JPS59100252A - Al alloy having excellent moldability and quench hardenability and its production - Google Patents

Al alloy having excellent moldability and quench hardenability and its production

Info

Publication number
JPS59100252A
JPS59100252A JP21098582A JP21098582A JPS59100252A JP S59100252 A JPS59100252 A JP S59100252A JP 21098582 A JP21098582 A JP 21098582A JP 21098582 A JP21098582 A JP 21098582A JP S59100252 A JPS59100252 A JP S59100252A
Authority
JP
Japan
Prior art keywords
less
alloy
strength
formability
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21098582A
Other languages
Japanese (ja)
Other versions
JPS6139391B2 (en
Inventor
Yoshimitsu Miyaki
美光 宮木
Yasunori Sasaki
佐々木 靖紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21098582A priority Critical patent/JPS59100252A/en
Publication of JPS59100252A publication Critical patent/JPS59100252A/en
Publication of JPS6139391B2 publication Critical patent/JPS6139391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To produce an Al alloy having excellent moldability and quench hardenability by subjecting a cast ingot of an Al-Cu-Mg-Si alloy to a heat treatment and rolling treatment under a specific condition. CONSTITUTION:A cast alloy ingot contg., by weight %, 1.5-2.5% Cu, 0.5-1.0% Mg, 0.3-1.0% Si, 0.005-0.05% Ti, 0.0005-0.03% B, contg. <=0.04% Mn, Cr, V, Zr individually and <=0.09% in total and <=0.25% Fe, contg. <=1.1 Si/Mg by weight, and consisting of the balance substantially Al is subjected to the following treatment: Said cast alloy ingot is heated at <=200 deg.C/hour heating rate or is heated and held for >=1hr to and at 300-400 deg.C and is then heated to 450- 530 deg.C, whereby the ingot is homogenized. Such ingot is cold rolled at >=40% draft after hot rolling and is quickly heated to 500-555 deg.C at >=100 deg.C/min heating rate as a final treatment, then it is held for 5-90sec in said temp. region. Thereafter the rolled sheet is quickly cooled to 150 deg.C at >=300 deg.C/min cooling rate whereby the max. long side length of the crystallized matter is made <=13mum.

Description

【発明の詳細な説明】 本発明は成形性、焼付硬化性に優れたAl合金及びその
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an Al alloy with excellent formability and bake hardenability, and a method for producing the same.

従来、自動車部品等及びその他の用途に使用するAl合
金材料に、塗装した塗膜に強度を保持させよのに、塗装
後加熱(ベーキング)することがあり、併せて、この加
熱を利用してAl合金材料の強度を向上させることが行
われている。そのため、Al合金材として2002合金
及び2036合金が使用されるが、これらの合金の塗膜
の焼付条件は200℃の温度に90分保持するという高
温長時間を必要としていた。
Conventionally, aluminum alloy materials used in automobile parts and other applications are sometimes heated (baked) after painting in order to maintain the strength of the painted film. Efforts have been made to improve the strength of Al alloy materials. Therefore, 2002 alloy and 2036 alloy are used as Al alloy materials, but the baking conditions for coating films of these alloys require high temperature and long hours of holding at a temperature of 200° C. for 90 minutes.

しかして、最近では省エネルギー及びベーキングのコス
トダウンを図るために、ベーキング温度を下げ、かつ、
加熱時間を短縮する傾向にあり、そして、成形性が良好
で、200℃以下の低温で、かつ、90分以下の短時間
で強度が向上するAl合金が要望されてきている。例え
ば、上気した2002合金や2036合金では75℃の
温度で30分の加熱のような低温短時間のベーキングで
は強度の向上は期待できない。
However, recently, in order to save energy and reduce baking costs, baking temperatures have been lowered and
There is a growing demand for an Al alloy that tends to shorten heating time, has good formability, and improves strength at a low temperature of 200° C. or less and in a short time of 90 minutes or less. For example, in the case of exposed 2002 alloy or 2036 alloy, no improvement in strength can be expected by baking at a low temperature for a short time such as heating at 75° C. for 30 minutes.

本発明は上記に説明したような従来技術の種々の問題点
に鑑み、本発明者の研究の結果なされたものであり、成
形性が良好で、かつ、175℃の温度で30分間の低温
短時間のベーキングで強度が向上するAl合金、即ち、
成形性、焼付硬化性に優れたAl合金、及びその製造法
を提供するものである。
The present invention was developed as a result of research by the inventor in view of the various problems of the prior art as explained above. Al alloy whose strength improves with baking time, i.e.
The present invention provides an Al alloy with excellent formability and bake hardenability, and a method for producing the same.

本発明に係わる成形性、焼付硬化性に優れたAl合金、
及びその製造法は、(1)Cu1.5〜2.5wt%、
Mg0.5〜1.0wt%、Si0.3〜1.0wt%
、Ti0.005〜0.05wt%、B0.0005〜
0.03wt%を含み、Mu、Cr、V、Zrを単独で
0.04wt%以下、合計で0.09wt%以下、及び
、Feを0.25wt%以下に規制し、Si/Mgの重
量比が1.1以下である残部実質的にAlからなるAl
−Cu−Mg−Si系合金であって、晶質物の最低長辺
長さが13μm以下である成形性、焼付硬化性に優れた
Al合金を第1の発明とし、(2)Cu1.5〜2.5
wt%、Mg0.5〜1.0wt%、Si0.3〜1.
0wt%、Ti0.005〜0.5wt%、B0.00
05〜0.03wt%を含み、Mu、Cr、V、Zrを
単独で0.04wt%以下、合計で0.09wt%以下
、及び、Feを0.25wt%以下に規制し、Si/M
gの重量比が1.1以下である残部実質的にAlからな
るAl−Cu−Mg−Si系合金鋳塊を、加熱速度20
0℃/時以下で450〜530℃に加熱して均質化し、
熱間圧延後圧延率40%以上で冷間圧延し、最終熱処理
として、実体で加熱速度100℃/分以上で500〜5
50℃に急速加熱し、この温度域に5〜90秒保持した
後、150℃までの冷却速度を300℃/分以上として
急冷する熱処理を行い、晶出物の最長辺長さを13μm
以下とすることを特徴とする成形性、焼付硬化性に優れ
たAl合金板の製造法を第2の発明とし、(3)Cu1
.5〜2.5wt%、Mg0.5〜1.0wt%、Si
0.3〜1.0wt%、Ti0.005〜0.05wt
%、B0.0005〜0.03wt%を含み、Mu、C
r、V、Zrを単独で0.04wt%以下、合計で0.
09wt%以下、及び、Fe0.25wt%以下に規制
し、Si/Msの重量比が1.1以下である残部実質的
にAlからなるAl−Cu−Mg−Si系合金鋳塊を、
300〜400℃に1時間以上加熱保持し次いで450
〜530℃に加熱して均質化し、熱間圧延後圧延率40
%以上で冷間圧延し、最終熱処理として、実体で加熱速
度100℃/分以上で500〜555℃に急速加熱し、
この温度域に5〜90秒保持した後、150℃までの冷
却速度を300℃/分以上として急冷する熱処理を行い
、晶出物の最長辺長さを13μm以下とすることを特徴
とする成形性、焼付硬化性に優れたAl合金板の製造法
を第3の発明とする3つの発明よりなるものである。
Al alloy with excellent formability and bake hardenability according to the present invention,
and its manufacturing method, (1) Cu1.5-2.5wt%,
Mg0.5-1.0wt%, Si0.3-1.0wt%
, Ti0.005~0.05wt%, B0.0005~
0.03wt%, Mu, Cr, V, and Zr are regulated to 0.04wt% or less individually and 0.09wt% or less in total, Fe is regulated to 0.25wt% or less, and the Si/Mg weight ratio is is 1.1 or less and the remainder consists essentially of Al
The first invention is an Al alloy which is a Cu-Mg-Si based alloy and has excellent formability and bake hardenability in which the minimum long side length of a crystalline substance is 13 μm or less, (2) Cu1.5~ 2.5
wt%, Mg0.5-1.0wt%, Si0.3-1.
0wt%, Ti0.005-0.5wt%, B0.00
05 to 0.03 wt%, Mu, Cr, V, and Zr are regulated to 0.04 wt% or less individually and 0.09 wt% or less in total, and Fe is regulated to 0.25 wt% or less, and Si/M
An Al-Cu-Mg-Si alloy ingot having a weight ratio of 1.1 or less and the remainder substantially consisting of Al was heated at a heating rate of 20
Homogenize by heating to 450-530°C at a rate of 0°C/hour or less,
After hot rolling, cold rolling is performed at a rolling rate of 40% or more, and as a final heat treatment, the material is heated at a heating rate of 100°C/min or more to a temperature of 500 to 50%.
After rapidly heating to 50°C and holding in this temperature range for 5 to 90 seconds, heat treatment is performed to rapidly cool the crystallized material at a cooling rate of 300°C/min or more to 150°C, and the longest side length of the crystallized material is reduced to 13 μm.
A second invention provides a method for producing an Al alloy plate with excellent formability and bake hardenability, which is characterized by the following: (3) Cu1
.. 5-2.5wt%, Mg0.5-1.0wt%, Si
0.3-1.0wt%, Ti0.005-0.05wt
%, B0.0005-0.03wt%, Mu, C
Each of r, V, and Zr is 0.04 wt% or less, and the total content is 0.04 wt% or less.
An Al-Cu-Mg-Si alloy ingot is regulated to 0.09 wt% or less and Fe0.25 wt% or less, and the Si/Ms weight ratio is 1.1 or less, the remainder substantially consisting of Al.
Heated and held at 300-400℃ for more than 1 hour, then heated to 450℃
Homogenize by heating to ~530°C, and after hot rolling, the rolling rate is 40.
% or more, and as a final heat treatment, the material is rapidly heated to 500 to 555 °C at a heating rate of 100 °C / min or more,
After holding this temperature range for 5 to 90 seconds, heat treatment is performed to rapidly cool the crystallized material at a cooling rate of 300°C/min or more to 150°C, and the length of the longest side of the crystallized material is reduced to 13 μm or less. This invention consists of three inventions, with the third invention being a method for manufacturing an Al alloy plate with excellent properties and bake hardenability.

本発明に係わる成形性、焼付硬化性に優れたAl合金及
びその製造法(以下単に本発明合金及び本発明の方法と
いうことがある。)について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An Al alloy with excellent formability and bake hardenability according to the present invention and a method for producing the same (hereinafter sometimes simply referred to as the alloy of the present invention and the method of the present invention) will be described in detail.

先ず、本発明合金の含有成分及び成分割合について説明
する。
First, the components and component ratios of the alloy of the present invention will be explained.

Cuはその含有量に比例して強度を高くするが、伸びを
低下させる元素であり、含有量が1.5wt%未満では
強度が低くなり、また、2.5wt%を越えて含有され
ると成形性が低下するものであり、ベーキング後の強度
はCu含有量が増えるに従ってその上昇率は少なくなる
。よって、素材の強度及び成形性とベーキング後の強度
上昇を図るには、Cu含有量は1.5〜2.5wt%と
する。
Cu increases strength in proportion to its content, but is an element that reduces elongation, so if the content is less than 1.5 wt%, the strength will be low, and if the content exceeds 2.5 wt%, the strength will decrease. The moldability deteriorates, and the rate of increase in strength after baking decreases as the Cu content increases. Therefore, in order to increase the strength and formability of the material and the strength after baking, the Cu content is set to 1.5 to 2.5 wt%.

Mgは素材の強度及びベーキング後の強度は上昇させる
が一方では素材の成形性を低下させ、含有量が0.5w
t%未満では素材及びベーキング後の強度が低く、また
、1.5wt%を越えて含有されるとベーキング後の強
度は高くなるが素材の成形性が低くなる。よって、素材
の強度及び成形性とベーキン後の強度上昇を図るには、
Mg含有量は0.5〜1.0wt%とする。
Mg increases the strength of the material and the strength after baking, but on the other hand it reduces the formability of the material, and the content is 0.5w.
If the content is less than t%, the strength of the material and after baking will be low, and if the content exceeds 1.5wt%, the strength after baking will be high, but the moldability of the material will be low. Therefore, in order to increase the strength and formability of the material and the strength after baking,
The Mg content is 0.5 to 1.0 wt%.

Siは素材の強度及びベーキング後の強度を上昇させる
が、素材の成形性を低下させ、含有量が0.3wt%未
満では素材の成形性は高くなるが、強度及びベーキング
後の強度が低くなり、また、1.0wt%を越えて含有
されると強度及びベーキング後の強度は高くなるが、成
形性が低下する。よって、強度及び成形性とベーキング
後の強度上昇を図るには、Si含有量は0.3〜1.0
wt%とする。
Si increases the strength of the material and the strength after baking, but reduces the formability of the material, and if the content is less than 0.3 wt%, the formability of the material increases, but the strength and the strength after baking decrease. Moreover, if the content exceeds 1.0 wt%, the strength and the strength after baking will increase, but the moldability will decrease. Therefore, in order to improve strength, formability, and strength after baking, the Si content should be 0.3 to 1.0.
Let it be wt%.

Tiは成形性を向上させる元素であり、含有量が0.0
05wt%を越えて含有させるとその増加と共に成形性
を向上させるが、含有量が0.05wt%を越えると粗
大な晶出物を生成し成形性を低下させる。よって、Ti
含有量は0.005〜0.05wt%とする。
Ti is an element that improves formability, and the content is 0.0
If the content exceeds 0.05 wt%, the moldability will improve as the content increases, but if the content exceeds 0.05 wt%, coarse crystallized substances will be produced and the moldability will be deteriorated. Therefore, Ti
The content is 0.005 to 0.05 wt%.

BはTiと同様に成形性向上のための元素であり、含有
量が0.0005wt%を越えることにより成形性が向
上するが、0.03wt%を越えて含有されると粗大な
晶出物を生成して成形性を低下させる。
Like Ti, B is an element for improving formability, and when the content exceeds 0.0005wt%, the formability is improved, but when the content exceeds 0.03wt%, coarse crystallized substances are formed. , which reduces moldability.

よって、B含有量は0.0005〜0.03wt%とす
る。
Therefore, the B content is set to 0.0005 to 0.03 wt%.

なお、Ti及びBはAl−Ti−B中間合金により含有
させることが望ましい。
Note that Ti and B are preferably contained in an Al-Ti-B intermediate alloy.

Mn、Cr、V、Zrは、単独で0.04wt%、また
、合計で0.09wt%を越えて含有されると強度は向
上するが、成形性を低下させるので、Mn、Cr、V、
Zr含有量は単独で0.04wt%以下、合計で0.0
9wt%以下に規制しなければならない。
When Mn, Cr, V, and Zr are contained in an amount exceeding 0.04 wt% individually, and in a total amount exceeding 0.09 wt%, the strength is improved, but the formability is reduced.
Zr content is 0.04 wt% or less individually, 0.0 in total
It must be regulated to 9wt% or less.

Feは0.25wt%を越えて含有されると成形性を低
下させるので、Fe含有量は0.25wt%以下に規制
しなければならない。
If Fe is contained in an amount exceeding 0.25 wt%, formability will be reduced, so the Fe content must be regulated to 0.25 wt% or less.

なお、Znは0.5wt%以下に抑えるのが望ましい。Note that it is desirable to suppress Zn to 0.5 wt% or less.

Si/Mgの重量比を1.1以下とするのは、素材及び
ベーキング後の強度向上と素材の成形性を良くするため
であり、そして、Si/Mgの重量比が1.1を越える
と素材及びベーキング後の強度は向上するが素材の成形
性を低下させる。よって、Si/Mgの重量比は1.1
以下とする。
The reason why the weight ratio of Si/Mg is 1.1 or less is to improve the strength of the material and after baking and to improve the formability of the material.If the weight ratio of Si/Mg exceeds 1.1, It improves the strength of the material and after baking, but it reduces the formability of the material. Therefore, the weight ratio of Si/Mg is 1.1
The following shall apply.

以上説明した含有成分及び成分割合については後述する
実施例においても説明してある。
The components and proportions of the components explained above are also explained in the examples described later.

次に本発明の方法について説明する。Next, the method of the present invention will be explained.

均質化処理は、均質化処理温度までの加熱速度が早過ぎ
ると、素材の成形性の低下が大きくなり、ベーキングに
よる強度向上が小さくなるので、加熱速度は200℃/
時以下としなければならず、そして、均質化処理温度は
450℃未満では素材の成形性の低下とベーキング後の
強度低下を来し、また、530℃を越える温度ではバー
ニングが生じるようになる。よって、均質化処理温度は
450〜530℃とする。
For homogenization treatment, if the heating rate to the homogenization treatment temperature is too fast, the moldability of the material will decrease significantly and the strength improvement due to baking will be reduced, so the heating rate should be set to 200℃/200℃.
If the homogenization temperature is less than 450°C, the moldability of the material and the strength after baking will decrease, while if it exceeds 530°C, burning will occur. Therefore, the homogenization treatment temperature is set at 450 to 530°C.

また、加熱速度が200℃/時以下で行えない時には加
熱速度に関係なく、300−400℃に1時間加熱保持
した後に、450−530℃で均質化処理を行なうと、
加熱速度が200℃/時以下のときと同等の成形性を得
ることができる。なお、450〜530℃での均質化処
理時間は1〜10時間程度が望ましい。
In addition, if heating cannot be carried out at a heating rate of 200°C/hour or less, regardless of the heating rate, after heating and holding at 300-400°C for 1 hour, homogenization treatment at 450-530°C is performed.
The same moldability as when the heating rate is 200° C./hour or less can be obtained. Note that the homogenization treatment time at 450 to 530°C is preferably about 1 to 10 hours.

熱間圧延後に冷間圧延を行なうが、冷間圧延率が高くな
る程最終熱処理後の素材の成形性が向上するけれども、
圧延率が40%未満では素材の成形性が低下するので、
冷間圧延率は40%以上とする。
Cold rolling is performed after hot rolling, and the higher the cold rolling rate, the better the formability of the material after final heat treatment.
If the rolling rate is less than 40%, the formability of the material will decrease, so
The cold rolling rate shall be 40% or more.

さらに、最終熱処理としては急速加熱、高温短時間の加
熱を行ない、続いて、急速冷却を行なうことによって、
素材の強度及び高い成形性とベーキング後の強度を向上
させることができる。即ち、実体を加熱速度100℃/
分以上で500〜555℃に急速加熱してこの温度に5
〜90秒保持するのであるが、加熱速度が100℃/分
未満で、加熱温度が500℃未満では素材の強度及びベ
ーキング後の強度が低く、また、560℃を越えるとバ
ーニングを発生して成形性が低下してしまい、そして、
例えば、■■■x530℃で加熱時間が120秒の場合
では結晶量の粗大化により成形性が低下し、加熱温度4
75℃で加熱時間が60秒の場合はベーキング後の強度
が低くなる。続く150℃までの冷却速度については、
冷却速度が300℃/分未満では素材の成形性の低下及
びベーキング後の強度上昇率が小さく、300℃/分以
上になると、素材の強度及び成形性とベーキング後の強
度が向上する。また、加熱を従来のバッチ式の空気炉で
行なうと、加熱速度が遅く、保時時間も長いので、結晶
粒が粗大化して素材の成形性が悪くなる。よって、最終
熱処理は実体、即ち、被処理材自体で加熱速度100℃
/分以上で500〜555℃に急速加熱し、保時時間を
5〜90秒とし、150℃までの冷却速度を300℃/
分以上で行なうのである。
Furthermore, the final heat treatment involves rapid heating, high temperature heating for a short time, and then rapid cooling.
The strength and moldability of the material and the strength after baking can be improved. That is, the substance is heated at a rate of 100°C/
Rapidly heat to 500-555℃ for more than 5 minutes to this temperature.
If the heating rate is less than 100°C/min and the heating temperature is less than 500°C, the strength of the material and the strength after baking will be low, and if it exceeds 560°C, burning will occur and the molding will fail. Sexuality decreases, and
For example, if the heating time is 120 seconds at
If the heating time is 60 seconds at 75°C, the strength after baking will be low. Regarding the subsequent cooling rate to 150℃,
When the cooling rate is less than 300°C/min, the moldability of the material decreases and the rate of increase in strength after baking is small; when the cooling rate is 300°C/min or more, the strength and formability of the material and the strength after baking improve. Furthermore, when heating is performed in a conventional batch-type air furnace, the heating rate is slow and the storage time is long, resulting in coarse grains and poor formability of the material. Therefore, the final heat treatment is performed at a heating rate of 100°C on the substance itself, that is, on the material to be treated.
Rapid heating to 500-555℃ at a rate of 500℃/min or more, holding time 5-90 seconds, cooling rate to 150℃ 300℃/min.
It takes more than a minute.

以上の工程を終了したときの素材の晶出物の大きさは、
最長辺の長さが13μmを越えると成形性が低下するの
で、最終的なAl合金板の晶出物は13μm以下とする
必要がある。
The size of the crystallized material of the material when the above steps are completed is
If the length of the longest side exceeds 13 μm, formability deteriorates, so the final crystallized material of the Al alloy plate needs to be 13 μm or less.

なお、最終熱処理後必要に応じて、レベラー、または、
スキンパス等で歪矯正を行なう際には加工率は1.5%
以下とすることが成形性の低下防止という点で望ましい
In addition, after the final heat treatment, a leveler or
When performing distortion correction using skin pass etc., the processing rate is 1.5%.
The following is desirable from the viewpoint of preventing deterioration of moldability.

本発明に係わる成形性、焼付硬化性に優れたAl合金及
びその製造法の実施例を説明する。
Examples of an Al alloy with excellent formability and bake hardenability and a method for producing the same according to the present invention will be described.

実施例1 第1表に、加熱速度40℃/時で加熱温度520℃に4
時間保持する均質化処理、熱間圧延後75%の冷間圧延
を行なった1mm厚の板を実体で加熱速度200℃/分
で530℃に30秒保持し、800℃/分の冷却速度で
150℃まで冷却する最終熱処理を行ない、室温に30
日放置した後の本発明合金及び比較合金の諸性質を示す
Example 1 Table 1 shows that the heating rate was 40°C/hour and the heating temperature was 520°C.
Homogenization treatment by holding for a period of time: A 1 mm thick plate that has been subjected to 75% cold rolling after hot rolling is held at 530°C for 30 seconds at a heating rate of 200°C/min, and then at a cooling rate of 800°C/min. A final heat treatment is performed to cool down to 150°C and then to room temperature for 30°C.
The various properties of the present invention alloy and comparative alloy after being left in the sun are shown.

この第1表及び第1表の続きから明らかであるが、本発
明合金No.1・3は比較合金に比べ、素材の強度及び
成形性とベーキング後の強度に優れているが、特に、比
較合金No.14、15(2002、2036)に比べ
ると本発明合金は素材の成形性に優れ、ベーキングによ
る強度の向上も優れている。
As is clear from this Table 1 and the continuation of Table 1, the invention alloy No. Comparative alloy No. 1 and No. 3 are superior in material strength and formability, and strength after baking, compared to comparative alloy No. Compared to No. 14 and No. 15 (2002, 2036), the alloy of the present invention has excellent formability of the material and also has excellent strength improvement by baking.

一方、Cu含有量が1.5wt%未満の比較合金No.
1では強度が低く、また、Cu含有量が2.5wt%を
越える比較合金No.2では成形性が劣化する。同様に
、Mg,Si含有量の低い比較合金No.3では強度が
低く、また、Mg、Si含有量が高過ぎる比較合金No
.4合金では成形性が劣化する。
On the other hand, comparative alloy No. 1 with a Cu content of less than 1.5 wt%.
Comparative alloy No. 1 has low strength, and comparative alloy No. 1 has a Cu content of more than 2.5 wt%. In No. 2, the moldability deteriorates. Similarly, comparative alloy No. 1 with low Mg and Si contents. Comparative alloy No. 3 has low strength, and the Mg and Si contents are too high.
.. 4 alloy deteriorates formability.

Ti0.005wt%未満の含有量、また、0.05w
t%を越えて含有されている比較合金No.6、7葉素
材の成形性が低く、Bが0.0005wt%未満の含有
量、また、0.03wt%を越えて含有されている比較
合金No.7、8は成形性が低いし、比較合金No.9
〜12のようにMn、Cr、V及びZrが含有されると
強度は向上するが成形性が低く、Feが0.5%も含有
されているNo.13では素材の成形性が低下し、Si
/Mgの重量比が比較合金No.5のように1.4では
成形性が低下するのである。
Ti content of less than 0.005wt%, also 0.05w
Comparative alloy No. containing more than t%. Comparative alloy No. 6, 7 has low formability of the leaf material, and the B content is less than 0.0005 wt%, and the B content exceeds 0.03 wt%. 7 and 8 have low formability, and comparative alloy No. 7 and 8 have low formability. 9
When Mn, Cr, V, and Zr are contained as in No. 12, the strength is improved, but the formability is low, and No. 1 containing as much as 0.5% Fe. In No. 13, the formability of the material decreases, and Si
/Mg weight ratio is that of comparative alloy No. If it is 1.4, such as 5, the moldability decreases.

次に、晶出物の最長辺長さについてみると、本発明合金
No.1〜3では8〜10μmであり、良好な成形性を
示しているが、Mn、Cr、V、Zr、Feを規定量以
上含有すると比較合金No.9〜15では15〜21μ
mの大きさとなっており、成形性が、劣化していること
がわかる。
Next, looking at the length of the longest side of the crystallized material, the present invention alloy No. Comparative alloy No. 1 to No. 3 had a diameter of 8 to 10 μm, indicating good formability, but when Mn, Cr, V, Zr, and Fe were contained in the specified amounts or more, comparative alloy No. 15-21μ for 9-15
It can be seen that the moldability has deteriorated.

実施例2 第2表に本発明合金No.1の均質化処理条件と材料特
性を示す。即ち、本発明合金No.1鋳塊を50〜40
0℃/時の加熱速度で、400〜575℃に4時間保持
する均質化と、加熱速度に関係なく350℃で1時間保
持後520℃で4時間保持する均質化との処理を行ない
、熱間圧延後77%の冷間圧延を行なった1mmの板を
実体が加熱速度200℃/分で530℃で30秒保持し
、150℃まで冷却速度700℃/分で冷却する最終熱
処理を行ない、室温に30日放置後の特性値である。
Example 2 Table 2 shows the invention alloy No. 1 shows the homogenization treatment conditions and material properties. That is, the alloy No. of the present invention. 1 ingot 50~40
Homogenization was carried out by holding at 400 to 575°C for 4 hours at a heating rate of 0°C/hour, and homogenization was held at 350°C for 1 hour and then at 520°C for 4 hours regardless of the heating rate. A 1 mm plate that has been subjected to 77% cold rolling after inter-rolling is held at 530°C for 30 seconds at a heating rate of 200°C/min, and then subjected to a final heat treatment in which it is cooled to 150°C at a cooling rate of 700°C/min. These are characteristic values after being left at room temperature for 30 days.

この第2表からわかるように、加熱速度が大きくなるに
つれて成形性が低下しており、400℃/時では成形性
の低下が大きいので、200℃/時以下とするのがよく
、均質化処理温度が高くなるにつれて成形性は向上する
が、575℃ではバーニングにより成形性は低下するよ
うになり、加熱速度が200℃/時以下で行なえない場
合には、300〜400℃に1時間以上加熱後、450
〜530℃まで昇温保持すると加熱速度200℃/時以
下の場合と同等の成形性を得られる。
As can be seen from Table 2, as the heating rate increases, the formability decreases, and at 400°C/hour, the decrease in formability is large, so it is best to keep it at 200°C/hour or less, and homogenization treatment Formability improves as the temperature rises, but at 575°C it begins to deteriorate due to burning, so if the heating rate cannot be lowered to 200°C/hour or less, heating to 300-400°C for 1 hour or more is recommended. After, 450
When the temperature is raised to ~530°C, moldability equivalent to that obtained when the heating rate is 200°C/hour or less can be obtained.

実施例3 第3表に本発明合金No.1の最終冷間圧延率と成形性
の関係を示す。即ち、本発明合金No.1鋳塊を加熱速
度100℃/時で520℃に4時間保持する均質化処理
、熱間圧延、30〜75%の冷間圧延を行なった1mm
の板を実体が加熱速度200℃/分で530℃に15秒
保持後、冷却速度300℃/分で150℃まで冷却する
最終熱処理後、室温に30日放置した後の値である。
Example 3 Table 3 shows the invention alloy No. The relationship between the final cold rolling rate and formability of No. 1 is shown. That is, the alloy No. of the present invention. A 1 mm ingot was homogenized by holding it at 520 °C for 4 hours at a heating rate of 100 °C/hour, hot rolled, and cold rolled by 30 to 75%.
This is the value after the plate was left at room temperature for 30 days after a final heat treatment in which the body was held at 530°C for 15 seconds at a heating rate of 200°C/min, then cooled to 150°C at a cooling rate of 300°C/min.

第3表から明らかなように、30%より冷間圧延率が高
くなるにつれて成形性は向上しており、30%以下では
成形性が低いので、冷間圧延率は40%以上とする必要
がある。
As is clear from Table 3, formability improves as the cold rolling rate increases from 30%, and formability is low below 30%, so the cold rolling rate needs to be 40% or higher. be.

実施例4 第4表に本発明合金No.2の最終熱処理条件と材料特
性を示す。即ち、鋳塊を加熱速度100℃/時で520
℃で5時間保持する均質化処理、熱間圧延、70%の冷
間圧延を行なった1mmの板を実体で、加熱速度200
℃/分で475〜560℃で5〜120秒の高温短時間
加熱後、冷却速度200℃/分の急冷(水中への焼入れ
)により150℃まで(急冷の場合は水温まで)冷却し
、室温に30日放置した後の値である。なお、比較とし
て従来の空気炉による熱処理法での値も示す。
Example 4 Table 4 shows the invention alloy No. 2 shows the final heat treatment conditions and material properties. That is, the ingot was heated to 520°C at a heating rate of 100°C/hour.
A 1 mm plate that has been homogenized at ℃ for 5 hours, hot rolled, and 70% cold rolled is heated at a heating rate of 200.
After high-temperature short-time heating at 475-560°C for 5-120 seconds at a cooling rate of 200°C/min (quenching in water), it is cooled to 150°C (to water temperature in the case of rapid cooling), and then cooled to room temperature. This is the value after being left for 30 days. For comparison, values obtained using a conventional heat treatment method using an air furnace are also shown.

この第4表から明らかなように、従来の空気炉による熱
処理法と本発明の方法(高温短時間加熱法)を比較する
と、空気炉による熱処理法では強度は高いけれども成形
性が低い。また、本発明における最終熱処理についてみ
ると、500℃以下ではリューダスマークが発生してベ
ーキング後の強度の向上が少なく、560℃以上になる
とバーニングにより成形性が低下し、また、530℃で
120秒間保持すると再結晶粒の粗大化により成形性が
低下する。さらに、150℃までの冷却速度は200℃
/分以下では成形性が低く、ベーキング後の耐力の向上
が少ない。
As is clear from Table 4, when comparing the conventional heat treatment method using an air furnace and the method of the present invention (high temperature short time heating method), the heat treatment method using an air furnace has high strength but low formability. Regarding the final heat treatment in the present invention, at temperatures below 500°C, rhyudus marks occur and there is little improvement in strength after baking, and at temperatures above 560°C, moldability decreases due to burning, and at 530°C, If held for seconds, the recrystallized grains will become coarser and formability will deteriorate. Furthermore, the cooling rate up to 150°C is 200°C.
/min or less, the formability is low and the yield strength after baking is not improved much.

従って、本発明の法法における最終熱処理の最適条件は
、加熱速度、100℃/分以上、加熱温度500〜55
5℃、保持時間、5〜90秒、かつ、150℃までの冷
却速度は300℃分以上である。
Therefore, the optimal conditions for the final heat treatment in the method of the present invention are a heating rate of 100°C/min or more, and a heating temperature of 500 to 55°C.
The temperature is 5°C, the holding time is 5 to 90 seconds, and the cooling rate to 150°C is 300°C or more.

Claims (3)

【特許請求の範囲】[Claims] (1)Cu1.5〜2.5wt%、Ms0.5〜1.0
wt%、Si0.3〜1.0wt%、Ti0.005〜
0.5wt%、B0.0005〜0.03wt%を含み
、Mu、Cr、V、Zrを単独で0.04wt%以下、
合計で0.09wt%以下、及び、Feを0.25wt
%以下に規制し、Si/Msの重量比が1.1以下であ
る残部実質的にAlからなるAl−Cu−Ms−Si系
合金であって、品出物の最長辺長さが13μm以下であ
る成形性、焼付硬化性に優れたAl合金。
(1) Cu1.5-2.5wt%, Ms0.5-1.0
wt%, Si0.3-1.0wt%, Ti0.005-
0.5 wt%, B0.0005 to 0.03 wt%, Mu, Cr, V, Zr alone 0.04 wt% or less,
0.09wt% or less in total and 0.25wt Fe
% or less, and the weight ratio of Si/Ms is 1.1 or less, and the remainder is substantially Al, and the longest side length of the product is 13 μm or less. Al alloy with excellent formability and bake hardenability.
(2)Cu1.5〜2.5wt%、Ms0.5〜1.0
wt%、Si0.3〜1.0wt%、Ti0.005〜
0.5wt%、B0.0005〜0.03wt%を含み
、Mu、Cr、V、Zrを単独で0.04wt%以下、
合計で0.09wt%以下、及び、Feを0.25wt
%以下に規制し、Si/Msの重量比が1.1以下であ
る残部実質的にAlからなるAl−Cu−Ms−Si系
合金を鋳塊を、加熱速度200℃/時以下で450〜5
30℃に加熱して均質化し、熱間圧延後圧延率40%以
上で冷間圧延し、最終熱処理として、実体で加熱速度1
00℃/分以上で500〜555℃に急速加熱し、この
温度域に5〜90秒保持した後、150℃までの冷却速
度を300/分以上として急冷する熱処理を行い、晶出
物の最長辺長さを13μm以下とすることを特徴とする
成形性、焼付硬化性に優れたAl合金の製造法。
(2) Cu1.5-2.5wt%, Ms0.5-1.0
wt%, Si0.3-1.0wt%, Ti0.005-
0.5 wt%, B0.0005 to 0.03 wt%, Mu, Cr, V, Zr alone 0.04 wt% or less,
0.09wt% or less in total and 0.25wt Fe
% or less, and the weight ratio of Si/Ms is 1.1 or less, and the remainder is substantially Al. 5
Homogenize by heating to 30°C, then cold rolling at a rolling reduction of 40% or more after hot rolling, and as a final heat treatment, heat the material at a heating rate of 1.
Heat treatment is performed by rapidly heating to 500-555°C at a rate of 00°C/min or more, maintaining this temperature range for 5-90 seconds, and rapidly cooling to 150°C at a cooling rate of 300/min or more. A method for producing an Al alloy with excellent formability and bake hardenability, characterized by having a side length of 13 μm or less.
(3)Cu1.5〜2.5wt%、Mg0.5〜1.0
wt%、Si0.3〜1.0wt%、Ti0.005〜
0.5wt%、B0.0005〜0.03wt%を含み
、Mu、Cr、V、Zrを単独で0.04wt%以下、
合計で0.09wt%以下、及び、Feを0.25wt
%以下に規制し、Si/Msの重量比が1.1以下であ
る残部実質的にAlからなるAl−Cu−Mg−Si系
合金鋳塊を、300〜400℃に1時間以上加熱保持し
次いで450〜530℃に冷間圧延し、最終熱処理とし
て、実体で加熱速度100℃/分以上で500〜550
℃に急速加熱し、この温度域に5〜90秒保持した後、
150℃までの冷却速度を300℃/分以上として急礼
する熱処理を行い、晶出物の最長辺長さを13μm以下
とすることを特徴とする成形性、焼付硬化性に優れたA
l合金の製造法。
(3) Cu1.5-2.5wt%, Mg0.5-1.0
wt%, Si0.3-1.0wt%, Ti0.005-
0.5 wt%, B0.0005 to 0.03 wt%, Mu, Cr, V, Zr alone 0.04 wt% or less,
0.09wt% or less in total and 0.25wt Fe
% or less, and the weight ratio of Si/Ms is 1.1 or less, and the remainder is substantially Al, an Al-Cu-Mg-Si alloy ingot is heated and held at 300 to 400°C for more than 1 hour. Then, it is cold rolled to 450-530°C, and as a final heat treatment, it is heated to 500-550°C at a heating rate of 100°C/min or more.
After rapidly heating to ℃ and holding in this temperature range for 5 to 90 seconds,
A with excellent formability and bake hardenability, characterized by performing heat treatment at a cooling rate of 300°C/min or more to 150°C, and making the longest side length of the crystallized product 13 μm or less.
l alloy manufacturing method.
JP21098582A 1982-12-01 1982-12-01 Al alloy having excellent moldability and quench hardenability and its production Granted JPS59100252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21098582A JPS59100252A (en) 1982-12-01 1982-12-01 Al alloy having excellent moldability and quench hardenability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21098582A JPS59100252A (en) 1982-12-01 1982-12-01 Al alloy having excellent moldability and quench hardenability and its production

Publications (2)

Publication Number Publication Date
JPS59100252A true JPS59100252A (en) 1984-06-09
JPS6139391B2 JPS6139391B2 (en) 1986-09-03

Family

ID=16598397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21098582A Granted JPS59100252A (en) 1982-12-01 1982-12-01 Al alloy having excellent moldability and quench hardenability and its production

Country Status (1)

Country Link
JP (1) JPS59100252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246341A (en) * 1985-04-24 1986-11-01 Sky Alum Co Ltd Heat treated type aluminum alloy rolled sheet soft material
JPS6289852A (en) * 1985-09-24 1987-04-24 Kobe Steel Ltd Manufacture of aluminum alloy plate having superior burning hardenability
WO2012160720A1 (en) * 2011-05-20 2012-11-29 住友軽金属工業株式会社 Aluminum alloy material with excellent bendability and process for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246341A (en) * 1985-04-24 1986-11-01 Sky Alum Co Ltd Heat treated type aluminum alloy rolled sheet soft material
JPS6289852A (en) * 1985-09-24 1987-04-24 Kobe Steel Ltd Manufacture of aluminum alloy plate having superior burning hardenability
JPH057460B2 (en) * 1985-09-24 1993-01-28 Kobe Steel Ltd
WO2012160720A1 (en) * 2011-05-20 2012-11-29 住友軽金属工業株式会社 Aluminum alloy material with excellent bendability and process for producing same

Also Published As

Publication number Publication date
JPS6139391B2 (en) 1986-09-03

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH07197219A (en) Production of aluminum alloy sheet for forming
JPH057460B2 (en)
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
JPS59100252A (en) Al alloy having excellent moldability and quench hardenability and its production
JPH08176764A (en) Production of aluminum alloy sheet for forming
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPH0547615B2 (en)
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JPS6327419B2 (en)
JPH04304339A (en) Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JPH04318144A (en) Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture