JP4141207B2 - High strength aluminum alloy casting and manufacturing method thereof - Google Patents
High strength aluminum alloy casting and manufacturing method thereof Download PDFInfo
- Publication number
- JP4141207B2 JP4141207B2 JP2002251984A JP2002251984A JP4141207B2 JP 4141207 B2 JP4141207 B2 JP 4141207B2 JP 2002251984 A JP2002251984 A JP 2002251984A JP 2002251984 A JP2002251984 A JP 2002251984A JP 4141207 B2 JP4141207 B2 JP 4141207B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- casting
- mold
- strength aluminum
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、優れた機械的性質を有する高強度アルミニウム合金鋳物、及びこの高強度アルミニウム合金からダイカストされた空調機のコンプレッサ部材の渦巻状スクロールに関する。さらに、本発明は、上記高強度アルミニウム合金鋳物の製造方法、及び上記高強度アルミニウム合金からダイカストされた空調機の渦巻状スクロールをダイカストした高強度アルミニウム合金の製造方法に関する。
【0002】
【従来の技術】
アルミニウム合金製のスクロールの高強度化に関する従来の加工技術は、特開平9−256127号に開示されるように、ダイカストしたスクロールダイカスト製品を金型から離型した直後に、水冷または時効処理する方法であるが、この水冷または時効処理するダイカストスクロール製品の製造方法は、アルミニウム合金の含有元素の中で特に析出強化元素であるCu及びMgの含有量を調整し且つ水焼入れ及び時効処理を施すことによって、Cu及びMgの析出状態を改良しこの合金の強度を向上させる。また、上記製造方法においては、ダイカスト製品の引張り強度、耐力及び疲労強度を向上することが確認されたが、しかしながら、このアルミニウム合金のダイカストダイカスト製品は、ダイカスト組織が網目状に形成されるので、一般的に共晶Siを球状化する溶体化時効処理(T6処理)を施したアルミニウム合金のダイカスト製品に比較して、上記のそれぞれの機械的性質が劣る。
【0003】
さらに、特開平2000−192180号は、上記に類似する化学組成を有するアルミニウム合金のダイカスト製品及びその製造方法を開示する。この製造方法は、アルミニウム合金のダイカスト製品中に含まれるガス含有量を抑制し且つ溶体化処理を施すことによって、ダイカスト製品の強度の向上を図っている。しかしながら、近年空調機器に備わるアルミニウム合金製スクロールは、空調の高効率化及び使用冷媒の変更に伴い、特開平2000−192180号に記載する製造方法の改良だけでは、アルミニウム合金製スクロールの設計要求値を満足させることができない。
【0004】
【発明が解決しようとする課題】
本発明は、上記状況を鑑み、アルミニウム合金鋳物の引張り強度、耐力及び疲労強度等を向上させると共に、上記アルミニウム合金鋳物の鋳造欠陥を低減することを目的とする。
【0005】
また、本発明は、上記課題を解決したアルミニウム合金鋳物をダイカストした高強度を有し鋳造欠陥を低減した高強度アルミニウム合金鋳物、及び高強度アルミニウム合金鋳物からなる空調機の渦巻状スクロールを提供することを目的とする。さらに、本発明は、高強度アルミニウム合金鋳物及びこの高強度アルミニウム合金鋳物からなる空調機の渦巻状スクロールの製造方法を供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題であるアルミニウム合金鋳物の高強度化を図るために、本発明の高強度アルミニウム合金鋳物は、7.5〜11.5wt%のSi、3.8〜4.8wt%のCu、0.45〜0.65wt%のMg、0.4〜0.7wt%のFe、0.35〜0.45wt%のMn、及び残部Al及び不可避的不純物からなるアルミニウム合金に、0.1〜0.3wt%のAgを添加する合金鋳物である。先ず、本発明においては、図3のa、b及びcのようにCu、Mg及びMn量を調整し強度を向上した上記基本組成のアルミニウム合金に微量の銀を添加したことにより、合金中に含まれる析出強化元素である銅、マグネシウム及びシリコンの化合物が、合金中により微細に分散して且つ析出するので、これらの析出物の微細析出によりアルミニウム合金鋳物の強度を向上させることができる。さらに第2に、上記基本組成のアルミニウム合金に微量の銀を添加したことにより、合金中で粗大化すると強度の低下もたらす針状鉄鋳造組織を微細化するので、アルミニウム合金鋳物の強度の低下を抑制することができる。さらに第3に、上記基本組成のアルミニウム合金に微量の銀を添加したことにより、合金中に晶出する共晶Si組織を微細化するので、アルミニウム合金鋳物の強度を向上させることができる。
【0007】
なお、本発明においては、銀の含有量が0.1wt%以下であると、共晶Si組織の微細、及び針状Fe組織の微細化、及び銅、マグネシウム及びシリコンの析出強化合金の均一微細化への寄与が少なすぎる。また、銀の含有量が0.3wt%を越えると、共晶Si組織の微細、及び針状Feの化合物組織の微細化、及び銅、マグネシウム及びシリコンの析出強化合金の均一微細化への寄与はほとんど無くなる。したがって、本発明においては上記アルミニウム合金への銀の添加量は、0.1〜0.3wt%の範囲に限定する。また、不可避的不純物は、0.2wt%以下にすることが好ましい。
【0008】
さらに本発明においては、本発明のアルミニウム合金鋳物に含まれるガス量を、100gの高強度アルミニウム合金に対して1.5cm3以下好ましくは0.5cm3以下に抑制して、溶体化処理及び時効処理を施す。アルミニウム合金鋳物中のガス量を規定したことにより、次に述べる高温及び長時間の溶体化処理及び時効処理を行っても、巻き込まれたガスが膨張してブリスタを発生して高強度アルミニウム合金鋳物に強度低下を引き起こすことはない。
【0009】
さらに、上記課題であるアルミニウム合金鋳物の高強度化を図るために、本発明の高強度アルミニウム合金鋳物を、495〜505℃の温度範囲で2〜6時間加熱する溶体化処理を施して、その後焼入れを施し、さらにその後160〜220℃の温度範囲で2〜6時間加熱して時効処理を施す。本発明に従ってダイカストされたく強度アルミニウム合金鋳物を、上記条件によって溶体化処理を施すことによって、合金中に含まれる析出強化元素である銅、マグネシウム及びシリコンの化合物が、微量添加元素の銀と共に合金中に微細且つ均一に分散して析出するので、アルミニウム合金鋳物の析出強化を向上させる。さらに本発明においては、上記溶体化処理後に焼入れを施し、さらにその後時効処理を施すことによって、合金中の添加元素の銀によって微細化された共晶Si組織を粒状化するので、アルミニウム合金鋳物はさらに強化される。上記焼入れとしては、水焼入れの他に、油焼き入れ、油と水エマルジョン焼入れなどを採用する。
【0010】
なお、本発明の高強度アルミニウム合金鋳物においては、この高強度アルミニウム合金鋳物に含まれるガス量が、100gの合金鋳物に対して1.5cm3を越えると、約500℃における6時間の溶体化処理の際に、鋳物中にブリスタが発生し鋳物を変形させる。したがって、本発明の高強度アルミニウム合金鋳物に含まれるガス量は、100gの合金鋳物に対して1.5cm3を以下とする。さらに、ダイカスト装置の金型を13.3kPa以下に減圧すること、或いはその後金型内に少なくとも大気圧以上の圧力の酸素を吹き込むことによって、アルミニウム合金鋳物に含まれるガス量を、100gの高強度アルミニウム合金に対して1.5cm3以下に抑制することができる。また、その他の方法として当接する金型を閉じダイカストマシンの給湯スリーブ中にアルミニウム溶湯を注いだ後、キャビティ中の空気、離型剤及び潤滑剤から発生する熱分解ガス等を巻き込まないように射出プランジャをゆっくり前進させながら金型内に高強度アルミニウム合金を充填する方法においても抑制することができる。
【0011】
本発明の溶体化処理及び時効処理を施した高強度アルミニウム合金鋳物が、平均12μm以下の粒径の共晶Si粒と、平均8μm以下の粒径の析出強化Cu系化合物と、平均12μm以下の粒径の析出強化Mg−Si系化合物と、平均6μm以下の粒径の針状Fe系化合物とを有する。本発明の銀を含む高強度アルミニウム合金鋳物は、銀を含まないが本発明と同等の合金成分を有する従来のアルミニウム合金鋳物と比較して、上記溶体化処理及び時効処理とによって上記粒径を有することによって、引張強度、耐力及び疲労強度が、それぞれ5〜10%程度向上させることができた。
【0012】
【発明の実施の形態】
合金鋳物の強度を向上させるため用意したアルミニウム合金は、10.5wt%のSi、4.5wt%のCu、0.6wt%のMg、0.5wt%のFe、0.4wt%のMn、及び不可避的不純物と共に残部Alである化学組成を有し、さらに0.2wt%Ag添加したアルミニウム合金(本発明)及びAgが添加されない合金(比較例)の2種類である。
【0013】
これらの合金を従来のダイカスト装置によりダイカストし、各合金成分の分布状況をEPMA観察によって観察した。図1に、本発明のAgを添加したアルミニウム合金及び比較例のAgを添加されない合金について、EPMA観察による合金成分の分布状況を示す。
【0014】
図1のaにおいて、比較例のAg添加無しの試料の共晶Si分布は、比較的粗大な共晶Siが観察された。一方、図1のeにおいて、本発明のAg添加試料の共晶Si分布は、ほとんど微細化した共晶Siが観察された。さらに、図1のb、c及びdにおいて、比較例のAg添加無しの試料のCu系化合物、Mg−Si系化合物及びFe系化合物のそれぞれの分布は、比較的粗大な粒が局在化して分布する傾向を示している。特に、析出強化合金であるCu系化合物及びMg−Si系化合物が粗大化して局在するので強度の低下及びばらつきの原因となる。特にCuは添加量を増やしすぎると鋳造時に割れるという問題が起きるが、Cu系化合物の分布が均一になることによりCuの含有量を比較的高くしても割れるという問題が発生しにくい。また、Fe系化合物の分布は、比較的長い針状組織を示している。一方、図1のf、g及びhにおいて、本発明のAg添加試料のCu系化合物、Mg−Si系化合物及びFe系化合物のそれぞれの分布は、微細な粒が均一に分布する傾向を示している。析出強化合金であるCu及びMgが微細化して均一分布するので、強度が増加し且つ強度のびばらつきを低下させることができる。さらに、Feの分布は、Mnの添加による塊状組織化とAgの添加によるFe分散性の相乗効果によりほとんど有害な針状組織を生じなかった。
【0015】
実施例1
10.5wt%のSi、4.5wt%のCu、0.6wt%のMg、0.5wt%のFe、0.4wt%のMn、及び不可避的不純物と共に残部Alを含有するアルミニウム合金に、さらに0.2wt%Ag添加した合金を準備した。
【0016】
上記アルミニウム合金の溶湯を、従来のダイカスト装置を用いて空調機のコンプレッサ部材である渦巻状スクロールをダイカストした。金型から離型後、アルミニウム合金の渦巻状スクロールの鋳物は、495〜505℃の温度範囲で2〜6時間加熱する溶体化処理を施した。溶体化処理を施した渦巻状スクロールの鋳物はその後、本実施例においては水焼入れを施した。水焼入れを施した後、渦巻状スクロールの鋳物は160〜220℃の温度範囲で2〜6時間加熱する時効処理を施した。得られた空調機のコンプレッサ部材である渦巻状スクロール鋳物は、引張強度、耐力及び疲労強度を5〜15%程度増加することができた。
【0017】
実施例2
本実施例においては、先ずダイカスト装置の金型内を真空ポンプを用いて13.3kPa(100Torr)以下に減圧した。その後、実施例1に示したアルミニウム合金溶湯を金型内に充填し、空調機のコンプレッサ部材である渦巻状スクロールをダイカストした。金型から取り外されたアルミニウム合金の渦巻状スクロールの鋳物は、実施例1と同様に、495〜505℃の温度範囲で2〜6時間加熱する溶体化処理を施し、その後さらに本実施例においては、水焼入れを施し且つ160〜220℃の温度範囲で2〜6時間加熱する時効処理を施した。得られた空調機のコンプレッサ部材である渦巻状スクロール鋳物は、上記の高温及び長時間の溶体化処理及び時効処理を行っても、ダイカスト時に金型内を真空とすることにより巻き込むガスを抑えているため、ブリスタの発生が小さく強度低下するという問題が発生することが無かった。
【0018】
実施例3
本実施例においては、実施例2と同様に、ダイカスト装置の金型内を真空ポンプを用いて13.3kPa(100Torr)以下に減圧し、その後金型内に少なくとも大気圧以上の圧力の酸素を吹き込む雰囲気調整をした。実施例1に示したアルミニウム合金溶湯を金型内に充填し、空調機のコンプレッサ部材である渦巻状スクロールをダイカストした。金型から取り外されたアルミニウム合金の渦巻状スクロールの鋳物は、実施例1と同様に、495〜505℃の温度範囲で2〜6時間加熱する溶体化処理を施し、その後さらに本実施例においては、水焼入れを施し且つ160〜220℃の温度範囲で2〜6時間加熱する時効処理を施した。得られた空調機のコンプレッサ部材である渦巻状スクロール鋳物は、上記の高温及び長時間の溶体化処理及び時効処理を行っても、ダイカスト時に金型内を真空とし、さらに酸素を吹き込むことにより巻き込むガスを抑えているため、ブリスタの発生が小さく強度低下するという問題が発生することはなかった。
【0019】
【発明の効果】
本発明は、アルミニウム合金に銀を微量添加することにより、晶出合金元素及び析出合金元素の微細化が達成され、高強度アルミニウム合金鋳物を得ることができた。
【0020】
図2のaに示すように、T5熱処理を施した従来材に比較して、本発明のAgの添加されたT6熱処理を施した高強度アルミニウム合金鋳物は、1.47倍の相対引張強度を備えた。さらに、図2のbに示すように、T6熱処理を施したAgを含まない従来材に比較して、本発明のAgの添加されたT6熱処理を施した高強度アルミニウム合金鋳物は、1.2倍の相対引疲労強度を備えた。
【0021】
さらに、本発明においては、鋳造組織の微細化及び均一化が達成され、それによって本発明のアルミニウム合金鋳物は、強度の向上と、強度のばらつきの低減との双方を達成することができた。
【図面の簡単な説明】
【図1】図1は、本発明のAgを添加したアルミニウム合金及び比較例のAgを添加されない合金について、EPMA観察による合金成分の分布状況を示す。
【図2】図2は、本願発明の高強度アルミニウム合金鋳物と従来材との強度を示し、図2のaは相対引張強度を示し、図2のbは相対疲労強度を示す。
【図3】図3は、Cu、Mg及びMn量を調整し添加したことによる基本組成のアルミニウム合金の強度向上を示し、図3のaはCu添加を示し、図3のbはMg添加を示し、且つ図3のcはMn添加を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength aluminum alloy casting having excellent mechanical properties and a spiral scroll of a compressor member of an air conditioner die-cast from the high-strength aluminum alloy. Furthermore, this invention relates to the manufacturing method of the said high strength aluminum alloy casting, and the manufacturing method of the high strength aluminum alloy which die-casted the scroll scroll of the air conditioner die-cast from the said high strength aluminum alloy.
[0002]
[Prior art]
As disclosed in Japanese Patent Application Laid-Open No. 9-256127, a conventional processing technique for increasing the strength of an aluminum alloy scroll is a method of water-cooling or aging treatment immediately after releasing a die-cast scroll die-cast product from a mold. However, in this method of manufacturing a die-cast scroll product that is water-cooled or aged, the content of Cu and Mg, which are precipitation strengthening elements, is adjusted among the elements contained in the aluminum alloy, and water quenching and aging treatment are performed. Improves the strength of this alloy by improving the precipitation state of Cu and Mg. Further, in the above manufacturing method, it was confirmed that the tensile strength, proof stress and fatigue strength of the die-cast product were improved, however, the die-cast die-cast product of this aluminum alloy has a die-cast structure formed in a network shape, Generally, each of the above-mentioned mechanical properties is inferior to an aluminum alloy die-cast product subjected to solution aging treatment (T6 treatment) for spheroidizing eutectic Si.
[0003]
Furthermore, JP 2000-192180 A discloses an aluminum alloy die-cast product having a chemical composition similar to the above and a method for producing the same. In this manufacturing method, the strength of the die-cast product is improved by suppressing the gas content contained in the aluminum alloy die-cast product and applying a solution treatment. However, in recent years, aluminum alloy scrolls provided in air-conditioning equipment are required to design aluminum alloy scrolls only by improving the manufacturing method described in Japanese Patent Application Laid-Open No. 2000-192180 due to high efficiency of air conditioning and change of refrigerant used. Can not be satisfied.
[0004]
[Problems to be solved by the invention]
In view of the above situation, an object of the present invention is to improve the tensile strength, proof stress, fatigue strength, and the like of an aluminum alloy casting and to reduce casting defects in the aluminum alloy casting.
[0005]
The present invention also provides a high-strength aluminum alloy casting that has high strength and reduced casting defects by die-casting an aluminum alloy casting that has solved the above problems, and a spiral scroll for an air conditioner comprising the high-strength aluminum alloy casting. For the purpose. Furthermore, an object of the present invention is to provide a high-strength aluminum alloy casting and a method for manufacturing a spiral scroll of an air conditioner made of the high-strength aluminum alloy casting.
[0006]
[Means for Solving the Problems]
In order to increase the strength of the aluminum alloy casting, which is the above-mentioned problem, the high strength aluminum alloy casting of the present invention is composed of 7.5 to 11.5 wt% Si, 3.8 to 4.8 wt% Cu,. To an aluminum alloy consisting of 45 to 0.65 wt% Mg, 0.4 to 0.7 wt% Fe, 0.35 to 0.45 wt% Mn, and the balance Al and unavoidable impurities, 0.1 to 0.1. This is an alloy casting to which 3 wt% of Ag is added. First, in the present invention, a small amount of silver is added to the aluminum alloy having the above basic composition in which the amount of Cu, Mg, and Mn is adjusted and the strength is improved as shown in FIGS. Since the compounds of copper, magnesium and silicon, which are included in the precipitation strengthening element, are finely dispersed and precipitated in the alloy, the strength of the aluminum alloy casting can be improved by fine precipitation of these precipitates. Secondly, the addition of a small amount of silver to the aluminum alloy having the above basic composition makes it possible to refine the acicular iron cast structure that reduces the strength when coarsened in the alloy, thereby reducing the strength of the aluminum alloy casting. Can be suppressed. Third, by adding a small amount of silver to the aluminum alloy having the above basic composition, the eutectic Si structure crystallized in the alloy is refined, so that the strength of the aluminum alloy casting can be improved.
[0007]
In the present invention, if the silver content is 0.1 wt% or less, the eutectic Si structure is fine, the needle-like Fe structure is fine, and the copper, magnesium and silicon precipitation-strengthened alloy is uniformly fine. Too little contribution to conversion. Also, if the silver content exceeds 0.3 wt%, it contributes to the refinement of the eutectic Si structure and the compound structure of the needle-like Fe, and the uniform refinement of the precipitation strengthened alloy of copper, magnesium and silicon. Is almost gone. Therefore, in this invention, the addition amount of silver to the said aluminum alloy is limited to the range of 0.1-0.3 wt%. Inevitable impurities are preferably 0.2 wt% or less.
[0008]
Furthermore, in the present invention, the amount of gas contained in the aluminum alloy casting of the present invention is suppressed to 1.5 cm 3 or less, preferably 0.5 cm 3 or less, to 100 g of high-strength aluminum alloy, so that solution treatment and aging are performed. Apply processing. By stipulating the amount of gas in the aluminum alloy casting, the entrained gas expands and blisters are generated even if the solution treatment and aging treatment are performed at a high temperature and for a long time as described below. Does not cause a decrease in strength.
[0009]
Furthermore, in order to increase the strength of the aluminum alloy casting, which is the above-mentioned problem, the high strength aluminum alloy casting of the present invention is subjected to a solution treatment for heating in a temperature range of 495 to 505 ° C. for 2 to 6 hours, and thereafter Quenching is performed, followed by aging treatment by heating for 2 to 6 hours in a temperature range of 160 to 220 ° C. By subjecting a cast aluminum alloy casting to be cast according to the present invention to a solution treatment under the above conditions, a compound of copper, magnesium and silicon, which are precipitation strengthening elements contained in the alloy, is contained in the alloy together with a trace amount of elemental silver. Therefore, the precipitation strengthening of the aluminum alloy casting is improved. Furthermore, in the present invention, the eutectic Si structure refined by the additive element silver in the alloy is granulated by performing quenching after the solution treatment and further performing an aging treatment thereafter. Further strengthened. As the quenching, in addition to water quenching, oil quenching, oil and water emulsion quenching and the like are employed.
[0010]
In the high-strength aluminum alloy casting of the present invention, when the amount of gas contained in the high-strength aluminum alloy casting exceeds 1.5 cm 3 with respect to 100 g of the alloy casting, the solution is formed at about 500 ° C. for 6 hours. During processing, blisters are generated in the casting and deform the casting. Therefore, the amount of gas contained in the high-strength aluminum alloy casting of the present invention is 1.5 cm 3 or less with respect to 100 g of the alloy casting. Further, the pressure of the die casting apparatus is reduced to 13.3 kPa or less, or oxygen at a pressure of at least atmospheric pressure is blown into the mold, thereby reducing the amount of gas contained in the aluminum alloy casting to a high strength of 100 g. The aluminum alloy can be suppressed to 1.5 cm 3 or less. As another method, the abutting mold is closed and molten aluminum is poured into the hot water supply sleeve of the die casting machine, and then injected so as not to entrap the pyrolysis gas generated from the air, mold release agent and lubricant in the cavity. This can also be suppressed in a method of filling the mold with a high-strength aluminum alloy while slowly moving the plunger forward.
[0011]
The high-strength aluminum alloy casting subjected to the solution treatment and aging treatment of the present invention is an eutectic Si grain having an average particle size of 12 μm or less, a precipitation strengthening Cu-based compound having an average particle size of 8 μm or less, and an average of 12 μm or less. It has a precipitation-strengthened Mg—Si compound having a particle size and an acicular Fe compound having an average particle size of 6 μm or less. The high-strength aluminum alloy casting containing silver of the present invention has the above-mentioned particle size by the solution treatment and the aging treatment as compared with the conventional aluminum alloy casting that does not contain silver but has the same alloy component as the present invention. By having it, the tensile strength, the proof stress and the fatigue strength could be improved by about 5 to 10%, respectively.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Aluminum alloys prepared to improve the strength of the alloy casting include 10.5 wt% Si, 4.5 wt% Cu, 0.6 wt% Mg, 0.5 wt% Fe, 0.4 wt% Mn, and There are two types: an aluminum alloy (invention) having a chemical composition which is the balance Al together with unavoidable impurities, and 0.2 wt% Ag added, and an alloy not added with Ag (Comparative Example).
[0013]
These alloys were die-cast with a conventional die casting apparatus, and the distribution of each alloy component was observed by EPMA observation. FIG. 1 shows the distribution of alloy components by EPMA observation for an aluminum alloy to which Ag of the present invention is added and an alloy to which Ag of a comparative example is not added.
[0014]
In FIG. 1a, comparatively coarse eutectic Si was observed in the eutectic Si distribution of the comparative sample without addition of Ag. On the other hand, in e of FIG. 1, the eutectic Si distribution of the Ag-added sample of the present invention was found to be a substantially refined eutectic Si. Furthermore, in b, c, and d of FIG. 1, the comparatively coarse grains are localized in the respective distributions of the Cu-based compound, the Mg-Si-based compound, and the Fe-based compound in the comparative example without addition of Ag. It shows a tendency to be distributed. In particular, Cu-based compounds and Mg-Si-based compounds that are precipitation-strengthened alloys are coarsened and localized, causing a decrease in strength and variations. In particular, if Cu is added too much, there is a problem of cracking at the time of casting. However, since the distribution of the Cu-based compound becomes uniform, the problem of cracking is less likely to occur even if the Cu content is relatively high. The distribution of the Fe-based compound shows a relatively long needle-like structure. On the other hand, in f, g, and h of FIG. 1, the distribution of each of the Cu-based compound, the Mg-Si-based compound, and the Fe-based compound of the Ag-added sample of the present invention shows a tendency that fine grains are uniformly distributed. Yes. Since the precipitation strengthening alloys Cu and Mg are refined and uniformly distributed, the strength can be increased and the variation in strength can be reduced. Furthermore, the Fe distribution produced almost no harmful needle-like structure due to the synergistic effect of the bulk organization by the addition of Mn and the Fe dispersibility by the addition of Ag.
[0015]
Example 1
An aluminum alloy containing 10.5 wt% Si, 4.5 wt% Cu, 0.6 wt% Mg, 0.5 wt% Fe, 0.4 wt% Mn, and the balance Al with inevitable impurities, An alloy added with 0.2 wt% Ag was prepared.
[0016]
A spiral scroll, which is a compressor member of an air conditioner, was die-cast from the molten aluminum alloy using a conventional die casting apparatus. After releasing from the mold, the aluminum alloy spiral scroll casting was subjected to a solution treatment in which it was heated in a temperature range of 495 to 505 ° C. for 2 to 6 hours. Thereafter, the casting of the spiral scroll subjected to the solution treatment was subjected to water quenching in this example. After water quenching, the spiral scroll casting was subjected to an aging treatment in a temperature range of 160-220 ° C. for 2-6 hours. The spiral scroll casting which is the compressor member of the obtained air conditioner was able to increase the tensile strength, proof stress and fatigue strength by about 5 to 15%.
[0017]
Example 2
In this example, first, the inside of the die of the die casting apparatus was depressurized to 13.3 kPa (100 Torr) or less using a vacuum pump. Thereafter, the molten aluminum alloy shown in Example 1 was filled in a mold, and a spiral scroll as a compressor member of an air conditioner was die-cast. The casting of the aluminum alloy spiral scroll removed from the mold was subjected to a solution heat treatment in the temperature range of 495 to 505 ° C. for 2 to 6 hours as in Example 1, and then further in this example. An aging treatment was performed by water quenching and heating in a temperature range of 160 to 220 ° C. for 2 to 6 hours. The spiral scroll casting that is the compressor member of the obtained air conditioner suppresses the entrained gas by evacuating the mold during die casting even when the above-described high temperature and long-time solution treatment and aging treatment are performed. Therefore, there was no problem that the blistering was small and the strength was reduced.
[0018]
Example 3
In this embodiment, as in the second embodiment, the inside of the die of the die casting apparatus is depressurized to 13.3 kPa (100 Torr) or less using a vacuum pump, and oxygen at a pressure of at least atmospheric pressure is then put into the die. The atmosphere was adjusted. The molten aluminum alloy shown in Example 1 was filled in a mold, and a spiral scroll as a compressor member of an air conditioner was die-cast. The casting of the aluminum alloy spiral scroll removed from the mold was subjected to a solution heat treatment in the temperature range of 495 to 505 ° C. for 2 to 6 hours as in Example 1, and then further in this example. An aging treatment was performed by water quenching and heating in a temperature range of 160 to 220 ° C. for 2 to 6 hours. Even if the above-described high temperature and long-time solution treatment and aging treatment are performed, the spiral scroll casting that is the compressor member of the obtained air conditioner is engulfed by evacuating the mold and further blowing oxygen during die casting Since the gas was suppressed, there was no problem of occurrence of blistering and a decrease in strength.
[0019]
【The invention's effect】
In the present invention, by adding a small amount of silver to an aluminum alloy, the crystallization alloy element and the precipitation alloy element can be refined, and a high-strength aluminum alloy casting can be obtained.
[0020]
As shown in FIG. 2a, compared to the conventional material subjected to T5 heat treatment, the high-strength aluminum alloy casting subjected to T6 heat treatment with the addition of Ag according to the present invention has a relative tensile strength of 1.47 times. Prepared. Further, as shown in FIG. 2b, compared with the conventional material not containing Ag subjected to the T6 heat treatment, the high strength aluminum alloy casting subjected to the T6 heat treatment to which Ag of the present invention is added is 1.2%. Double relative tensile fatigue strength.
[0021]
Furthermore, in the present invention, refinement and uniformization of the cast structure was achieved, whereby the aluminum alloy casting of the present invention was able to achieve both improvement in strength and reduction in variation in strength.
[Brief description of the drawings]
FIG. 1 shows the distribution of alloy components by EPMA observation for an aluminum alloy to which Ag of the present invention is added and an alloy to which Ag of a comparative example is not added.
FIG. 2 shows the strength of the high-strength aluminum alloy casting of the present invention and a conventional material. FIG. 2a shows relative tensile strength and FIG. 2b shows relative fatigue strength.
FIG. 3 shows the strength improvement of an aluminum alloy having a basic composition by adjusting and adding the amounts of Cu, Mg and Mn, FIG. 3a shows Cu addition, and FIG. 3b shows Mg addition. And c in FIG. 3 shows Mn addition.
Claims (8)
前記アルミニウム合金に0.1〜0.3wt%のAgを添加したこと、及び
前記高強度アルミニウム合金鋳物が、平均15μm以下の粒径の共晶Si粒と、平均8μm以下の粒径の析出強化Cu系化合物と、平均12μm以下の粒径の析出強化Mg−Si系化合物と、平均6μm以下の粒径の針状Fe系化合物とを有すること、
を特徴とする高強度アルミニウム合金鋳物。7.5-11.5 wt% Si, 3.8-4.8 wt% Cu, 0.45-0.65 wt% Mg, 0.4-0.7 wt% Fe, 0.35-0. A high-strength aluminum alloy casting obtained by casting an aluminum alloy consisting of 45 wt% Mn, the balance Al and inevitable impurities,
Adding 0.1 to 0.3 wt% of Ag to the aluminum alloy; and
Before SL aluminum alloy castings, and eutectic Si particle of the mean particle diameter of 15μm or less, and precipitation strengthening Cu compounds of the mean particle diameter of 8μm or less, the average 12μm following precipitation strengthening Mg-Si based compound particle size And an acicular Fe-based compound having an average particle size of 6 μm or less,
High strength aluminum alloy casting characterized by
前記アルミニウム合金の溶湯を金型内に充填して鋳物を鋳造する工程、
前記金型内からアルミニウム合金鋳物を取り出す工程、
前記アルミニウム合金鋳物を495〜505℃の温度範囲で2〜6時間加熱する溶体化処理を施す工程、
溶体化処理を施した後、前記アルミニウム合金鋳物に焼入れを施す工程、及び
焼入れを施した後、前記アルミニウム合金鋳物を160〜220℃の温度範囲で2〜6時間加熱する時効処理を施す工程、
を特徴とする高強度アルミニウム合金鋳物の製造方法。A method for producing a high-strength aluminum alloy casting according to claim 1 ,
Filling the mold with the molten aluminum alloy and casting a casting;
Removing the aluminum alloy casting from the mold,
Applying a solution treatment for heating the aluminum alloy casting in a temperature range of 495 to 505 ° C. for 2 to 6 hours;
A step of quenching the aluminum alloy casting after solution treatment, and a step of aging treatment of heating the aluminum alloy casting at a temperature range of 160 to 220 ° C. for 2 to 6 hours after quenching,
A method for producing a high-strength aluminum alloy casting characterized by the above.
金型内を13.3kPa以下に減圧する工程、及び
減圧後、金型内に高強度アルミニウム合金を充填してダイカストする工程、
を特徴とする渦巻状スクロールの製造方法。A method for producing a spiral scroll of a compressor member of an air conditioner cast from the high-strength aluminum alloy casting according to claim 6 ,
A step of reducing the pressure in the mold to 13.3 kPa or less, and a step of die-casting after filling the mold with a high-strength aluminum alloy after the pressure reduction,
A method of manufacturing a spiral scroll characterized by the above.
雰囲気調整後、金型内に高強度アルミニウム合金を充填してダイカストする工程、
を特徴とする請求項7に記載の製造方法。After the above-described step of reducing the pressure in the mold to 13.3 kPa or less, the step of adjusting the atmosphere by blowing oxygen at a pressure of at least atmospheric pressure into the mold, and after the atmosphere adjustment, the mold is filled with a high-strength aluminum alloy And then die casting,
The manufacturing method according to claim 7 .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002251984A JP4141207B2 (en) | 2002-08-29 | 2002-08-29 | High strength aluminum alloy casting and manufacturing method thereof |
US10/650,897 US20050100472A1 (en) | 2002-08-29 | 2003-08-28 | High strength aluminum alloy casting and method of production of same |
DE10339705A DE10339705B4 (en) | 2002-08-29 | 2003-08-28 | High strength aluminum alloy casting and process for its production |
US11/986,853 US20080083478A1 (en) | 2002-08-29 | 2007-11-27 | High strength aluminum alloy casting and method of production of same |
US12/798,288 US8246763B2 (en) | 2002-08-29 | 2010-04-01 | High strength aluminum alloy casting and method of production of same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002251984A JP4141207B2 (en) | 2002-08-29 | 2002-08-29 | High strength aluminum alloy casting and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004091822A JP2004091822A (en) | 2004-03-25 |
JP4141207B2 true JP4141207B2 (en) | 2008-08-27 |
Family
ID=32058414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002251984A Expired - Fee Related JP4141207B2 (en) | 2002-08-29 | 2002-08-29 | High strength aluminum alloy casting and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4141207B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104498781A (en) * | 2014-12-22 | 2015-04-08 | 贵阳广航铸造有限公司 | Aluminum alloy for manufacturing die-casting cylinder head covers and die-casting cylinder head cover |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102330004B (en) * | 2011-10-31 | 2013-11-06 | 哈尔滨中飞新技术股份有限公司 | Manufacturing method for aluminum alloy die forgings |
CN103695733A (en) * | 2013-12-30 | 2014-04-02 | 山东恒宇汽车配件有限公司 | Formula of aluminum alloy hub material |
CN105603268B (en) * | 2016-01-11 | 2017-06-16 | 湖北莲花电力母线制造有限公司 | The manufacture method of the aldray conducting tube bus of high-strength high-conductivity |
CN105603269B (en) * | 2016-01-25 | 2018-05-15 | 株洲立众精制科技有限公司 | A kind of manufacture method of aluminum automobile gear box casing |
CN106607538B (en) * | 2016-12-23 | 2019-02-22 | 东北轻合金有限责任公司 | The manufacturing method of helicopter AL-Zn-Mg-Cu aluminium alloy disk forging part |
CN107937768B (en) * | 2017-12-18 | 2019-12-17 | 广州致远新材料科技有限公司 | Extrusion casting aluminum alloy material and preparation method thereof |
CN112974770B (en) * | 2021-02-08 | 2023-01-31 | 北京工业大学 | High-strength aluminum alloy and extrusion casting preparation method |
CN114346201B (en) * | 2021-12-24 | 2023-12-26 | 东风汽车集团股份有限公司 | Semi-solid manufacturing method suitable for aluminum alloy brake calipers |
CN115044808B (en) * | 2022-06-30 | 2023-03-21 | 江苏大学 | Composite reinforced heat-resistant wear-resistant aluminum alloy and preparation method thereof |
-
2002
- 2002-08-29 JP JP2002251984A patent/JP4141207B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104498781A (en) * | 2014-12-22 | 2015-04-08 | 贵阳广航铸造有限公司 | Aluminum alloy for manufacturing die-casting cylinder head covers and die-casting cylinder head cover |
Also Published As
Publication number | Publication date |
---|---|
JP2004091822A (en) | 2004-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011208253A (en) | Aluminum die-cast alloy for vehicle material | |
JPH02503331A (en) | Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy | |
CN109371295B (en) | Al-Mn alloy with high Mn content and preparation method thereof | |
EP1882753A1 (en) | Aluminium alloy | |
JP4141207B2 (en) | High strength aluminum alloy casting and manufacturing method thereof | |
JP3808264B2 (en) | Aluminum alloy casting processed plastically, manufacturing method of aluminum alloy casting, and fastening method using plastic deformation | |
CN112301259A (en) | High-strength die-casting aluminum alloy, and preparation method and application thereof | |
KR101965418B1 (en) | Heat treatment method of aluminum alloy | |
CN115961186A (en) | Die-casting aluminum alloy material and preparation method and application thereof | |
CN112626391A (en) | Low-silicon high-heat-conductivity die-casting aluminum alloy and preparation method thereof | |
CN106480344A (en) | A kind of vacuum pump rotor rare-earth containing aluminium alloy and preparation method thereof | |
JP2005272966A (en) | Aluminum alloy for semisolid casting and method for manufacturing casting | |
JP2004091818A (en) | High-strength aluminum alloy casting and its manufacturing method | |
JP2001513145A (en) | Cast alloy | |
JP4925028B2 (en) | Aluminum alloy molding material | |
WO2018099272A1 (en) | Semisolid die-casting aluminum alloy and method for preparing semisolid die-casting aluminum alloy castings | |
JP2003277867A (en) | Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine | |
JP3870380B2 (en) | Aluminum alloy for plastic working and manufacturing method thereof | |
CN110666127A (en) | Novel method for improving hardness of die casting | |
CN115491558B (en) | Die-casting magnesium alloy and preparation method and application thereof | |
JP3840400B2 (en) | Method for producing semi-melt molded billet of aluminum alloy for transportation equipment | |
JP6967437B2 (en) | A method for manufacturing an aluminum die-cast alloy, an automobile member using an aluminum die-cast alloy, and an aluminum die-cast alloy. | |
JP2002060881A (en) | Aluminum alloy for casting and forging, and method for producing casting and forging material | |
WO2021128619A1 (en) | Aluminum alloy and preparation method thereof, and aluminum alloy structural member | |
JPH0635602B2 (en) | Manufacturing method of aluminum alloy sintered forgings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070501 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071120 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20071220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080610 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4141207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140620 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |