JPS61166938A - Al-li alloy for expansion and its production - Google Patents

Al-li alloy for expansion and its production

Info

Publication number
JPS61166938A
JPS61166938A JP539085A JP539085A JPS61166938A JP S61166938 A JPS61166938 A JP S61166938A JP 539085 A JP539085 A JP 539085A JP 539085 A JP539085 A JP 539085A JP S61166938 A JPS61166938 A JP S61166938A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
content
toughness
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP539085A
Other languages
Japanese (ja)
Inventor
Mitsuo Hino
光雄 日野
Takehiko Etou
江東 武比古
Yutaka Shibata
裕 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP539085A priority Critical patent/JPS61166938A/en
Publication of JPS61166938A publication Critical patent/JPS61166938A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Al-Li alloy having low density and high elasticity, superior mechanical properties such as strength, ductility, and toughness by incorporating prescribed percentage of >=1 element among Zr, Cr, Mn, V, and Ti to the Al-Li alloy having a specific composition. CONSTITUTION:The alloy consists of, by weight, 1.5-3.0% Li, 0.5-3.0% Cu, 0.5-3.0% Mg, and >=1 kind among 0.05-0.3% Zr, 0.05-0.3% Cr, 0.05-1.5% Mn, 0.05-0.3% V, and 0.005-0.1% Ti, and the balance Al, and satisfies 3<=Cu+2Mg<=8, if necessary. The above alloy ingot is subjected to homogenizing heat treatment at about 400-550 deg.C for about 2-50hr, to hot working at >=about 300 deg.C, and to cold working if necessary, followed by solution heat treatment and aging to obtain the desired alloy.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は展伸用Al−Li系合金およびその製造方法に
関し、さらに詳しくは、延性および靭性に優れた高剛性
・低密度のAI  Li系合金およびその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an Al-Li alloy for wrought use and a method for producing the same, and more specifically, to a high-rigidity, low-density AI-Li alloy with excellent ductility and toughness. This invention relates to alloys and their manufacturing methods.

[従来技術1 一般に、AIにLiを含有させると、密度が約3%低く
なって、弾性率が約6%も増加するので、AI  Li
合金は従来のAl合金に比へて軽量化が可能となり、現
在、Llを2〜3d%含有させたAl合金が主として軽
量化効果の大きい航空機等の構造用材料としての実用化
か検討されている。
[Prior Art 1 Generally, when AI contains Li, the density decreases by about 3% and the elastic modulus increases by about 6%.
Alloys can now be made lighter than conventional Al alloys, and currently, Al alloys containing 2 to 3 d% Ll are being considered for practical use as structural materials for aircraft, etc., which have a large weight reduction effect. There is.

また、Al−Li系合金の上記説明した特性を利用して
、リニアー・モーターカーの構造材、テニスのラケット
等の各種のスポーツ用具、スピーカー振動板等にら幅広
い用途についてもその実用化が検討されている。
Utilizing the above-mentioned properties of Al-Li alloys, we are also considering practical use in a wide range of applications, including structural materials for linear motor cars, various sports equipment such as tennis rackets, and speaker diaphragms. has been done.

そして、このように、Al−Li系合金が広く利用され
ていくためには、より大きな低密度、高弾性化を計り、
強度および靭性等の材料特性について、従来のAl合金
と同等以上の性能を持たせることが必要不可欠である。
In this way, in order for Al-Li alloys to be widely used, it is necessary to achieve lower density and higher elasticity.
It is essential to have material properties such as strength and toughness that are equivalent to or better than conventional Al alloys.

しかして、Al−Li系合金の密度および弾性率は物理
的性質であるので、製造方法には影響されるところが少
なく、Alに含有されるLi含有量によって大きく左右
され、従って、AI  Li系合金の低密度、高弾性化
は主として、含有されるLi量に上り略決定される。
However, since the density and elastic modulus of Al-Li alloys are physical properties, they are not affected much by the manufacturing method, but are largely influenced by the Li content contained in Al. The low density and high elasticity of the steel are mainly determined by the amount of Li contained.

しかしながら、Liの含有量には自ら限界があり、Ll
の含有量が多過ぎると強度が飽和し、伸び等の延性が著
しく低くなり、仰りは1%以下となって実用には適さな
くなる。
However, the Li content has its own limit, and Ll
If the content is too large, the strength will be saturated, the elongation and other ductility will be significantly lowered, and the elongation will be less than 1%, making it unsuitable for practical use.

そのため、Al−Li系合金において重要なことは、L
lをできるだけ多量に含有させて低密度、高弾性を計り
、がっ、優れた材料特性を得ることであるが、Al−L
i系合金の特性において最も大きな問題は、得られる強
度の割には延性および靭性が劣るということである。
Therefore, what is important in Al-Li alloys is that L
The goal is to contain as much Al-L as possible to achieve low density and high elasticity, and to obtain excellent material properties.
The biggest problem with the properties of i-series alloys is that their ductility and toughness are poor in comparison to the strength they provide.

[発明が解決しようとする問題点1 本発明は上記に説明したようなAl−Li系合金におけ
る特性に対する研究およびその結果の知見に基いてなさ
れたものであり、即ち、低密度、高弾性率を有し、がっ
、優れた強度、延性および靭性等の機械的性質を有する
高剛性・低密度AI−い系合金およびその製造方法を提
供するものである。
[Problem to be Solved by the Invention 1] The present invention has been made based on the research on the properties of Al-Li alloys as explained above and the knowledge of the results. The present invention provides a high-rigidity, low-density AI-based alloy that has excellent mechanical properties such as strength, ductility, and toughness, and a method for producing the same.

[問題点を解決するための手段1 本発明に係る屑伸用Al−Li築企令幻上rtbめ製造
方法は、 (1)  Li 1.5〜3.0wt%、Cu 0.5
〜3,0wt%、M’g 0.5〜3.0u+t% を含有し、かつ、 Zr 0.05〜0.3u+t%、Cr 0.05〜0
.3u+t%、Mn 0.05〜1.5Illt%、V
 0.05〜01wt%、Ti 0.005〜0.00
5〜 0.1wt%のうちから選んだ1種ま たは2種以上を含有し、残部Alおよび不可避不純物か
らなることを特徴とする展伸用Al−Li系合金を第1
の発明とし、 (2)  Li 1.5〜3.0wt%、Cu 0.5
〜3,Ou+L%、Mg 0.5〜3.0wt% を含有し、かつ、 3u+t%≦Cu+2Mg≦8社% であり、さらに、 Zr 0.05〜0.3wt%、Cr 0.05〜0.
3u+t%、Mn 0.05〜1.5wt%、V 00
05〜0.3+nt%、Ti 0.005〜0.1wt
% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなることを
vf徴とする展伸用Al−Li系合金を第2の発明とし
、 (3)  Li 1.5〜3.0+ut%、Cu 0.
5〜3,0wt%、Mg0.5〜3.0t+1% を含有し、かつ、 Zr 0.05〜0.3wt%、Cr 0.05〜0.
3wt%、Mn 0.05〜1,5wt%、V 0.0
5〜0.3wt%、Ti 0.005〜0.1wt% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなるAI 
 Li系合金鋳塊を、400〜550℃の温度で2〜5
0時間の均質化熱処理を施し、その後、300℃以上の
温度で熱間加工を行ない、次いで、溶体化処理、時効処
理を施すことをvf徴とする展伸用AI  Li系合金
の製造方法を第3の発明とし、(4)  Li 1.5
〜3,0wt%、Cu 0.5〜3,0wt%、Mg0
.5〜3,0wt% を含有し、かつ、 Zr 0.05〜0.3wt%、Cr 0.05〜0.
3u+L%、Mn  0.05〜1,5wt %、 \
’  0.05〜0.3uL %、Ti 0.005〜
0.3u+L% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなるAl−
Li系合金鋳塊を、400〜550℃の温度で2〜50
時間の均質化熱処理を施し、その後、300℃以上の温
度で熱間加工を行ない、次いで、冷開加工を行ない、さ
らに、溶体化処理、時効処理を施すことを特徴とする展
伸用Al−Li系合金の製造方法を第4の発明とする4
つの発明よりなるものである。
[Means for Solving the Problems 1] The method for producing Al-Li construction plans for scrap elongation according to the present invention is as follows: (1) Li 1.5 to 3.0 wt%, Cu 0.5
~3.0wt%, M'g 0.5~3.0u+t%, and Zr 0.05~0.3u+t%, Cr 0.05~0
.. 3u+t%, Mn 0.05-1.5llt%, V
0.05-01wt%, Ti 0.005-0.00
A first Al-Li based alloy for drawing is characterized in that it contains one or more selected from 5 to 0.1 wt%, and the balance consists of Al and unavoidable impurities.
(2) Li 1.5 to 3.0 wt%, Cu 0.5
~3, Contains Ou+L%, Mg 0.5-3.0wt%, and 3u+t%≦Cu+2Mg≦8%, and furthermore, Zr 0.05-0.3wt%, Cr 0.05-0 ..
3u+t%, Mn 0.05-1.5wt%, V 00
05~0.3+nt%, Ti 0.005~0.1wt
A second invention provides an Al-Li alloy for wrought use, which contains one or more selected from the following: (3) Li 1. 5-3.0+ut%, Cu 0.
5-3.0 wt%, Mg0.5-3.0t+1%, and Zr 0.05-0.3 wt%, Cr 0.05-0.
3wt%, Mn 0.05-1.5wt%, V 0.0
5 to 0.3 wt%, Ti 0.005 to 0.1 wt%, and the remainder consists of Al and inevitable impurities.
The Li-based alloy ingot was heated at a temperature of 400 to 550°C for 2 to 5 minutes.
A method for producing an AI Li-based alloy for wrought use, in which the vf characteristic is homogenization heat treatment for 0 hours, then hot working at a temperature of 300 ° C. or higher, and then solution treatment and aging treatment. As the third invention, (4) Li 1.5
~3,0wt%, Cu 0.5~3,0wt%, Mg0
.. 5 to 3.0 wt%, and Zr 0.05 to 0.3 wt%, Cr 0.05 to 0.
3u+L%, Mn 0.05-1.5wt%, \
'0.05~0.3uL%, Ti 0.005~
Al-
A Li-based alloy ingot is heated at a temperature of 400 to 550°C for 2 to 50°C.
A method for expanding Al- A method for producing a Li-based alloy as a fourth invention 4
This invention consists of two inventions.

以下、本発明に係る展伸用Al−Li系合金およびその
製造方法について詳細に説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the Al-Li alloy for drawing and the manufacturing method thereof according to the present invention will be explained in detail.

先ず、本発明に系る展伸用AI  Li系合金の含有成
分および成分割合について説明する。
First, the components and component ratios of the AI Li alloy for wrought according to the present invention will be explained.

Liは強度を向上させ、がっ、低密度および高弾性化に
は不可欠の元素であり、含有量が1.5wt%未満では
低密度、高弾性化率が小さ過ぎ、また、3.0wt%を
越えて含有さ・れると強度は飽和し、さらに、延性、靭
性が著しく低下するようになる。
Li is an essential element for improving strength, low density and high elasticity. If the content is less than 1.5 wt%, the low density and high elastic modulus are too small, and 3.0 wt% If the content exceeds 100%, the strength will be saturated, and furthermore, the ductility and toughness will be significantly reduced.

よって、Li含有量は1.5〜3.0wt%とする。Therefore, the Li content is set to 1.5 to 3.0 wt%.

Cuは強度を向上させるのに不可欠の元素であり、含有
量か0.5u+t%未満であれば強度不足を生じ、また
、3.0wt%を越えて含有されると延性および靭性が
低下し、密度に対しても不利になる。
Cu is an essential element for improving strength, and if the content is less than 0.5 u + t%, strength will be insufficient, and if the content exceeds 3.0 wt%, ductility and toughness will decrease. It is also disadvantageous for density.

よって、Cu含有量は0.5〜3.OuL%とする。Therefore, the Cu content is 0.5 to 3. Let it be OuL%.

Mgは延性および靭性を低下させることなく強度を向上
させる元素であり、含有量が0.5u+t%未満では強
度の向上は少なく、また、3,0wt%を越えて含有さ
れると延性および靭性が低下する。よって、Mg含有量
は0.5〜3.0wt%とする。
Mg is an element that improves strength without reducing ductility and toughness; if the content is less than 0.5u+t%, the strength will not improve much, and if the content exceeds 3.0wt%, the ductility and toughness will decrease. descend. Therefore, the Mg content is set to 0.5 to 3.0 wt%.

なお、L i 1.5〜3,0wt%に対するCuとM
g含有量は、Cu+2Mg< 3uL%では最終製品の
充分な強度が得られず、また、Cu+2Mg≧8wt%
ではCuLiAl□(T、相)、CuMgAl2(S相
)等の晶出物の量が多くなり、最終製品の伸び、靭性が
著しく低下する。よって、CuおよびMgの含有量は、
3u+L%≦Cu+2Mg≦8wL%とする。
In addition, Cu and M for Li 1.5 to 3.0 wt%
When the g content is Cu+2Mg<3uL%, sufficient strength of the final product cannot be obtained, and when Cu+2Mg≧8wt%
In this case, the amount of crystallized substances such as CuLiAl□ (T, phase) and CuMgAl2 (S phase) increases, and the elongation and toughness of the final product are significantly reduced. Therefore, the content of Cu and Mg is
3u+L%≦Cu+2Mg≦8wL%.

Zr、Mn、Cr、Vは最終熱処理後のミクロ組織にお
いて、l/w(Iは圧延方向の伸長粒の長さ、臀は板厚
方向の伸長粒の厚さ)を20以上とするために必要な元
素であり、Zr、 Mn、 Cr、■の含有量が0.0
5wt%未満では最終熱処理においてミクロ組織が大き
く再結晶化が始まり1く1/w<20となり、また、Z
r 0.3u1%、Mn1.5wt%、Cr 0.31
wt%、V OJwL%を夫々越えて含有されると効果
が飽和し、それ以上の含有は無駄である。よって、Zr
含有量0.05〜0.3+ut%、Mn含有量は0.0
5〜1.5u+t%、Cr含有量は0.05〜0.3w
t%、■含有量は0.05〜0.3u+t%とする。
Zr, Mn, Cr, and V are used to make l/w (I is the length of the elongated grain in the rolling direction, and the butt is the thickness of the elongated grain in the plate thickness direction) to be 20 or more in the microstructure after the final heat treatment. It is a necessary element, and the content of Zr, Mn, Cr, ■ is 0.0
If it is less than 5 wt%, the microstructure becomes large in the final heat treatment and recrystallization starts and 1/w<20, and Z
r 0.3u1%, Mn1.5wt%, Cr 0.31
If the content exceeds wt% and V OJwL%, the effect will be saturated, and further content will be wasteful. Therefore, Zr
Content 0.05-0.3+ut%, Mn content 0.0
5~1.5u+t%, Cr content is 0.05~0.3w
t%, ■ Content is 0.05 to 0.3u+t%.

Tiは鋳塊のマクロ組織を微細にするために不可欠の元
素であり、含有量が0.005+ut%未満ではこのよ
うな効果を達成することができず、また、0.11%を
越えて含有されると晶出物が増加して延性および靭性を
劣化させる。よって、T1含有量は0.005〜0.1
IIlt%とする。なお、Tiは単独でらTiとBとを
共存させてもよい。
Ti is an essential element for making the macrostructure of the ingot fine, and if the content is less than 0.005+ut%, this effect cannot be achieved, and if the content exceeds 0.11%, it will not be possible to achieve this effect. If this happens, the amount of crystallized substances will increase and the ductility and toughness will deteriorate. Therefore, the T1 content is 0.005 to 0.1
IIlt%. Note that Ti may be used alone or Ti and B may coexist.

さらに、鋳塊中に不純物として含有されるFe、Siの
含有量が0.25wt%を越えると、Al−Fe−3i
系晶出物が増加し、最終製品の延性、靭性および疲労特
性が著しく低下する。よって、FeまたはSiは0.2
5wt%以下とする必要がある。
Furthermore, if the content of Fe and Si contained as impurities in the ingot exceeds 0.25 wt%, Al-Fe-3i
Systemic crystallization increases and the ductility, toughness and fatigue properties of the final product are significantly reduced. Therefore, Fe or Si is 0.2
It needs to be 5 wt% or less.

次に、本発明に係る展伸用Al−Li系合金の製造方法
について説明する。
Next, a method for producing an Al-Li alloy for wrought according to the present invention will be explained.

上記に説明した含有成分および成分割合のAl−Li系
合金鋳塊を、その鋳塊の結晶粒径をできるだけ微細1ニ
ー、例えば、3mm以下となるように造塊する。この鋳
塊の結晶粒径が3mL11以上になると粒界に存在する
CuzFeAl7、Cu、Li2A1.5(T相)、C
uL iA 12(T I相)、CuLi−Al6(T
2相)等の晶出物のサイズおよび分布が粗大不均一とな
るため、最終製品における伸びおよび靭性を劣化させる
ようになる。
An Al-Li alloy ingot having the above-mentioned components and component ratios is formed so that the crystal grain size of the ingot is as fine as possible, for example, 3 mm or less. When the crystal grain size of this ingot is 3mL11 or more, CuzFeAl7, Cu, Li2A1.5 (T phase), C existing at the grain boundaries
uL iA 12 (TI phase), CuLi-Al6 (T
Since the size and distribution of crystallized substances such as 2-phase) become coarse and non-uniform, the elongation and toughness of the final product deteriorate.

次に、鋳塊を400〜550’Cの温度において2〜5
0時間の均質化熱処理を施すのであるが、この均質化熱
処理は、(1)Li、Cu、Mg等の不均一に分布した
元素は母相中に固溶し、上記した晶出物は部分的に固溶
してサイズを小さくし、また、(2)Zr、Cr、Mn
、■の遷移元素はAl、MgとZrAl.、CrzMg
y A l + s、MnAl6、VA+6等の金属間
化合物の析出物(dispersoids)を形成させ
る。この(1)(2)が均質化熱処理の目的であり、均
質化熱処理温度が400℃未満、均質化熱処理時間が2
時間未満では上記(1)(2>の目的を達成することが
できず、また、均質化熱処理温度が550’C1均質化
熱処理時間が50時間を夫々越えると上記(2)の金属
間化合物の析出状態が粗大不均一となり、最終製品に目
的とする未再結晶組織或いは微細な伸長枝番形成するこ
とができない。よって、均質化熱処理は400〜550
 ’Cの温度において2〜50時間行なうのである。ま
た、この均質化熱処理を析出物(clispersoi
ds)の析出状態を微細均一にするために、前半を40
0〜480℃の低温度とし、後半を均質化および晶出物
の固溶のために480〜550℃の高温度においで実施
して処理時間を短縮し、性能の向上を図ってもよい。
Next, the ingot is heated to a temperature of 400 to 550'C for 2 to 5 minutes.
Homogenization heat treatment is carried out for 0 hours, but this homogenization heat treatment is carried out in such a way that (1) non-uniformly distributed elements such as Li, Cu, Mg, etc. are dissolved in the matrix, and the above-mentioned crystallized substances are partially dissolved; (2) Zr, Cr, Mn
, ■ transition elements are Al, Mg and ZrAl. ,CrzMg
Precipitates (dispersoids) of intermetallic compounds such as y A l + s, MnAl6, VA+6 are formed. These (1) and (2) are the purpose of homogenization heat treatment, the homogenization heat treatment temperature is less than 400℃, and the homogenization heat treatment time is 2.
If the homogenization heat treatment temperature exceeds 550'C1 and the homogenization heat treatment time exceeds 50 hours, the above objectives (1) and (2>) cannot be achieved. The precipitation state becomes coarse and non-uniform, making it impossible to form the desired unrecrystallized structure or fine elongated branches in the final product.Therefore, the homogenization heat treatment
It is carried out for 2 to 50 hours at a temperature of 'C. In addition, this homogenization heat treatment is applied to precipitates (crispersoi).
In order to make the precipitation state of ds) fine and uniform, the first half was
The treatment may be carried out at a low temperature of 0 to 480°C, and the second half may be carried out at a high temperature of 480 to 550°C for homogenization and solid solution of crystallized substances to shorten the treatment time and improve performance.

この均質化熱処理後に、300℃の温度で圧延し、押出
し或いは鍛造により熱間加工を行なうのであるが、30
0℃未満の温度では製品の最終熱処理(例えば、T6調
質)を行なうと、ミクロ組織のサブグレンを除く伸長粒
の形状比l/w(20となって延性が低下するようにな
り、また、この熱間加工中の割れ等の発生を無くすため
には、熱間加工の開始温度を400℃以上とするのがよ
い。
After this homogenization heat treatment, it is rolled at a temperature of 300°C and hot worked by extrusion or forging.
At temperatures below 0°C, when the product is subjected to final heat treatment (for example, T6 heat treatment), the shape ratio of elongated grains excluding subgrains in the microstructure becomes l/w (20), resulting in a decrease in ductility; In order to eliminate the occurrence of cracks and the like during this hot working, the starting temperature of hot working is preferably 400°C or higher.

最終製品の板厚が概略3II11以上の板材、押出材お
よび鍛造材については、上記の工程で溶体化処理前の加
工を終了する6 しかして、最終製品の板厚が3ml11以下のものにつ
いては、冷開圧延等の冷開加工を行なうのである。
For plates, extrusions, and forged materials whose final product has a thickness of approximately 3II11 or more, the processing before solution treatment is completed in the above process.6 However, for those whose final product has a thickness of approximately 3ml11 or less, Cold-opening processing such as cold-opening rolling is performed.

この冷間加工においては、最終冷間加工率を70%以下
とし、この冷開加工率が70%より高くなると、最終熱
処理後のミクロ組織の伸長粒の形状比l/+u<20と
なり好ましくなく、この冷間加工率は、均熱処理条件、
熱間加工温度が上記説明した本発明に係る展伸用AI 
 Li合金の製造方法における範囲を外れると、40〜
50%以下としなければならず、冷間加工率を大きくす
ることができず製造上不利であり、即ち、冷開加工率7
0%は均熱処理条件、熱間加工温度を上記説明したよう
な限定された条件によって初めて達成されるものである
In this cold working, the final cold working rate is 70% or less, and if this cold opening rate is higher than 70%, the shape ratio of elongated grains in the microstructure after the final heat treatment becomes l/+u < 20, which is undesirable. , this cold working rate is based on soaking treatment conditions,
AI for stretching according to the present invention whose hot working temperature is as explained above
Outside the range in the Li alloy manufacturing method, 40~
The cold working rate must be 50% or less, which is disadvantageous in manufacturing because the cold working rate cannot be increased.
0% can only be achieved by limiting the soaking treatment conditions and hot working temperature as explained above.

以上の熱間加工或いは冷間加工により製造された製品は
所定の強度を付与するために、溶体化処理後焼入れされ
、必要に応じて冷開加工を施した後時効処理を行なう。
In order to impart a predetermined strength to the product manufactured by the above hot working or cold working, the product is solution-treated and then hardened, and if necessary, cold-opened and then subjected to an aging treatment.

また、上記説明においてミクロ組織のサブグレンを除く
伸長粒の形状比1/w(lは圧延方向の伸長粒の長さ、
田は板厚方向の伸長粒の厚さ)を20以上とする理由が
示されているが、さらに説明すると、Al−Li系合金
は極めて粒界破壊を起し易い合金であり、これが延性お
よび靭性を低下させる最大の原因であり、いま、ミクロ
組織のサブグレンを除く伸長粒の形状比が17w<20
とあまり伸長されていない場合は、クラックは粒界を容
易に通過し易くなり、はぼ全面的な粒界破壊が生じ、延
性および靭性が低下することになるが、しかし、ミクロ
組織のサブグレンを除く伸長粒の形状比が17w>20
と細長く伸長されているとクラックの伝播経路が長くな
るのと、伝播経路が長くなり過ぎると粒内を進行した方
が有利となり、粒界破壊の割合が減少することになり、
延性および靭性が向上する。
In addition, in the above explanation, the shape ratio of elongated grains excluding subgrains in the microstructure is 1/w (l is the length of elongated grains in the rolling direction,
The reason for setting the elongated grain thickness (thickness of elongated grains in the sheet thickness direction) to 20 or more has been shown, but to explain further, Al-Li alloys are extremely prone to intergranular fracture, and this causes a decrease in ductility and This is the biggest cause of decreasing toughness, and the shape ratio of elongated grains excluding subgrains in the microstructure is 17w<20.
If the cracks are not elongated very much, the cracks will easily pass through the grain boundaries, resulting in near-universal intergranular fracture and reduced ductility and toughness. Shape ratio of elongated grains excluded is 17w>20
If the crack is elongated and elongated, the propagation path of the crack becomes long, and if the propagation path becomes too long, it becomes more advantageous to proceed inside the grain, which reduces the rate of intergranular fracture.
Improves ductility and toughness.

[実施例1 本発明に係る展伸用Al−Li系合金およびその製造方
法の実施例を説明する。
[Example 1] An example of an Al-Li alloy for drawing and a method for producing the same according to the present invention will be described.

実施例1 第1表に示す含有成分および成分割合のアルミニツム合
金を溶製し、鋳造して厚さ315市の鋳塊を作製した。
Example 1 An aluminum alloy having the components and proportions shown in Table 1 was melted and cast to produce an ingot with a thickness of 315 cm.

次いで、第2表に示す製造加工条件で均質化熱処理→熱
間圧延→中間焼鈍→冷間圧延を行ない、1 、5 n+
m、3市の圧延材を製作した。
Next, homogenization heat treatment → hot rolling → intermediate annealing → cold rolling was performed under the manufacturing processing conditions shown in Table 2, and 1,5 n+
We produced rolled materials of 3 cities.

この圧延材を520℃×30分の溶体化処理を行ない、
直ちに常温の水に焼入れし、次いで、焼入れ歪を除去す
るために2%の引張矯正を行ない、190℃で16時間
の時効処理を行った。
This rolled material was subjected to solution treatment at 520°C for 30 minutes,
It was immediately quenched in water at room temperature, then tensile straightened by 2% to remove quenching distortion, and aged at 190°C for 16 hours.

その結晶粒形状を第2表に、材料特性を第3表に示す。The crystal grain shapes are shown in Table 2, and the material properties are shown in Table 3.

この第2表および第3表から明らかなように、本発明に
係る展伸用Al−Li系合金およびその製造方法は、比
較合金および比較方法に比して、優れた材料組織および
fi械的性質を有してにることがわかる。
As is clear from Tables 2 and 3, the Al-Li alloy for wrought use and the manufacturing method thereof according to the present invention have superior material structure and fi-mechanical properties compared to the comparative alloys and comparative methods. It can be seen that it has certain characteristics.

[発明の効果1 以上説明したように、本発明に係る展伸用AlLi系合
金およびその製造方法に上記の構成を有しているもので
あるから、低密度、および高弾性率化を図ることができ
、さらに、強度が高く、かつ、延性および靭性に優れた
効果を有するものである。
[Effect of the invention 1 As explained above, since the AlLi-based alloy for wrought use and the method for manufacturing the same according to the present invention have the above configuration, it is possible to achieve a low density and a high elastic modulus. Furthermore, it has high strength and excellent ductility and toughness.

Claims (4)

【特許請求の範囲】[Claims] (1)Li1.5〜3.0wt%、Cu0.5〜3.0
wt%、Mg0.5〜3.0wt% を含有し、かつ、 Zr0.05〜0.3wt%、Cr0.05〜0.3w
t%、Mn0.05〜1.5wt%、V0.05〜0.
3wt%、Ti0.005〜0.1wt% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなることを
特徴とする展伸用Al−Li系合金。
(1) Li1.5-3.0wt%, Cu0.5-3.0
wt%, Mg0.5-3.0wt%, and Zr0.05-0.3wt%, Cr0.05-0.3w
t%, Mn0.05-1.5wt%, V0.05-0.
3 wt% of Ti, 0.005 to 0.1 wt% of Ti, and one or more selected from the group consisting of Al and inevitable impurities.
(2)Li1.5〜3.0wt%、Cu0.5〜3.0
wt%、Mg0.5〜3.0wt% を含有し、かつ、 3wt%≦Cu+2Mg≦8wt% であり、さらに、 Zr0.05〜0.3wt%、Cr0.05〜0.3w
t%、Mn0.05〜1.5wt%、V0.05〜0.
3wt%、Ti0.005〜0.1wt% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなることを
特徴とする展伸用Al−Li系合金。
(2) Li1.5-3.0wt%, Cu0.5-3.0
wt%, Mg0.5-3.0wt%, and 3wt%≦Cu+2Mg≦8wt%, and further contains Zr0.05-0.3wt%, Cr0.05-0.3w
t%, Mn0.05-1.5wt%, V0.05-0.
3 wt% of Ti, 0.005 to 0.1 wt% of Ti, and one or more selected from the group consisting of Al and inevitable impurities.
(3)Li1.5〜3.0wt%、Cu0.5〜3.0
wt%、Mg0.5〜3.0wt% を含有し、かつ、 Zr0.05〜0.3wt%、Cr0.05〜0.3w
t%、Mn0.05〜1.5wt%、V0.05〜0.
3wt%、Ti0.005〜0.1wt% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなるAl−
Li系合金鋳塊を、400〜550℃の温度で2〜50
時間の均質化熱処理を施し、その後、300℃以上の温
度で熱間加工を行ない、次いで、溶体化処理、時効処理
を施すことを特徴とする展伸用Al−Li系合金の製造
方法。
(3) Li1.5-3.0wt%, Cu0.5-3.0
wt%, Mg0.5-3.0wt%, and Zr0.05-0.3wt%, Cr0.05-0.3w
t%, Mn0.05-1.5wt%, V0.05-0.
Al-
A Li-based alloy ingot is heated at a temperature of 400 to 550°C for 2 to 50°C.
1. A method for producing an Al-Li alloy for wrought use, which comprises subjecting it to homogenization heat treatment for a long time, followed by hot working at a temperature of 300° C. or higher, followed by solution treatment and aging treatment.
(4)Li1.5〜3.0wt%、Cu0.5〜3.0
wt%、Mg0.5〜3.0wt% を含有し、かつ、 Zr0.05〜0.3wt%、Cr0.05〜0.3w
t%、Mn0.05〜1.5wt%、V0.05〜0.
3wt%、Ti0.005〜0.3wt% のうちから選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなるAl−
Li系合金鋳塊を、400〜550℃の温度で2〜50
時間の均質化熱処理を施し、その後、300℃以上の温
度で熱間加工を行ない、次いで、冷間加工を行ない、さ
らに、溶体化処理、時効処理を施すことを特徴とする展
伸用Al−Li系合金の製造方法。
(4) Li1.5-3.0wt%, Cu0.5-3.0
wt%, Mg0.5-3.0wt%, and Zr0.05-0.3wt%, Cr0.05-0.3w
t%, Mn0.05-1.5wt%, V0.05-0.
Al-
A Li-based alloy ingot is heated at a temperature of 400 to 550°C for 2 to 50°C.
A method for expanding Al- A method for producing a Li-based alloy.
JP539085A 1985-01-16 1985-01-16 Al-li alloy for expansion and its production Pending JPS61166938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP539085A JPS61166938A (en) 1985-01-16 1985-01-16 Al-li alloy for expansion and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP539085A JPS61166938A (en) 1985-01-16 1985-01-16 Al-li alloy for expansion and its production

Publications (1)

Publication Number Publication Date
JPS61166938A true JPS61166938A (en) 1986-07-28

Family

ID=11609831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP539085A Pending JPS61166938A (en) 1985-01-16 1985-01-16 Al-li alloy for expansion and its production

Country Status (1)

Country Link
JP (1) JPS61166938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266037A (en) * 1987-02-18 1988-11-02 セジユデユール・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミウム・ペシネ Lighium-containing aluminum alloy material resistant against stress corrosion and its production
JPH02259051A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of al-li-mg series superplastic sheet having less anisotropy
JPH02259050A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of al-li-cu series superplastic sheet having less anisotropy
JPH02259049A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of al-li-cu-mg series superplastic sheet having less anisotropy
JPH02258941A (en) * 1989-03-30 1990-10-19 Sumitomo Light Metal Ind Ltd High strength al-li series alloy for superplastic forming
JPH02258958A (en) * 1989-03-30 1990-10-19 Sumitomo Light Metal Ind Ltd Production of high tensile al-li alloy for superplastic forming
CN111676431A (en) * 2020-04-30 2020-09-18 中南大学 Two-stage continuous aging treatment method for aluminum-lithium alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157942A (en) * 1982-02-26 1983-09-20 イギリス国 Aluminum alloy
JPS58181852A (en) * 1982-03-31 1983-10-24 アルカン・インタ−ナシヨナル・リミテツド Homonization of aluminum alloy by heat treatment
JPS59197551A (en) * 1983-03-31 1984-11-09 アルカン・インタ−ナシヨナル・リミテイド Manufacture of sheet or strip from rolled ingot of aluminum ingot
JPS60211035A (en) * 1983-12-30 1985-10-23 ザ ボ−イング カンパニ− Aluminum-lithium alloy
JPS60211033A (en) * 1983-12-30 1985-10-23 ザ ボ−イング カンパニ− Alminium-lithium alloy
JPS60211057A (en) * 1984-03-15 1985-10-23 セジユデユール・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミニウム・ペシネ Production of al-base alloy product
JPS60238439A (en) * 1984-05-11 1985-11-27 Kobe Steel Ltd Aluminum alloy for drawing and its manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157942A (en) * 1982-02-26 1983-09-20 イギリス国 Aluminum alloy
JPS58181852A (en) * 1982-03-31 1983-10-24 アルカン・インタ−ナシヨナル・リミテツド Homonization of aluminum alloy by heat treatment
JPS59197551A (en) * 1983-03-31 1984-11-09 アルカン・インタ−ナシヨナル・リミテイド Manufacture of sheet or strip from rolled ingot of aluminum ingot
JPS602644A (en) * 1983-03-31 1985-01-08 アルカン・インタ−ナシヨナル・リミテイド Aluminum alloy
JPS60211035A (en) * 1983-12-30 1985-10-23 ザ ボ−イング カンパニ− Aluminum-lithium alloy
JPS60211033A (en) * 1983-12-30 1985-10-23 ザ ボ−イング カンパニ− Alminium-lithium alloy
JPS60211057A (en) * 1984-03-15 1985-10-23 セジユデユール・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミニウム・ペシネ Production of al-base alloy product
JPS60238439A (en) * 1984-05-11 1985-11-27 Kobe Steel Ltd Aluminum alloy for drawing and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266037A (en) * 1987-02-18 1988-11-02 セジユデユール・ソシエテ・ドウ・トランスフオルマシオン・ドウ・ラリユミウム・ペシネ Lighium-containing aluminum alloy material resistant against stress corrosion and its production
JPH02258941A (en) * 1989-03-30 1990-10-19 Sumitomo Light Metal Ind Ltd High strength al-li series alloy for superplastic forming
JPH02258958A (en) * 1989-03-30 1990-10-19 Sumitomo Light Metal Ind Ltd Production of high tensile al-li alloy for superplastic forming
JPH02259051A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of al-li-mg series superplastic sheet having less anisotropy
JPH02259050A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of al-li-cu series superplastic sheet having less anisotropy
JPH02259049A (en) * 1989-03-31 1990-10-19 Sumitomo Light Metal Ind Ltd Manufacture of al-li-cu-mg series superplastic sheet having less anisotropy
CN111676431A (en) * 2020-04-30 2020-09-18 中南大学 Two-stage continuous aging treatment method for aluminum-lithium alloy

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
JPS6140742B2 (en)
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH0569898B2 (en)
US4961792A (en) Aluminum-lithium alloys having improved corrosion resistance containing Mg and Zn
KR100540234B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
EP0325937B1 (en) Aluminum-lithium alloys
JPS623225B2 (en)
JP3540316B2 (en) Improvement of mechanical properties of aluminum-lithium alloy
JPS61166938A (en) Al-li alloy for expansion and its production
JPH057460B2 (en)
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS6123751A (en) Manufacture of al-li alloy having superior ductility and toughness
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPS6220272B2 (en)
JPS58213850A (en) Manufacture of al-zn-mg-cu alloy material of superior formability
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0418019B2 (en)
JPS637354A (en) Manufacture of high-strength aluminum alloy member
JPS63169353A (en) Aluminum alloy for forming and its production
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability