JPH02258958A - Production of high tensile al-li alloy for superplastic forming - Google Patents

Production of high tensile al-li alloy for superplastic forming

Info

Publication number
JPH02258958A
JPH02258958A JP1076478A JP7647889A JPH02258958A JP H02258958 A JPH02258958 A JP H02258958A JP 1076478 A JP1076478 A JP 1076478A JP 7647889 A JP7647889 A JP 7647889A JP H02258958 A JPH02258958 A JP H02258958A
Authority
JP
Japan
Prior art keywords
alloy
superplastic forming
elongation
strength
high tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1076478A
Other languages
Japanese (ja)
Inventor
Hideo Yoshida
英雄 吉田
Masaki Kumagai
正樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP1076478A priority Critical patent/JPH02258958A/en
Publication of JPH02258958A publication Critical patent/JPH02258958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high tensile Al-Li alloy for superplastic forming having high strength and high elongation by subjecting an ingot of an alloy in which specific percentages of Li, Cu, Mg, and Zr are incorporated to Al to precipitation treatment under specific conditions. CONSTITUTION:An ingot of an alloy having a composition consisting of, by weight, 2.80-4.00% (not including 2.80%) Li, 0.80-2.50% Cu, 0.50-1.80% Mg, 0.08-0.20% Zr, and the balance Al with inevitable impurities is subjected to precipitation treatment at 220-400 deg.C for 1-100hr. By this method, the high tensile Al-Li alloy in which structure is homogenized and workability and elongation are improved and which shows strength and elongation superior to those of seven thousand series Al alloy by means of proper ageing treatment after superplastic forming is performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば航空機材料に適した軽量かつ高強度特
性の優れた超塑性成形用Al−Li系合金の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an Al-Li alloy for superplastic forming, which is lightweight and has excellent high-strength characteristics, and is suitable for example as an aircraft material.

〔従来の技術〕[Conventional technology]

A/、−Li系合金は軽量・高強度の点から輸送用機器
、特に航空機用材料として注目されている。
A/, -Li-based alloys are attracting attention as materials for transportation equipment, especially aircraft, because of their light weight and high strength.

またムt−r、+i系合金は優れた超塑性特性を示し、
速いひずみ速度で大きな伸びを発現する。この超塑性を
利用した一体化成形により部品数が減少し、リベット止
め等の接合が不要となり、より一層の軽量化が可能なた
め、航空機の運行能率のアップ及び運行コストの低減に
有用である。
In addition, Mutr, +i series alloys exhibit excellent superplastic properties,
Large elongation occurs at high strain rates. Integral molding that utilizes this superplasticity reduces the number of parts, eliminates the need for rivets and other joints, and enables further weight reduction, which is useful for increasing aircraft operating efficiency and reducing operating costs. .

特にドアパネル等の部品数の多い部材の代替品として有
用である。この合金は航空機用材料として多用されてい
るAlがマトリクスであるため、大きな設計変更なしに
適用できることも利点のひとつであった。
It is particularly useful as a replacement for parts such as door panels that have many parts. This alloy has a matrix of Al, which is often used as an aircraft material, so one of its advantages was that it could be applied without major design changes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、AL−Li系合金として(3uを添加した209
0合金、CuおよびMgを添加した8090合金等が開
発されており、一部航空機用材料として実用化されてb
る。そして超塑性成形用材料としては盛んに研究されて
いるものの実用化には達していない。
Conventionally, as an AL-Li alloy (209 with 3u added)
0 alloy, 8090 alloy with added Cu and Mg, etc. have been developed, and some have been put into practical use as materials for aircraft.
Ru. Although it has been actively researched as a superplastic molding material, it has not yet been put into practical use.

これら2090合金や8090合金は十分な超塑性特性
を示すが、従来材料として航空機に使用されている70
00系Al合金に比べ、やや強度、常温伸びにおいて劣
っている(超塑性成形後時効処理材で引張強さ約45 
kg f /am” 、伸び5壬)。航空機用材料とし
て実用化するためには引張強さ60 kgf /wsx
”以上、伸び10嗟以上が必要である。
These 2090 alloys and 8090 alloys exhibit sufficient superplastic properties, but the 70 alloys conventionally used in aircraft
Slightly inferior in strength and elongation at room temperature compared to 00 series Al alloys (tensile strength of approximately 45
kgf/am”, elongation 5 壬).For practical use as an aircraft material, the tensile strength must be 60 kgf/wsx.
``It requires an elongation of 10 minutes or more.

本発明は、上記した点を改善し、従来材料よりも高強度
および伸びの大きい高力Al−Li系合金の製造方法を
提供することを目的としている。
An object of the present invention is to improve the above-mentioned points and provide a method for producing a high-strength Al-Li alloy that has higher strength and elongation than conventional materials.

〔課題を解決するための手段〕 前記目的を達成するため、本発明は合金成分のLi、 
Cu、 MgおよびZr を特定した上で、十分な析出
処理を行員、組織を均質化することによって加工性及び
伸びを改良し、超塑性成形後の適切な時効処理によって
7000系Al合金を上回る強度及び伸びを発揮するこ
とができた。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides alloy components such as Li,
After specifying Cu, Mg, and Zr, sufficient precipitation treatment is performed to homogenize the structure to improve workability and elongation, and by appropriate aging treatment after superplastic forming, the strength exceeds that of 7000 series Al alloy. and was able to exhibit elongation.

〔作用〕[Effect]

本発明において、合金成分組成範囲および加熱温度範囲
を限定した理由を説明する。
The reason why the alloy component composition range and heating temperature range are limited in the present invention will be explained.

Li:2.80Wt憾以下では強度が不足し、4.00
wt1を超えると鋳造が困難となシ、得られた鋳塊に欠
陥が多く、本製造方法によっても加工性が悪いものとな
る。
Li: Below 2.80Wt, the strength is insufficient and 4.00Wt is insufficient.
If wt exceeds 1, casting becomes difficult, the obtained ingot has many defects, and even with this manufacturing method, the workability becomes poor.

Ou:0. 80 wt’j未満では強度が不足し、2
.50wt1を超えると加工性が低下する。
Ou:0. If it is less than 80 wt'j, the strength will be insufficient and 2
.. When it exceeds 50wt1, workability decreases.

Mg: Ou と同様にα50 wt4未満では強度が
不足し、1.80 wtlを超えると加工性が低下する
Similar to Mg: Ou, strength is insufficient when α50 is less than 4, and workability is reduced when it exceeds 1.80 wtl.

Zr: 0. O8Wt1未満では結晶粒が微細化され
ず、超塑性特性が劣化し、α20 wt’lを超えると
鋳造が困難である。
Zr: 0. If it is less than O8Wt1, the grains will not be refined and the superplastic properties will deteriorate, and if it exceeds α20wt'l, it will be difficult to cast.

鋳塊の析出処理温度が220℃未満では脆い1相が析出
し、その後の加工性が低下する。また、440℃を超え
ると析出物が再固溶することにより材料が硬化してその
後の加工性が低下するため、加工後の組織の均質化が行
われない。
If the precipitation treatment temperature of the ingot is less than 220°C, one brittle phase will precipitate, and subsequent workability will deteriorate. Moreover, if the temperature exceeds 440° C., the precipitates are solid-dissolved again and the material is hardened, resulting in a decrease in subsequent workability, so that the structure after processing is not homogenized.

析出処理時間が1時間未満では析出処理の効果が無く、
100時を超えると効果が飽和し不経済である。
If the precipitation treatment time is less than 1 hour, the precipitation treatment will not be effective.
If it exceeds 100 hours, the effect will be saturated and it will be uneconomical.

鍛造温度が220℃未満では脆いδ相が析出し、加工割
れを生じ易く、440℃を超えると加工組織の均質化が
行われな込。
If the forging temperature is less than 220°C, a brittle δ phase will precipitate, which tends to cause processing cracks, and if it exceeds 440°C, the processed structure will not be homogenized.

加工途中の析出処理温度が220℃未満では脆いδ相が
析出してその後の加工性が低下し、440℃を超えると
、析出物が再固溶するため材料が硬化し、後の加工性が
低下する。析出処理時間が1時間未満では析出処理の効
果が無く、100時間を超えると効果が飽和し不経済で
ある。
If the precipitation treatment temperature during processing is less than 220°C, brittle δ phase will precipitate and subsequent workability will deteriorate; if it exceeds 440°C, the precipitates will re-dissolve into solid solution, hardening the material and reducing subsequent workability. descend. If the precipitation treatment time is less than 1 hour, the precipitation treatment has no effect, and if it exceeds 100 hours, the effect is saturated and it is uneconomical.

〔実施例〕〔Example〕

実施例1 Li: A OWt’l、Ou: 1.2 wtl、M
g: Q、 9 wtl、zr:α12 wtlの合金
成分の100t(200W)の鋳塊を用いた。530℃
×24時間のソーキング後、400℃×12時間の析出
処理を行った。400℃で200tから40tに鍛造し
た。300℃×72時間の析出処理後、面側にて50t
とした。300℃で1.5tまで圧延し、性能を調査し
た。
Example 1 Li: A OWt'l, Ou: 1.2 wtl, M
A 100 t (200 W) ingot with alloy components of g: Q, 9 wtl and zr: α12 wtl was used. 530℃
After soaking for 24 hours, a precipitation treatment was performed at 400° C. for 12 hours. It was forged from 200t to 40t at 400°C. After precipitation treatment at 300℃ x 72 hours, 50t on the surface side
And so. It was rolled to 1.5t at 300°C and its performance was investigated.

評価方法は圧延材を超塑性成形温度である500℃より
焼入し、160℃×72時間の時効処理を行い、引張特
性を調査した。7475合金は市販のものを用いた。超
塑性伸びは1.5を板方向において500℃で初期歪み
速度5.6X 10−”/8で引張った時の伸びとした
The evaluation method was to quench the rolled material at 500°C, which is the superplastic forming temperature, and then perform an aging treatment at 160°C for 72 hours, and then investigate the tensile properties. A commercially available 7475 alloy was used. The superplastic elongation was 1.5, which was defined as the elongation when stretched at 500° C. and an initial strain rate of 5.6×10-”/8 in the plate direction.

実施例2 Li: K 2 wtl、Ou: t 5 vt%、M
g: 0. 9 wtl、Zr: +112 wtl、
残りAlの合金鋳塊(100冒厚さ、200W幅)を、
530℃×24時間ソーキング後、420℃×12時間
析出処理を行った。ついで500℃で2■厚さまで圧延
した。この圧延材を超塑性成形温度である500℃より
焼入れし、160℃×72時間の時効処理を行なった後
性能を調査したところ、引張強度5五3に9/−比強度
(9811)2.09X10’鰭、伸び411α6優で
あった。
Example 2 Li: K 2 wtl, Ou: t 5 vt%, M
g: 0. 9 wtl, Zr: +112 wtl,
The remaining Al alloy ingot (100mm thickness, 200W width) was
After soaking at 530°C for 24 hours, precipitation treatment was performed at 420°C for 12 hours. It was then rolled at 500°C to a thickness of 2cm. This rolled material was quenched at 500°C, which is the superplastic forming temperature, and then subjected to aging treatment at 160°C for 72 hours, and its performance was investigated.The tensile strength was 5.53, and the specific strength was 9/-2. It had 09 x 10' fins and a length of 411 α6.

これらの結果を第1表にまとめて示す。These results are summarized in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているから、本
発明による超塑性成形後のT6処理により、強度50 
kg/war”以上を示し、比強度においても7475
合金を上回り、10憾以上の伸びを有する超塑性成形用
AA−Li合金の製造が可能となった。
Since the present invention is configured as described above, the T6 treatment after superplastic forming according to the present invention can achieve a strength of 50
kg/war" or more, and the specific strength is also 7475.
It has now become possible to produce an AA-Li alloy for superplastic forming, which has an elongation of 10 times or more, exceeding that of the alloy.

Claims (3)

【特許請求の範囲】[Claims] (1)Li:2.80〜4.00wt%(但し2.80
wt%を含まず)、Cu:0.80〜2.50wt%、
Mg:0.50〜1.80wt%、Zr:0.08〜0
.20wt%、残部Alおよび不可避的不純物よりなる
合金鋳塊を、220℃〜440℃で1〜100時間析出
処理することを特徴とする軽量高力超塑性成形用Al−
Li系合金の製造方法。
(1) Li: 2.80 to 4.00wt% (however, 2.80wt%
(excluding wt%), Cu: 0.80 to 2.50wt%,
Mg: 0.50-1.80wt%, Zr: 0.08-0
.. A lightweight, high-strength superplastic forming Al-
A method for producing a Li-based alloy.
(2)合金鋳塊に対し、220℃〜440℃で鍛造加工
を行なう請求項1に記載の軽量高力超塑性成形用Al−
Li系合金の製造方法。
(2) The lightweight high-strength superplastic forming Al-
A method for producing a Li-based alloy.
(3)加工途中または加工後に、220℃〜440℃で
1〜100時間の析出処理を行なう請求項1または2に
記載の軽量高力超塑性成形用Al−Li系合金の製造方
法。
(3) The method for producing a lightweight, high-strength Al-Li alloy for superplastic forming according to claim 1 or 2, wherein a precipitation treatment is performed at 220° C. to 440° C. for 1 to 100 hours during or after processing.
JP1076478A 1989-03-30 1989-03-30 Production of high tensile al-li alloy for superplastic forming Pending JPH02258958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1076478A JPH02258958A (en) 1989-03-30 1989-03-30 Production of high tensile al-li alloy for superplastic forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076478A JPH02258958A (en) 1989-03-30 1989-03-30 Production of high tensile al-li alloy for superplastic forming

Publications (1)

Publication Number Publication Date
JPH02258958A true JPH02258958A (en) 1990-10-19

Family

ID=13606302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076478A Pending JPH02258958A (en) 1989-03-30 1989-03-30 Production of high tensile al-li alloy for superplastic forming

Country Status (1)

Country Link
JP (1) JPH02258958A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605865A (en) * 1983-03-31 1985-01-12 アルカン・インタ−ナシヨナル・リミテイド Superplastic formation for alloy material
JPS6156269A (en) * 1984-07-20 1986-03-20 Kobe Steel Ltd Manufacture of super plastic al-li alloy
JPS61166938A (en) * 1985-01-16 1986-07-28 Kobe Steel Ltd Al-li alloy for expansion and its production
JPS61227157A (en) * 1985-03-30 1986-10-09 Kobe Steel Ltd Manufacture of al-li alloy for elongation working

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605865A (en) * 1983-03-31 1985-01-12 アルカン・インタ−ナシヨナル・リミテイド Superplastic formation for alloy material
JPS6156269A (en) * 1984-07-20 1986-03-20 Kobe Steel Ltd Manufacture of super plastic al-li alloy
JPS61166938A (en) * 1985-01-16 1986-07-28 Kobe Steel Ltd Al-li alloy for expansion and its production
JPS61227157A (en) * 1985-03-30 1986-10-09 Kobe Steel Ltd Manufacture of al-li alloy for elongation working

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
US4588553A (en) Aluminium alloys
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
CN103498085A (en) Low-density Al-Zn-Mg alloy
JPS63286557A (en) Production of article from al base alloy
JP2017508880A (en) 6000 series aluminum alloy
CN110564994A (en) low-cost high-toughness aluminum lithium alloy
KR100540234B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
US7125459B2 (en) High strength aluminum alloy
CN107022707A (en) A kind of big component Technology for Heating Processing of strong high temperature resistant magnesium alloy of superelevation
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
CN109097648B (en) Mg-Al-Ca-Ce magnesium alloy and preparation method thereof
JPH11286758A (en) Production of forged product using aluminum casting material
CN114231809B (en) High-strength high-thermal-stability ultralight magnesium-lithium alloy and preparation method thereof
US20070267113A1 (en) Method and process of non-isothermal aging for aluminum alloys
CN112646997B (en) Scandium-containing ultrahigh-strength aluminum alloy for aerospace and manufacturing method thereof
CN112725711B (en) Method for improving fatigue performance of high-strength aluminum alloy
CN110453162B (en) Three-stage homogenization treatment process for Al-Mg-Li-Yb alloy
JPH02258958A (en) Production of high tensile al-li alloy for superplastic forming
JPH0447019B2 (en)
CN109175174B (en) Forging and pressing strengthening process for rare earth magnesium alloy
JPS58181851A (en) Preparation of al-zn-mg-cu base alloy material having uniform moldability
JPS61166938A (en) Al-li alloy for expansion and its production
KR20120045624A (en) Multiple-heattreatment method of indium bearing 2090 alloy
CN109593998B (en) 500 MPa-grade low-Cu Mg-free aluminum alloy and preparation method thereof