JPS58181851A - Preparation of al-zn-mg-cu base alloy material having uniform moldability - Google Patents

Preparation of al-zn-mg-cu base alloy material having uniform moldability

Info

Publication number
JPS58181851A
JPS58181851A JP5766382A JP5766382A JPS58181851A JP S58181851 A JPS58181851 A JP S58181851A JP 5766382 A JP5766382 A JP 5766382A JP 5766382 A JP5766382 A JP 5766382A JP S58181851 A JPS58181851 A JP S58181851A
Authority
JP
Japan
Prior art keywords
treatment
cast ingot
alloy material
cold
base alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5766382A
Other languages
Japanese (ja)
Other versions
JPS6058298B2 (en
Inventor
Yoshimitsu Miyaki
美光 宮木
Masakazu Hirano
正和 平野
Yutaka Kaneda
豊 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57057663A priority Critical patent/JPS6058298B2/en
Publication of JPS58181851A publication Critical patent/JPS58181851A/en
Publication of JPS6058298B2 publication Critical patent/JPS6058298B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To prepare an Al-Zn-Mg-Cu base alloy material having uniform moldability, by carrying out proper heat treatment with respect to an Al alloy cast ingot cntaining Zn, Mg and Cu as essential components and having Mn, Cr, Zr, Ti or V further added thereto. CONSTITUTION:An Al alloy cast ingot containing 3-8% Zn, 1-3% Mg and 0.5-3% Cu as essential components and one kind or more 0.05-0.8% Mn, 0.05- 0.3% Cr, 0.05-0.3% Zr, 0.01-0.15% Ri or 0.01-0.15% V and comprising the remainder Al and impurities is subjected to homogenizing treatment and hot processing or further cold processing successively and, after the resulting cast ingot is heated to 350-500 deg.C to be held at that temp., the heated cast ingot is cooled at a cooling speed of 10 deg.C/min or more. In the next step, the treated cast ingot is subjected to precipitation treatment by heating and holding the same to 200-400 deg.C within 24hr to obtain an Al-Zn-Mg-Cu base alloy material having uniform moldability of which the recrystallized particle after solution heat- treatment and hardening treatment succeeding cold molding processing does not become coarse.

Description

【発明の詳細な説明】 本発明は均一な成形性を有するkl−Zn −Mg−C
u系合金材の製造法に関し、さらに拝しくけ、高力アル
ミニウム合金として代表的な7075系合金材の成形加
工率が一異なっても均一な成形性を有するような改良さ
れたアルミニウム合金の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides kl-Zn-Mg-C having uniform formability.
Regarding the manufacturing method of U-based alloy materials, we would like to further discuss the manufacturing of an improved aluminum alloy that has uniform formability even if the forming rate of 7075-based alloy material, which is a typical high-strength aluminum alloy, is different. Regarding the law.

一般に、7000系の高力アルミニウム合金は、成形加
工性が劣るため軟質材にて予備の加工を行ない、続いて
溶体化・焼入処理を行ない、焼入直後の強度が低い短時
間の間に本加工を行なった後、時効処理を行なう(T6
処理)製造方法が採用されている。
In general, 7000 series high-strength aluminum alloys have poor formability, so preliminary processing is performed using a soft material, followed by solution treatment and quenching, and the strength immediately after quenching is low. After performing the main processing, aging treatment is performed (T6
Processing) manufacturing method is adopted.

しかしながら、このような製造方法では軟質材で加工率
10〜20噂の予備加工を受けた部分はその後の溶体化
・焼入処理で著しく粗大な再結晶組織となり、本加工に
おいて肌荒れ、或いは、微小な割れが発生し、成形加工
を不可能にし九り、又は、製品の性能全低下させるとい
う大きな問題を有している。
However, in this manufacturing method, the part of the soft material that has been subjected to preliminary processing with a processing rate of 10 to 20 becomes extremely coarse recrystallized structure during the subsequent solution treatment and quenching treatment, and the surface becomes rough or microscopic during the main processing. This poses a serious problem in that large cracks occur, making molding impossible or completely reducing the performance of the product.

本発明は上記した従来における7000系高力アルミニ
ウム合金の製造方法の問題点に鑑みなされたものであっ
て、即ち、軟質材の状襲においても結晶粒が微細であり
、板材、管材、及び、棒材等の軟質材に施される圧延、
抽伸、スウェージ加工。
The present invention was made in view of the above-mentioned problems in the conventional manufacturing method of 7000 series high-strength aluminum alloy, namely, the crystal grains are fine even in the case of soft materials, and plate materials, pipe materials, and Rolling applied to soft materials such as bars,
Drawing, swaging.

冷間鍛造等の全べての冷関加工車の部分でその後の溶体
化・焼入処理後の再結晶粒が粗大にならない均一な成形
性を有するAt−Zn−Mg−Cu系合金材の製造法を
提供するものである。
An At-Zn-Mg-Cu alloy material with uniform formability that prevents recrystallized grains from becoming coarse after subsequent solution treatment and quenching in all parts of cold-processed cars such as cold forging. It provides a manufacturing method.

本発明に係る均一な成形性を有するAt−Zn−Mf−
Cu系合金材の製造法の特徴とするところは、Zn5〜
8嚢、 Mg 1〜3%、 Cu[L5〜5 % k必
須成分としてtlL、Mna05〜α8覧Cr(105
〜0.3%、 Zrα05〜0.3%、 TiCLol
 〜CL15%、 V CLDl 〜CL15% O1
攬、又は、2種以上を含有し、残部Ajと不純物からな
るアルミニウム合金鋳塊を均質化処理後、熱関和工、或
いは、きらに冷間加工を施した後、550’〜500℃
に加熱保持し、冷却速度10℃/分以上で冷却し、次い
で、200°〜400℃に24時間以内加熱保持して析
出処理を行なうことにある。
At-Zn-Mf- having uniform formability according to the present invention
The manufacturing method of Cu-based alloy material is characterized by Zn5~
8 capsules, Mg 1-3%, Cu[L5-5% k as essential components tlL, Mna05-α8 list Cr (105
~0.3%, Zrα05~0.3%, TiCLol
~CL15%, V CLDl ~CL15% O1
After homogenizing an aluminum alloy ingot containing Aj or two or more and consisting of the remainder Aj and impurities, the aluminum alloy ingot is subjected to heat treatment or cold working to 550' to 500°C.
The method is to heat and maintain at a temperature of 200 DEG to 400 DEG C. for less than 24 hours, cool at a cooling rate of 10 DEG C./min or more, and then heat and maintain at 200 DEG C. to 400 DEG C. for less than 24 hours to carry out a precipitation treatment.

本発明に係る・均一な成形性を有するAt−Zn −M
g−Cu系合金の製造法においては、上記したように一
定割合のCu、 Mg、 Znf必須成分とし、Mn、
 Cr、Zr。
At-Zn-M having uniform formability according to the present invention
In the manufacturing method of g-Cu alloy, as mentioned above, Cu, Mg, and Znf are essential components in a certain proportion, and Mn,
Cr, Zr.

V、 Tiの1種、或いは、2種以上を含有する残部A
tと不純物からなるアルミニウム合金を、通常の溶製法
により製造した鋳塊全450°〜500℃の温度で4〜
24時間、又は、300°〜450℃の温度で2〜24
時間加熱後、450°〜500°Cの温度で2〜24時
間加熱して均質化処理を行ないCu、 Mg、 Znを
充分に拡散同浴させてミクロ偏析を無くし同時に組織安
定化に効果があるMn、 Cr、 Zr、 Ti ′t
−微細均一に析出でせ、次いで、熱間加工を行ない、或
いは、ざらに冷IV1加工を行なって所要形状寸法に7
70工する。この冷間加工を行なう前に熱間no工材1
550’〜500’Cで軟化処理を行ない再結晶組織と
しておく。その後、550°〜50[]℃の温度でMg
、Znt−固溶させるのに充分な時間保持した後10℃
/分以上の冷却速度で室温まで冷却し、続いて200°
〜400℃の温度で24時間以内の時間加熱保持して析
出処理をし、Mg、 Znの化合物を均一に析出させる
のである。この析出処理においては、加熱速度150°
C/ hr以下、及び、冷却速度150℃/hr以下で
処理を行なうのがよい。
The remainder A contains one or more of V and Ti
An aluminum alloy consisting of T and impurities is ingot manufactured by a normal melting process at a temperature of 450° to 500°C.
24 hours or 2 to 24 hours at a temperature of 300° to 450°C
After heating for 1 hour, homogenization treatment is performed by heating at a temperature of 450° to 500°C for 2 to 24 hours, and Cu, Mg, and Zn are sufficiently diffused in the same bath to eliminate microsegregation and at the same time are effective in stabilizing the structure. Mn, Cr, Zr, Ti′t
- Precipitate finely and uniformly, then perform hot working or rough cold IV1 processing to obtain the required shape and size.
It takes 70 hours. Before performing this cold working, hot working material 1
A softening treatment is performed at 550' to 500'C to form a recrystallized structure. After that, Mg
, Znt-10°C after holding for a sufficient time to form a solid solution.
Cool to room temperature at a cooling rate of >/min, followed by 200°
The precipitation treatment is carried out by heating and holding at a temperature of ~400°C for up to 24 hours to uniformly precipitate the Mg and Zn compounds. In this precipitation treatment, the heating rate was 150°.
It is preferable to carry out the treatment at a temperature of C/hr or less and a cooling rate of 150° C./hr or less.

このように、本発明に係る均一な成形性含有するAL−
Zn−MIK−Cu系合金材の製造法により得られたア
ルミニウム合金材を冷間成形加工すると、マトリックス
に均一に析出したMg、Zn化合物の粒子によって、冷
間加工で導入された転位が微細均一なセル組織として分
布され、引続く溶体化拳焼入処理によって微細均一に分
布されたセル組織を核として再結晶が起るため微細な再
結晶組織が得らnる。
In this way, the AL- containing uniform formability according to the present invention
When an aluminum alloy material obtained by the manufacturing method of Zn-MIK-Cu alloy material is cold-formed, the dislocations introduced during cold-working are finely and uniformly formed by particles of Mg and Zn compounds precipitated uniformly in the matrix. A fine recrystallized structure is obtained because recrystallization occurs using the fine and uniformly distributed cell structure as a nucleus by the subsequent solution heat treatment.

このため、加工率の異なる成形加工を施した予備加工材
であっても溶体化・焼入処理後の本成形加工において、
割れや肌荒れも発生することなく均一な成形加工が可能
になり、加工後の時効処理によシ所要の特性を確保する
ことができるものである。
For this reason, even if pre-processed materials have been subjected to forming processes with different processing rates, in the main forming process after solution treatment and quenching,
Uniform molding is possible without cracking or roughening, and required properties can be maintained through aging treatment after processing.

本発明に係る均一な成形性を有するAL−Zn−Mg−
Cu系合金材の製造法について詳細に説明する。
AL-Zn-Mg- having uniform formability according to the present invention
A method for manufacturing a Cu-based alloy material will be explained in detail.

先づ、使用するアルミニウム合金の含有成分。First, the ingredients of the aluminum alloy used.

成分割合について説明する。The component ratio will be explained.

Zn14強度を付与する元素でおり、含有量が3嚢未満
ではT6処理成形加工材の強度が低下し、また、ssf
:越えて含有されると不溶性化合物が多くなり靭性が劣
化し、かつ、応力腐蝕割れを生じる恐れがある。よって
、Zn含有量は5〜8慢とする。
Zn14 is an element that imparts strength, and if the content is less than 3 capsules, the strength of the T6-treated molded material will decrease, and ssf
: If the content exceeds the amount, the amount of insoluble compounds increases, resulting in deterioration of toughness and the risk of stress corrosion cracking. Therefore, the Zn content is set to 5 to 8.

造はZnと同様に強度を付与する元素でめシ、含有1が
1%未満ではT6処理成形加工材の強度が低下し、また
、6eIIK−越えて含有されると冷関用工性t−悪く
シ、靭性を劣化させる。よって、鳩舎有量は1〜6嘩と
する。
Similar to Zn, the structure is an element that imparts strength. If the content is less than 1%, the strength of the T6 treated molded material will decrease, and if it is contained in excess of 6eIIK, the cold steel workability will be poor.・Deterioration of toughness. Therefore, the number of pigeon coops should be 1 to 6 pigeons.

Cuは強度全付与する元素でおり、含有量が0.5慢未
膚ではT6処理成形加工材の強度が低下し、また、3%
を越えて含有されると不溶性化合物が多くなって靭性が
劣化する。よって、Cu含有量はCL5〜5−とする。
Cu is an element that imparts total strength, and when the content is 0.5%, the strength of the T6-treated molded material decreases, and when the content is 0.5%
If the content exceeds the amount, the amount of insoluble compounds increases and the toughness deteriorates. Therefore, the Cu content is set to CL5-5-.

Mn、 Cr、 Zr、 Ti、 V は組織を安定化
する元素であり、Mn0.05%未満、  Cr105
1未満、 Zrα05優未満、Tiα01%未満、Vα
01%未満では組織安定化には効果がなく、また、Mn
l18qb、Crα5%、Zrα61、  Ti115
%、VCL15%を夫A[tテを有すnルト組織安定化
の効果が飽和してしまい、さらに、巨大晶出物を晶出す
る。よって、Mn含有量Q、05〜o、slG、 Cr
含有量15〜5%、Zrα05〜13%、Tiα01〜
α151G、VCLO1〜α15チとする。そして、こ
れらの成分は1種、或いは2種以上を含有させるのであ
る。
Mn, Cr, Zr, Ti, and V are elements that stabilize the structure, and Mn is less than 0.05%, Cr105
Less than 1, Zrα less than 05, Tiα less than 01%, Vα
If it is less than 0.01%, there is no effect on structure stabilization, and Mn
l18qb, Crα5%, Zrα61, Ti115
%, the effect of stabilizing the structure with VCL of 15% is saturated, and giant crystallized substances are further crystallized. Therefore, Mn content Q, 05~o, slG, Cr
Content 15-5%, Zrα 05-13%, Tiα 01-
α151G, VCLO1 to α15chi. One or more of these components may be contained.

不純物としては、F@CL5慢以下、  81α4−以
下の含有は許容される。
As impurities, inclusions of F@CL5 or less and 81α4 or less are allowed.

次に、熱処理について説明する。Next, heat treatment will be explained.

鋳塊の均質化処理は、Cu、 Mg、 Znの固溶、及
び、Mn、 Cr、 Zn、 Tiの析出させるのであ
るが、均質化処理温度が400@C未満ではこの効果が
充分でなく、また500℃を越えると局部溶解が発生し
、また、均質化処理時間は4時間以上を必要とするが、
24時間を越えても効果は飽和して不経済である。この
場合の加熱速度は100℃、/hr以下とする。二段で
行なう場合は加熱速度の制限は籍に友く、一段目ではM
n、 Cr、 Zn、 Ti、Vの析出核の生成を促進
させ、二段目の加熱では局部溶融防止が目的で、最適温
度範囲は500°〜450℃とする。そして、保持時間
は何れの場合でも、2〜24時間とするのがよく、2時
間よυ短かい場合は効果が少なく、24時間より長い場
合は効果が飽和して不経済である。
The homogenization treatment of the ingot causes the solid solution of Cu, Mg, and Zn, and the precipitation of Mn, Cr, Zn, and Ti, but this effect is not sufficient if the homogenization treatment temperature is less than 400 @ C. Furthermore, if the temperature exceeds 500°C, local dissolution will occur, and the homogenization process will require more than 4 hours.
Even after 24 hours, the effect is saturated and it is uneconomical. In this case, the heating rate is 100° C./hr or less. When conducting in two stages, limiting the heating rate is useful; in the first stage, M
The purpose of the second heating is to promote the formation of precipitation nuclei of n, Cr, Zn, Ti, and V, and to prevent local melting, and the optimum temperature range is 500° to 450°C. In any case, the holding time is preferably 2 to 24 hours; if it is shorter than 2 hours, the effect will be small, and if it is longer than 24 hours, the effect will be saturated and it will be uneconomical.

次いで、均質化処理後の熱間加工、或いはさらに、冷間
加工を行なって所望形状寸法に加工してから、2段の熱
処理を行なうことについて説明すると、1段目の熱処理
は55o0〜soo℃に加熱保持してから、10℃/分
以上の冷却速度で冷却するのであるが、650℃未満の
温度では充分軟化されず冷間加工で割れが発生する可能
性があり、また、500℃金越える温度では局部溶解が
発生する。この加熱時間は500℃近くの高温では数分
間でよく、しかし400℃程度の低い温度では数時間を
必要とするが、加熱速度は影響はないが、冷却速度は1
0℃/分より速くしないとMg、Zni充分固溶するこ
とができず、次の2段目の熱逃場は200°〜400℃
の温度に24時間以内加熱保持して析出処理するのであ
るが、200℃未満の温度では強度が高くなう成形加工
性が劣化し、また、400℃を越える温度では狗、 Z
nが溶体化されるため微細化効果が失なわれ、加熱保持
時間は400℃近くの高温側では数分間でもよく、20
0℃近くの低温側ではMg、 Zn化合物の析出のため
長い保持時間を必要とするが、24時間程度まで保持す
れば充分である。
Next, we will explain that after homogenization treatment, hot working or further cold working is performed to obtain the desired shape and size, and then two-stage heat treatment is performed. Temperatures lower than 650°C may not soften sufficiently and cracks may occur during cold working. At temperatures exceeding this, local melting occurs. The heating time may be several minutes at high temperatures near 500°C, but several hours at low temperatures around 400°C. The heating rate is not affected, but the cooling rate is 1
If the speed is not faster than 0°C/min, Mg and Zni cannot be sufficiently solid-dissolved, and the heat escape field in the next second stage is 200° to 400°C.
Precipitation treatment is carried out by heating and holding at a temperature of 24 hours or less, but temperatures below 200°C deteriorate the formability that increases strength, and temperatures above 400°C deteriorate
Since n is dissolved, the refinement effect is lost, and the heating holding time may be several minutes at high temperatures near 400°C;
On the low temperature side near 0°C, a long holding time is required due to the precipitation of Mg and Zn compounds, but holding for up to about 24 hours is sufficient.

本発明に係る均一な成形性を有するkl−Zn−Mg−
Cu系合金材の製造法の実施例を比f例とともに説明す
る。
kl-Zn-Mg- having uniform formability according to the present invention
An example of a method for manufacturing a Cu-based alloy material will be described together with a ratio example.

実施例 第  1  表 第1表に示す7075合金相当の含有成分、成分割合の
鋳塊全通常の溶製により鋳造し、この鋳塊ヲ450℃の
温度で24時間均質処理を行ない、450℃から500
℃の間で熱間圧延し、8wtの板を作り、続いて460
℃の温度で4時間の軟化処理を行なった後冷間圧延で5
mtO板とした。
Example 1 An ingot with the ingredients and proportions equivalent to the 7075 alloy shown in Table 1 was cast by conventional melting, and the ingot was homogenized at a temperature of 450°C for 24 hours, and the ingot was heated from 450°C. 500
℃ to make 8wt plate, followed by 460wt.
After softening for 4 hours at a temperature of 5°C, cold rolling
It was made into an mtO plate.

この板を使用して、第2表に示す熱処理全農した。この
@2表において、試料板A1〜jf66Fi本発明に係
る均一な成形性を有するAt−Zn−ME−Cu系合金
材の製造法によるもので、A7〜A12は比較のための
熱処理法によるもので、ム15は従来法の熱処理による
もの(O材)である。
This board was used to undergo the heat treatment shown in Table 2. In this @2 table, sample plates A1 to jf66Fi are produced by the manufacturing method of the At-Zn-ME-Cu alloy material having uniform formability according to the present invention, and A7 to A12 are produced by the heat treatment method for comparison. The material 15 is obtained by heat treatment using the conventional method (O material).

第  2  表 これらの試料板を、さらに加工率30囁(板厚2.1n
+)、20%(板厚2.4m )で冷間圧延し、冷間圧
延しないものを含めて、溶体化争焼入処理(480℃×
50分水暁入れ)シ、直ちに90°曲げカロエ(L方向
Table 2 These sample plates were further processed at a processing rate of 30 mm (plate thickness 2.1 nm).
+), cold rolled at 20% (plate thickness 2.4 m), and solution hardening treatment (480°C x
Add water for 50 minutes), then immediately bend 90 degrees (L direction).

4jIllLR90°曲げ)を行ない、さらに、時効処
理(120℃X 24 hr)を行なった。
4jIllLR 90° bending), and then an aging treatment (120°C x 24 hr).

@3表には、第2表に示した条件で熱処理された谷試料
板の機械的性責、さらに、冷間圧延して溶体化・焼入処
理した試料板の古結晶粒度、90’曲げカロエ性、また
、時効処理したT6処珈板の機械的性貰を示しておる。
@Table 3 shows the mechanical properties of the valley sample plate heat-treated under the conditions shown in Table 2, as well as the paleograin size and 90' bending of the cold-rolled, solution-hardened sample plate. It shows the caroe properties and the mechanical properties of aged T6 treated wood.

この’Ig5表から明らかなように、冷間圧延材を本発
明に係る均一な成形性を有するAt−Zn−Mg −C
u系合金の製造法によれば、後の冷間成形加工工程で加
工率が鼻なっても曲げ加工で肌荒れ、及び。
As is clear from this 'Ig5 table, the cold-rolled material was processed into At-Zn-Mg-C having uniform formability according to the present invention.
According to the manufacturing method of U-based alloys, even if the processing rate is low in the subsequent cold forming process, the surface may become rough during the bending process.

割れが発生しない。また、50%までの加工率で冷間圧
延して溶体化・焼入れ処理した試料板の再結晶粒度は2
0μ以下、50優加工率で10μ以下となり加工率を高
めると微細になっている。
No cracking occurs. In addition, the recrystallized grain size of the sample plate cold-rolled with a processing rate of up to 50%, solution-treated and quenched is 2.
It becomes 0μ or less, 10μ or less at a processing rate of 50 or more, and becomes finer as the processing rate is increased.

この点からw4察すると試料板ム9,112は同様のこ
とがいえるが、曲げ加工で割れが発生している。このこ
とは、第2段の熱処理で低温加熱や冷却速度を高くした
ため第5表に示すように強度が高くなり加工性劣化し九
ことを示している。他の試料板I67、ム8.410,
411.ム15においては加工率によって再結晶粒度は
50μ以上となり曲げ加工で肌荒れ、及び割れを発生し
ている。
Judging from this point w4, the same thing can be said about sample plates 9 and 112, but cracks have occurred during bending. This indicates that, as shown in Table 5, because the low temperature heating and cooling rate were increased in the second heat treatment, the strength increased and the workability deteriorated, as shown in Table 5. Other sample plates I67, M8.410,
411. In case of No. 15, the recrystallized grain size was 50μ or more depending on the processing rate, and roughness and cracking occurred during bending.

以上説明したように、7075合金に相当するM−Zn
−Mg−Cu系合金材の與造法は上記の構成を有してい
るものであるから、kA−Zn−Mg−Cu系合金材の
冷間成形加工素材を二段熱処場により、冷間成形加工に
おいて、7JO工率が異なっても均一な成形加工かで西
るという効果を奏するものである。
As explained above, M-Zn corresponding to 7075 alloy
- Since the forming method for Mg-Cu alloy material has the above-mentioned configuration, the cold-formed material of kA-Zn-Mg-Cu alloy material is cold-formed in a two-stage heat treatment plant. In the interforming process, even if the 7JO processing rate is different, the effect is achieved as long as the forming process is uniform.

Claims (1)

【特許請求の範囲】[Claims] Zn5〜8%、 Mg 1〜3%、 Cu[L5〜5−
を必須成分として含有し、Mn[L05〜(L8(Cr
(LO5〜0.5%、 ZrCLO5〜CL3’Ik、
 Ti101〜(L15S、 Vlol 〜α15sの
1種、又は、2種以上を含有し、残部Atと不純物から
なるアルミニウム合金鋳塊を均質化処理後、熱間加工、
或いは、さらに冷間加工を施した後、550″〜500
℃に加熱保持し、冷却速度10℃/分以上で冷却し、次
いで、200°〜400℃に24時間以内加熱保持して
析出処理を行なうことt−特徴とする成形加工率が異な
っても均一な成形性を有するkt−Zn −Mg−Cu
系合金材の製造法。
Zn5-8%, Mg 1-3%, Cu[L5-5-
Contains Mn[L05~(L8(Cr
(LO5~0.5%, ZrCLO5~CL3'Ik,
After homogenizing an aluminum alloy ingot containing one or more of Ti101~(L15S, Vlol~α15s, and the remainder being At and impurities), hot working,
Or after further cold working, 550″~500″
℃, cooled at a cooling rate of 10℃/min or more, and then heated and maintained at 200℃ to 400℃ for less than 24 hours to perform precipitation treatment.Characteristics: Uniform even if the molding rate is different. kt-Zn-Mg-Cu with excellent formability
Manufacturing method for alloy materials.
JP57057663A 1982-04-06 1982-04-06 Method for producing Al-Zn-Mg-Cu alloy material with uniform formability Expired JPS6058298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057663A JPS6058298B2 (en) 1982-04-06 1982-04-06 Method for producing Al-Zn-Mg-Cu alloy material with uniform formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057663A JPS6058298B2 (en) 1982-04-06 1982-04-06 Method for producing Al-Zn-Mg-Cu alloy material with uniform formability

Publications (2)

Publication Number Publication Date
JPS58181851A true JPS58181851A (en) 1983-10-24
JPS6058298B2 JPS6058298B2 (en) 1985-12-19

Family

ID=13062137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057663A Expired JPS6058298B2 (en) 1982-04-06 1982-04-06 Method for producing Al-Zn-Mg-Cu alloy material with uniform formability

Country Status (1)

Country Link
JP (1) JPS6058298B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166659A (en) * 1983-03-08 1984-09-20 Furukawa Alum Co Ltd Preparation of high tensile aluminum alloy plate for forming
JPS61259828A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of high-strength aluminum alloy extrudate
JPS6333539A (en) * 1986-07-24 1988-02-13 ソシエテ・メタル−ルジク・ドウ・ジエルザ Al alloy for pressure hollow body
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
JPH03294445A (en) * 1990-04-13 1991-12-25 Sumitomo Light Metal Ind Ltd High strength aluminum alloy having good formability and its manufacture
CN113913656A (en) * 2021-10-25 2022-01-11 广东省科学院新材料研究所 7075 aluminum alloy and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055875A (en) * 2018-10-27 2018-12-21 安徽创弘精密机械有限公司 A kind of heat treatment process improving aluminium alloy extrusions intensity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651560A (en) * 1979-09-29 1981-05-09 Sumitomo Light Metal Ind Ltd Manufacture of aircraft stringer material
JPS5682647A (en) * 1979-11-10 1981-07-06 Bosch Gmbh Robert Washer for window glass of automobile
JPS5687647A (en) * 1979-12-14 1981-07-16 Sumitomo Light Metal Ind Ltd Airplane stringer material and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651560A (en) * 1979-09-29 1981-05-09 Sumitomo Light Metal Ind Ltd Manufacture of aircraft stringer material
JPS5682647A (en) * 1979-11-10 1981-07-06 Bosch Gmbh Robert Washer for window glass of automobile
JPS5687647A (en) * 1979-12-14 1981-07-16 Sumitomo Light Metal Ind Ltd Airplane stringer material and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166659A (en) * 1983-03-08 1984-09-20 Furukawa Alum Co Ltd Preparation of high tensile aluminum alloy plate for forming
JPS61259828A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of high-strength aluminum alloy extrudate
JPS6333539A (en) * 1986-07-24 1988-02-13 ソシエテ・メタル−ルジク・ドウ・ジエルザ Al alloy for pressure hollow body
JPH0575815B2 (en) * 1986-07-24 1993-10-21 Metaruurujiku Do Jeruza Soc
JPH032345A (en) * 1989-04-05 1991-01-08 Pechiney Rech Aluminum-base alloy of high young's modulus and mechanical strength and production of said alloy
JPH03294445A (en) * 1990-04-13 1991-12-25 Sumitomo Light Metal Ind Ltd High strength aluminum alloy having good formability and its manufacture
CN113913656A (en) * 2021-10-25 2022-01-11 广东省科学院新材料研究所 7075 aluminum alloy and preparation method and application thereof
CN113913656B (en) * 2021-10-25 2022-07-12 广东省科学院新材料研究所 7075 aluminum alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JPS6058298B2 (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US11692255B2 (en) High strength 7XXX series aluminum alloys and methods of making the same
CN110983131B (en) 7-series aluminum alloy section and manufacturing method thereof
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
US4462843A (en) Method for producing fine-grained, high strength aluminum alloy material
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
US4699673A (en) Method of manufacturing aluminum alloy sheets excellent in hot formability
US20160168676A1 (en) Air quenched heat treatment for aluminum alloys
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JP2021123798A (en) Method for producing high-strength aluminum alloy extruded material
JPH11504391A (en) Diffusion bonded sputter target assembly having a precipitation hardened backing plate and method of making same
JPS58181851A (en) Preparation of al-zn-mg-cu base alloy material having uniform moldability
JP5540546B2 (en) Manufacturing method of high strength aluminum alloy bolt
JPS58167757A (en) Preparation of al-mg-si alloy for processing excellent in corrosion resistance, weldability and hardenability
TWI674324B (en) Method for manufacturing aluminum-manganese alloy
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPS59126761A (en) Production of heat treatment type aluminum alloy having excellent formability
JPS58213850A (en) Manufacture of al-zn-mg-cu alloy material of superior formability
JPS602644A (en) Aluminum alloy
JPS61166938A (en) Al-li alloy for expansion and its production
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPH06207254A (en) Production of high strength al-li series alloy casting
JPH0480979B2 (en)
JP2001254161A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Cu-Mg ALLOY EXCELLENT IN WORKABILITY