JPH0328499B2 - - Google Patents

Info

Publication number
JPH0328499B2
JPH0328499B2 JP59170754A JP17075484A JPH0328499B2 JP H0328499 B2 JPH0328499 B2 JP H0328499B2 JP 59170754 A JP59170754 A JP 59170754A JP 17075484 A JP17075484 A JP 17075484A JP H0328499 B2 JPH0328499 B2 JP H0328499B2
Authority
JP
Japan
Prior art keywords
particles
alloy
less
wear resistance
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59170754A
Other languages
Japanese (ja)
Other versions
JPS6148555A (en
Inventor
Ichiro Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP17075484A priority Critical patent/JPS6148555A/en
Publication of JPS6148555A publication Critical patent/JPS6148555A/en
Publication of JPH0328499B2 publication Critical patent/JPH0328499B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、例えばVTRシリンダー、コンピ
レツサーベーン、斜板式コンプレツサ等の斜板あ
るいはスリツパ、テープガイド、コネクテイング
ロツド等の高度の耐摩耗性を要求される各種機械
部品等に使用される耐摩耗性に優れたアルミニウ
ム合金押出材に関する。 従来の技術及び問題点 従来、この種の耐摩耗性アルミニウム合金材料
としては、Siを10〜24%程度含有したAl−Si系
の例えばAC3A、AC8A〜C、AC9A〜B等アル
ミニウム合金鋳物がよく知られている。ところが
これらのアルミニウム合金材料は、鋳造されるも
のであるために、耐摩耗性の向上に寄与するSiの
初晶粒子が粒径略150μmにも達する大きなもの
を含んで全体的に粗大であり、かつその分散が不
均一なものであるために、材料としての耐摩耗性
のばらつきが大きいという欠点があつた。 この発明は、上記のような欠点の派生が、合金
鋳物であるが故に不可避であることに鑑み、展伸
材として、それ自体が耐摩耗性に優れ、しかも耐
熱強度に優れたものであるようなアルミニウム合
金を提供することを目的としてなされたものであ
り、種々実験と研究の結果、特定の合金組成をも
つてそれを押出材とすることにより、従来のアル
ミニウム合金鋳物に匹敵し、あるいはそれより更
に卓越した耐摩耗性を有し、加えて特に耐熱強度
特性にも優れた材料を得ることに成功したもので
ある。 問題点を解決するための手段 即ち、この発明に係るアルミニウム合金押出材
は、Si:14wt%を超え25wt%以下、Cu:7.0wt
%を超え10wt%以下、Mg0.3wt%以上2.0wt%以
下を含み、かつSr:0.005〜0.1wt%、P:0.005
〜0.1wt%のうちの1種または2種を含有し、あ
るいは更に、Ni、Fe、Mn:各々0.5〜3wt%の1
種または2種以上を含有し、残部がアルミニウム
及び不可避不純物からなるものである。 この発明に係る合金押出材は、上記組成の合金
を鋳造して鋳塊に作製したのち、次いでこの鋳塊
を更に熱間で押出すことにより製造されるもので
あつて、斯る製造工程により、所期する優れた性
質を具現するものである。 先ず、上記合金成分の添加有意義及び組成範囲
の限定理由について説明すれば次のとおりであ
る。 Siは、周知のとおり耐摩耗性の向上成分として
有効なものであり、これが14wt%以下では耐摩
耗性の向上に不可欠な初晶Siが少ないものとなる
一方、逆に25wt%をこえて過多に含有されると、
鋳造が困難になる。 Cu及びMgは、いずれも合金の強度の向上に寄
与するものであるが、Cuが7.0wt%以下ではマト
リツクスの硬度上昇効果に乏しく、逆に10wt%
を超えるときは、鋳造が困難となる。またMgが
0.3wt%未満の場合及び2wt%を超える場合には
いずれもマトリツクスの硬度上昇効果を期待でき
ないものとなる。 SrおよびPは、いずれも鋳造時に初晶Si粒子を
微細化する微細化剤として機能するものである点
で均等物であり、いずれか少なくとも一方を含有
すれば足るが、それぞれ0.005wt%未満では上記
効果に乏しく、0.1wt%をこえても格別効果の増
大を望めない。 Ni、Fe、Mnは、いずれも合金の耐熱性の向上
に有効に寄与するものであり、この作用の面から
いずれも均等物であつて、少なくとも1種または
2種以上を含有すれば足りるが、各成分0.5wt%
未満では上記の効果の実現性に乏しく、逆に3wt
%をこえると切削性が著しく悪くなる欠点を派生
する。 上記のような成分範囲をもつこの発明に係る合
金押出材は、その組織を特定範囲に制御するため
に、鋳造後押出し工程を経て押出材に製造される
ものである。即ち、先ず、上記のアルミニウム合
金を従来の常法に従う溶解鋳造によりアルミニウ
ム合金鋳塊に製作する。この鋳造工程によつて得
られる鋳塊に含まれる初晶Si粒子は、上記Srおよ
び(または)Pの添加によりある程度微細化され
たものとなしうるが、それでもなおその粒径は、
100μmにも達するるものを含んで全体として未
だ相当に大きいものである。また、共晶Si粒子
も、粒径30μm程度のものを含む全体としてかな
り大きいものであり、かつその形態も針状を呈す
るものである。 そこで、これらの比較的粗大な初晶及び共晶Si
粒子を含む鋳塊を更に350〜420℃程度の熱間にて
押出し加工する。そして、この熱間押出しによ
り、合金中に含む粗大な初晶Si粒子の一部を破壊
し、そのほとんどすべての粒径が10〜80μmの範
囲で、かつ40μm以上の粒子が全初晶Si粒子面積
に対し60%以上の面積比を占める範囲に微細化
し、かつその分布を均一化せしめると共に、共晶
Si粒子も、針状結晶を長さ方向に分断して形状を
粒状化し、またこれをほとんどすべてが粒径15μ
m以下の範囲で、かつ10μm以下の粒子が全共晶
Si粒子面積に対し60%以上の面積比を占める範囲
に微細化せしめたものとする。上記に、ほとんど
すべてというのは、極めて稀に上記粒径範囲を逸
脱するものを含むことを許容する趣旨であるが、
好ましい製造条件が採用される場合には、上記粒
径範囲を逸脱するような初晶Si粒子及び共晶Si粒
子は実際上全く含まないものとすることができ
る。 このような好ましい製造条件は、殊に押出し条
件として、ビレツト温度:350〜420℃、ラム速
度:0.03〜0.2m/min、押比:10〜40に設定する
ことであり、さらに好ましくは押出ダイスにベア
リング長さ5〜15mmのものを用いること等が挙げ
られる。 ところで、合金組織中における初晶Si粒子の粒
径が上記のように40〜80μmの範囲において60%
以上の面積比を占めるべきものとされるのは、
40μ未満のものを多く含む場合には所期する優れ
た耐摩耗性が得られず、逆に80μをこえる粗大な
ものを多く含む場合には、その分布が不均一かつ
粗いのとなつて耐摩耗性のばらつきを大きくし、
かつ切削性を低下させることになるためである。
また、共晶Si粒子が粒径15μ以下でかつ10μ以下
のものを面積比60%以上含むべきものとされるの
は、初晶Si粒子の粒径を上記のような範囲にコン
トロールすることによつて必然的に上記範囲に微
細化されることになるためであり、あえてその効
果を挙げるとすれば、少なくとも共晶Si粒子が
15μをこえる粗大なものとして多く残存するとき
は、少なくとも切削性に欠陥が派生してくるもの
と予想され、従つてその反面効果として、切削性
向上の効果を挙げることができる。 発明の効果 この発明に係るアルミニウム合金押出材は、該
材料中に前記初晶Si粒子及び共晶Si粒子が微細か
つ均一に分布するものとなり、従来の展伸材のそ
のままのものでは到底期待することができなかつ
たような、更にはまたアルミニウム合金鋳物に較
べてもそれに匹敵しあいは更に一層卓越した耐摩
耗性を保有したものとなすことができる。殊に、
耐摩耗性のばらつきのないものとすることができ
る。かつまた、もとより押出材であることによ
り、合金鋳物と違つて自由な製品形状を自由に求
めることができると共に、強度、特に耐熱強度に
優れ、材料の伸びも比較的よく、成形性はもちろ
ん、切削性にも優れていて、種々の形状の製品を
任意の加工によつて容易に製作することができる
ものとなしうる。 実施例 第1表に示す本発明合金及び比較合金のそれぞ
れについて、半連続鋳造により6インチビレツト
を作製し、495℃×8時間の均質化処理を行つた
後、長さ300mmに切断し、押出温度420℃、押出し
ラム速度0.04m/minの条件で、ベアリング長さ
11mmの押出ダイスを用いて直径40mmの丸棒に押出
した。
Industrial Application Fields This invention is applicable to various mechanical parts that require a high degree of wear resistance, such as VTR cylinders, compressor survanes, swash plates of swash plate type compressors, slippers, tape guides, connecting rods, etc. This invention relates to an aluminum alloy extrusion material with excellent wear resistance used for. Conventional technology and problems Conventionally, as this type of wear-resistant aluminum alloy material, Al-Si type aluminum alloy castings such as AC3A, AC8A-C, AC9A-B, etc. containing about 10 to 24% Si have been used. Are known. However, since these aluminum alloy materials are cast, the primary crystal grains of Si, which contribute to improving wear resistance, are generally coarse, including large particles with a particle size of approximately 150 μm. Moreover, since the dispersion is non-uniform, there is a drawback that the wear resistance of the material varies widely. In view of the fact that the above-mentioned drawbacks are unavoidable because it is an alloy casting, this invention aims to create a wrought material that itself has excellent wear resistance and heat resistance strength. As a result of various experiments and research, by making extruded material with a specific alloy composition, it was made with the aim of providing an aluminum alloy that is comparable to or even better than conventional aluminum alloy castings. We have succeeded in obtaining a material that has even more outstanding wear resistance and, in addition, has particularly excellent heat resistance and strength characteristics. Means for Solving the Problems That is, the aluminum alloy extruded material according to the present invention contains Si: more than 14wt% and 25wt% or less, Cu: 7.0wt%.
% to 10wt%, Mg 0.3wt% to 2.0wt%, and Sr: 0.005 to 0.1wt%, P: 0.005
Contains one or two of ~0.1wt%, or further contains Ni, Fe, Mn: 0.5~3wt% each
It contains one or more species, and the remainder consists of aluminum and unavoidable impurities. The extruded alloy material according to the present invention is manufactured by casting an alloy having the above composition to form an ingot, and then extruding the ingot further under hot conditions. , which embodies the desired excellent properties. First, the significance of adding the above-mentioned alloy components and the reason for limiting the composition range will be explained as follows. As is well known, Si is effective as a component for improving wear resistance, and if it is less than 14wt%, there will be less primary Si, which is essential for improving wear resistance, but if it exceeds 25wt%, it will be too much. When contained in
Casting becomes difficult. Both Cu and Mg contribute to improving the strength of the alloy, but if Cu is less than 7.0wt%, the effect of increasing the hardness of the matrix is poor;
If it exceeds this value, casting becomes difficult. Also, Mg
If it is less than 0.3wt% or more than 2wt%, no effect of increasing the hardness of the matrix can be expected. Both Sr and P are equivalent in that they function as a refining agent to refine the primary Si particles during casting, and it is sufficient to contain at least one of them, but if each is less than 0.005wt%. The above effects are poor, and even if the amount exceeds 0.1 wt%, no particular increase in effect can be expected. Ni, Fe, and Mn all effectively contribute to improving the heat resistance of the alloy, and in terms of this effect, they are all equivalent and it is sufficient to contain at least one or two or more of them. , each component 0.5wt%
If it is less than 3wt, the above effect is unlikely to be achieved, and conversely
If it exceeds %, machinability will be significantly deteriorated. The alloy extruded material according to the present invention having the above-mentioned component range is manufactured into an extruded material through an extrusion process after casting in order to control its structure within a specific range. That is, first, the above aluminum alloy is produced into an aluminum alloy ingot by melting and casting according to a conventional conventional method. Although the primary Si particles contained in the ingot obtained by this casting process can be made finer to some extent by the addition of Sr and/or P, the particle size is still
They are still quite large as a whole, including some that reach 100 μm. Moreover, the eutectic Si particles are also quite large as a whole, including particles with a particle size of about 30 μm, and their morphology is also acicular. Therefore, these relatively coarse primary and eutectic Si
The ingot containing the particles is further extruded at a temperature of about 350 to 420°C. Then, through this hot extrusion, a part of the coarse primary Si particles contained in the alloy is destroyed, and almost all of them have a particle size in the range of 10 to 80 μm, and all of the particles with a size of 40 μm or more are primary Si particles. In addition to miniaturizing the area to a range that occupies more than 60% of the area and making the distribution uniform, eutectic
Si particles also divide needle-like crystals into granular shapes in the length direction, and almost all of them have a particle size of 15 μm.
In the range of less than m, and particles of less than 10 μm are all eutectic.
It shall be made so fine that it occupies an area ratio of 60% or more to the area of the Si particles. In the above, "almost all" means that it is possible to include particles that deviate from the above particle size range in extremely rare cases.
If preferable manufacturing conditions are adopted, there may be virtually no primary Si particles or eutectic Si particles outside the above particle size range. Such preferable manufacturing conditions are particularly as extrusion conditions: billet temperature: 350-420°C, ram speed: 0.03-0.2 m/min, extrusion ratio: 10-40, and more preferably extrusion die For example, use of a bearing with a length of 5 to 15 mm is recommended. By the way, when the grain size of primary Si particles in the alloy structure is in the range of 40 to 80 μm, 60%
The items that should occupy the above area ratio are:
If it contains a lot of particles smaller than 40μ, the desired excellent wear resistance cannot be obtained, and conversely, if it contains a lot of coarse particles with a diameter exceeding 80μ, the distribution becomes uneven and rough, resulting in poor wear resistance. Increasing the variation in wearability,
This is because it also reduces machinability.
Furthermore, the reason why the eutectic Si particles should have a particle size of 15 μm or less and contain 60% or more of the area ratio of particles of 10 μm or less is because the particle size of the primary Si particles is controlled within the above range. Therefore, it is inevitable that the eutectic Si particles will be refined to the above range, and if I were to point out the effect, at least the eutectic Si particles would be fine.
If a large amount of coarse particles exceeding 15μ remain, it is expected that at least defects will occur in machinability, and therefore, on the other hand, the effect of improving machinability can be cited. Effects of the Invention In the extruded aluminum alloy material according to the present invention, the primary Si particles and eutectic Si particles are finely and uniformly distributed in the material, which is far beyond expectations for conventional wrought materials as they are. Furthermore, it can be made to have excellent wear resistance that is comparable to and even more excellent than that of aluminum alloy castings. Especially,
It is possible to have uniform wear resistance. Moreover, since it is an extruded material, unlike alloy castings, it is possible to freely create any product shape, and it also has excellent strength, especially heat resistance, relatively good elongation, and good formability. It also has excellent machinability and can be easily manufactured into products of various shapes by arbitrary processing. Example For each of the present invention alloy and comparative alloy shown in Table 1, 6-inch billets were produced by semi-continuous casting, homogenized at 495°C for 8 hours, cut into lengths of 300 mm, and extruded at different temperatures. Under the conditions of 420℃ and extrusion ram speed of 0.04m/min, the bearing length
It was extruded into a round bar with a diameter of 40 mm using an 11 mm extrusion die.

【表】 次に、この押出材を60mm×20mm×10mmの形状に
切り出し、495℃×4時間の加熱後、水冷による
溶体化処理を行つた後、170℃×8時間の人工時
効処理を行つて供試片とした。 そして、各供試片につき組織中の初晶Si粒径、
硬さ、耐熱強度及び耐摩耗性を調べた。その結果
を第2表に示す。 なお、耐摩耗性試験は回転円板による大越式摩
耗試験機を用いて、摩耗距離:600m、摩擦速
度:1.97m/sec、相手材FC−30(JIS)、潤滑な
しの試験条件で実施した。
[Table] Next, this extruded material was cut into a shape of 60 mm x 20 mm x 10 mm, heated at 495°C for 4 hours, solution treated by water cooling, and then artificially aged at 170°C for 8 hours. This was used as a test piece. Then, for each specimen, the primary Si grain size in the structure,
Hardness, heat resistance strength and abrasion resistance were investigated. The results are shown in Table 2. The wear resistance test was conducted using an Okoshi type wear tester with a rotating disk under the following conditions: wear distance: 600 m, friction speed: 1.97 m/sec, mating material FC-30 (JIS), and no lubrication. .

【表】 この第2表の結果から明らかなように、Siを
15wt%を超えて含有する本発明合金材料は、比
較合金試料No.10の共晶Si合金よりも耐摩耗性に優
れていることがわかる。また、同じ過共晶Si合金
でもCuを7wt%を超えて含有し、かつMgとゝも
にSrまたは(および)Pを含有し、あるいは更
にNi、Fe、Mnの1種または2種以上を含有する
本発明合金は、マトリツクスの硬度が上昇し、併
せて耐摩耗性が向上することがわかる。 従つて、本発明合金押出材は、比較合金押出材
に較べて、硬さが良好で、耐摩耗性の点でも更に
一層改善されたものである。
[Table] As is clear from the results in Table 2, Si
It can be seen that the alloy material of the present invention containing more than 15 wt% has better wear resistance than the eutectic Si alloy of comparative alloy sample No. 10. In addition, even the same hypereutectic Si alloy contains more than 7wt% of Cu, and both Mg and Sr or (and) P, or one or more of Ni, Fe, and Mn. It can be seen that the contained alloy of the present invention increases the hardness of the matrix and also improves the wear resistance. Therefore, the alloy extruded material of the present invention has better hardness and is further improved in wear resistance than the comparative alloy extruded material.

Claims (1)

【特許請求の範囲】 1 Si:14wt%を超え25wt%以下、 Cu:7.0wt%を超え10wt%以下、 Mg0.3wt%以上2.0wt%以下 を含み、かつ Sr:0.005〜0.1wt% P:0.005〜0.1wt% のうちの1種または2種を含有し、残部がアルミ
ニウム及び不可避不純物よりなる耐摩耗性に優れ
たアルミニウム合金押出材。 2 Si:14wt%を超え25wt%以下、 Cu:7.0wt%を超え10wt%以下、 Mg0.3wt%以上2.0wt%以下 を含み、かつ Sr:0.005〜0.1wt%、 P:0.005〜0.1wt% のうちの1種または2種を含有し、更に、 Ni、Fe、Mn:各々0.5〜3wt% の1種または2種以上を含有し、残部がアルミニ
ウム及び不可避不純物からなる耐摩耗性に優れた
アルミニウム合金押出材。
[Claims] 1 Si: more than 14wt% and less than 25wt%, Cu: more than 7.0wt% and less than 10wt%, Mg more than 0.3wt% and less than 2.0wt%, and Sr: 0.005 to 0.1wt% P: An extruded aluminum alloy material with excellent wear resistance, containing one or two of 0.005 to 0.1 wt%, with the remainder being aluminum and unavoidable impurities. 2 Si: more than 14wt% and less than 25wt%, Cu: more than 7.0wt% and less than 10wt%, Mg more than 0.3wt% and less than 2.0wt%, and Sr: 0.005 to 0.1wt%, P: 0.005 to 0.1wt% It also contains one or more of Ni, Fe, and Mn in an amount of 0.5 to 3 wt% each, with the balance being aluminum and unavoidable impurities. Aluminum alloy extrusion material.
JP17075484A 1984-08-15 1984-08-15 Extruded aluminum alloy material having superior wear resistance Granted JPS6148555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17075484A JPS6148555A (en) 1984-08-15 1984-08-15 Extruded aluminum alloy material having superior wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17075484A JPS6148555A (en) 1984-08-15 1984-08-15 Extruded aluminum alloy material having superior wear resistance

Publications (2)

Publication Number Publication Date
JPS6148555A JPS6148555A (en) 1986-03-10
JPH0328499B2 true JPH0328499B2 (en) 1991-04-19

Family

ID=15910767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17075484A Granted JPS6148555A (en) 1984-08-15 1984-08-15 Extruded aluminum alloy material having superior wear resistance

Country Status (1)

Country Link
JP (1) JPS6148555A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342342A (en) * 1986-08-06 1988-02-23 Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai Aluminum alloy material for sliding member
JP5164548B2 (en) * 2007-12-12 2013-03-21 昭和電工株式会社 Aluminum alloy for continuous casting and forged product made of the alloy
CN106521256A (en) * 2016-11-28 2017-03-22 广西大学 Hypereutectic aluminum-silicon alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516806A (en) * 1974-07-09 1976-01-20 Hitachi Funmatsu Yakin Kk TAIMAMOSEISHOKETSU GOKIN
JPS5267461A (en) * 1975-12-02 1977-06-03 Tokyo Buhin Kougiyou Kk Brake device
JPS57198237A (en) * 1981-05-29 1982-12-04 Riken Corp Sliding member made of aluminum alloy and its manufacture
JPS59162242A (en) * 1983-03-05 1984-09-13 Riken Corp Wear-resistant extrusion-molded body of aluminum-silicon alloy and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516806A (en) * 1974-07-09 1976-01-20 Hitachi Funmatsu Yakin Kk TAIMAMOSEISHOKETSU GOKIN
JPS5267461A (en) * 1975-12-02 1977-06-03 Tokyo Buhin Kougiyou Kk Brake device
JPS57198237A (en) * 1981-05-29 1982-12-04 Riken Corp Sliding member made of aluminum alloy and its manufacture
JPS59162242A (en) * 1983-03-05 1984-09-13 Riken Corp Wear-resistant extrusion-molded body of aluminum-silicon alloy and its manufacture

Also Published As

Publication number Publication date
JPS6148555A (en) 1986-03-10

Similar Documents

Publication Publication Date Title
JP3378342B2 (en) Aluminum casting alloy excellent in wear resistance and method for producing the same
EP1144703B1 (en) Process for the production of a free-cutting alloy
DE2423597B2 (en) Process for the smelting metallurgical production of dispersion-dispersed aluminum alloy products with finely divided intermetallic particles
NO145103B (en) PROCEDURE FOR PREPARING AN ALUMINUM SILICUM ALLOY IN THE FORM OF A SHEET
US4737206A (en) Extruded aluminum alloys having improved wear resistance and process for preparing same
JP2703840B2 (en) High strength hypereutectic A1-Si powder metallurgy alloy
US5407636A (en) High-strength, heat-resistant aluminum-based alloy, compacted and consolidated material thereof, and process for producing the same
JPH0328499B2 (en)
JPH09249949A (en) Production of aluminum extruded material forged product
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPH07113136B2 (en) Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
JPS6215626B2 (en)
JPH0118980B2 (en)
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH055147A (en) Low thermal expansion aluminum alloy excellent in wear resistance
JPH02225635A (en) Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness
KR20000041707A (en) Method for manufacturing hyper-eutectic al-si forging alloy excellent in abrasion resistance and having small coefficient of thermal expansion and use of the same
JPH0116301B2 (en)
JPH0557346B2 (en)
JPS60196219A (en) Production of wear resistant alluminum alloy extrudate
JPS60204854A (en) Aluminum alloy pulley
JP3684245B2 (en) Aluminum alloy for cold forging

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term