15% and Cu0.2-10%, containing one or more types,
Al in which the total amount of added elements is 25% or less (herein, % indicates weight %), and the balance is Al and unavoidable impurities.
The molten alloy is rapidly solidified by gas atomization to form a powder, which is then hot compression molded. A method for producing a heat-resistant aluminum alloy material having a thickness of 0.07 to 1 μm.
JP63148376A 1988-06-17 1988-06-17 Heat-resistant aluminum alloy material and its manufacture Pending JPH01316434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63148376A JPH01316434A (en) 1988-06-17 1988-06-17 Heat-resistant aluminum alloy material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63148376A JPH01316434A (en) 1988-06-17 1988-06-17 Heat-resistant aluminum alloy material and its manufacture

Publications (1)

Publication Number Publication Date
JPH01316434A true JPH01316434A (en) 1989-12-21

Family

ID=15451376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63148376A Pending JPH01316434A (en) 1988-06-17 1988-06-17 Heat-resistant aluminum alloy material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01316434A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256877A (en) * 1993-03-02 1994-09-13 Takeshi Masumoto High strength and high corrosion resistant aluminum base alloy
KR100750964B1 (en) * 2006-02-04 2007-08-22 아주대학교산학협력단 Elementally mixed aluminum-copper-zinc base powder, method of fabricating article of sintered alloy using the same and article fabricated using the same
US11618081B2 (en) * 2017-05-26 2023-04-04 Hamilton Sundstrand Corporation Method of manufacturing aluminum alloy articles
US11773471B2 (en) 2017-05-26 2023-10-03 Hamilton Sundstrand Corporation Aluminum alloy articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256877A (en) * 1993-03-02 1994-09-13 Takeshi Masumoto High strength and high corrosion resistant aluminum base alloy
KR100750964B1 (en) * 2006-02-04 2007-08-22 아주대학교산학협력단 Elementally mixed aluminum-copper-zinc base powder, method of fabricating article of sintered alloy using the same and article fabricated using the same
US11618081B2 (en) * 2017-05-26 2023-04-04 Hamilton Sundstrand Corporation Method of manufacturing aluminum alloy articles
US11773471B2 (en) 2017-05-26 2023-10-03 Hamilton Sundstrand Corporation Aluminum alloy articles

Similar Documents

Publication Publication Date Title
US5458700A (en) High-strength aluminum alloy
JPS63157831A (en) Heat-resisting aluminum alloy
JPS6283446A (en) High strength corrosion resistant magnesium base metal alloysolidified quickly, its production and metal article compressed from said alloy
JPH0565584A (en) Production of high strength aluminum alloy powder
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0153342B2 (en)
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPH01316434A (en) Heat-resistant aluminum alloy material and its manufacture
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPS60234936A (en) Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
US3265493A (en) Aluminum base pellet alloys containing copper and magnesium and process for producing the same
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH01319643A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
US3139334A (en) Atomized lead-aluminum alloy powder article
JPS6310222B2 (en)
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
US3282745A (en) High strength fabrications of aluminum base alloys containing copper