JPH057460B2 - - Google Patents

Info

Publication number
JPH057460B2
JPH057460B2 JP60210768A JP21076885A JPH057460B2 JP H057460 B2 JPH057460 B2 JP H057460B2 JP 60210768 A JP60210768 A JP 60210768A JP 21076885 A JP21076885 A JP 21076885A JP H057460 B2 JPH057460 B2 JP H057460B2
Authority
JP
Japan
Prior art keywords
temperature
baking
strength
less
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60210768A
Other languages
Japanese (ja)
Other versions
JPS6289852A (en
Inventor
Yasunori Sasaki
Tomohiro Nishimura
Noboru Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60210768A priority Critical patent/JPS6289852A/en
Publication of JPS6289852A publication Critical patent/JPS6289852A/en
Publication of JPH057460B2 publication Critical patent/JPH057460B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は焼付硬化性に優れたアルミニウム合金
板の製造法に関し、さらに詳しくは、成形加工性
に優れ、かつ、成形加工後の塗装焼付け時の加熱
による焼付硬化性に優れたアルミニウム合金板の
製造法に関する。 [従来技術] 従来、自動車用部品等および他の用途に使用さ
れるアルミニウム合金材料に塗装した塗膜に強度
を保持させるために、塗装後加熱(ベーキング)
することが行なわれ、伴せて、この加熱を利用し
てアルミニウム合金材料の強度を向上させること
が行なわれている。 このアルミニウム合金材料としては、6009、
6010が使用されており、そして、塗膜の焼付け条
件は200℃の高い温度で60〜90分保持するという
高温長時間処理のため、6009、6010は強度が向上
する効果があつた。 しかして、最近になつて、省エネルギーおよび
ベーキング時のコストダウンのために、ベーキン
グ温度を下げ、かつ、加熱時間を短縮する傾向に
ある。 例えば、特公昭59−039499号公報および特公昭
50−001910号公報には、Al−Mg−Si−Cu基合金
において、調質処理後室温に放置した後、200℃
の温度で60分保持する高温長時間のベーキングを
行なつて強度を向上させているが、175℃の温度
で30分保持する低温短時間のベーキングでは強度
向上は殆んど期待できず、あつたとしても僅かに
2Kg/mm2程度の上昇で効果はない。 また、本発明者も先に出願を完了している“成
形性、焼付硬化性に優れたアルミニウム合金板お
よびその製造法”において、200℃の温度におい
て30分保持するという短かい時間に下げることが
できたが、調質処理後3日以上室温に放置した
後、175℃の温度で30分保持する低温短時間のベ
ーキングにおける強度向上は僅であつて効果が少
ない。 そして、板厚を薄くし、製品の軽量化および塗
装焼付けのコストダウンのため、低温短時間の焼
付けで強度が向上し、かつ、成形性にも優れたア
ルミニウム合金板が強く要望されている。 [発明が解決しようとする問題点] 本発明は、上記に説明したように、従来におけ
るアルミニウム合金板の焼付硬化における種々の
問題点に鑑みなされたものであり、本発明者の鋭
意研究の結果、いままで行なわれていた200℃の
高温度に60〜90分保持するという高温長時間加熱
による強度向上効果を有し、さらに、175℃の温
度で30分間保持するという低温短時間のベーキン
グにより強度が向上するという成形性が優れ、か
つ、焼付硬化性の優れたアルミニウム合金板の製
造法を開発したのである。 [問題点を解決するための手段] 本発明に係る焼付硬化性に優れたアルミニウム
合金板の製造法の特徴とするところは、 Mg0.4〜1.5wt%、Si0.3〜1.5wt%、 Cu0.2〜0.8wt% を含有し、さらに、 Ti0.005〜0.1wt%、B0.0005〜0.03wt%、 Mn0.4wt%以下、Cr0.4wt%以下、 Fe0.3wt%以下、Zr0.2wt%以下、 V0.1wt%以下 のうちから選んだ1種または2種以上 を含有し、かつ、 不可避不純物0.2wt%以下 を含有し、残部が実質的にAlからなるAl−Mg−
Si−Cu基合金鋳塊を、バーニング温度以下の温
度で通常の均質化処理を行ない、熱間圧延および
冷間圧延を行なつて所望の板厚とし、調質処理と
して加熱速度100℃/分以上で480〜580℃に急速
加熱を行ない、この温度域に3秒以上保持した
後、100℃までの冷却速度を300℃/分以上で急冷
する熱処理を行ない、さらに、72時間以内に40〜
120℃の温度で8〜36時間の最終熱処理を行なう
ことにある。 なお、必要に応じて熱間圧延と冷間圧延との間
で、荒焼鈍および/または中間焼鈍を行なつても
よい。 本発明に係る焼付硬化性に優れたアルミニウム
合金板の製造法について以下詳細に説明する。 先ず、本発明に係る焼付硬化性に優れたアルミ
ニウム合金板の製造法において使用するアルミニ
ウム合金の含有成分および成分割合について説明
する。 MgはSiと共同して強化を付与する元素であり、
含有量が0.4wt%未満では強度が低く、また、
1.5wt%を越えて含有されると成形性が悪くなる。
よつて、成形性、強度およびベーキングによる強
度向上のバランスを図るために、Mg含有量は0.4
〜1.5wt%とする。 SiはMgと共同して強化を付与する元素であり、
含有量が0.3wt%未満では強度が低く、また、
1.5wt%を越えて含有されると成形性が悪くなる。
よつて、成形性、強度およびベーキングによる強
度向上のバランスを図るために、Si含有量は0.3
〜1.5wt%とする。 Cuはその含有量に比例して強度およびベーキ
ングによる強度向上を大きくするという効果を付
与する元素であるが、耐蝕性を低下させる元素で
もあり、含有量が0.2wt%未満では耐蝕性は良好
であるが、強度およびベーキングによる強度向上
効果は小さく、また、0.8wt%を越えて含有され
ると強度およびベーキングによる強度向上効果は
大きいが、耐蝕性および成形性を低下させる。よ
つて、Cu含有量は0.2〜0.8wt%とする。 Tiは鋳塊の結晶粒を微細にし、かつ、成形性
を向上させる元素であり、含有量が0.005wt%未
満ではこのような効果は小さく、また、0.1wt%
を越えて含有されると粗大な晶出物を形成し、成
形性を低下させる。よつて、Ti含有量0.005〜
0.1wt%とする。 BはTiと同様に鋳塊の結晶粒を微細化し、成
形性を向上させる元素であり、含有量が0.0005wt
%未満ではこのような効果が小さく、また、
0.03wt%を越えて含有されると粗大な晶出物を形
成し、成形性を低下させる。よつて、B含有量は
0.0005〜0.03wt%とする。 なお、TiおよびBはAl−Ti−Bの中間合金ま
たはAl−Ti中間合金およびAl−B中間合金によ
つて含有させることが望ましい。 Mn、Cr、Zr、Vは強度を向上させる効果があ
るが、含有量が増加すると粗大晶出物を生成し成
形性を低下させ、Feは強度向上効果は小さく、
粗大な晶出物を生成し成形性を低下させる。よつ
て、強度向上と成形性のバランスからMn含有量
は0.4wt%以下、Cr含有量は0.4wt%以下、Fe含
有量は0.3wt%以下、Zr含有量は0.2wt%以下、V
含有量は0.1wt%以下とし、このうちから選んだ
1種または2種以上を含有させるのがよい。 特に、成形性と焼付硬化性を保持させるために
は、Mn、Cr、Zr、V、Feは単独で含有量を
0.1wt%以下とするか、または、Mn+Cr+Zr+
Vの合計量を0.2wt%以下に制御するのがよい。 不可避不純物は、焼付硬化性および成形性を害
さない程度で単独で0.2wt%までの含有は許容さ
れる。 なお、本発明に係る焼付硬化性に優れたアルミ
ニウム合金板の製造法においては、晶出物の大き
さが成形性に影響し、晶出物の最長辺長さが13μ
mを越えると成形性が低下し、従つて、焼付硬化
性および成形性を併せ備える場合には、最終熱処
理後の晶出物の最長辺長さは13μm以下に制御す
る必要がある。 次に、本発明に係る焼付硬化性に優れたアルミ
ニウム合金板の製造法における熱処理について説
明する。 上記に説明した含有成分および成分割合のアル
ミニウム合金鋳塊の均質化処理は、低温短時間加
熱のベーキングにおいての強度向上に対する効果
が小さいので、バーニング温度以下の温度で行な
うのがよく、特に、成形性、焼付硬化性を有する
組成(Mn、Cr、Zr、VおよびFeは単独で0.1wt
%以下またはMn+Cr+Zr+Vの合計量を0.2wt
%以下に制御する。)の均質化処理は、目的の温
度までの加熱速度は200℃/時以下とするか、ま
たは、2段以上の多段均質化処理を行なえばよ
い。 続いて、熱間圧延および冷間圧延を行なうので
あるが、この条件は焼付硬化性におよぼす効果
は、均質化処理の場合と同じく小さいので特に限
定する必要はない。また、熱間圧延後に荒焼鈍お
よび中間焼鈍を行なつてもよい。 調質処理は、急速加熱で高温短時間の加熱、続
いて、急速冷却を行なうことによつて素材強度、
高い成形性およびベーキング後の強度を向上させ
る処理であり、即ち、加熱速度100℃/分以上で
480〜580℃の高温に急速加熱して、この温度に3
秒以上保持するのであり、加熱温度が480℃未満
の温度では素材強度およびベーキング後の強度が
低く、また、590℃を越える温度ではバーニング
を発生して成形性が低下する。なお、480℃未満
の加熱温度では加熱時間が3秒以下の保持ではベ
ーキング後の強度向上が少なく、30分の保持を行
なえばベーキング後の強度が向上する。従つて、
ベーキング後の強度向上を目的とするには長時間
保持するとよく、成形性とベーキングを併せ備え
させるには、3〜30秒程度とするのがよい。 次いで、100℃までの冷却速度を300℃/分以上
で急冷するのであるが、100℃までの冷却速度が
300℃/分未満では成形性が低下し、および、ベ
ーキング後の強度向上が少なく、そして、100℃
までの冷却速度を300℃/分以上とすることによ
り成形性およびベーキング後の強度向上が大きく
なる。 よつて、調質処理は、加熱速度100℃/分以上
で480〜580℃の温度に急速加熱し、保持時間を3
秒以上とし、100℃までの冷却速度を300℃/分以
上で行なうのである。 この調質処理に続いて最終熱処理を行なうこと
によつて、従来の高温長時間のベーキング条件の
200℃の温度に60分の保持による強度向上効果を
有し、さらに、低温短時間のベーキング条件(例
えば、175℃×30分)でも強度向上効果を有する
ことができるのである。 即ち、調質処理後、72時間以内に加熱速度およ
び冷却速度に関係なく、40〜120℃の温度に加熱
し、この温度に8〜36時間保持するのであるが、
40℃未満の温度では成形性は良く、従来の高温長
時間の200℃の温度で60分保持するベーキングに
よる強度向上効果はあるものの従来より低い低温
短時間加熱のベーキングによる強度向上効果は小
さく、また、120℃の温度を越えると従来の高温
長時間と従来よりも低い低温短時間での強度向上
効果は持ち合せているが、成形性を低下させる。 この保持時間であるが、4時間未満では高温長
時間のベーキングによる強度向上効果はあるもの
の、低温短時間のベーキングでの強度向上効果は
小さく、48時間を越えると成形性の低下および低
温短時間のベーキングによる強度向上効果が小さ
い。 従つて、調質処理後の最終熱処理は、調質処理
後72時間以内に40〜120℃の温度で8〜36時間行
なうのである。 なお、最終熱処理後、レベラーまたはスキンパ
ス等により歪矯正を行なう時には、加工率は1.5
%以下とすることが成形性の低下防止という点で
望ましいものである。 [実施例] 本発明に係る焼付硬化性に優れたアルミニウム
合金板の製造法の実施例を説明する。 実施例 1 第1表に示す含有成分および成分割合のアルミ
ニウム合金を通常の方法により、溶解、鋳造後の
鋳塊を面削し、加熱速度40℃/時で加熱温度530
℃の温度に4時間保持する均質化処理後、熱間圧
延、冷間圧延を行なつて1.0mm厚の板とし、この
板を加熱速度200℃/分で550℃の温度に10秒保持
し、800℃/分の冷却速度で100℃まで冷却する調
質処理を行ない、次いで、温度に1日放置し、70
℃の温度に24時間保持する最終熱処理を行ない、
室温に30日放置した後の本発明に係る焼付硬化性
に優れたアルミニウム合金板の製造法により製造
された合金および比較合金の諸特性と従来のベー
キング条件の200℃の温度に60分保持および従来
の低温短時間のベーキング条件の175℃の温度に
30分保持の耐力を第2表に示す。 この第2表から明らかなように、本発明に係る
焼付硬化性に優れたアルミニウム合金板の製造法
により製造された合金のNo.1〜No.12は、比較合金
のNo.1〜No.8に比べて強度、成形性に優れ、さら
に、従来の高温長時間(200℃の温度に60分保持)
における焼付硬化性に加えて175℃の温度に30分
保持する低温短時間の焼付硬化性を兼ね備えたバ
ランスのよい材料であることがわかる。 Mg、Si、Cu含有量の少ない比較合金No.1で
は、強度およびベーキングによる強度向上が小さ
く、また、Mg、Si、Cuの含有量が多すぎる比較
合金No.2は伸び、エリクセン値が低く、成形性の
劣化が大きすぎる。 なお、Mn含有量0.8wt%、Cr含有量0.4wt%、
Zr含有量0.2wt%、V含有量0.1wt%、Fe含有量
0.5wt%をwt%すると強度向上の効果はあるが、
伸びおよびエリクセン値の低下が大きく、成形性
の劣化が大きくなることがわかる。 また、Ti含有量が0.1wt%、B含有量が0.05wt
%では、粗大な晶出物が生成し、伸びやエリクセ
ン値が低下しており、成形性の劣化が大きくな
る。 本発明に係る焼付硬化性に優れたアルミニウム
合金板の製造法により製造されたNo.2、3、4、
10は、晶出物の最長辺長さが13μm以下であり、
高成形性と175℃の温度で30分保持するベーキン
グによる強度向上と併せ有している。
[Industrial Field of Application] The present invention relates to a method for producing an aluminum alloy plate with excellent bake hardenability, and more specifically, the present invention relates to a method for producing an aluminum alloy plate that has excellent moldability and has good bake hardenability due to heating during painting baking after molding. Concerning a manufacturing method for excellent aluminum alloy plates. [Prior art] Conventionally, in order to maintain the strength of the coating film applied to aluminum alloy materials used for automobile parts and other purposes, heating (baking) is applied after coating.
At the same time, this heating is used to improve the strength of aluminum alloy materials. This aluminum alloy material includes 6009,
6010 was used, and the coating was baked at a high temperature of 200°C for 60 to 90 minutes, which was a long-term high-temperature process, so 6009 and 6010 had the effect of improving strength. Recently, however, there has been a trend to lower the baking temperature and shorten the heating time in order to save energy and reduce costs during baking. For example, Tokuko Sho 59-039499 and Tokuko Sho No.
Publication No. 50-001910 discloses that an Al-Mg-Si-Cu based alloy is heated to 200°C after being left at room temperature after heat treatment.
The strength is improved by baking at a high temperature for 60 minutes at a temperature of Even if it were, it would be a slight increase of about 2Kg/mm 2 and would have no effect. In addition, in the "Aluminum Alloy Plate with Excellent Formability and Bake Hardenability and Method for Producing the Same", which the present inventor has previously completed, it is possible to reduce the temperature to 200°C for 30 minutes, which is a short period of time. However, after being left at room temperature for three days or more after tempering, the strength was only slightly improved by short-time baking at a low temperature of 175° C. for 30 minutes, and the effect was small. In order to reduce the thickness of the plate, reduce the weight of the product, and reduce the cost of painting and baking, there is a strong demand for aluminum alloy plates that can be baked at low temperatures for a short time to improve strength and have excellent formability. [Problems to be Solved by the Invention] As explained above, the present invention has been made in view of various problems in conventional bake hardening of aluminum alloy plates, and is the result of intensive research by the inventor. , it has the effect of improving strength by high-temperature long-term heating of 200℃ held for 60 to 90 minutes, which has been done up until now, and furthermore, it has the effect of improving strength by holding it at a high temperature of 175℃ for 30 minutes. They have developed a method for manufacturing aluminum alloy sheets that have excellent formability with improved strength and excellent bake hardenability. [Means for Solving the Problems] The method for manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention is characterized by: Mg0.4-1.5wt%, Si0.3-1.5wt%, Cu0 Contains .2~0.8wt%, and furthermore, Ti0.005~0.1wt%, B0.0005~0.03wt%, Mn0.4wt% or less, Cr0.4wt% or less, Fe0.3wt% or less, Zr0.2wt%. The following Al-Mg- contains one or more selected from V0.1wt% or less, contains 0.2wt% or less of unavoidable impurities, and the remainder is substantially Al.
The Si-Cu based alloy ingot is subjected to normal homogenization treatment at a temperature below the burning temperature, hot rolled and cold rolled to the desired thickness, and heated at a heating rate of 100℃/min as tempering treatment. After performing rapid heating to 480 to 580℃ and holding it in this temperature range for more than 3 seconds, heat treatment is performed to rapidly cool down to 100℃ at a rate of 300℃/min or more, and further, within 72 hours, 40 to 580℃
A final heat treatment is carried out at a temperature of 120° C. for 8 to 36 hours. Note that rough annealing and/or intermediate annealing may be performed between hot rolling and cold rolling as necessary. The method for manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention will be described in detail below. First, the components and component ratios of the aluminum alloy used in the method of manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention will be explained. Mg is an element that imparts reinforcement in cooperation with Si,
If the content is less than 0.4wt%, the strength will be low, and
If the content exceeds 1.5wt%, moldability will deteriorate.
Therefore, in order to achieve a balance between formability, strength, and strength improvement by baking, the Mg content was set to 0.4.
~1.5wt%. Si is an element that works together with Mg to impart reinforcement,
If the content is less than 0.3wt%, the strength will be low, and
If the content exceeds 1.5wt%, moldability will deteriorate.
Therefore, in order to achieve a balance between formability, strength, and strength improvement by baking, the Si content was set to 0.3.
~1.5wt%. Cu is an element that increases strength and increases strength by baking in proportion to its content, but it is also an element that reduces corrosion resistance, and when the content is less than 0.2wt%, corrosion resistance is not good. However, the effect of improving strength and strength by baking is small, and when it is contained in excess of 0.8 wt%, the effect of improving strength and strength by baking is large, but it reduces corrosion resistance and moldability. Therefore, the Cu content is set to 0.2 to 0.8 wt%. Ti is an element that makes the crystal grains of the ingot fine and improves the formability.If the content is less than 0.005wt%, this effect will be small, and if the content is less than 0.1wt%
If the content exceeds 100%, coarse crystallized substances will be formed and the moldability will be deteriorated. Therefore, Ti content is 0.005~
The content shall be 0.1wt%. Like Ti, B is an element that refines the crystal grains of the ingot and improves formability, and the content is 0.0005wt.
If it is less than %, this effect is small, and
If the content exceeds 0.03 wt%, coarse crystallized substances are formed and moldability is reduced. Therefore, the B content is
The content should be 0.0005 to 0.03wt%. Note that Ti and B are preferably contained in an Al-Ti-B intermediate alloy or an Al-Ti intermediate alloy and an Al-B intermediate alloy. Mn, Cr, Zr, and V have the effect of improving strength, but when their content increases, they produce coarse crystallized substances and reduce formability, and Fe has a small strength-improving effect.
Generates coarse crystallized substances and reduces moldability. Therefore, from a balance between strength improvement and formability, the Mn content is 0.4wt% or less, the Cr content is 0.4wt% or less, the Fe content is 0.3wt% or less, the Zr content is 0.2wt% or less, and the V
The content should be 0.1wt% or less, and it is preferable to include one or more selected from among these. In particular, in order to maintain formability and bake hardenability, the content of Mn, Cr, Zr, V, and Fe must be controlled individually.
0.1wt% or less, or Mn+Cr+Zr+
It is preferable to control the total amount of V to 0.2wt% or less. The unavoidable impurities may be contained alone in an amount of up to 0.2 wt% as long as they do not impair bake hardenability and formability. In addition, in the method of manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention, the size of the crystallized material affects the formability, and the longest side length of the crystallized material is 13 μm.
If it exceeds m, the moldability deteriorates, so if bake hardenability and moldability are to be achieved at the same time, the length of the longest side of the crystallized product after the final heat treatment must be controlled to 13 μm or less. Next, heat treatment in the method for producing an aluminum alloy plate with excellent bake hardenability according to the present invention will be explained. The homogenization treatment of aluminum alloy ingots with the above-mentioned components and component ratios has a small effect on improving strength during baking at low temperatures and short periods of time, so it is best to perform it at a temperature below the burning temperature. Composition with hardenability and bake hardenability (Mn, Cr, Zr, V and Fe are 0.1wt alone)
% or less or the total amount of Mn + Cr + Zr + V is 0.2wt
% or less. ), the heating rate to the target temperature may be 200°C/hour or less, or a multi-stage homogenization process of two or more stages may be performed. Subsequently, hot rolling and cold rolling are performed, but these conditions do not need to be particularly limited because their effects on bake hardenability are small, as in the case of homogenization. Further, rough annealing and intermediate annealing may be performed after hot rolling. Thermal treatment involves rapid heating at high temperatures for a short period of time, followed by rapid cooling to improve the strength of the material.
It is a treatment that improves high formability and strength after baking, i.e., at a heating rate of 100℃/min or more.
Rapidly heat to a high temperature of 480 to 580℃, and keep at this temperature for 3
If the heating temperature is lower than 480°C, the strength of the material and the strength after baking will be low, and if the heating temperature is higher than 590°C, burning will occur and the moldability will deteriorate. Note that, at a heating temperature of less than 480° C., if the heating time is held for 3 seconds or less, the strength after baking will not improve much, but if the heating time is held for 30 minutes, the strength after baking will improve. Therefore,
In order to improve the strength after baking, it is recommended to hold for a long time, and in order to achieve both moldability and baking, it is preferable to hold for about 3 to 30 seconds. Next, the cooling rate up to 100℃ is rapidly cooled at 300℃/min or more, but the cooling rate up to 100℃ is
If it is less than 300℃/min, the moldability will decrease and the strength after baking will be less improved.
By setting the cooling rate to 300° C./min or more, moldability and strength after baking are greatly improved. Therefore, thermal refining treatment involves rapid heating to a temperature of 480 to 580°C at a heating rate of 100°C/min or more, and a holding time of 3.
The cooling rate up to 100°C is 300°C/min or more. By performing a final heat treatment following this tempering treatment, the conventional high temperature and long baking conditions can be improved.
It has the effect of improving strength by holding at a temperature of 200°C for 60 minutes, and can also have the effect of improving strength even under low-temperature and short-time baking conditions (for example, 175°C x 30 minutes). That is, after tempering treatment, the material is heated to a temperature of 40 to 120°C within 72 hours, regardless of the heating rate and cooling rate, and maintained at this temperature for 8 to 36 hours.
Formability is good at temperatures below 40°C, and although baking at a high temperature of 200°C for 60 minutes has the effect of improving strength, the effect of baking at a lower temperature and short time than conventional baking has little effect. Moreover, when the temperature exceeds 120°C, although it has the strength improvement effect of conventional high temperature for a long time and lower temperature for a short time than conventional, it reduces moldability. If the holding time is less than 4 hours, baking at high temperature for a long time will improve the strength, but baking at low temperature for a short time will have a small strength improvement effect, and if it exceeds 48 hours, the moldability will decrease and the baking time at low temperature for a short time will improve the strength. The strength improvement effect of baking is small. Therefore, the final heat treatment after the tempering treatment is carried out at a temperature of 40 to 120° C. for 8 to 36 hours within 72 hours after the tempering treatment. In addition, when straightening distortion using a leveler or skin pass after final heat treatment, the processing rate is 1.5.
% or less is desirable from the viewpoint of preventing deterioration of moldability. [Example] An example of the method for manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention will be described. Example 1 An aluminum alloy having the components and proportions shown in Table 1 was melted and cast using a normal method, and the ingot was face-faced and heated to a heating temperature of 530°C at a heating rate of 40°C/hour.
After homogenization treatment, which was held at a temperature of 100°C for 4 hours, hot rolling and cold rolling were performed to obtain a 1.0 mm thick plate, which was then held at a temperature of 550°C for 10 seconds at a heating rate of 200°C/min. , conduct heat treatment to cool down to 100℃ at a cooling rate of 800℃/min, then leave at temperature for 1 day,
A final heat treatment is carried out by holding it at a temperature of ℃ for 24 hours.
Characteristics of the alloy manufactured by the method of manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention after being left at room temperature for 30 days and comparative alloys, and the comparison with conventional baking conditions of holding at a temperature of 200°C for 60 minutes and To a temperature of 175℃ for conventional low temperature short time baking conditions
Table 2 shows the yield strength after holding for 30 minutes. As is clear from Table 2, alloys No. 1 to No. 12 manufactured by the method of manufacturing an aluminum alloy plate with excellent bake hardenability according to the present invention are different from comparative alloys No. 1 to No. 1. It has superior strength and formability compared to Type 8, and can be maintained at high temperatures for a long period of time (maintained at a temperature of 200℃ for 60 minutes).
It can be seen that this is a well-balanced material that has bake hardenability at a low temperature of 175°C for 30 minutes in addition to bake hardenability at a temperature of 175°C for 30 minutes. Comparative alloy No. 1, which has a low content of Mg, Si, and Cu, shows little improvement in strength and strength due to baking, and comparative alloy No. 2, which has a high content of Mg, Si, and Cu, elongates and has a low Erichsen value. , deterioration of moldability is too large. In addition, Mn content 0.8wt%, Cr content 0.4wt%,
Zr content 0.2wt%, V content 0.1wt%, Fe content
Adding 0.5wt% to wt% has the effect of improving strength, but
It can be seen that the elongation and Erichsen value decreased significantly, and the moldability deteriorated significantly. In addition, the Ti content is 0.1wt% and the B content is 0.05wt.
%, coarse crystallized substances are formed, elongation and Erichsen value are decreased, and moldability is greatly deteriorated. Nos. 2, 3, 4 manufactured by the method for manufacturing aluminum alloy plates with excellent bake hardenability according to the present invention,
10, the longest side length of the crystallized material is 13 μm or less,
It has high formability and improved strength by baking at a temperature of 175℃ for 30 minutes.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 2 実施例1の第1表に示したNo.4の合金を通常の
方法により溶解、鋳造し、鋳塊の面削を行ない、
加熱速度40℃/時で加熱温度500℃とし、この温
度に6時間保持する均質化処理を行なつた後、熱
間圧延および冷間圧延を行なつて、1.0mm厚さの
板とし、この板を加熱速度300℃/分で475℃から
590℃の温度に加熱し、この温度での保持時間を
種々変更して加熱した後、200℃/分、800℃/分
の冷却速度で強制空冷を行なつて100℃の温度ま
で冷却し、或いは、それよりも遥かに冷却速度の
大きい水冷(水中に焼入れ)によつて水温まで冷
却し、室温に1日放置後100℃の温度に8時間の
最終熱処理後、室温に30日放置した後の特性を、
比較として従来の最終熱処理を行なわない場合の
特性と比較して第3表に示す。 この第3表から明らかなように、調質処理温度
が475℃では従来の200℃×60分のベーキングによ
る耐力の向上があるが、175℃×30分ではその効
果が小さい。また、590℃ではバーニングにより
成形性(伸び、エリクセン値)が低く、保持時間
が0秒ではベーキングによる強度向上効果は小さ
いが、5秒では効果が認められ、さらに、冷却速
度が200℃/分では200℃×60分の高温長時間のベ
ーキングによる耐力の向上はあるが、175℃×30
分という低温短時間のベーキングでは耐力の向上
は小さいことがわかる。 従つて、調質処理は加熱温度が480〜580℃で保
持時間は3秒以上とし、冷却速度を300℃/分以
上とする必要がある。 なお、成形性を重視する場合には、保持時間を
3〜120秒、強度を重視する場合には30分という
長時間加熱を行なうのがよい。
[Table] Example 2 The alloy No. 4 shown in Table 1 of Example 1 was melted and cast by a normal method, and the ingot was face-milled.
The heating temperature was set to 500°C at a heating rate of 40°C/hour, and after homogenization treatment, which was maintained at this temperature for 6 hours, hot rolling and cold rolling were performed to form a 1.0 mm thick plate. The plate is heated from 475℃ at a heating rate of 300℃/min.
After heating to a temperature of 590°C and varying the holding time at this temperature, forced air cooling was performed at a cooling rate of 200°C/min and 800°C/min to cool it to a temperature of 100°C. Alternatively, it can be cooled down to water temperature by water cooling (quenching in water), which has a much faster cooling rate, left at room temperature for one day, then subjected to a final heat treatment at a temperature of 100°C for 8 hours, and then left at room temperature for 30 days. The characteristics of
For comparison, Table 3 shows a comparison with the characteristics when no final heat treatment is performed. As is clear from Table 3, when the tempering treatment temperature is 475°C, the yield strength is improved by the conventional baking at 200°C for 60 minutes, but the effect is small at 175°C for 30 minutes. In addition, at 590℃, the moldability (elongation, Erichsen value) is low due to burning, and the strength improvement effect due to baking is small when the holding time is 0 seconds, but the effect is observed when the holding time is 5 seconds, and furthermore, the cooling rate is 200℃/min. Although the yield strength can be improved by baking at 200°C for 60 minutes at high temperatures,
It can be seen that the improvement in yield strength is small when baking for a short time at a low temperature of minutes. Therefore, in the thermal refining treatment, the heating temperature should be 480 to 580°C, the holding time should be 3 seconds or more, and the cooling rate should be 300°C/min or more. In addition, when emphasis is placed on moldability, it is preferable to perform heating for a long time of 3 to 120 seconds, and when emphasis is placed on strength, heating is performed for a long time of 30 minutes.

【表】【table】

【表】 実施例 3 実施例1の第1表の合金No.5を通常の方法によ
り溶解、鋳造後鋳塊の面削を行ない、加熱速度
150℃/時で加熱温度530とし、この温度に4時間
保持する均質化処理を行ない、熱間圧延および冷
間圧延により板厚1.0mmとし、この板を475℃から
590℃の温度に加熱し、この温度での保持時間を
種々変更して加熱した後、200℃/分、800℃/分
の冷却速度で強制空冷を行なつて100℃の温度ま
で冷却し、或いは、それよりも遥かに冷却速度の
大きい水冷(水中に焼入れ)によつて水温まで冷
却し、室温に1日放置後、70℃の温度で24時間の
最終熱処理を行なつた後、室温に20日放置した後
の特性と、比較として従来の低温加熱を行なわな
い熱処理の特性とを第4表に示す。 この第4表より明らかなように、調質処理温度
が475℃では従来の200℃×60分のベーキングによ
る耐力の向上があるが、175℃×30分ではその効
果が小さく、また、590℃の温度ではバーニング
により成形性(伸び、エリクセン値)低く、保持
時間が0秒ではベーキングによる効果が小さい
が、5秒ではベーキング効果が認められ、冷却速
度が200℃/分では200℃×60分の高温長時間のベ
ーキングによる耐力の向上はあるが、175℃×30
分の低温短時間のベーキングでは耐力の向上は小
さく、800℃/分では高温長時間は勿論低温短時
間のベーキングでも充分な耐力の向上があり、そ
の向上率はが大きいことがわかる。 従つて、調質処理は加熱温度480〜580℃で、保
持時間は3秒以上で、冷却速度は300℃/分以上
とする必要がある。 なお、成形性を重視する場合には保持時間は3
〜120秒、強度を重視する場合には30分と長時間
保持するのがよい。
[Table] Example 3 Alloy No. 5 in Table 1 of Example 1 was melted and cast using the usual method, and the ingot was face-milled, and the heating rate was
Homogenization treatment is carried out by heating at 150℃/hour to a temperature of 530℃ and maintaining this temperature for 4 hours.The plate is then hot rolled and cold rolled to a thickness of 1.0mm, and this plate is heated from 475℃ to
After heating to a temperature of 590°C and varying the holding time at this temperature, forced air cooling was performed at a cooling rate of 200°C/min and 800°C/min to cool it to a temperature of 100°C. Alternatively, it can be cooled down to water temperature by water cooling (quenching in water), which has a much faster cooling rate than that, left at room temperature for one day, then subjected to a final heat treatment at 70°C for 24 hours, and then cooled to room temperature. Table 4 shows the characteristics after being left for 20 days and, for comparison, the characteristics after conventional heat treatment without low-temperature heating. As is clear from Table 4, when the tempering temperature is 475°C, the yield strength is improved by the conventional baking at 200°C for 60 minutes, but at 175°C for 30 minutes, the effect is small; At a temperature of , the moldability (elongation, Erichsen value) is low due to burning, and when the holding time is 0 seconds, the effect of baking is small, but when the holding time is 5 seconds, a baking effect is observed, and when the cooling rate is 200℃/min, it is 200℃ x 60 minutes. Although the yield strength can be improved by baking at high temperature for a long time,
It can be seen that the improvement in yield strength is small when baking for a short time at a low temperature of 800°C/min, but at 800°C/min, there is a sufficient improvement in yield strength not only for baking at a high temperature for a long time but also for a short time at a low temperature, and the improvement rate is large. Therefore, in the thermal refining treatment, the heating temperature should be 480 to 580°C, the holding time should be 3 seconds or more, and the cooling rate should be 300°C/min or more. If moldability is important, the holding time should be set to 3.
It is best to hold for ~120 seconds, or 30 minutes if strength is important.

【表】 実施例 4 実施例1の第1表のNo.4、No.5の合金を通常の
方法により溶解、鋳造した鋳塊を面削し、加熱速
度40℃/時で530℃に加熱し、この温度に6時間
保持する均質化処理後、熱間圧延および冷間圧延
により板厚1.8mmとし、この板を350℃の温度で3
時間の中間焼鈍を行ない、冷間圧延により1.0mm
の板厚とし、次いで、加熱速度200℃/分で520℃
の温度とし、この温度に15秒保持する高温短時間
の調質処理を行ない、600℃/分の冷却速度で室
温まで冷却し、室温に0〜96時間放置し、30〜
150℃の温度で4〜48時間の最終熱処理を行ない、
室温に30日放置後の特性およびベーキング特性を
第5表に示す。 この第5表から明らかなように、調質処理後最
終熱処理までの室温放置時間は短かい程ベーキン
グ性は良好で、96時間では200℃×60分の高温長
時間のベーキング性は耐力の向上はあるが、175
℃×30分の低温短時間のベーキングでは耐力の向
上は少なく、最終熱処理温度は30℃では高温長時
間のベーキングで耐力の向上はあるが、低温短時
間のベーキングで耐力の向上が小さく、150℃で
は伸びが低下するが高温長時間および低温短時間
のベーキングによる向上が認められ、加熱時間が
4時間では高温長時間ベーキングで耐力の向上は
あるが、低温短時間のベーキングで耐力の向上は
少なく、48時間になると伸びが低く、低温短時間
ベーキングで耐力の向上がない。また、最終熱処
理を行なわないと高温長時間のベーキングによる
耐力の向上はあるが、低温短時間のベーキングに
よる耐力の向上はない。 従つて、調質処理後の最終熱処理は、調質処理
後72時間以内に40〜120℃の温度で8〜36時間の
加熱を行なうのである。
[Table] Example 4 An ingot made by melting and casting the alloys No. 4 and No. 5 in Table 1 of Example 1 by a normal method was milled and heated to 530°C at a heating rate of 40°C/hour. After homogenization treatment, which was maintained at this temperature for 6 hours, the plate was made into a 1.8 mm thick plate by hot rolling and cold rolling, and this plate was heated at a temperature of 350°C for 3 hours.
1.0mm by cold rolling after intermediate annealing
The plate thickness is then 520℃ at a heating rate of 200℃/min.
temperature, perform a high-temperature and short-time heat treatment by holding this temperature for 15 seconds, cool to room temperature at a cooling rate of 600℃/min, leave at room temperature for 0 to 96 hours, and heat for 30 to 30 seconds.
A final heat treatment is performed at a temperature of 150℃ for 4 to 48 hours.
Table 5 shows the properties and baking properties after being left at room temperature for 30 days. As is clear from Table 5, the shorter the time left at room temperature after the tempering treatment until the final heat treatment, the better the baking properties.For 96 hours, the baking properties at high temperatures for 60 minutes at 200°C improve the yield strength. Yes, but 175
Baking for a short time at a low temperature for 30 minutes at a final heat treatment temperature of 30°C improves the yield strength. At ℃, elongation decreases, but it is improved by baking at a high temperature for a long time and at a low temperature for a short time.When the heating time is 4 hours, the yield strength improves by baking at a high temperature for a long time, but the yield strength does not improve by baking at a low temperature for a short time. The elongation is low after 48 hours, and there is no improvement in yield strength when baking at a low temperature for a short time. Furthermore, if the final heat treatment is not performed, the yield strength will be improved by baking at high temperature for a long time, but the yield strength will not be improved by baking at low temperature for a short time. Therefore, the final heat treatment after the tempering treatment is performed at a temperature of 40 to 120° C. for 8 to 36 hours within 72 hours after the tempering treatment.

【表】 [発明の効果] 以上説明したように、本発明に係る焼付硬化性
に優れたアルミニウム合金板の製造法は上記の構
成であるから、製造されたアルミニウム合金板は
成形性に優れ、かつ、高温長時間(200℃×60分)
および低温短時間(175℃×30分)の何れのベー
キングにおいても強度向上性を有する焼付硬化性
に優れた効果を奏するものである。
[Table] [Effects of the Invention] As explained above, since the method for producing an aluminum alloy plate with excellent bake hardenability according to the present invention has the above configuration, the produced aluminum alloy plate has excellent formability, And high temperature for a long time (200℃ x 60 minutes)
It also exhibits excellent bake hardenability with improved strength in both low-temperature and short-time baking (175°C x 30 minutes).

Claims (1)

【特許請求の範囲】 1 Mg0.4〜1.5wt%、Si0.3〜1.5wt%、 Cu0.2〜0.8wt% を含有し、さらに、 Ti0.005〜0.1wt%、B0.0005〜0.03wt%、 Mn0.4wt%以下、Cr0.4wt%以下、 Fe0.3wt%以下、Zr0.2wt%以下、 V0.1wt%以下 のうちから選んだ1種または2種以上 を含有し、かつ、 不可避不純物0.2wt%以下 を含有し、残部が実質的にAlからなるAl−Mg−
Si−Cu基合金鋳塊を、バーニング温度以下の温
度で通常の均質化処理を行ない、熱間圧延および
冷間圧延を行なつて所望の板厚とし、調質処理と
して加熱速度100℃/分以上で480〜580℃に急速
加熱を行ない、この温度に3秒以上保持した後、
100℃までの冷却速度を300℃/分以上で急冷する
熱処理を行ない、さらに、72時間以内に40〜120
℃の温度で8〜36時間の最終熱処理を行なうこと
を特徴とする焼付硬化性に優れたアルミニウム合
金板の製造法。
[Claims] 1 Contains 0.4 to 1.5 wt% Mg, 0.3 to 1.5 wt% Si, 0.2 to 0.8 wt% Cu, and further contains 0.005 to 0.1 wt% Ti, and 0.0005 to 0.03 wt% B. %, Mn 0.4wt% or less, Cr 0.4wt% or less, Fe 0.3wt% or less, Zr 0.2wt% or less, V0.1wt% or less, and unavoidable impurities. Al-Mg- containing 0.2wt% or less, with the remainder consisting essentially of Al
The Si-Cu based alloy ingot is subjected to normal homogenization treatment at a temperature below the burning temperature, hot rolled and cold rolled to the desired thickness, and heated at a heating rate of 100℃/min as tempering treatment. After rapidly heating to 480-580℃ and holding at this temperature for more than 3 seconds,
Heat treatment is performed to rapidly cool down to 100°C at a cooling rate of 300°C/min or more, and furthermore, within 72 hours,
A method for producing an aluminum alloy plate with excellent bake hardenability, which comprises performing a final heat treatment at a temperature of 8 to 36 hours.
JP60210768A 1985-09-24 1985-09-24 Manufacture of aluminum alloy plate having superior burning hardenability Granted JPS6289852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60210768A JPS6289852A (en) 1985-09-24 1985-09-24 Manufacture of aluminum alloy plate having superior burning hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60210768A JPS6289852A (en) 1985-09-24 1985-09-24 Manufacture of aluminum alloy plate having superior burning hardenability

Publications (2)

Publication Number Publication Date
JPS6289852A JPS6289852A (en) 1987-04-24
JPH057460B2 true JPH057460B2 (en) 1993-01-28

Family

ID=16594808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60210768A Granted JPS6289852A (en) 1985-09-24 1985-09-24 Manufacture of aluminum alloy plate having superior burning hardenability

Country Status (1)

Country Link
JP (1) JPS6289852A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665739B2 (en) * 1986-05-26 1994-08-24 スカイアルミニウム株式会社 Method for manufacturing rolled aluminum alloy plate
JPS6411937A (en) * 1987-07-02 1989-01-17 Sky Aluminium Aluminum alloy rolled plate for forming and its production
JPH0674480B2 (en) * 1987-09-03 1994-09-21 本田技研工業株式会社 Forming and welding alloy sheet excellent in weldability, rust resistance, formability and bake hardenability, and method for producing the same
JP2764176B2 (en) * 1989-02-09 1998-06-11 株式会社神戸製鋼所 Continuous annealing furnace incorporating reheating device
JP3207413B2 (en) * 1990-10-09 2001-09-10 住友軽金属工業株式会社 Manufacturing method of aluminum alloy material for forming process excellent in formability, shape freezing property and paint baking hardenability
JP4237326B2 (en) * 1999-03-18 2009-03-11 新日本製鐵株式会社 Method for producing aluminum alloy sheet excellent in formability and corrosion resistance
JP2001064744A (en) * 1999-08-30 2001-03-13 Nippon Light Metal Co Ltd High strength aluminum alloy sheet suitable for spinning working and its production
JP4237364B2 (en) * 1999-11-29 2009-03-11 新日本製鐵株式会社 Method for producing an aluminum alloy plate excellent in press formability
FR2835533B1 (en) * 2002-02-05 2004-10-08 Pechiney Rhenalu AL-Si-Mg ALLOY SHEET FOR AUTOMOTIVE BODY SKIN
ES2924683T3 (en) * 2017-05-26 2022-10-10 Novelis Inc High-strength, corrosion-resistant 6xxx series aluminum alloys and methods for making the same
PL424248A1 (en) * 2018-01-11 2019-07-15 Albatros Aluminium Spółka Z Ograniczoną Odpowiedzialnością Aluminum composite with high kinetic energy cumulation properties and increased mechanical properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100252A (en) * 1982-12-01 1984-06-09 Kobe Steel Ltd Al alloy having excellent moldability and quench hardenability and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100252A (en) * 1982-12-01 1984-06-09 Kobe Steel Ltd Al alloy having excellent moldability and quench hardenability and its production

Also Published As

Publication number Publication date
JPS6289852A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
JPH0569898B2 (en)
JPWO2005056859A1 (en) Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
JPH057460B2 (en)
JPH10219382A (en) Aluminum alloy sheet excellent in formability/ workability and coating/baking hardenability and its production
JPS58224142A (en) Aluminum alloy plate with superior formability and its manufacture
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
TW202033775A (en) Method for manufacturing aluminum-manganese alloy
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPS61166938A (en) Al-li alloy for expansion and its production
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPS6220272B2 (en)
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JPS6139391B2 (en)
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees