JPS63169353A - Aluminum alloy for forming and its production - Google Patents

Aluminum alloy for forming and its production

Info

Publication number
JPS63169353A
JPS63169353A JP31545886A JP31545886A JPS63169353A JP S63169353 A JPS63169353 A JP S63169353A JP 31545886 A JP31545886 A JP 31545886A JP 31545886 A JP31545886 A JP 31545886A JP S63169353 A JPS63169353 A JP S63169353A
Authority
JP
Japan
Prior art keywords
alloy
forming
strength
temperature
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31545886A
Other languages
Japanese (ja)
Inventor
Kunihiko Kishino
邦彦 岸野
Mitsuru Okada
満 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP31545886A priority Critical patent/JPS63169353A/en
Publication of JPS63169353A publication Critical patent/JPS63169353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture an Al alloy for forming excellent in strength and elongation percentage, by subjecting an alloy ingot having a specific composition consisting of Si, Fe, Cu, Mg, Zn, Ti, and Al to specific homogenizing treatment and solution heat treatment. CONSTITUTION:The alloy ingot consisting of 0.5-2.0% Si, 0.01-0.5% Fe, 0.05-1.5% Cu, 0.1-1.5% Mg, 0.5-2.5% Zn, 0.001-0.2% Ti, and the balance Al is subjected to homogenizing treatment at 400-590 deg.C to undergo refining of crystallized phase. Subsequently, the ingot after the homogenizing treatment is hot-rolled and cold-rolled. After that, the rolled sheet formed to the thickness of product size is subjected to solution heat treatment at 450-590 deg.C, so that a fine and uniform precipitated phase is formed. In this way, the Al alloy for forming having high strength and ductility, excellent in workability, and also excellent in yield strength value in a product can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強震および伸び率が高い、自動車車体、オーデ
ィオ機器パネル等の機器外板、或いは包装用材料等に使
用される成形加工用のアルミニウム合金材で特に成形後
に焼付塗装を施すものに好適な材料とその製造方法に関
するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to forming aluminum used for automobile bodies, equipment outer panels such as audio equipment panels, packaging materials, etc., which are subject to strong earthquakes and high elongation rates. The present invention relates to an alloy material suitable for use in baking coating after molding, and a method for manufacturing the same.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来、自動車車体用アルミニウム合金としては、Mgを
2.4〜6重景%(以下重量%を%と略記する)のAl
−Mg合金(5454,5182,5085等)の非熱
処理型合金、または八〇2G、2036.6009.6
010、合金等の熱処理型合金がある。これらの合金の
機械的性質を一般に自動車車体用として使われている冷
延鋼板と比較して第1表に示すと次の通りである。
Conventionally, aluminum alloys for automobile bodies contain 2.4 to 6 weight percent Mg (hereinafter, weight percent is abbreviated as %).
- Non-heat treatable alloys of Mg alloys (5454, 5182, 5085, etc.) or 802G, 2036.6009.6
There are heat treatment type alloys such as 010 and alloys. Table 1 shows the mechanical properties of these alloys in comparison with cold rolled steel sheets generally used for automobile bodies.

第1表から明らかなように、これらの成形用アルミニウ
ム合金は強度的には冷延鋼板とほぼ同等であるが成形性
に寄与する伸び率では冷延鋼板に対してかなり劣ること
が判かる。
As is clear from Table 1, these forming aluminum alloys have almost the same strength as cold-rolled steel sheets, but are considerably inferior to cold-rolled steel sheets in terms of elongation, which contributes to formability.

またアルミニウム合金の中では延性に優れる5085等
のAI!、−Mg合金では成形後種々の外板として製品
となった後にへこみ等に対する強度に寄与する耐力値が
2036や6010等に比べ低い欠点がある。逆に20
36.6010等の耐力値の高い材料は延性が低く成形
性に劣る傾向が認められる。さらにAN−Mg合金では
成形時に歪模様を生じ外観上問題となる場合が多い。
Also, among aluminum alloys, AI such as 5085 has excellent ductility! , -Mg alloys have a drawback that the yield strength value, which contributes to strength against dents and the like after being molded into products as various outer panels, is lower than that of 2036, 6010, etc. On the contrary, 20
It is recognized that materials with high proof stress values such as 36.6010 tend to have low ductility and poor formability. Furthermore, AN-Mg alloys often produce distorted patterns during molding, which causes problems in terms of appearance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の事情に鑑みなされたもので冷延鋼板と同
等の強度を有し、かつ従来のアルミニウム合金材以上の
成形性と強度、特に製品における耐力値に優れた成形加
工用アルミニウム合金およびその製造方法を開発したも
のである。
The present invention has been made in view of the above circumstances, and has been developed to provide an aluminum alloy for forming process which has a strength equivalent to that of cold-rolled steel sheets, has better formability and strength than conventional aluminum alloy materials, and has particularly excellent yield strength in products. We have developed a manufacturing method for this.

〔問題点を解決するための手段および作用]本発明はA
n!−Mg系、Al−Mg−3t系合金等の成形性、強
度について検討の結果Al−ZnAl−Zn−3i−系
合金に微量のFeとTiとを添加することにより所期の
目的を達成したもので第1発明はS i 0.5〜2.
0%、Fe0.01〜0.5%、Cu 0.05〜1.
5%、Mg0.1〜1.5%、Z n0.5〜2.5%
、T i 0.001〜0.2%、残部がA2から成る
ことを特徴とする成形加工用アルミニウム合金でありま
た第2発明はSi0.5〜2.0%、F e 0.01
〜0.5%、Cu 0.05〜1.5%、Mg0.1〜
1.5%、Z n0.5〜2.5%、T i0.ool
 〜0.2%、残部が0.05%未満の不可避的不純物
とA2から成る合金鋳塊を400〜590℃の温度で均
質化処理を施し、その後熱間圧延、冷間圧延を施した後
450〜590’Cの温度で溶体化処理を施すことを特
徴とする成形加工用アルミニウム合金の製造方法である
[Means and effects for solving the problems] The present invention has A
n! -As a result of studying the formability and strength of Mg-based and Al-Mg-3t-based alloys, we achieved the desired purpose by adding trace amounts of Fe and Ti to Al-ZnAl-Zn-3i-based alloys. The first invention has an S i of 0.5 to 2.
0%, Fe0.01-0.5%, Cu 0.05-1.
5%, Mg0.1-1.5%, Zn0.5-2.5%
, Ti 0.001 to 0.2%, and the balance is A2.
~0.5%, Cu 0.05~1.5%, Mg0.1~
1.5%, Zn0.5-2.5%, Ti0. ool
~0.2%, the balance is less than 0.05% unavoidable impurities and A2 alloy ingot is homogenized at a temperature of 400 to 590°C, and then hot rolled and cold rolled. This is a method for producing an aluminum alloy for forming, characterized by performing solution treatment at a temperature of 450 to 590'C.

以下に本発明合金の成分限定の理由を述べる。The reasons for limiting the composition of the alloy of the present invention will be described below.

Siは溶体化処理後にMgと共にMgzSiの微細な析
出相を生じ合金の強度、特に耐力値の向上に寄与する。
After solution treatment, Si forms a fine precipitated phase of MgzSi together with Mg and contributes to improving the strength of the alloy, particularly the proof stress value.

この効果は成形後に焼付塗装等の加熱を施すことにより
顕著になる。Siが0.5%未満ではこの効果が充分で
はなく、2.0%を越えても効果は変わらずかつ鋳造時
にAN−3i系あるいはAj!−Cu−3t系の粗大な
不溶性の金属間化合物を生じ成形性を劣化させる。
This effect becomes more noticeable when heating such as baking is applied after molding. If Si is less than 0.5%, this effect is not sufficient, and even if it exceeds 2.0%, the effect remains the same and when casting, AN-3i type or Aj! -Produces coarse insoluble intermetallic compounds of the Cu-3t system, deteriorating formability.

Feは主として均質化処理時にAjl!−Fe系あるい
はAl−Fe−3t系の微細な析出相を生じ再結晶粒を
均一にし、その結果成形性が向上する。
Fe is mainly used in Ajl! during the homogenization process. -Fe-based or Al-Fe-3t-based fine precipitated phases are produced to make recrystallized grains uniform, resulting in improved formability.

Feが0.01%未満ではこの効果が充分ではなく、0
.5%を越えると鋳造時にAj!−Fe系の粗大な不溶
性の金属間化合物を生じ成形性を劣化させる。
If Fe is less than 0.01%, this effect is not sufficient, and 0.
.. If it exceeds 5%, Aj! -Produces coarse insoluble Fe-based intermetallic compounds and deteriorates formability.

Cuは溶体化処理後にAj!−Cu系あるいはAl2−
Cu−Mg系の微細なG、P、ゾーンを析出し合金の強
度、特に耐力値の向上に寄与すると共に成形時の歪模様
の発生を防止する効果を有する。さらに成形後に焼付塗
装等の加熱を施すとG′、S′あるいはG、 P、 B
ゾーン等の析出相を生じ強度、特に耐力値が顕著に増大
する効果を有する。
Cu is Aj! after solution treatment. -Cu-based or Al2-
Precipitating fine G, P, and Cu-Mg-based zones contributes to improving the strength of the alloy, especially the proof stress value, and has the effect of preventing the occurrence of strain patterns during molding. Furthermore, when heating such as baking painting is applied after forming, G', S' or G, P, B
It has the effect of forming precipitated phases such as zones and significantly increasing the strength, especially the proof stress value.

Cuが0.05%未満ではこれらの効果が充分ではなく
、かつ1.5%を越えると溶体化後、室温における析出
硬化が大きくなり、成形性を劣化させる。
If Cu is less than 0.05%, these effects are not sufficient, and if it exceeds 1.5%, precipitation hardening at room temperature increases after solution treatment, deteriorating formability.

MgはSiあるいはCuと共にMgzSiあるいはA 
1− Cu −M g系のG、  P、ゾーン等の析出
相を生じると共にマトリックス中へ固溶して材料の強度
を向上させる。Mgが0.1%未満ではこれらの効果が
充分ではなく、かつ1.5%を越えると溶体化処理後の
室温における析出硬化が大きくなり成形性を劣化させ、
かつ成形時に歪模様の生じる危険性が高くなる。
Mg is MgzSi or A with Si or Cu
1-Cu-Mg-based G, P, zones, and other precipitated phases are generated and dissolved in the matrix to improve the strength of the material. If Mg is less than 0.1%, these effects are not sufficient, and if it exceeds 1.5%, precipitation hardening at room temperature after solution treatment increases, deteriorating formability.
In addition, there is an increased risk of creating a distorted pattern during molding.

Znはマトリックス中に固溶して材料の成形性を向上さ
せると共に、成形後に焼付塗装等の加熱を行う場合には
Mgと共にAl−Zn−Mg系の析出相を生じ強度を向
上させる効果を有する。
Zn is dissolved in the matrix and improves the formability of the material, and when heating such as baking coating is performed after forming, it forms an Al-Zn-Mg-based precipitate phase together with Mg, which has the effect of improving strength. .

Znが0.5%未満ではこれらの効果が充分ではなく2
.5%を越えても効果は変わらず、耐食性を劣化させる
おそれがある。
If Zn is less than 0.5%, these effects are not sufficient2.
.. Even if it exceeds 5%, the effect remains the same and there is a risk of deteriorating corrosion resistance.

Tiは鋳塊および最終製品の組織を均一にし、成形性を
向上させる。 0.001%未満では充分な効果が得ら
れず、また0、20%を越えると粗大な金属間化合物を
生じ成形性を劣化させる。
Ti makes the structure of the ingot and final product uniform and improves formability. If it is less than 0.001%, a sufficient effect cannot be obtained, and if it exceeds 0.20%, coarse intermetallic compounds are formed and formability is deteriorated.

また本発明合金に含まれる地金中の不純物は各々0.0
5wt%未満であれば本発明合金の特性に影響しない。
Furthermore, the impurities in the base metal contained in the alloy of the present invention are each 0.0
If it is less than 5 wt%, it will not affect the properties of the alloy of the present invention.

また、不純物全体での含有量の合計は0.2 wt%未
満であることが望ましい。
Further, it is desirable that the total content of all impurities is less than 0.2 wt%.

次に本発明合金の製造方法について述べる。Next, a method for producing the alloy of the present invention will be described.

鋳塊の均質化処理時には種々の添加元素を含む晶出相を
微細化させ、S i、Cu、Mg、Zn等の元素をマト
リックス中へ充分に拡散させると共に、鋳造時にマトリ
ックス中へ過飽和に固溶したFe等の元素を微細に析出
させる必要がある。450℃未満ではこれらの効果が充
分ではなく、製品の強度、成形性のいずれも劣化させる
。また、本合金では600″Cを越えると材料が溶融す
る危険性が増大することから、590”Cは本合金を加
熱する場合の事実上の最高加熱温度である。
During the homogenization treatment of the ingot, the crystallized phase containing various additive elements is made fine, and elements such as Si, Cu, Mg, and Zn are sufficiently diffused into the matrix, and at the same time, they are supersaturated and solidified into the matrix during casting. It is necessary to finely precipitate dissolved elements such as Fe. If the temperature is lower than 450°C, these effects will not be sufficient, and both the strength and moldability of the product will deteriorate. Furthermore, in this alloy, if the temperature exceeds 600''C, the risk of the material melting increases, so 590''C is the de facto maximum heating temperature when heating this alloy.

均質化処理後の鋳塊を熱間圧延し、冷間圧延前あるいは
冷間圧延中に必要に応じて中間焼鈍を施す、あるいは施
さずに製品サイズの厚さまで加工した後、溶体化処理を
施す。
The ingot after homogenization treatment is hot rolled, and intermediate annealing is performed as necessary before or during cold rolling, or after processing to the thickness of the product size without annealing, solution treatment is performed. .

溶体化処理は、St、Cu、Mg、Zn等の析出相を生
ずる元素を充分にマトリックス中に固溶し、その後の冷
却により室温において過飽和固溶状態とすると共に高温
の溶体化処理時に生じた多くの原子空孔を室温において
も過剰空孔として存在させる目的を有する。過飽和に固
溶した元素はその後の析出時に均一微細な析出相を生じ
強度を増大させ、室温における過剰空孔は材料の成形時
に変形を均一にし、成形性を向上する効果がある。
In the solution treatment, elements that produce a precipitated phase such as St, Cu, Mg, and Zn are sufficiently dissolved in the matrix, and then cooled to a supersaturated solid solution state at room temperature, and the elements generated during the high temperature solution treatment. The purpose is to make many atomic vacancies exist as excess vacancies even at room temperature. The supersaturated solid solution elements produce a uniform fine precipitated phase during subsequent precipitation to increase strength, and the excess pores at room temperature have the effect of making deformation uniform during material molding and improving moldability.

溶体化処理温度が450℃未満の場合はこれら効果が充
分でなく、また前述のごと< 590’Cは本合金材料
における事実上の最高加熱温度である。
If the solution treatment temperature is less than 450°C, these effects will not be sufficient, and as mentioned above, <590'C is the de facto maximum heating temperature for the present alloy material.

なお溶体化処理時の加熱、昇温速度は大きい程、成形性
はやや向上する傾向があり100℃/ll1in以上が
望ましいが、これ以下の昇温速度であっても本発明材料
の性能を大きく損うものではない。また溶体化処理後の
冷却速度も大きい方が望ましいが、空冷、水冷あるいは
温水、冷水のいずれにおいても本発明材料の性能は得ら
れる。
It should be noted that the higher the heating and temperature increase rate during solution treatment, the more the moldability tends to improve, and a temperature of 100°C/111in or higher is desirable, but even a lower temperature increase rate can significantly improve the performance of the material of the present invention. It's not a loss. It is also desirable that the cooling rate after the solution treatment be high, but the performance of the material of the present invention can be obtained with air cooling, water cooling, hot water, or cold water.

〔実施例〕〔Example〕

以下に本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例1゜ 第2表に示す組成のアルミニウム合金をDC鋳造にて鋳
塊とし、これを510″(X4hrの均質化処理を施し
た後、熱間圧延、冷間圧延により厚さ5閣の板材とした
。この板材を室温より平均200℃/minの昇温速度
で520℃まで加熱し、該温度で20秒間保持後、室温
まで空冷し供試材とした。この供試材について機械的性
質とエリクセン値による成形性とについて評価した。ま
た本発明材が成形後に焼付塗装して使用される場合を想
定して、200 ’CX lhrの短時間加熱を施した
後の機械的性質も評価した。これらの結果を第2表に示
す。
Example 1 An aluminum alloy having the composition shown in Table 2 was made into an ingot by DC casting, and after homogenization treatment for 510" (x4 hr), it was hot rolled and cold rolled to a thickness of A plate material was prepared.This plate material was heated from room temperature to 520°C at an average heating rate of 200°C/min, held at that temperature for 20 seconds, and then air cooled to room temperature to prepare a test material. The properties and formability based on the Erichsen value were evaluated.In addition, the mechanical properties were also evaluated after being heated for a short time at 200'C The results are shown in Table 2.

第2表より明らかな様に本発明材は強度(加熱温度)お
よび成形性が優れている。これに対し本発明材の組成を
外れる材料では強度(加熱前後)および成形性において
本発明材より性能的に劣っている。
As is clear from Table 2, the materials of the present invention have excellent strength (heating temperature) and moldability. On the other hand, materials that do not have the composition of the present invention material are inferior to the present invention material in terms of strength (before and after heating) and formability.

実施例λ Si1.6%、Fe0.41%、Cu0.9%、Mg1
.1%、Zn1.7%、Ti0.02%、残部Alの合
金をDC鋳造にて鋳塊とし、これを第3表に示す均質化
温度にて6hrの均質化処理を施した後、熱間圧延、中
間焼鈍、冷間圧延により厚さ6mmの板材とした。この
板材を室温より平均で150℃/winの昇温速度によ
り第3表の溶体化温度まで加熱し、該温度で10秒間保
保持室温まで水冷して供試材とした。この供試材につい
て、実施例1.と同様に機械的性質、エリクセン値によ
る成形性および200”CX lhr過熱後の機械的性
質を評価した。その結果を第3表に示す。
Example λ Si1.6%, Fe0.41%, Cu0.9%, Mg1
.. An alloy of 1% Zn, 1.7% Ti, 0.02% Ti, and the balance Al was made into an ingot by DC casting, and after being homogenized for 6 hours at the homogenization temperature shown in Table 3, it was hot-cast. A plate material with a thickness of 6 mm was obtained by rolling, intermediate annealing, and cold rolling. This plate material was heated from room temperature to the solution temperature shown in Table 3 at an average heating rate of 150° C./win, held at that temperature for 10 seconds, and cooled with water to room temperature to obtain a test material. Regarding this sample material, Example 1. Similarly, the mechanical properties, formability based on Erichsen value, and mechanical properties after heating at 200"CX lhr were evaluated. The results are shown in Table 3.

第3表から明らかなように本発明の製造工程のものは機
械的性質(加熱前後)および、成形性のいずれにおいて
も優れた性能を示す。これに対して本発明の製造工程を
外れる比較材D−Fは機械的性質、成形性とも劣る。ま
た比較材Eでは+、(料中で共晶溶融が生じていた。
As is clear from Table 3, the products produced by the manufacturing process of the present invention exhibit excellent performance in both mechanical properties (before and after heating) and moldability. On the other hand, comparative material D-F, which does not undergo the manufacturing process of the present invention, has inferior mechanical properties and moldability. In comparison material E, eutectic melting occurred in the material.

[効果] 以上に説明したように本発明によれば、強度、成形性に
優れているため、自動車車体、機械外板あるいは包装用
材料等の成形用材料に適し、特に成形後に焼付塗装等の
加熱を施す材料に最適なアルミニウム合金材料が得られ
るもので工業的価値が極めて大きいものである。
[Effects] As explained above, the present invention has excellent strength and moldability, and is therefore suitable for molding materials such as automobile bodies, machine outer panels, and packaging materials. This method provides an aluminum alloy material that is ideal for heating materials, and is of extremely great industrial value.

Claims (2)

【特許請求の範囲】[Claims] (1)Si0.5〜2.0%、Fe0.01〜0.5%
、Cu0.05〜1.5%、Mg0.1〜1.5%、Z
n0.5〜2.5%、Ti0.001〜0.2%、残部
がAlから成ることを特徴とする成形加工用アルミニウ
ム合金。
(1) Si0.5-2.0%, Fe0.01-0.5%
, Cu0.05-1.5%, Mg0.1-1.5%, Z
An aluminum alloy for forming processing, characterized by comprising 0.5 to 2.5% of n, 0.001 to 0.2% of titanium, and the balance aluminum.
(2)Si0.5〜2.0%、Fe0.01〜0.5%
、Cu0.05〜1.5%、Mg0.1〜1.5%、Z
n0.5〜2.5%、Ti0.001〜0.2%、残部
がAlから成る合金鋳塊を400〜590℃の温度で均
質化処理を施し、その後熱間圧延、冷間圧延を施した後
450〜590℃の温度で溶体化処理を施すことを特徴
とする成形加工用アルミニウム合金の製造方法。
(2) Si0.5-2.0%, Fe0.01-0.5%
, Cu0.05-1.5%, Mg0.1-1.5%, Z
An alloy ingot consisting of 0.5 to 2.5% Ti, 0.001 to 0.2% Ti, and the balance Al is homogenized at a temperature of 400 to 590°C, and then hot rolled and cold rolled. 1. A method for producing an aluminum alloy for forming, which comprises performing solution treatment at a temperature of 450 to 590°C.
JP31545886A 1986-12-29 1986-12-29 Aluminum alloy for forming and its production Pending JPS63169353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31545886A JPS63169353A (en) 1986-12-29 1986-12-29 Aluminum alloy for forming and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31545886A JPS63169353A (en) 1986-12-29 1986-12-29 Aluminum alloy for forming and its production

Publications (1)

Publication Number Publication Date
JPS63169353A true JPS63169353A (en) 1988-07-13

Family

ID=18065603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31545886A Pending JPS63169353A (en) 1986-12-29 1986-12-29 Aluminum alloy for forming and its production

Country Status (1)

Country Link
JP (1) JPS63169353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543974A (en) * 1991-08-16 1993-02-23 Nkk Corp Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
KR100407779B1 (en) * 1995-10-18 2004-03-18 엘지전선 주식회사 Aluminum alloy used as enamel wire and method for manufacturing aluminum alloy wire from the same
AU2011226799B2 (en) * 2010-09-08 2012-04-12 Arconic Inc. Improved 6xxx aluminum alloys, and methods for producing the same
JP2020527648A (en) * 2017-07-10 2020-09-10 ノベリス・インコーポレイテッドNovelis Inc. High-strength corrosion-resistant aluminum alloy and its manufacturing method
EP3980569A4 (en) * 2019-06-06 2023-07-05 Arconic Technologies LLC Aluminum alloys having silicon, magnesium, copper and zinc

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543974A (en) * 1991-08-16 1993-02-23 Nkk Corp Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
KR100407779B1 (en) * 1995-10-18 2004-03-18 엘지전선 주식회사 Aluminum alloy used as enamel wire and method for manufacturing aluminum alloy wire from the same
AU2011226799B2 (en) * 2010-09-08 2012-04-12 Arconic Inc. Improved 6xxx aluminum alloys, and methods for producing the same
JP2020527648A (en) * 2017-07-10 2020-09-10 ノベリス・インコーポレイテッドNovelis Inc. High-strength corrosion-resistant aluminum alloy and its manufacturing method
EP3980569A4 (en) * 2019-06-06 2023-07-05 Arconic Technologies LLC Aluminum alloys having silicon, magnesium, copper and zinc

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
JPH0127146B2 (en)
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
CN112458344B (en) High-strength corrosion-resistant aluminum alloy and preparation method and application thereof
JPH11500787A (en) Aluminum alloy composition and manufacturing method
CN112522552B (en) Corrosion-resistant aluminum alloy and preparation method and application thereof
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
TWI674324B (en) Method for manufacturing aluminum-manganese alloy
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
WO2005061744A1 (en) Aluminum alloy sheet excellent in resistance to softening by baking
JPS63169353A (en) Aluminum alloy for forming and its production
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH0138866B2 (en)
JPH0480979B2 (en)
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPS61166938A (en) Al-li alloy for expansion and its production
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability