JPH01319643A - Heat-resistant aluminum alloy material and its manufacture - Google Patents

Heat-resistant aluminum alloy material and its manufacture

Info

Publication number
JPH01319643A
JPH01319643A JP63150802A JP15080288A JPH01319643A JP H01319643 A JPH01319643 A JP H01319643A JP 63150802 A JP63150802 A JP 63150802A JP 15080288 A JP15080288 A JP 15080288A JP H01319643 A JPH01319643 A JP H01319643A
Authority
JP
Japan
Prior art keywords
powder
alloy material
aluminum alloy
intermetallic compound
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63150802A
Other languages
Japanese (ja)
Inventor
Hidemiki Matsumoto
松本 英幹
Minoru Hayashi
稔 林
Yoshisuke Asada
浅田 喜介
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP63150802A priority Critical patent/JPH01319643A/en
Publication of JPH01319643A publication Critical patent/JPH01319643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain the subject alloy material by forming the molten metal of an Al alloy having the compsn. in which the content of Fe, Ce, etc., is specified into powder by a gas atomizing method, subjecting it to compacting and limiting the size of an iron-contg. intermetallic compound. CONSTITUTION:An alloy contg., by weight, 5.0-15% Fe, 0.5-5% Ce and one or more kinds among 0.5-15% Co, 0.7-15% Cr, 0.3-10% Zr and 0.5-10% Ti, in which the total amt. of the elements to be added is regulated to <=25% and the balance Al with inevitable impurities is refined. The molten metal is subjected to rapid solidification by a gas atomizing method to form powder. The powder is subjected to hot compacting to manufacture an Al alloy material in which the average size of an Fe-contg. intermetallic compound is regulated to 0.07-1mum. If required, either about 0.5-15% Mn or about 0.2-10% Cu is furthermore added to the above compsn. By this method, the Al alloy material having excellent heat resistance can easily be mass-manufactured.

Description

【発明の詳細な説明】 (lL業上の利用分野) 本発明は耐熱性に優れるアルミニウム合金材及び粉末冶
金法によるその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Use) The present invention relates to an aluminum alloy material with excellent heat resistance and a method for producing the same using a powder metallurgy method.

(従来の技術) 自動車用エンジン部品、ガスターヒンのインペラー、航
空機部材なとの材料は100〜400°Cての高温強度
か必要とされる。これらの相料をアルミニウム合金とす
れば、軽量化に伴う多くの利点か得られる。しかし、ア
ルミニウム及びその合金は、一般に1+’7; IHn
での強度か低い。例えば室温での強度に優れるアルミニ
ウム合金(AA2018.2218.4032なと)に
おいても200°C以りの温度ては著しく強度か低トす
る。
(Prior Art) Materials for automobile engine parts, gas turbine impellers, aircraft parts, etc. are required to have high-temperature strength at 100 to 400°C. If these phase materials are aluminum alloys, many advantages associated with weight reduction can be obtained. However, aluminum and its alloys are generally 1+'7; IHn
Intensity or low. For example, even in aluminum alloys (such as AA2018.2218.4032) that have excellent strength at room temperature, the strength decreases significantly at temperatures above 200°C.

これに対し、近年、アルミニウムに種々の遷移元素を多
量に添加し、溶湯な急冷凝固させて得られる粉末または
リボン状薄帯を高温圧縮加工して1耐熱性アルミニウム
合金とするアルミニウム粉末冶金法か開発され、Al−
8Fe−4Ce、A父−8Fe−2M0.Al−8Fe
−2Goなどの合金か提供されている。
In contrast, in recent years, aluminum powder metallurgy has been developed, in which a heat-resistant aluminum alloy is produced by high-temperature compression processing of a powder or ribbon-like thin strip obtained by adding large amounts of various transition elements to aluminum and rapidly solidifying the molten metal. Developed, Al-
8Fe-4Ce, Father A-8Fe-2M0. Al-8Fe
-2Go and other alloys are available.

アルミニウム合金系の粉末冶金法による製造工程(J急
冷凝固法としてアI〜マイズ法、双ロール法、ヌは噴霧
ロール法等により合金溶湯な急冷凝固して粉末状、リホ
ン状、又はフレーク状とし、これを冷間成形により密度
比(真密度に対する比率)70%以上の圧粉体とし封缶
後、真空脱ガス処理を行フた後熱間加工により密度比1
00%のビレッhを成形し、さらに粒子間の結合力を高
めるために押出し、鍛造等により成形する方法か一般的
に用いられている。
Manufacturing process using powder metallurgy for aluminum alloys (J rapid solidification method: Aimize method, twin roll method, N is a spray roll method, etc.) to rapidly solidify the molten alloy into powder, liphon, or flake form. This is then cold formed into a green compact with a density ratio (ratio to true density) of 70% or more, sealed in a can, vacuum degassed, and then hot worked to a density ratio of 1.
A commonly used method is to form a 00% fillet h and further form it by extrusion, forging, etc. in order to increase the bonding force between the particles.

(発明か解決しようとする課題) しかしなから−1−記A、Q−8Fe−4Ce、An−
8Fe−2Mo、Al−8Fe−2Goなどの合金は、
溶湯を105°C/sec以−にて超急冷凝固させたも
のを圧縮成形加工することにより、ばしめて優れた耐熱
性を発揮する合金であり、製造か容易てかつ安価なカス
アトマイズ粉末(冷却速度10〜105°C/5ec)
てば、十分な強度および耐熱性か得られないという問題
かあった。
(Invention or problem to be solved) However, from-1-A, Q-8Fe-4Ce, An-
Alloys such as 8Fe-2Mo and Al-8Fe-2Go are
It is an alloy that exhibits excellent heat resistance by compacting the molten metal by ultra-rapidly solidifying it at 105°C/sec or higher and then compressing it. Speed 10~105°C/5ec)
Another problem was that sufficient strength and heat resistance could not be obtained.

一方、105°C/sec以」−の冷却速度か達成てき
る超急冷凝固法には、急冷ロール法メルl−スビニンク
法なとかあるか、いずれも特殊な製造装置及び凝固技術
を必要とするため、コス1〜」二昇をもたらす。ざらに
、急冷ロール法によって製造される超急冷凝固材は、リ
ボン状薄帯またはフレーク状であり、このままの形状て
は圧縮成形に不適であるため、これを細片化する必要も
生し、そのためニス1〜高となるという問題かあった。
On the other hand, there are ultra-rapid solidification methods that can achieve cooling rates of 105°C/sec or higher, such as the rapid-cooling roll method and the Mel-Svininck method, all of which require special manufacturing equipment and solidification technology. Therefore, it brings about 1 to 2 rises in cost. In general, the ultra-rapidly solidified material produced by the quench roll method is in the form of ribbons or flakes, and as it is, it is not suitable for compression molding, so it is necessary to cut it into small pieces. Therefore, there was a problem that the varnish was 1 to high.

従って本発明の目的は、製造か容易でかつ安価を、ガス
ア1〜マイズ粉末を圧縮成形加工して得られる耐熱性ア
ルミニウム合金及びその製造方法を提供することにある
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat-resistant aluminum alloy that can be produced easily and inexpensively by compression molding a gas-amized powder, and a method for producing the same.

(課題を解決するだめの手段) 木発明者らは」二記課題を解決するため鋭意研究を行っ
た結果特定のアルミニウム合金組成の溶湯な用いてカス
プ1ヘマイス粉末を形成することにより上記1]的を達
成しうろことを見出しこの知見に基づき本発明を完成す
るにいたった。
(Means for solving the problem) The inventors of the present invention conducted intensive research to solve the problem described in item 1 above by forming cusp 1 hemais powder using a molten metal of a specific aluminum alloy composition. The inventors discovered that the objective could be achieved, and based on this knowledge, they completed the present invention.

すなわち、本発明は (1) Fe  5.0〜15重量%(以下単に%と記
ず。)、Ce0.5〜5%を含み、かつ、Co0.5〜
15%、Cr  0.7〜15%、Zr0.3〜1.0
%及びTi0.5〜10%のうち1種又は2種以上を含
み、添加元素の総量が25%以下であり残部Anと不可
避的不純物を有してなり、Feを含む金属間化合物の平
均サイズか0.07〜1)Lmであることを特徴とする
耐熱性アルミニウム合金相、(2) F e  5.O
〜15%、Ce0.5〜5%を含み、かつ、Co 0.
5〜15%、Cr0.7〜15%、Zr0.3〜10%
及びTi0.5〜10%のうち1種又は2種以上を含み
、さらにMn0.5〜15%及びCuO82〜10%の
うちいずれか1種を含み、添加元素の総量か25%以下
であり残部A、lと不可避的下−純物を有してなり、F
eを含む金属間化合物の平均サイズか007〜igmで
あることを特徴とする耐熱性アルミニウム合金材、 (3) F e 5.0〜15%、Ce0.5〜5%を
含み、かつ、Co  0.5〜15%、Cr 0.7〜
15%、Zr0.3〜10%及びTi0.5〜10%の
うち1種又は2種以上を含み、呼加元素の総量か25%
以Fであり残部Alと不可避的不純物を有してなるAl
合金溶湯を、ガスアトマイズ法によって急冷凝固させて
粉末を形成し、これを熱間て圧縮成形加〒することを特
徴とする前記組成を有し、かつ、Feを含む金属間化合
物の平均サイズか0.07%1pLmである耐熱性アル
ミニウム合金材の製造方法及び (4) F e  5.0〜15%、Ce 0.5〜5
%を含み、かつ、Co 0.5〜15%、Cr 0.7
〜15%、Zr0.3〜10%及びTi0.5〜10%
のうち1種又は2種以上を含み、さらにMn0.5〜1
5%及びCuO02〜10%のうちいずれか1種を含み
、添加元素の総量か25%以下であり残部Anと不可避
的不純物を有してなるAl合金溶湯を、ガスアトマイズ
法によって急冷凝固させて粉末を形成し、これを熱間て
圧縮成形加工することを特徴とする前記組成を有し、か
つ、Feを含む金属間化合物の平均サイズか0.07〜
1μmである耐熱性アルミニウム合金材の製造方法 を提供するものである。
That is, the present invention includes (1) 5.0 to 15% by weight of Fe (hereinafter simply referred to as %), 0.5 to 5% of Ce, and 0.5 to 15% of Co.
15%, Cr 0.7-15%, Zr 0.3-1.0
% and 0.5 to 10% of Ti, the total amount of added elements is 25% or less, the balance is An and unavoidable impurities, and the average size of an intermetallic compound containing Fe. (2) F e 5. O
~15%, 0.5~5% of Ce, and 0.5% of Co.
5-15%, Cr0.7-15%, Zr0.3-10%
and 0.5 to 10% of Ti, and further contains any one of 0.5 to 15% of Mn and 82 to 10% of CuO, with the total amount of added elements being 25% or less and the remainder A, with an unavoidable lower purity, F
A heat-resistant aluminum alloy material characterized in that the average size of intermetallic compounds containing e is 007 to igm, (3) containing 5.0 to 15% of Fe, 0.5 to 5% of Ce, and 0.5-15%, Cr 0.7-
15%, one or more of Zr0.3-10% and Ti0.5-10%, and the total amount of added elements is 25%
Al with the remainder Al and unavoidable impurities
The molten alloy is rapidly solidified by gas atomization to form a powder, which is then hot compression molded. .07% 1pLm manufacturing method of heat-resistant aluminum alloy material and (4) Fe 5.0-15%, Ce 0.5-5
%, and Co 0.5-15%, Cr 0.7
~15%, Zr0.3-10% and Ti0.5-10%
Contains one or more of the following, and further includes Mn0.5 to 1
A molten Al alloy containing any one of 5% and 02 to 10% CuO, the total amount of added elements is 25% or less, and the balance is An and unavoidable impurities is rapidly solidified by gas atomization to produce a powder. The average size of the intermetallic compound containing Fe and having the above-mentioned composition is formed by hot compression molding.
The present invention provides a method for manufacturing a heat-resistant aluminum alloy material having a thickness of 1 μm.

本発明によるアルミニウム合金材中の各成分の作用及び
その含有量を限定した理由は次の通りである。
The action of each component in the aluminum alloy material according to the present invention and the reason for limiting its content are as follows.

Fe含有量は5.0〜15%とする。Feはガスアトマ
イズ法による急冷凝固中にFeを含む金属間化合物とし
て微細に分散して高温強度を高める作用をする。この作
用はFe含有量が5.0%より少ない場合は十分てなく
、Fe含有量か15%を越えるとその作用の度合か飽和
するばかりはでなく、金属間化合物か粗大となってしま
う。
Fe content shall be 5.0-15%. Fe is finely dispersed as an intermetallic compound containing Fe during rapid solidification by gas atomization, and has the effect of increasing high-temperature strength. This effect is not sufficient when the Fe content is less than 5.0%, and when the Fe content exceeds 15%, not only does the degree of this effect become saturated, but the intermetallic compound becomes coarse.

Ce含有力量0.5〜5%とする。Ceは、Feを含む
金属間化合物を微細化する作用と、その化合物の熱的安
定性を高める作用かあり、これらの作用により高温強度
を高める。これらの作用はCeの含有量か0,5%より
少ない場合は十分てなく、他方5%を越えるとその作用
か飽和するたけてコス1〜の一■二1をまねく。
The Ce content is set to 0.5 to 5%. Ce has the effect of refining the intermetallic compound containing Fe and the effect of increasing the thermal stability of the compound, and these effects increase the high-temperature strength. These effects are not sufficient when the Ce content is less than 0.5%, and on the other hand, when it exceeds 5%, the effects become saturated, resulting in a cost of 1 to 121.

Co、Cr、Zr、Tiはそれぞれ、Co0.5〜15
%、Cr  0.7〜15%、Zr0j〜]−0%及び
Ti0.5〜10%の範囲で1種又は2種以上複合添加
する。Co、Cr、Zr、TiはCeと同様にFeを含
む金属間化合物を熱的に安定させる作用かあり、その作
用によって高温強度を高める。また、Mn 0.5〜1
5%及びCu 0.1〜1.0%のいずれか1種を添加
する。Mn、Cuは、Alに固溶することによって強度
を向上させる作用と、その−部か微細に析出することに
よって強度を向」ニさせる作用かある。それぞれの元素
の添加量か下限よりも少ないとその作用か十分てはなく
、また」−眼を越えても作用の度合か飽和するはかりて
はなく、コストの」−昇をもたらす。
Co, Cr, Zr, and Ti are each Co0.5 to 15
%, Cr 0.7 to 15%, Zr0j~]-0% and Ti 0.5 to 10%. One or more of them are added in combination. Like Ce, Co, Cr, Zr, and Ti have the effect of thermally stabilizing the intermetallic compound containing Fe, and this effect increases the high-temperature strength. Moreover, Mn 0.5-1
5% and any one of Cu 0.1 to 1.0% is added. Mn and Cu have two functions: one is to improve the strength by solid solution in Al, and the other is to improve the strength by finely precipitating in the lower part. If the amount of each element added is less than the lower limit, the effect will not be sufficient, and even if the amount exceeds the level of effect, the effect will not be saturated, leading to an increase in cost.

また全添加元素の総量は25%以下とする。この総量か
25%を越えるとその作用は飽和するば−かりてはなく
、コストの上昇をもたらす。
Further, the total amount of all additive elements is 25% or less. If the total amount exceeds 25%, the effect not only becomes saturated, but also increases the cost.

またAl中にBe、B、Na、Ca等の不可避的不純物
か0.5〜500ppm含まれていても、その特性に何
ら影響を受けない。
Further, even if 0.5 to 500 ppm of unavoidable impurities such as Be, B, Na, and Ca are contained in Al, the characteristics are not affected in any way.

次に、本発明において上記組成を有するアルミニウム合
金のFeを含む金属間化合物の平均サイズば0.07%
1ルmとする。
Next, in the present invention, the average size of the intermetallic compound containing Fe in the aluminum alloy having the above composition is 0.07%.
1 lm.

本発明のアルミニウム合金材の製造に当り、上記組成を
有するアルミニウム合金溶湯からガスアトマイズ法によ
って好ましくは10〜105°C7s e cの冷却速
度て急冷凝固させて粉末を形成し、これを熱間て圧縮成
形加工する。ガスアトマイズ法は、塗料用、ロケッ1−
の固体燃料用の純An粉末製造方法としてずてに広く用
いられている方法であり、その製造装置を利用すること
によって容易にかつ大量の合金粉末の製造か可能である
。したかって、製造技術か確立しており、大量生産プラ
ン1〜かずてにあるカスアトマイズ法を利用することは
、ニスl−面で多大の利益を有する。また、カスアトマ
イズ法て製造される急冷凝固材は粒子状の粉末であるの
て、急冷ロール法等によって製造されるリホン状薄帯、
フレークなとの形状に比べて、その取扱、圧縮成形か容
易であるという利点かあり、製造コスト」−有利となる
In producing the aluminum alloy material of the present invention, a molten aluminum alloy having the above composition is rapidly solidified by gas atomization at a cooling rate of preferably 10 to 105° C.7 sec to form a powder, which is then hot compressed. Shape and process. Gas atomization method is used for paint, rocket 1-
This method has been widely used as a method for producing pure An powder for solid fuel, and by using the production equipment, it is possible to easily produce a large amount of alloy powder. Therefore, the manufacturing technology is well established, and the use of the customization method in mass production plans 1 to 1 has great benefits for varnish surfaces. In addition, since the rapidly solidified material produced by the cast atomization method is a particulate powder, it is also possible to
Compared to flake shapes, it has the advantage of being easier to handle and compression mold, and is advantageous in terms of manufacturing costs.

しかし、カスアトマイズ法ては、急冷凝固時に微細分散
するFeを含む金属間化合物のサイズな0.07gmよ
り小さくすることは現在のところ困難である。
However, with the cast atomization method, it is currently difficult to reduce the size of the Fe-containing intermetallic compound that is finely dispersed during rapid solidification to less than 0.07 gm.

下の粉末ては、Feを含む金属間化合物のサイズか0.
077zm以丁となるが、ガスア1ヘマイス法で製造し
た粉末における5gm以下の粉末の割合は約2〜3%と
低く、それのみを分級して使用することは著しいコス)
へ上昇をもたらす。よってこの場合Feを含む金属間化
合物の大きさを0.07pLmより小さくすることは実
質的にてきない。しかし、通常、カスア1ヘマイス粉末
を圧綿成形した成形材中のFeを含む金属間化合物の平
均サイズは0.07〜1μmである。Feを含む金属間
化合物の大きざか0.07〜1ルmの範囲であれば十分
耐熱性を発揮する。
The powder below has a size of 0.0.
However, the proportion of powder of 5 gm or less in the powder produced by the Gasa 1 Hemeis method is low at about 2 to 3%, and it is extremely costly to classify and use only that.)
bring about a rise in Therefore, in this case, it is virtually impossible to reduce the size of the intermetallic compound containing Fe to less than 0.07 pLm. However, the average size of the Fe-containing intermetallic compound in a molded material obtained by compressing Kasua 1 Hemais powder is usually 0.07 to 1 μm. If the size of the intermetallic compound containing Fe is in the range of 0.07 to 1 m, sufficient heat resistance will be exhibited.

次に粉末の熱間圧縮成形加工自体は常法に従って行うと
とかてきるか温度は4006C以下とするのか好ましい
。成形加工性の点からは加工温度は高いほど良い。しか
し、Ce、Co、Cr、Zr、Tiの添加かFeを含む
金属間化合物を熱的に安定させ粗大化するのを防止する
とはいえ、400°Cを越えた加工温度では金属間化合
物か粗大化し、強度及び耐熱性が低下することかある。
Next, it is preferable that the hot compression molding of the powder itself be carried out according to a conventional method, or that the temperature be 4006C or less. From the viewpoint of moldability, the higher the processing temperature, the better. However, although the addition of Ce, Co, Cr, Zr, and Ti thermally stabilizes intermetallic compounds containing Fe and prevents them from becoming coarse, processing temperatures exceeding 400°C cause intermetallic compounds to become coarse. The strength and heat resistance may deteriorate.

また高温加工した成形相は加工後直ちに水焼入れ等によ
り急冷するのか好ましい。これによりMn又はCuの固
溶量か増加してよりいっそうの強度向上かはかれる。
Further, it is preferable that the molded phase processed at high temperature is rapidly cooled by water quenching or the like immediately after processing. This increases the solid solution amount of Mn or Cu to determine whether the strength is further improved.

(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例 第1表に示す組成を有するアルミニウム合金(No、1
〜No、20)をそれぞれ常法により溶湯とし、この溶
湯からArカスア1〜マイズ法によって平均粒径70g
mの粉末を製造した。このアトマイズにおける冷却速度
ば10〜104°C/secであった。
Example Aluminum alloy (No. 1) having the composition shown in Table 1
~No., 20) were each made into a molten metal by a conventional method, and from this molten metal, an average particle size of 70 g was obtained by an Ar caster 1~mize method.
m powder was produced. The cooling rate in this atomization was 10 to 104°C/sec.

次いて得られた各合金粉末を用いてそれぞれ、冷間予備
成形(雀度比80%まで圧縮、直径100mm、長さ1
20mm)−+アルミニウム缶封入→高温真空脱ガス(
300°C)→熱間プレス成形(真密度まて)→外削・
脱缶の工程により、直径80mm、長さ150mmのヒ
レットを作製し、これを300°Cにおいて押出し、直
径30mmの押出材とした。
Next, each of the obtained alloy powders was cold preformed (compressed to a compression ratio of 80%, diameter 100 mm, length 1
20mm) - + aluminum can enclosure → high temperature vacuum degassing (
300°C) → Hot press forming (true density) → External cutting/
Through the decanning process, a fillet with a diameter of 80 mm and a length of 150 mm was produced, and this was extruded at 300°C to obtain an extruded material with a diameter of 30 mm.

以上のようにして得られた各合金押出材について、室温
および300°C(保持時間100hr)における引張
試験及びFeを含む金属間化合物の平均サイズの測定を
行った。その結果を第2表に示す。
For each alloy extruded material obtained as described above, a tensile test was performed at room temperature and 300°C (holding time 100 hr), and the average size of the intermetallic compound containing Fe was measured. The results are shown in Table 2.

なお、Feを含む金属間化合物の平均サイズは次のよう
にして求めた。すなわち、各押出材組織を透過型電子顕
微鏡を用いて観察し、その組織写真から化合物の大きさ
を画像解析を用いて測定する。多数(1000個以上)
の化合物についてl!In定を行い、その大きさを平均
して化合物の平均サイズとする。
Note that the average size of the intermetallic compound containing Fe was determined as follows. That is, the structure of each extruded material is observed using a transmission electron microscope, and the size of the compound is measured from a photograph of the structure using image analysis. Large number (1000 or more)
About the compound of l! In determination is performed and the sizes are averaged to determine the average size of the compound.

第2表の結果から明らかなように、本発明方法によるア
ルミニウム合金(No、1〜No、17)は超急冷凝固
法において用いられていた比較例(No、 1.8〜N
o、20 )に比し、室温及び高温保持後の強度の双方
において優れている。
As is clear from the results in Table 2, the aluminum alloys (No. 1 to No. 17) produced by the method of the present invention were compared to the comparative examples (No. 1.8 to N.
o, 20), it is superior in both strength at room temperature and after being held at high temperatures.

(発明の効果) 本発明によれは、超急冷凝固法によらず、ガスアl〜マ
イズ法により、耐熱強度(高温強度)を必要とするエン
ジン部品、タービンインペラー、航空機部材などの利料
に好適な耐熱性アルミニウム合金を得ることかてきる。
(Effects of the Invention) The present invention is suitable for manufacturing engine parts, turbine impellers, aircraft parts, etc. that require heat-resistant strength (high temperature strength) by using a gas aluminization method without using an ultra-rapid solidification method. It is possible to obtain a heat-resistant aluminum alloy.

しかも、本発明によるアルミニウム合金急冷凝固相は製
造か容易であるばかりでなく、ア1〜マイズ粉末として
得られるのてそのまま圧縮成形に用いることかてき」二
記材料の量産及びコスト低下に顕著な優れた効果を奏す
る。
Moreover, the rapidly solidified aluminum alloy phase according to the present invention is not only easy to manufacture, but also can be obtained as an atomized powder and used as it is for compression molding. It has excellent effects.

Claims (4)

【特許請求の範囲】[Claims] (1)Fe5.0〜15%、Ce0.5〜5%を含み、
かつ、Co0.5〜15%、Cr0.7〜15%、Zr
0.3〜10%及びTi0.5〜10%のうち1種又は
2種以上を含み、添加元素の総量が25%以下(以上、
%は重量%を示す。)であり残部Alと不可避的不純物
を有してなり、Feを含む金属間化合物の平均サイズが
0.07〜1μmであることを特徴とする耐熱性アルミ
ニウム合金材。
(1) Contains 5.0 to 15% Fe, 0.5 to 5% Ce,
and Co0.5-15%, Cr0.7-15%, Zr
Contains one or more of 0.3 to 10% Ti and 0.5 to 10% Ti, and the total amount of added elements is 25% or less (or more,
% indicates weight %. ), the balance is Al and unavoidable impurities, and the average size of the Fe-containing intermetallic compound is 0.07 to 1 μm.
(2)Fe5.0〜15%、Ce0.5〜5%を含み、
かつ、Co0.5〜15%、Cr0.7〜15%、Zr
0.3〜10%及びTi0.5〜10%のうち1種又は
2種以上を含み、さらにMn0.5〜15%及びCu0
.2〜10%のうちいずれか1種を含み、添加元素の総
量か25%以下(以上、%は重量%を示す。)であり残
部Alと不可避的不純物を有してなり、Feを含む金属
間化合物の平均サイズが0.07〜1μmであることを
特徴とする耐熱性アルミニウム合金材。
(2) Contains Fe5.0-15%, Ce0.5-5%,
and Co0.5-15%, Cr0.7-15%, Zr
Contains one or more of 0.3-10% and Ti0.5-10%, and further contains Mn0.5-15% and Cu0.
.. A metal containing any one of 2 to 10%, the total amount of added elements is 25% or less (herein, % indicates weight %), the balance is Al and unavoidable impurities, and contains Fe. A heat-resistant aluminum alloy material characterized in that the average size of interstitial compounds is 0.07 to 1 μm.
(3)Fe5.0〜15%、Ce0.5〜5%を含み、
かつ、Co0.5〜15%、Cr0.7〜15%、Zr
0.3〜10%及びTi0.5〜10%のうち1種又は
2種以上を含み、添加元素の総量が25%以下(以上、
%は重量%を示す。)であり残部Alと不可避的不純物
を有してなるAl合金溶湯を、ガスアトマイズ法によっ
て急冷凝固させて粉末を形成し、これを熱間で圧縮成形
加工することを特徴とする前記組成を有し、かつ、Fe
を含む金属間化合物の平均サイズが0.07〜1μmで
ある耐熱性アルミニウム合金材の製造方法。
(3) Contains Fe5.0-15%, Ce0.5-5%,
and Co0.5-15%, Cr0.7-15%, Zr
Contains one or more of 0.3 to 10% Ti and 0.5 to 10% Ti, and the total amount of added elements is 25% or less (or more,
% indicates weight %. ) having the above-mentioned composition, which is characterized in that a molten Al alloy having the remainder Al and unavoidable impurities is rapidly solidified by gas atomization to form a powder, which is then hot compression molded. , and Fe
A method for producing a heat-resistant aluminum alloy material in which the average size of intermetallic compounds containing is 0.07 to 1 μm.
(4)Fe5.0〜15%、Ce0.5〜5%を含み、
かつ、Co0.5〜15%、Cr0.7〜15%、Zr
0.3〜10%及びTi0.5〜10%のうち1種又は
2種以上を含み、さらにMn0.5〜15%及びCu0
.2〜10%のうちいずれか1種を含み、添加元素の総
量か25%以下(以上、%は重量%を示す。)であり残
部Alと不可避的不純物を有してなるAl合金溶湯を、
ガスアトマイズ法によって急冷凝固させて粉末を形成し
、これを熱間で圧縮成形加工することを特徴とする前記
組成を有し、かつ、Feを含む金属間化合物の平均サイ
ズが0.07〜1μmである耐熱性アルミニウム合金材
の製造方法。
(4) Contains Fe5.0-15%, Ce0.5-5%,
and Co0.5-15%, Cr0.7-15%, Zr
Contains one or more of 0.3-10% and Ti0.5-10%, and further contains Mn0.5-15% and Cu0.
.. A molten Al alloy containing any one of 2 to 10%, the total amount of added elements is 25% or less (herein, % indicates weight %), and the balance is Al and unavoidable impurities.
A powder having the above composition characterized in that it is rapidly solidified by gas atomization to form a powder and then hot compression molded, and the average size of the intermetallic compound containing Fe is 0.07 to 1 μm A method of manufacturing a certain heat-resistant aluminum alloy material.
JP63150802A 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture Pending JPH01319643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150802A JPH01319643A (en) 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150802A JPH01319643A (en) 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture

Publications (1)

Publication Number Publication Date
JPH01319643A true JPH01319643A (en) 1989-12-25

Family

ID=15504748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150802A Pending JPH01319643A (en) 1988-06-18 1988-06-18 Heat-resistant aluminum alloy material and its manufacture

Country Status (1)

Country Link
JP (1) JPH01319643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127401A1 (en) * 2018-11-02 2020-05-07 AM Metals GmbH High-strength aluminum alloys for the additive manufacturing of three-dimensional objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127401A1 (en) * 2018-11-02 2020-05-07 AM Metals GmbH High-strength aluminum alloys for the additive manufacturing of three-dimensional objects
CN113166856A (en) * 2018-11-02 2021-07-23 Am金属有限公司 High strength aluminum alloy for additive manufacturing of three-dimensional objects

Similar Documents

Publication Publication Date Title
US4702885A (en) Aluminum alloy and method for producing the same
US4832741A (en) Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
US4676830A (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH0234740A (en) Heat-resistant aluminum alloy material and its manufacture
JPH0153342B2 (en)
JPS62270704A (en) Production of aluminum alloy solidified by rapid cooling and having improved workability and heat resistance
JPH01316433A (en) Heat-resistant aluminum alloy material and its manufacture
JPS60208443A (en) Aluminum alloy material
JP2006274435A (en) Aluminum alloy shaping material and its production method
JPH01319643A (en) Heat-resistant aluminum alloy material and its manufacture
JPH01316434A (en) Heat-resistant aluminum alloy material and its manufacture
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPS60234936A (en) Formed material with superior strength at high temperature made of material of aluminum alloy solidified by rapid
JPH06330263A (en) Production of high toughness al-si series alloy
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH01149935A (en) Green compact of heat-resistant aluminum alloy powder and its production
EP0137180B1 (en) Heat-resisting aluminium alloy
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JP3329046B2 (en) Sintered aluminum alloy with excellent strength and wear resistance
JPH06228697A (en) Rapidly solidified al alloy excellent in high temperature property
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production