JP2006274435A - Aluminum alloy shaping material and its production method - Google Patents

Aluminum alloy shaping material and its production method Download PDF

Info

Publication number
JP2006274435A
JP2006274435A JP2005099778A JP2005099778A JP2006274435A JP 2006274435 A JP2006274435 A JP 2006274435A JP 2005099778 A JP2005099778 A JP 2005099778A JP 2005099778 A JP2005099778 A JP 2005099778A JP 2006274435 A JP2006274435 A JP 2006274435A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy
weight
rapidly solidified
molded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005099778A
Other languages
Japanese (ja)
Other versions
JP4925028B2 (en
Inventor
Mitsuzo Nagamura
光造 長村
Daiki Adachi
大樹 足立
Shigeru Okaniwa
茂 岡庭
Jun Kusui
潤 楠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Kyoto University
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Kyoto University
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Kyoto University, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2005099778A priority Critical patent/JP4925028B2/en
Publication of JP2006274435A publication Critical patent/JP2006274435A/en
Application granted granted Critical
Publication of JP4925028B2 publication Critical patent/JP4925028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy shaping material having high tensile strength and high yield strength in combination, and its production method. <P>SOLUTION: The method of producing the aluminum alloy shaping material includes (1) a first process of preforming an Al alloy powder solidified by rapid cooling containing 5 to 11wt.% Zn, 2 to 4.5wt.% Mg, 0.5 to 2wt.% Cu, 2 to 6wt.% Mn, 0.01 to 0.5wt.% Ag and consisting of the balance substantial Al, (2) a second process of subjecting the perform to hot caking, in a range from 450 to 550°C and an extrusion ratio from 20 to 100 within an inert gaseous atmosphere of a 1 to 100 liters/minute in inert gas flow rate per 100 g preform, and (3) a third process of subjecting the perform to aging treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルミニウム合金成形材及びその製造方法に関する。 The present invention relates to an aluminum alloy molded material and a method for producing the same.

航空機材料、自動車部品材料、精密機械部品材料、電子材料、バネ材料、ネジ材料等においては、軽量化の要求から高強度のアルミニウム合金成形材が広く用いられるようになっている。しかし、強度の点では鉄鋼材料と比較すると未だ十分でないことから、種々の高強度合金が検討されている。   In aircraft materials, automobile parts materials, precision machine parts materials, electronic materials, spring materials, screw materials, etc., high-strength aluminum alloy moldings are widely used because of the demand for weight reduction. However, since it is still not sufficient in terms of strength compared to steel materials, various high strength alloys have been studied.

特許文献1には、Co、Ni、Cu、Zn、Ag、Li、Mg、Si、Ca、Ti、Zr、Cr、Mn又はFe等を含む、高力、耐熱性アルミニウム合金が開示されている。   Patent Document 1 discloses a high-strength, heat-resistant aluminum alloy containing Co, Ni, Cu, Zn, Ag, Li, Mg, Si, Ca, Ti, Zr, Cr, Mn, Fe, or the like.

特許文献2には、Zn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%及びAg0.01〜0.5重量%含むアルミニウム合金急冷凝固粉末、及び当該アルミニウム合金急冷凝固粉末を空気中、真空中又は不活性ガス雰囲気中で熱間固化成形した後、得られた成形体を時効処理して強度を高めることを特徴とするアルミニウム合金成形材の製造方法が開示されている。
特開平3−257133 特開平7−316601
Patent Document 2 discloses an aluminum alloy rapidly solidified powder containing 5 to 11% by weight of Zn, 2 to 4.5% by weight of Mg, 0.5 to 2% by weight of Cu and 0.01 to 0.5% by weight of Ag, and the rapidly solidified solidified aluminum alloy. Disclosed is a method for producing an aluminum alloy molded material, characterized in that after the powder is hot-solidified in air, vacuum or in an inert gas atmosphere, the resulting molded body is subjected to aging treatment to increase the strength. Yes.
JP-A-3-257133 JP 7-316601 A

しかしながら、アルミニウムは延性の高い金属であるため、単に引張強度が高いだけでは高荷重負荷時に合金成形材が変形するおそれがある。   However, since aluminum is a highly ductile metal, there is a risk that the alloy molded material may be deformed when a high load is applied only by having a high tensile strength.

したがって、本発明は、高い引張強度及び高い耐力を兼ね備えたアルミニウム合金成形材及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide an aluminum alloy molded material having a high tensile strength and a high yield strength and a method for producing the same.

本発明者は、従来技術の問題に鑑みて鋭意研究を重ねた結果、特定組成のアルミニウムを一定の条件下で製造することにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventors have found that the above object can be achieved by producing aluminum having a specific composition under a certain condition, and have completed the present invention. .

すなわち、本発明は、下記のアルミニウム合金成形材及びその製造方法に係る。
1. アルミニウム合金成形材を製造する方法であって、
(1)Zn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%、Mn2〜6重量%及びAg0.01〜0.5重量%含み、残部が実質的にAlからなるAl合金急冷凝固粉末を予備成形する第1工程、
(2)前記予備成形体100gに対する不活性ガス流量が1リットル/分〜100リットル/分である不活性ガス雰囲気中で温度450℃〜550℃及び押し出し比20〜100の範囲で前記予備成形体を熱間固化成形する第2工程、及び
(3)前記成形体を時効処理する第3工程
を含むことを特徴とするアルミニウム合金成形材の製造方法。
2. Al合金急冷凝固粉末がZr0.01〜2.0重量%をさらに含有する、前記項1に記載の製造方法。
3. Al合金急冷凝固粉末がFe0.01〜0.2重量%及びSi0.01〜0.2重量%をさらに含有する、前記項1又は2に記載のアルミニウム合金成形材の製造方法。
4. Al合金急冷凝固粉末の平均粒径が75μm未満である、前記項1〜3のいずれかに記載の製造方法。
5. 前記項1〜4のいずれかに記載の製造方法により得られる、耐力85kg/mm以上のアルミニウム合金成形材。
That is, the present invention relates to the following aluminum alloy formed material and a method for producing the same.
1. A method for producing an aluminum alloy molded material,
(1) Zn 5 to 11 wt%, Mg 2 to 4.5 wt%, Cu 0.5 to 2 wt%, Mn 2 to 6 wt% and Ag 0.01 to 0.5 wt%, the balance being substantially made of Al A first step of preforming an Al alloy rapidly solidified powder;
(2) The preform in the range of a temperature of 450 ° C. to 550 ° C. and an extrusion ratio of 20 to 100 in an inert gas atmosphere having an inert gas flow rate of 1 liter / min to 100 liter / min with respect to 100 g of the preform. A method for producing an aluminum alloy molded material, comprising: a second step of hot solidifying and forming; and (3) a third step of aging treatment of the compact.
2. Item 2. The method according to Item 1, wherein the Al alloy rapidly solidified powder further contains 0.01 to 2.0% by weight of Zr.
3. Item 3. The method for producing an aluminum alloy molded material according to Item 1 or 2, wherein the Al alloy rapidly solidified powder further contains 0.01 to 0.2 wt% Fe and 0.01 to 0.2 wt% Si.
4). Item 4. The production method according to any one of Items 1 to 3, wherein the Al alloy rapidly solidified powder has an average particle size of less than 75 µm.
5. An aluminum alloy molded material having a yield strength of 85 kg / mm 2 or more, obtained by the production method according to any one of Items 1 to 4.

本発明の製造方法によれば、特定の雰囲気下でAl合金急冷凝固粉末の圧粉体を熱処理することから、より高い引張強度及び耐力を有する材料を提供することができる。   According to the production method of the present invention, since the green compact of the Al alloy rapidly solidified powder is heat-treated in a specific atmosphere, a material having higher tensile strength and proof stress can be provided.

本発明の製造方法により得られるアルミニウム合金成形材は、例えば航空機材料、自動車部品材料、精密機械部品材料、電子材料、バネ材料、ネジ材料等として好適に用いることができる。特に軽量化及び精密化の要請が高い自動車部品等の材料としても最適である。   The aluminum alloy molded material obtained by the production method of the present invention can be suitably used as, for example, aircraft materials, automobile component materials, precision machine component materials, electronic materials, spring materials, screw materials, and the like. In particular, it is optimal as a material for automobile parts and the like that are highly demanded for weight reduction and precision.

本発明のアルミニウム合金成形材の製造方法は、アルミニウム合金成形材を製造する方法であって、
(1)Zn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%、Mn2〜6重量%及びAg0.01〜0.5重量%含み、残部が実質的にAlからなるAl合金急冷凝固粉末を予備成形する第1工程、
(2)前記予備成形体100gに対する不活性ガス流量が1リットル/分〜100リットル/分である不活性ガス雰囲気中で温度450℃〜550℃及び押し出し比20〜100の範囲で前記予備成形体を熱間固化成形する第2工程、及び
(3)前記成形体を時効処理する第3工程
を含むことを特徴とする。
<第1工程>
第1工程では、Zn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%、Mn2〜6重量%及びAg0.01〜0.5重量%含み、残部が実質的にAlからなるAl合金急冷凝固粉末を予備成形する。
The method for producing an aluminum alloy molded material of the present invention is a method for producing an aluminum alloy molded material,
(1) Zn 5 to 11 wt%, Mg 2 to 4.5 wt%, Cu 0.5 to 2 wt%, Mn 2 to 6 wt% and Ag 0.01 to 0.5 wt%, the balance being substantially made of Al A first step of preforming an Al alloy rapidly solidified powder;
(2) The preform in the range of a temperature of 450 ° C. to 550 ° C. and an extrusion ratio of 20 to 100 in an inert gas atmosphere having an inert gas flow rate of 1 liter / min to 100 liter / min with respect to 100 g of the preform. And (3) a third step of aging treatment of the molded body.
<First step>
In the first step, Zn is 5 to 11% by weight, Mg is 2 to 4.5% by weight, Cu is 0.5 to 2% by weight, Mn is 2 to 6% by weight, and Ag is 0.01 to 0.5% by weight, and the balance is substantially Al. An Al alloy rapidly solidified powder made of is preformed.

Al合金急冷凝固粉末
本発明においては、出発原料としてZn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%、Mn2〜6重量%及びAg0.01〜0.5重量%含み、残部が実質的にAlからなるAl合金急冷凝固粉末を用いる。
Al alloy rapidly solidified powder In the present invention, Zn as a starting material 5-11 wt%, Mg2-4.5 wt%, Cu0.5-2 wt%, Mn2-6 wt% and Ag0.01-0.5 wt% An Al alloy rapidly solidified powder is used, the balance being substantially made of Al.

このような粉末は、公知の製法により作製することができる。例えば、Zn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%、Mn2〜6重量%及びAg0.01〜0.5重量%を含み、残余が実質的にAlからなる組成のAl基合金の溶湯をアトマイズすることにより得ることができる。このようなAl基合金は、通常のAl合金が含有する程度の量の不可避的不純物(Fe、Si等)を含んでいても良い。   Such a powder can be produced by a known production method. For example, Zn 5 to 11% by weight, Mg 2 to 4.5% by weight, Cu 0.5 to 2% by weight, Mn 2 to 6% by weight and Ag 0.01 to 0.5% by weight, with the balance being substantially Al. It can be obtained by atomizing a molten Al-based alloy having a composition. Such an Al-based alloy may contain inevitable impurities (Fe, Si, etc.) in an amount that a normal Al alloy contains.

Zn、Mn、Cuに関し、これらの添加元素量が多すぎる場合には、急冷凝固を経たとしても、これらの添加元素は、Al中に固溶できないため、粗大な晶出物を形成し、Al合金の引張強度低下の原因となるため好ましくない。一方、これら添加元素量が少なすぎる場合には、GPゾーン等の微細析出相の体積分率が減少するため、分散析出によるAl合金の引張強度改善への寄与が薄れる。従って、本発明においては、Al合金中の添加量をZn5〜11重量%、Mg2〜4.5重量%及びCu0.5〜2重量%とする。   With respect to Zn, Mn, and Cu, if the amount of these additive elements is too large, even after rapid solidification, these additive elements cannot be dissolved in Al, so that coarse crystallized substances are formed. This is not preferable because it causes a decrease in the tensile strength of the alloy. On the other hand, when the amount of these additive elements is too small, the volume fraction of the finely precipitated phase such as the GP zone decreases, and the contribution to the improvement of the tensile strength of the Al alloy due to the dispersion precipitation is reduced. Therefore, in this invention, the addition amount in Al alloy shall be Zn 5-11 weight%, Mg2-4.5 weight%, and Cu0.5-2 weight%.

本発明においては、さらにMn2〜6重量%(好ましくは3〜5重量%)を配合することを必須とする。このMgの配合により、結晶粒径の微細化、金属間化合物AlMnの形成に起因する転位密度の増大による加工硬化等の効果が達成され、成形材の引張強度が改善される。また、この金属間化合物は、押し出し方向に沿って、細長い板状に形成されていることが確認されており、これは繊維状の補強材的にも働いている。Mn含有量が2重量%未満である場合には、結晶粒微細化の効果が十分でなくなる。一方、Mn含有量が6重量%を上回る場合には、Al6Mnの粗大な析出物が形成されるため、好ましくない。 In the present invention, it is essential to further contain 2 to 6% by weight (preferably 3 to 5% by weight) of Mn. By blending this Mg, effects such as work hardening by increasing the dislocation density due to the refinement of the crystal grain size and the formation of the intermetallic compound Al 6 Mn are achieved, and the tensile strength of the molding material is improved. Moreover, it has been confirmed that this intermetallic compound is formed in an elongated plate shape along the extrusion direction, and this also works as a fibrous reinforcing material. When the Mn content is less than 2% by weight, the effect of crystal grain refinement is not sufficient. On the other hand, when the Mn content exceeds 6% by weight, a coarse precipitate of Al 6 Mn is formed, which is not preferable.

本発明においては、さらにAg0.01〜0.5重量%(好ましくは、0.01〜0.1重量%)を配合することを必須とする。このAgの配合により、Al合金急冷凝固粉末を成形した材料の時効処理後の引張強度が著しく改善される。   In the present invention, it is essential to further contain 0.01 to 0.5% by weight of Ag (preferably 0.01 to 0.1% by weight). By adding this Ag, the tensile strength after aging treatment of the material formed from the Al alloy rapidly solidified powder is remarkably improved.

本発明では、必要に応じてZrを0.01〜2重量%の範囲で添加することにより、アルミニウム合金成形材の引張強度及び耐力をさらに向上させることができる。Zrの添加量が、0.01重量%未満の場合には、添加による効果の改善が十分でないのに対し、2重量%を上回る場合には、粗大析出物の形成により、むしろ引張強度低下の原因となることがある。   In the present invention, the tensile strength and proof stress of the aluminum alloy molded material can be further improved by adding Zr in the range of 0.01 to 2% by weight as necessary. When the amount of Zr added is less than 0.01% by weight, the effect of the addition is not sufficiently improved. On the other hand, when the amount exceeds 2% by weight, the formation of coarse precipitates causes a decrease in tensile strength. It can be a cause.

また、不可避的不純物であるFe及びSiをそれぞれ0.2重量%以下とすることにより、Al−Fe−Si系の粗大な晶出物の形成を抑制し、さらに引張強度を改善することができる。Fe及びSi含有量の下限値は特に限定されないが、工業的にはそれぞれ0.01重量%程度である。   In addition, by making Fe and Si, which are inevitable impurities, 0.2% by weight or less, the formation of Al-Fe-Si coarse crystals can be suppressed, and the tensile strength can be further improved. . Although the lower limit of Fe and Si content is not specifically limited, Industrially, it is about 0.01 weight%, respectively.

アトマイズは、空気アトマイズ法、Ar、He等を用いる不活性ガスアトマイズ法、Nガスアトマイズ法等の任意の方式を採用することができる。アトマイズに際しては、Al基合金溶湯を10K/秒以上の冷却速度で凝固させる。 For the atomization, an arbitrary method such as an air atomization method, an inert gas atomization method using Ar, He, or the like, an N 2 gas atomization method, or the like can be adopted. At the time of atomization, the Al-based alloy molten metal is solidified at a cooling rate of 10 2 K / second or more.

上記のAl合金急冷凝固粉末の平均粒径は75μm以下、好ましくは50μm以下である。平均粒径下限は製造可能であれば特に限定されないが、通常は1μm以上である。粉末粒径が75μmを超えると、比表面積が減少して、引張強度及び耐力の増大に寄与する表面酸化皮膜量が減少するおそれがある。   The average particle diameter of the Al alloy rapidly solidified powder is 75 μm or less, preferably 50 μm or less. The lower limit of the average particle diameter is not particularly limited as long as it can be produced, but is usually 1 μm or more. When the powder particle size exceeds 75 μm, the specific surface area decreases, and the amount of the surface oxide film that contributes to the increase in tensile strength and proof stress may decrease.

なお、本発明の平均粒径は、レーザー回折式粒度分布測定法による値を示す。粉末形状も限定されず、例えば涙滴状、真球状、回転楕円体状、フレーク状、不定形状等いずれであっても良い。   In addition, the average particle diameter of this invention shows the value by the laser diffraction type particle size distribution measuring method. The powder shape is not limited, and may be any of, for example, a teardrop shape, a true spherical shape, a spheroid shape, a flake shape, and an indefinite shape.

予備成形
Al合金急冷凝固粉末の予備成形は、冷間静水圧あるいは一軸のプレス加工により冷間圧縮成形すれば良い。圧縮成形時の圧力は、得られた予備成形材が次工程まで工業的に取り扱える範囲とすれば良い。
<第2工程>
第2工程では、前記予備成形体100gに対する不活性ガス流量が1リットル/分〜100リットル/分である不活性ガス雰囲気中で温度450℃〜550℃及び押し出し比20〜100の範囲で前記予備成形体を熱間固化成形する。
The preformed Al alloy rapidly solidified powder may be preformed by cold compression molding by cold isostatic pressing or uniaxial pressing. The pressure at the time of compression molding may be set within a range in which the obtained preform can be handled industrially until the next step.
<Second step>
In the second step, the preliminary gas flow in an inert gas atmosphere having an inert gas flow rate of 1 liter / minute to 100 liter / minute with respect to the preform 100g is set at a temperature of 450 ° C. to 550 ° C. and an extrusion ratio of 20 to 100. The compact is hot solidified.

Al合金急冷凝固粉末表面には、表面酸化皮膜とともに多くの水分が吸着している。特に、Zn及びMgを含む合金は水分を吸着しやすい。また、予備成形時には、これらの水分が除去される機会はない。水分が多く残存していると、容体化処理時に水素ガスとなり成型材中にボイドを形成し、引張強度及び耐力を低下させるおそれがある。   A lot of moisture is adsorbed on the surface of the Al alloy rapidly solidified powder together with the surface oxide film. In particular, an alloy containing Zn and Mg tends to adsorb moisture. In addition, there is no opportunity to remove these moisture during preforming. If a large amount of moisture remains, it becomes hydrogen gas during the volumeification treatment, and voids are formed in the molding material, which may reduce the tensile strength and proof stress.

予備成形体100gに対する不活性ガス流量が1リットル/分〜100リットル/分とし、好ましくは5リットル/分〜60リットル/分とする。前記不活性ガス流量が1リットル/分未満では、水分が十分除去されない。不活性ガス流量の上限値は特に限定されないが、100リットル/分程度でその効果は飽和する。雰囲気の不活性ガスは特に限定されず、窒素、アルゴン等の露点の低いガスが好適に使用される。   The inert gas flow rate with respect to 100 g of the preform is 1 liter / minute to 100 liter / minute, preferably 5 liter / minute to 60 liter / minute. When the flow rate of the inert gas is less than 1 liter / minute, the water is not sufficiently removed. The upper limit of the inert gas flow rate is not particularly limited, but the effect is saturated at about 100 liters / minute. The inert gas in the atmosphere is not particularly limited, and a gas having a low dew point such as nitrogen or argon is preferably used.

不活性ガス流量時間は、予備成形体の大きさ等な応じて適宜設定することができるが、一般的には10分〜10時間程度とすることが好ましい。   The inert gas flow time can be appropriately set according to the size of the preform, and is generally preferably about 10 minutes to 10 hours.

固化成形温度は、450〜550℃、好ましくは460〜520℃である。固化成形温度が550℃を超えると粉末が溶融し始めるため好ましくない。また、460未満になると固化時に成型圧力が高くなるおそれがある。   The solidification molding temperature is 450 to 550 ° C, preferably 460 to 520 ° C. If the solidification molding temperature exceeds 550 ° C., the powder starts to melt, which is not preferable. On the other hand, if it is less than 460, the molding pressure may increase during solidification.

押出比は、20以上100以下、好ましくは30以上60以下である。押出比が20より小さいとAl合金急冷凝固粉末の表面酸化皮膜が十分に破壊されず、Al合金急冷凝固粉末の新生面が不足して固化成形体内の結合力が低下して高い引張強度及び耐力が得られなくなるおそれがある。また、押出比が100を超えると設備の負荷が増大するので好ましくない。
<第3工程>
第3工程では、前記成形体を時効処理する。時効処理に先立って溶体化処理することもできる。溶体化処理を行う場合、容体化処理温度は450℃〜510℃、容体化処理時間は1〜10時間程度とすれば良い。また、時効処理温度及び時間は、縦軸に温度、横軸に時間をとったグラフにおいて、100℃・40時間、100度・100時間、140℃・1時間及び140℃・4時間の4点で囲まれる範囲内に設定することが好ましい。
The extrusion ratio is 20 or more and 100 or less, preferably 30 or more and 60 or less. When the extrusion ratio is less than 20, the surface oxide film of the Al alloy rapidly solidified powder is not sufficiently destroyed, the new surface of the Al alloy rapidly solidified powder is insufficient, the bonding strength in the solidified molded body is reduced, and high tensile strength and yield strength are obtained. There is a risk that it will not be obtained. Moreover, since the load of an installation will increase when extrusion ratio exceeds 100, it is unpreferable.
<Third step>
In the third step, the molded body is subjected to an aging treatment. A solution treatment can also be performed prior to the aging treatment. When solution treatment is performed, the solution treatment temperature may be 450 to 510 ° C., and the solution treatment time may be about 1 to 10 hours. The aging treatment temperature and time are 4 points of 100 ° C./40 hours, 100 ° C./100 hours, 140 ° C./1 hour and 140 ° C./4 hours in the graph with temperature on the vertical axis and time on the horizontal axis. It is preferable to set within the range surrounded by.

以下に実施例及び比較例を示し、本発明の特徴とするところをより一層明らかにする。ただし、本発明は、実施例に限定されない。   Examples and comparative examples are shown below to further clarify the features of the present invention. However, the present invention is not limited to the examples.

実施例1〜15及び比較例1〜14
表1に示す合金組成を有するAl地金を調製し、アトマイズ機に付属する高周波熔解炉により融解し、空気アトマイズ法により急冷凝固粉末とした。得られたAl合金急冷凝固粉末を150μm以下、75μm以下又は44μm以下に分級し、1.5ton/cmの冷間静水圧で直径30mm、長さ70mmの丸棒型予備成型材を作製した。
Examples 1-15 and Comparative Examples 1-14
An Al metal having an alloy composition shown in Table 1 was prepared, melted by a high-frequency melting furnace attached to an atomizer, and rapidly solidified powder by an air atomization method. The obtained Al alloy rapidly solidified solid powder was classified into 150 μm or less, 75 μm or less, or 44 μm or less, and a round bar-shaped preform with a diameter of 30 mm and a length of 70 mm was prepared with a cold isostatic pressure of 1.5 ton / cm 2 .

得られた予備成型材を、表2に示す条件でアルゴンガス中にて熱間固化成形した。次いで、熱間固化成形から試験片を切り出し、490℃で溶体化処処理後焼き入れし、120℃24時間の時効処理を行い、アルミニウム合金成形材を得た。   The obtained preform was hot solidified and molded in argon gas under the conditions shown in Table 2. Next, a test piece was cut out from the hot solidification molding, quenched after solution treatment at 490 ° C., and subjected to aging treatment at 120 ° C. for 24 hours to obtain an aluminum alloy molded material.

表3に各アルミニウム合金成形材の合金番号、製造工程、引張強度及び耐力を示す。また、表3には従来例として、市販の7075合金を調整し、同様に作製、評価した。   Table 3 shows the alloy number, manufacturing process, tensile strength, and yield strength of each aluminum alloy molded material. In Table 3, as a conventional example, a commercially available 7075 alloy was prepared, and similarly produced and evaluated.

Figure 2006274435
Figure 2006274435

Figure 2006274435
Figure 2006274435

Figure 2006274435
Figure 2006274435

Claims (5)

アルミニウム合金成形材を製造する方法であって、
(1)Zn5〜11重量%、Mg2〜4.5重量%、Cu0.5〜2重量%、Mn2〜6重量%及びAg0.01〜0.5重量%含み、残部が実質的にAlからなるAl合金急冷凝固粉末を予備成形する第1工程、
(2)前記予備成形体100gに対する不活性ガス流量が1リットル/分〜100リットル/分である不活性ガス雰囲気中で温度450℃〜550℃及び押し出し比20〜100の範囲で前記予備成形体を熱間固化成形する第2工程、及び
(3)前記成形体を時効処理する第3工程
を含むことを特徴とするアルミニウム合金成形材の製造方法。
A method for producing an aluminum alloy molded material,
(1) Zn 5 to 11 wt%, Mg 2 to 4.5 wt%, Cu 0.5 to 2 wt%, Mn 2 to 6 wt% and Ag 0.01 to 0.5 wt%, the balance being substantially made of Al A first step of preforming an Al alloy rapidly solidified powder;
(2) The preform in the range of a temperature of 450 ° C. to 550 ° C. and an extrusion ratio of 20 to 100 in an inert gas atmosphere having an inert gas flow rate of 1 liter / min to 100 liter / min with respect to 100 g of the preform. A method for producing an aluminum alloy molded material, comprising: a second step of hot solidifying and forming; and (3) a third step of aging treatment of the compact.
Al合金急冷凝固粉末がZr0.01〜2.0重量%をさらに含有する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the Al alloy rapidly solidified powder further contains 0.01 to 2.0% by weight of Zr. Al合金急冷凝固粉末がFe0.01〜0.2重量%及びSi0.01〜0.2重量%をさらに含有する、請求項1又は2に記載のアルミニウム合金成形材の製造方法。 The method for producing an aluminum alloy molded material according to claim 1 or 2, wherein the Al alloy rapidly solidified powder further contains 0.01 to 0.2 wt% Fe and 0.01 to 0.2 wt% Si. Al合金急冷凝固粉末の平均粒径が75μm未満である、請求項1〜3のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-3 whose average particle diameter of Al alloy rapid-solidification powder is less than 75 micrometers. 請求項1〜4のいずれかに記載の製造方法により得られる、耐力85kg/mm以上のアルミニウム合金成形材。 An aluminum alloy molded material having a yield strength of 85 kg / mm 2 or more, obtained by the production method according to claim 1.
JP2005099778A 2005-03-30 2005-03-30 Aluminum alloy molding material Expired - Fee Related JP4925028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099778A JP4925028B2 (en) 2005-03-30 2005-03-30 Aluminum alloy molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099778A JP4925028B2 (en) 2005-03-30 2005-03-30 Aluminum alloy molding material

Publications (2)

Publication Number Publication Date
JP2006274435A true JP2006274435A (en) 2006-10-12
JP4925028B2 JP4925028B2 (en) 2012-04-25

Family

ID=37209464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099778A Expired - Fee Related JP4925028B2 (en) 2005-03-30 2005-03-30 Aluminum alloy molding material

Country Status (1)

Country Link
JP (1) JP4925028B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240141A (en) * 2007-02-28 2008-10-09 Kobe Steel Ltd HIGH STRENGTH AND HIGH DUCTILITY Al ALLOY, AND METHOD FOR PRODUCING THE SAME
CN101899597B (en) * 2009-05-29 2012-07-18 爱信轻金属株式会社 Excellent SCC resistance 7000 series aluminum alloy extrusion material and method for producing the same
CN109943791A (en) * 2019-03-31 2019-06-28 华南理工大学 7075 Aluminium Alloy Extruded Bars of one kind and its manufacturing method
JP2020015955A (en) * 2018-07-26 2020-01-30 三菱重工業株式会社 Aluminum alloy material, method for producing aluminum alloy material, cask basket and cask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243702A (en) * 1990-02-20 1991-10-30 Riken Corp Manufacture of high strength aluminum alloy formed body
JPH05302104A (en) * 1992-04-24 1993-11-16 Kobe Steel Ltd Production of aluminum or aluminum alloy composite material
JPH07316601A (en) * 1994-03-28 1995-12-05 Toyo Alum Kk Production of rapidly solidified aluminum powder and aluminum alloy compact
JPH11302807A (en) * 1998-04-20 1999-11-02 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy for compressor vane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243702A (en) * 1990-02-20 1991-10-30 Riken Corp Manufacture of high strength aluminum alloy formed body
JPH05302104A (en) * 1992-04-24 1993-11-16 Kobe Steel Ltd Production of aluminum or aluminum alloy composite material
JPH07316601A (en) * 1994-03-28 1995-12-05 Toyo Alum Kk Production of rapidly solidified aluminum powder and aluminum alloy compact
JPH11302807A (en) * 1998-04-20 1999-11-02 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy for compressor vane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240141A (en) * 2007-02-28 2008-10-09 Kobe Steel Ltd HIGH STRENGTH AND HIGH DUCTILITY Al ALLOY, AND METHOD FOR PRODUCING THE SAME
CN101899597B (en) * 2009-05-29 2012-07-18 爱信轻金属株式会社 Excellent SCC resistance 7000 series aluminum alloy extrusion material and method for producing the same
JP2020015955A (en) * 2018-07-26 2020-01-30 三菱重工業株式会社 Aluminum alloy material, method for producing aluminum alloy material, cask basket and cask
JP7112275B2 (en) 2018-07-26 2022-08-03 三菱重工業株式会社 Aluminum alloy material, method for producing aluminum alloy material, basket for cask and cask
CN109943791A (en) * 2019-03-31 2019-06-28 华南理工大学 7075 Aluminium Alloy Extruded Bars of one kind and its manufacturing method

Also Published As

Publication number Publication date
JP4925028B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP6361051B2 (en) Flame retardant magnesium alloy and method for producing the same
EP1640466B1 (en) Magnesium alloy and production process thereof
JP5326114B2 (en) High strength copper alloy
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP5059512B2 (en) High strength, high ductility Al alloy and method for producing the same
EP1882753A1 (en) Aluminium alloy
CN110832093B (en) Aluminum alloys for additive technology
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
WO2013157653A1 (en) Magnesium alloy and method for producing same
JP5111005B2 (en) Manufacturing method of high fatigue strength Al alloy
JP4925028B2 (en) Aluminum alloy molding material
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP4141207B2 (en) High strength aluminum alloy casting and manufacturing method thereof
JPH07316601A (en) Production of rapidly solidified aluminum powder and aluminum alloy compact
JP2003277867A (en) Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine
JP6726058B2 (en) Manufacturing method of Al alloy casting
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
KR101788156B1 (en) Aluminum alloy with excellent compression strengths and manufacturing method thereof
JP2020007594A (en) Aluminum alloy material, manufacturing method of aluminum alloy cast material, and manufacturing method of aluminum alloy powder extrusion material
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
JP2002060881A (en) Aluminum alloy for casting and forging, and method for producing casting and forging material
EP0137180B1 (en) Heat-resisting aluminium alloy
JP2009091624A (en) Aluminum-based material and manufacturing method therefor
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101102

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees