JPH07113136B2 - Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof - Google Patents

Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof

Info

Publication number
JPH07113136B2
JPH07113136B2 JP61287200A JP28720086A JPH07113136B2 JP H07113136 B2 JPH07113136 B2 JP H07113136B2 JP 61287200 A JP61287200 A JP 61287200A JP 28720086 A JP28720086 A JP 28720086A JP H07113136 B2 JPH07113136 B2 JP H07113136B2
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
free
cutting
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61287200A
Other languages
Japanese (ja)
Other versions
JPS63140060A (en
Inventor
洋 石井
建 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61287200A priority Critical patent/JPH07113136B2/en
Publication of JPS63140060A publication Critical patent/JPS63140060A/en
Publication of JPH07113136B2 publication Critical patent/JPH07113136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超高速切削および重切削に対応しうる快削性ア
ルミニウム合金鋳造材およびその製造方法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improved free-cutting aluminum alloy cast material capable of coping with ultra-high speed cutting and heavy cutting, and an improvement in its manufacturing method.

(従来の技術およびその問題点) 快削性アルミニウム合金は、Al−CuにSi、Fe、Zn、Mn、
Mgなどの元素を含有し、さらにPb、Biなどの低融点金属
を含有する合金である。
(Prior art and its problems) Free-cutting aluminum alloys include Al-Cu, Si, Fe, Zn, Mn,
It is an alloy containing elements such as Mg, and further containing low melting point metals such as Pb and Bi.

従来の快削性アルミニウム合金の製造方法は低融点金属
を均一に分散させた溶湯を縦型半連続鋳造により外径
8″以上の押出用ビレットを製造し熱間押出、場合によ
ってはその後冷間加工を行なうことにより、希望するサ
イズ、形状を得る工程が一般的であった。こうした快削
性アルミニウム合金材料は更に鋳造加工を経て最終切削
加工を行うケースもある。
The conventional method for producing free-cutting aluminum alloy is to produce a billet for extrusion having an outer diameter of 8 ″ or more by vertical semi-continuous casting of a molten metal in which a low melting point metal is uniformly dispersed, and then hot extruding it In general, a process of obtaining a desired size and shape by processing is performed, and in some cases, such free-cutting aluminum alloy material is further subjected to casting and final cutting.

低融点金属を含有するこうした快削性アルミニウム合金
において良好な切削加工性、微細な切削切粉が得られる
のは、主には添加された低融点金属が、更には金属間化
合物など第二相粒子がマトリックス中に分散しているた
めである。しかし従来の工程「縦型半連続鋳造により製
造した押出用ビレットを熱間及び冷間で塑性変形させる
工程」では快削性に寄与する低融点金属及び金属間化合
物の、微細化分散には限界があった。
In such free-cutting aluminum alloys containing low melting point metals, good machinability and fine cutting chips can be obtained mainly due to the added low melting point metal and the second phase such as intermetallic compounds. This is because the particles are dispersed in the matrix. However, in the conventional process "process of plastically deforming an extrusion billet manufactured by vertical semi-continuous casting hot and cold", there is a limit to the fine dispersion of low melting point metals and intermetallic compounds that contribute to free-cutting properties. was there.

最近の自動切削化工機では従来200〜500m/min程度の切
削速度であったものが1000m/min前後の超高速切削が行
なわれるようになり、従来工程による快削性アルミニウ
ム合金では超高速切削時に切粉が連続してしまい切粉処
理性が切削加工機の仕様を満足していないケースがみら
れるようになった。
With the recent automatic cutting machine, the cutting speed of about 200 to 500 m / min was used for ultra high-speed cutting of about 1000 m / min. There are now some cases where the chips are continuous and the chip disposability does not meet the specifications of the cutting machine.

(発明が解決しようとする問題点) 低融点金属を含有する快削性アルミニウム合金におい
て、良好な切削加工性、微細な切削切粉が得られるの
は、添加された低融点金属や金属間化合物などの第二相
粒子がミクロ組織上マトリックス中に分散しているため
である。こうしたマトリックス中の低融点金属や金属間
化合物の粒子径や分散度合により、切削時の切粉形状、
大きさなど材料の切削加工性が支配される。添加される
低融点金属はそれ自体、アルミニウム溶湯を固溶せず凝
固過程においてはデンドライト二次アーム間の最終凝固
部に存在する。また金属間化合物などの第二相粒子も添
加された合金組成が凝固過程でデンドライト二次アーム
間に濃化されて晶出したものである。いずれも最終凝固
部であるデンドライト二次アーム間に偏在する。
(Problems to be Solved by the Invention) In a free-cutting aluminum alloy containing a low melting point metal, good machinability and fine cutting chips are obtained because of the added low melting point metal or intermetallic compound. This is because the second phase particles such as are dispersed in the matrix on the microstructure. Depending on the particle size and degree of dispersion of the low melting point metal and intermetallic compound in such a matrix, the shape of the cutting chips during cutting,
The machinability of the material such as size is governed. The added low melting point metal itself does not form a solid solution in the aluminum melt and is present in the final solidification portion between the dendrite secondary arms in the solidification process. Further, the alloy composition to which the second phase particles such as intermetallic compounds are added is crystallized by being concentrated between the secondary arms of the dendrite in the solidification process. All are unevenly distributed between the secondary arms of the dendrite, which is the final solidification part.

本発明は上記の知見に基いてなされたもので、低融点金
属や金属間化合物の粒子径、分散度合およびデンドライ
ト二次アーム間隔を適当に調整することにより、快削性
に優れたアルミニウム合金鋳造材が得られることを見出
し本発明に至ったものである。
The present invention has been made based on the above findings, by appropriately adjusting the particle size of the low melting point metal or intermetallic compound, the degree of dispersion and the dendrite secondary arm spacing, aluminum alloy casting excellent in free-cutting property The present invention has led to the finding that a material can be obtained.

(問題点を解決するための手段および作用) 本発明は上記の問題に鑑みなされたものでその第1発明
はCu3〜6%、Si0.1〜1.5%、Fe0.1〜2.0%を含みかつP
b、Bi、Snのいずれか2種以上の元素を総量で0.5〜2%
含み残部がアルミニウムとその不純物とからなりAu−Cu
の金属間化合物の第二相粒子径が平均15μm以下、最大
25μm以下であり、またデンドライト二次アーム間隔が
25μm以下の微細組織を有し、かつ低融点金属粒子径が
平均15μm以下、最大25μm以下に均一微細に分散して
いることを特徴とする快削性アルミニウム合金鋳造材で
ある。
(Means and Actions for Solving Problems) The present invention has been made in view of the above problems, and the first invention thereof contains Cu3 to 6%, Si0.1 to 1.5%, Fe0.1 to 2.0%, and P
0.5 to 2% in total of two or more elements selected from b, Bi and Sn
The balance including Au and Cu is aluminum and its impurities.
The average particle size of the second phase of the intermetallic compound is 15μm or less, maximum
25 μm or less, and the secondary dendrite arm spacing is
A free-cutting aluminum alloy casting material having a fine structure of 25 μm or less, and having a low melting point metal particle size of 15 μm or less on average and 25 μm or less at the maximum evenly and finely dispersed.

また第2発明は、第1発明の合金組成にMg0.3〜1.8%、
およびMn0.05〜1.2%を添加した快削性アルミニウム合
金鋳造材であり、さらに第3発明は上記の第2発明の合
金組成にZn0.05〜0.3%、Cr0.05〜0.2%、Ti0.001〜0.1
%のうち少くとも1種の元素を添加した快削性アルミニ
ウム合金鋳造材である。
The second invention is based on the alloy composition of the first invention with Mg 0.3 to 1.8%,
And a free-cutting aluminum alloy casting material containing 0.05 to 1.2% of Mn. Further, the third invention is Zn0.05 to 0.3%, Cr0.05 to 0.2%, Ti0. 001 to 0.1
% Is a free-cutting aluminum alloy casting material containing at least one element.

しかして第4〜第6発明は上記の第1〜第3発明の組成
を有するアルミニウム合金を水平方向に配置した鋳型に
710℃以上の高温溶湯を供給し、鋳型内での溶湯冷却速
度を35℃/sec以上の急冷凝固とし、かつ鋳型の直前で溶
湯を撹拌しながら鋳塊を水平方向に引出すことを特徴と
する快削性アルミニウム合金鋳造材の製造方法である。
Therefore, the fourth to sixth inventions are directed to a mold in which the aluminum alloys having the compositions of the above first to third inventions are horizontally arranged.
It is characterized by supplying high temperature molten metal of 710 ° C or higher, quenching and solidifying the molten metal in the mold at a cooling rate of 35 ° C / sec or more, and drawing the ingot horizontally while stirring the molten metal immediately before the mold. It is a method of manufacturing a free-cutting aluminum alloy cast material.

本発明の合金組成範囲について各添加元素の含有量を上
記の如く限定したのは以下の理由によるものである。す
なわちCuはAl−Cuの金属間化合物を生成し材料の熱処理
性と基地組織を強化させるための元素であるが3%未満
では強度向上に不充分であり6%をこえると鋳塊の多表
面品質を劣化させる。SiはCuと同様基地組織の強化に寄
与するものであるがSi0.1%未満ではその効果が小さく
1.5%をこえるとCuの場合と同様に鋳造性を劣化させ
る。Feは切削性向上に寄与するが0.1%未満ではその効
果が少く、2.0%をこえると切削バイトの劣化を促進さ
せてしまう。
The content of each additive element is limited as described above in the alloy composition range of the present invention for the following reason. That is, Cu is an element for forming an intermetallic compound of Al-Cu and strengthening the heat-treatability and matrix structure of the material, but if it is less than 3%, it is insufficient to improve the strength. Deteriorate quality. Si, like Cu, contributes to strengthening the matrix structure, but if Si is less than 0.1%, its effect is small.
If it exceeds 1.5%, the castability is deteriorated as in the case of Cu. Fe contributes to the improvement of machinability, but if it is less than 0.1%, its effect is small, and if it exceeds 2.0%, it deteriorates the cutting tool.

またPb、BiおよびSnは2種以上の添加により、いずれも
切削性、切粉処理性を改善するがその総量が0.5%未満
では、あまり効果がなく、2%をこえると強度および切
削表面を劣化させる。次にMgはCuと同様に基地組織の強
化に寄与し、またAl−Cu−Mg、Al−Mg−Siの金属間化合
物の生成により切削加工性を向上させるものであるが0.
3%未満ではあまり効果がなく1.8%をこえると鋳造性を
劣化させる。MnはAl−Mn−Feの金属間化合物を生成する
ことにより切削性の向上に寄与するものであるが0.05%
未満ではその効果が少なく1.2%をこえると切削バイト
を劣化させてしまう。さらにZn、Cr、Tiの微量添加はい
ずれも耐食性、耐孔食性を改善させる働きをなすもので
あるが、その下限未満ではその効果がなく上限をこえる
と切削性が悪くなる。
Also, Pb, Bi and Sn improve the machinability and the chip disposability by adding two or more kinds, but if the total amount is less than 0.5%, it is not very effective, and if it exceeds 2%, the strength and cutting surface are Deteriorate. Next, Mg contributes to the strengthening of the matrix structure like Cu, and also improves the machinability by forming an intermetallic compound of Al-Cu-Mg and Al-Mg-Si.
If it is less than 3%, it is not so effective, and if it exceeds 1.8%, the castability is deteriorated. Mn contributes to the improvement of machinability by forming an Al-Mn-Fe intermetallic compound.
If it is less than 1.2%, the effect is small and if it exceeds 1.2%, the cutting tool is deteriorated. Further, addition of a small amount of Zn, Cr, and Ti all work to improve corrosion resistance and pitting corrosion resistance, but below the lower limit, there is no effect, and above the upper limit, machinability deteriorates.

本発明は上記のアルミニウム合金のAl−Cu、Al−Cu−M
g、Al−Mg−Si、Al−Mn−Feなどの金属間化合物の第二
相粒子径が平均15μm以下、最大25μm以下であり、ま
たデンドライト二次アーム間隔が25μm以下の微細組織
を有し、かつ低融点粒子径が平均15μm以下、最大25μ
m以下に均一微細に分散しているものである。
The present invention is Al-Cu, Al-Cu-M of the above aluminum alloy.
g, Al-Mg-Si, Al-Mn-Fe, and other intermetallic compounds have a second-phase particle diameter of 15 μm or less on average, 25 μm or less at the maximum, and a dendrite secondary arm interval of 25 μm or less. And low melting point particle diameter is 15μm or less on average, 25μ at maximum
The particles are uniformly and finely dispersed in a size of m or less.

上記の金属間化合物の第二粒子径が平均15μmをこえ、
また最大が25μmをこえた粗大粒子ではこれが微細に分
散しても切削性向上に寄与しないからであり、またデン
ドライト二次アーム間隔が25μmをこえ、また低融点粒
子径が平均15μm、最大25μmをこえても切削性の向上
効果が少くなるものである。
The second particle size of the above intermetallic compound exceeds 15 μm on average,
Also, for coarse particles with a maximum of more than 25 μm, even if they are finely dispersed, they do not contribute to the improvement of machinability. Also, the dendrite secondary arm interval exceeds 25 μm, and the low melting point particle diameter is 15 μm on average, and maximum 25 μm Even if it exceeds, the effect of improving the machinability becomes small.

しかしてこれらの金属間化合物の第二相粒子径、デンド
ライト二次アーム間隔および低融点金属粒子径を微細化
するには、比較的に冷却速度が大きくとれる水平連続鋳
造方式により高温溶湯を撹拌しながら鋳塊を急冷凝固す
ることにより達成されるものであるが、この際溶湯の温
度は710℃以上の高温で鋳型に供給し、鋳型内での溶湯
冷却速度を35℃/sec以上の急冷凝固とするものである。
このようにするのは溶湯の温度が710℃未満でも冷却速
度が35℃/sec未満でも全体的なミクロ組織の粗大化を招
き、また溶湯の撹拌を行わない場合は鋳塊横断面の局部
的なミクロ組織の大きなバラツキを阻止できないからで
ある。
However, in order to refine the second-phase particle size, secondary dendrite arm spacing, and low-melting metal particle size of these intermetallic compounds, the high-temperature molten metal is agitated by the horizontal continuous casting method in which the cooling rate is relatively high. Although this is achieved by rapidly solidifying the ingot, the temperature of the molten metal is supplied to the mold at a high temperature of 710 ° C or higher, and the molten metal cooling rate in the mold is rapidly solidified at 35 ° C / sec or higher. It is what
This causes coarsening of the overall microstructure even if the temperature of the melt is less than 710 ° C and the cooling rate is less than 35 ° C / sec, and if the melt is not agitated, it will be localized in the ingot cross section. This is because it is impossible to prevent large variations in the microstructure.

次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be described.

上記の水平連続鋳造方式には種々なものがあるが例えば
第1図に示すものが本発明に使用される。すなわちタン
ディッシュ(1)内のアルミニウム合金溶湯(2)は71
0℃以上に保持され撹拌用カーボンシャフト(3)の先
端に取付けられたインペラー(4)により撹拌される。
所定の温度に達したアルミニウム合金溶湯はヘッダープ
レート(5)の下部に設けられた溶湯流入口(6)より
出湯し水例鋳型(7)に導入された冷却水(8)により
急冷凝固し、鋳塊(9)が製出され図示しない引取機に
より水平に引出される。なお(10)は冷却水出入口であ
る。
There are various horizontal continuous casting methods, but the one shown in FIG. 1 is used in the present invention. That is, the molten aluminum alloy (2) in the tundish (1) is 71
It is kept at 0 ° C. or higher and agitated by an impeller (4) attached to the tip of the agitating carbon shaft (3).
The molten aluminum alloy that has reached a predetermined temperature is discharged from a molten metal inlet (6) provided in the lower part of the header plate (5) and rapidly cooled and solidified by cooling water (8) introduced into a water mold (7), The ingot (9) is produced and horizontally drawn by a take-up machine (not shown). In addition, (10) is a cooling water inlet / outlet.

このような水平連絡鋳造方式により溶湯温度を710℃以
上の高温で鋳型に供給し、鋳型内での溶湯冷却速度を35
℃/sec以上の急冷凝固とし、かつ溶湯を撹拌しながら鋳
造することにより、金属間化合物の第二相粒子径、デン
ドライト二次アーム間隔、低融点粒子径などを所定のも
のに調整し得るものである。
By such a horizontal contact casting method, the molten metal temperature is supplied to the mold at a high temperature of 710 ° C or higher, and the molten metal cooling rate in the mold is 35
By rapidly solidifying at ℃ / sec or more, and casting the molten metal while stirring, the second phase particle size of intermetallic compound, dendrite secondary arm interval, low melting point particle size, etc. can be adjusted to a predetermined value. Is.

(実施例) 以下に本発明の一実施例について説明する。(Example) An example of the present invention will be described below.

実施例1. 第1図に示す水平連続鋳造方式により溶湯温度715〜720
℃、冷却速度を40〜45℃/secと変えて本発明の合金組成
につき65mmφの鋳塊を製造した。また比較のため本発明
の組成で溶湯撹拌のないもの、冷却速度の遅いものを製
造し、従来例としては縦型半連続鋳造法により外型9イ
ンチφのビレットを製造した。これらを均質化処理後、
冷間引抜による塑性加工を加え、更にT6熱処理を行なっ
て切削加工性を評価した。切削加工性の評価は切削条件
を通常の切削速度300m/minおよび1000m/minの超高速切
削速度の2水準とし、切込み量0.2mm、送り速度0.025〜
0.1mm/revで潤滑油を使用せずに切削したときの切粉100
個当りの重量で評価した。これらの合金組成、鋳造条
件、鋳塊のミクロ組織、切削加工性などを第1表に示
す。
Example 1. Molten metal temperature 715-720 by the horizontal continuous casting method shown in FIG.
C., the cooling rate was changed to 40 to 45.degree. C./sec, and an ingot of 65 mm.phi. Was produced with the alloy composition of the present invention. For comparison, the composition of the present invention having no molten metal stirring and the one having a slow cooling rate were manufactured, and as a conventional example, a billet having an outer die of 9 inches φ was produced by a vertical semi-continuous casting method. After homogenizing these,
Plasticity processing by cold drawing was added, and T6 heat treatment was performed to evaluate the machinability. The machinability was evaluated by setting the cutting conditions to two levels, the normal cutting speed of 300 m / min and the ultra-high cutting speed of 1000 m / min, and the cutting depth of 0.2 mm and the feed rate of 0.025-
100 chips when cut at 0.1 mm / rev without using lubricant
The weight per piece was evaluated. Table 1 shows the alloy composition, casting conditions, ingot microstructure, machinability and the like.

第1表より明らかなように本発明の製造条件によりミク
ロ組織は微細化される。溶湯を撹拌しながら鋳造するこ
とにより、第二相粒子、低融点金属粒子のバラツキが少
くなりDASも小さい。このような微細化されたミクロ組
織を有する本発明のものは超高速切削度域においても切
粉は細かく分断され、従来工程のものに比べて切削加工
性に優れていることが認められる。
As is clear from Table 1, the microstructure is refined under the manufacturing conditions of the present invention. By casting the molten metal while stirring, the dispersion of the second phase particles and the low melting point metal particles is reduced, and the DAS is also small. In the present invention having such a miniaturized microstructure, the chips are finely divided even in the ultra-high speed cutting degree region, and it is recognized that the cutting workability is superior to that of the conventional process.

実施例2. 実施例1.と同じ水平連続鋳造方式により本発明の合金組
成を、溶湯温度715〜725℃、冷却速度40〜50℃/secで溶
湯撹拌を行ないながら、外径65φ鋳塊を製造した。この
鋳塊のミクロ組織は第二相粒径Max.6〜13μm、デンド
ライト二次アーム間隔(DAS)8〜15μm、低融点金属
粒径Max.12〜18μmであった。比較材としてJIS合金、2
011、2014、2017、2218を従来工程、すなわち縦型半連
続鋳造法により外径9″φビレットを製造し均質化処理
後に押出加工したT6材丸棒を素材とした。切削加工性は
実施例1.と同様切削速度による切粉の微細化度合を切粉
100個当りの重量で評価した。
Example 2. The alloy composition of the present invention by the same horizontal continuous casting method as in Example 1, while performing molten metal stirring at a molten metal temperature of 715 to 725 ° C and a cooling rate of 40 to 50 ° C / sec, an outer diameter 65φ ingot was formed. Manufactured. The microstructure of this ingot had a second phase grain size of Max. 6 to 13 μm, a dendrite secondary arm spacing (DAS) of 8 to 15 μm, and a low melting point metal grain size of Max. 12 to 18 μm. JIS alloy as a comparison material, 2
011, 2014, 2017, 2218 was manufactured by a conventional process, that is, a vertical semi-continuous casting method to produce a billet having an outer diameter of 9 ″ φ, and a T6 round bar extruded after homogenization treatment was used as a raw material. As in 1., the degree of fineness of the cutting chips depends on the cutting speed.
It was evaluated by the weight per 100 pieces.

第2表に供試材の合金組成と切削加工性評価結果を示
す。
Table 2 shows the alloy composition of the test materials and the machinability evaluation results.

第2表から明らかなように押出加工による従来合金は超
高速切削速度域で切粉が連続してしまい自動加工機での
切削に難点があることがわかる。これに比べて本発明の
合金は切粉が分断して明らかに切削加工性に優れている
ことが認められる。
As is clear from Table 2, it is clear that the conventional alloy produced by extrusion has a difficulty in cutting with an automatic processing machine because the chips are continuous in the ultra-high cutting speed range. On the other hand, it is recognized that the alloy of the present invention is clearly excellent in machinability due to cutting of chips.

(効 果) 本発明によればアルミニウム合金組成を本発明の如く規
定し、しかも連続鋳造条件を本発明の如くして行うこと
により微細ミクロ組織を有する快削性アルミニウム合金
鋳造材を得ることを可能としたもので、苛酷な条件での
自動切削を行なう光学部品、自動車部品として広く利用
できるもので工業的価値が極めて大きいものである。
(Effect) According to the present invention, it is possible to obtain a free-cutting aluminum alloy cast material having a fine microstructure by defining the aluminum alloy composition as in the present invention and performing the continuous casting conditions as in the present invention. It has been made possible and can be widely used as an optical component for automatic cutting under severe conditions and an automobile component, and has an extremely high industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に用いる水平連続鋳造方式の一例を示す
断面図である。 1……タンディッシュ、2……溶湯、3……撹拌用カー
ボンシャフト、4……インペラー、5……ヘッダープレ
ート、6……溶湯流入口、7……水冷鋳型、8……冷却
水、9……鋳塊、10……冷却水出入口
FIG. 1 is a sectional view showing an example of a horizontal continuous casting method used in the present invention. 1 ... Tundish, 2 ... Melt, 3 ... Stirring carbon shaft, 4 ... Impeller, 5 ... Header plate, 6 ... Molten inlet, 7 ... Water cooling mold, 8 ... Cooling water, 9 ... … Ingot, 10 …… Cooling water inlet / outlet

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Cu3〜6%、Si0.1〜1.5%、Fe0.1〜2.0%
を含みかつPb、Bi、Snのいずれか2種以上の元素を総量
で0.5〜2%含み残部がアルミニウムとその不純物とか
らなりAl−Cuの金属間化合物の第二相粒子径が平均15μ
m以下、最大25μm以下であり、またデンドライト二次
アーム間隔が25μm以下の微細組織を有し、かつ低融点
金属粒子径が平均15μm以下、最大25μm以下に均一微
細に分散していることを特徴とする快削性アルミニウム
合金鋳造材。
1. Cu3-6%, Si0.1-1.5%, Fe0.1-2.0%
Containing at least two elements of Pb, Bi, and Sn in a total amount of 0.5 to 2% and the balance consisting of aluminum and its impurities, and the second-phase particle diameter of the intermetallic compound of Al-Cu is 15 μm on average.
m or less, maximum 25 μm or less, and dendrite secondary arm interval has a fine structure of 25 μm or less, and low melting point metal particles have an average diameter of 15 μm or less and a maximum fineness of 25 μm or less. Free-cutting aluminum alloy cast material.
【請求項2】Cu3〜6%、Si0.1〜1.5%、Fe0.1〜2.0
%、Mg0.3〜1.8%、Mn0.05〜1.2%を含みかつ、Pb、B
i、Snのいずれか2種以上の元素を総量で0.5〜2%含み
残部がアルミニウムとその不純物とからなり、Al−Cu、
Al−Cu−Mg、Al−Mg−Si、Al−Mn−Feなどの金属間化合
物の第二相粒子径が平均15μm以下、最大25μm以下で
あり、またデンドライト二次アーム間隔が25μm以下の
微細組織を有し、かつ低融点金属粒子径が平均15μm以
下、最大25μm以下に均一微細に分散していることを特
徴とする快削性アルミニウム合金鋳造材。
2. Cu3-6%, Si0.1-1.5%, Fe0.1-2.0
%, Mg 0.3-1.8%, Mn 0.05-1.2%, and Pb, B
The total amount of two or more elements selected from i and Sn is 0.5 to 2%, and the balance is aluminum and its impurities.
The average particle size of the second phase of intermetallic compounds such as Al-Cu-Mg, Al-Mg-Si, and Al-Mn-Fe is 15 μm or less, the maximum is 25 μm or less, and the dendrite secondary arm interval is 25 μm or less. A free-cutting aluminum alloy casting material having a structure, and having a low melting point metal particle diameter of 15 μm or less on average and 25 μm or less at maximum, dispersed uniformly and finely.
【請求項3】Cu3〜6%、Si0.1〜1.5%、Fe0.1〜2.0
%、Mg0.3〜1.8%、Mn0.05〜1.2%を含みPb、Bi、Snの
いずれか2種以上の元素を総量で0.5〜2%含み、更にZ
n0.05〜0.2%、Cr0.05〜2%、Ti0.001〜0.1%のうち少
くとも1種の元素を含み残部がアルミニウムとその不純
物とからなり、Al−Cu、Al−Cu−Mg、Al−Mg−Si、Al−
Mn−Feなどの金属間化合物の第二相粒子径が平均15μm
以下、最大25μm以下であり、またデンドライト二次ア
ーム間隔が25μm以下の微細組織を有し、かつ低融点金
属粒子が平均15μm以下、最大25μm以下に均一微細に
分散していることを特徴とする快削性アルミニウム合金
鋳造材。
3. Cu3-6%, Si0.1-1.5%, Fe0.1-2.0
%, Mg 0.3 to 1.8%, Mn 0.05 to 1.2%, and a total amount of 0.5 to 2% of any two or more elements of Pb, Bi and Sn, and Z
n0.05-0.2%, Cr0.05-2%, Ti0.001-0.1% and at least one element, and the balance consisting of aluminum and its impurities, Al-Cu, Al-Cu-Mg, Al-Mg-Si, Al-
The average particle size of the second phase of intermetallic compounds such as Mn-Fe is 15 μm
It is characterized by having a fine structure with a maximum of 25 μm or less and a secondary dendrite arm spacing of 25 μm or less, and low-melting-point metal particles uniformly dispersed in an average of 15 μm or less and a maximum of 25 μm or less. Free-cutting aluminum alloy casting material.
【請求項4】Cu3〜6%、Si0.1〜1.5%、Fe0.1〜2.0%
を含みかつPb、Bi、Snのいずれか2種以上の元素を総量
で0.5〜2%含み残部がアルミニウムとその不純物とか
らなるアルミニウム合金を水平方向に配置した鋳造に71
0℃以上の高温溶湯を供給し、鋳型内の溶湯冷却速度を3
5℃/sec以上の急冷凝固とし、かつ鋳型の直前で溶湯を
撹拌しながら鋳塊を水平方向に引出すことを特徴とする
快削性アルミニウム合金鋳造材の製造方法。
4. Cu3-6%, Si0.1-1.5%, Fe0.1-2.0%
In a casting in which an aluminum alloy containing 0.5 to 2% of Pb, Bi, or Sn in a total amount of 0.5 to 2% and the balance of aluminum and its impurities is horizontally arranged.
By supplying high temperature molten metal of 0 ℃ or more, cooling rate of molten metal in the mold is 3
A method for producing a free-cutting aluminum alloy cast material, which comprises quenching and solidifying at 5 ° C / sec or more and drawing the ingot horizontally while stirring the molten metal immediately before the mold.
【請求項5】Cu3〜6%、Si0.1〜1.5%、Fe0.1〜2.0
%、Mg0.3〜1.8%、Mn0.05〜1.2%を含みかつPb、Bi、S
nのいずれか2種以上の元素を総量で0.5〜2%含み残部
がアルミニウムとその不純物とからなるアルミニウム合
金を水平方向に配置した鋳型に710℃以上の高温溶湯を
供給し、鋳型内での溶湯冷却速度を35℃/sec以上の急冷
凝固とし、かつ鋳型の直前で溶湯を撹拌しながら鋳塊を
水平方向に引出すことを特徴とする快削性アルミニウム
合金鋳造材の製造方法。
5. Cu3-6%, Si0.1-1.5%, Fe0.1-2.0
%, Mg 0.3-1.8%, Mn 0.05-1.2% and Pb, Bi, S
A high temperature molten metal of 710 ° C. or higher is supplied to a mold in which an aluminum alloy composed of 0.5 to 2% of any of n elements in a total amount of 0.5 to 2% and the balance being aluminum and its impurities is horizontally arranged, A method for producing a free-cutting aluminum alloy cast material, which comprises quenching and solidifying the melt at a cooling rate of 35 ° C./sec or more and drawing the ingot horizontally while stirring the melt immediately before the mold.
【請求項6】Cu3〜6、Si0.1〜1.5%、Fe0.1〜2.0%、M
g0.3〜1.8%、Mn0.05〜1.2%を含みPb、Bi、Snのいずれ
か2種以上の元素を総量で0.5〜2%含み、さらにZn0.0
5〜0.2%、Cr0.05〜2%、Ti0.001〜0.1%のうち少くと
も1種の元素を含み残部がアルミニウムとその不純物と
からなるアルミニウム合金を水平方向に配置した鋳型に
710℃以上の高温溶湯を供給し、鋳型内での溶湯冷却速
度を35℃/sec以上の急冷凝固とし、かつ鋳型の直前で溶
湯を撹拌しながら鋳塊を水平方向に引出すことを特徴と
する快削性アルミニウム合金鋳造材の製造方法。
6. Cu3-6, Si0.1-1.5%, Fe0.1-2.0%, M
g 0.3-1.8%, Mn 0.05-1.2%, Pb, Bi, Sn, 2 or more elements in total 0.5-2%, and Zn0.0
Aluminum alloy containing 5 to 0.2%, Cr 0.05 to 2%, and Ti 0.001 to 0.1% at least one element, and the balance aluminum and its impurities in a horizontal mold.
It is characterized by supplying high temperature molten metal of 710 ° C or higher, quenching and solidifying the molten metal in the mold at a cooling rate of 35 ° C / sec or more, and drawing the ingot horizontally while stirring the molten metal immediately before the mold. Manufacturing method of free-cutting aluminum alloy cast material.
JP61287200A 1986-12-02 1986-12-02 Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof Expired - Lifetime JPH07113136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61287200A JPH07113136B2 (en) 1986-12-02 1986-12-02 Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61287200A JPH07113136B2 (en) 1986-12-02 1986-12-02 Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
JPS63140060A JPS63140060A (en) 1988-06-11
JPH07113136B2 true JPH07113136B2 (en) 1995-12-06

Family

ID=17714362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61287200A Expired - Lifetime JPH07113136B2 (en) 1986-12-02 1986-12-02 Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof

Country Status (1)

Country Link
JP (1) JPH07113136B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726444B2 (en) * 1988-09-19 1998-03-11 古河電気工業株式会社 Manufacturing method of aluminum alloy with excellent transverse feed machining
SI20694A (en) * 2000-09-04 2002-04-30 Impol, Industrija Metalnih Polizdelkov, D.D. Aluminium automatic diecast alloys, recycling process of their production and their use
JP4290024B2 (en) * 2004-01-26 2009-07-01 古河スカイ株式会社 Compressor impeller made of cast aluminum alloy for turbochargers with excellent heat resistance
JP2006104537A (en) * 2004-10-06 2006-04-20 Nissin Kogyo Co Ltd Method for casting aluminum alloy
JP5133037B2 (en) * 2007-12-06 2013-01-30 株式会社住軽テクノ Free-cutting aluminum alloy with excellent heat resistance
CN106191484A (en) * 2016-08-29 2016-12-07 亚太轻合金(南通)科技有限公司 A kind of agitating device for aluminium alloy smelting and manufacture method thereof
CN106811638A (en) * 2016-11-28 2017-06-09 佛山市尚好门窗有限责任公司 A kind of anticorrosion aluminium material
CN109050870B (en) * 2018-11-13 2019-02-22 烟台工程职业技术学院 A kind of fast assembling-disassembling part and its processing method
CN110157965B (en) * 2019-06-24 2020-07-28 广东兴发铝业有限公司 Free-cutting aluminum-copper alloy extrusion bar and preparation method thereof
CN110358954B (en) * 2019-06-24 2021-06-08 广东省材料与加工研究所 Green and environment-friendly free-cutting aluminum-copper alloy and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193236A (en) * 1983-04-15 1984-11-01 Kobe Steel Ltd Free cutting aluminum alloy and preparation thereof
JPS60187654A (en) * 1984-03-08 1985-09-25 Showa Alum Ind Kk Aluminum alloy for parts to contact with magnetic tape having excellent corrosion resistance

Also Published As

Publication number Publication date
JPS63140060A (en) 1988-06-11

Similar Documents

Publication Publication Date Title
JP3301919B2 (en) Aluminum alloy extruded material with excellent chip breaking performance
RU2126848C1 (en) Lead-free aluminum alloy
KR101340181B1 (en) Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
JP3886270B2 (en) High corrosion resistance aluminum alloy with excellent machinability
JPH10219381A (en) High strength aluminum alloy excellent in intergranular corrosion resistance, and its production
JPH07113136B2 (en) Free-Cutting Aluminum Alloy Cast Material and Manufacturing Method Thereof
JP3552577B2 (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JPH09249949A (en) Production of aluminum extruded material forged product
JPH07145440A (en) Aluminum alloy forging stock
JP2848368B2 (en) Manufacturing method of aluminum alloy for compressor parts with excellent wear resistance and toughness
JPS6138254B2 (en)
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH05287427A (en) Wear resistant aluminum alloy for cold forging and its manufacture
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JP2907389B2 (en) Aluminum alloy material for wear resistance processing with excellent toughness
JPS6154852B2 (en)
JP3379901B2 (en) Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same
JP7323668B1 (en) Aluminum alloy extruded material for cutting, method for recycling brazing sheet waste, and method for manufacturing aluminum alloy extruded material
JPS6158546B2 (en)
JPH0118980B2 (en)
JP2868017B2 (en) Power steering system component manufacturing method
KR930001950B1 (en) Aluminium alloy for revolving materials