WO2018037810A1 - Machine component and extruded material - Google Patents

Machine component and extruded material Download PDF

Info

Publication number
WO2018037810A1
WO2018037810A1 PCT/JP2017/026693 JP2017026693W WO2018037810A1 WO 2018037810 A1 WO2018037810 A1 WO 2018037810A1 JP 2017026693 W JP2017026693 W JP 2017026693W WO 2018037810 A1 WO2018037810 A1 WO 2018037810A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
extruded material
less
aluminum alloy
extrusion
Prior art date
Application number
PCT/JP2017/026693
Other languages
French (fr)
Japanese (ja)
Inventor
有賀 康博
琢哉 高知
孝太郎 豊武
Original Assignee
株式会社神戸製鋼所
神鋼メタルプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 神鋼メタルプロダクツ株式会社 filed Critical 株式会社神戸製鋼所
Publication of WO2018037810A1 publication Critical patent/WO2018037810A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present disclosure relates to a machine part made of an aluminum alloy and an extruded material. More specifically, the present invention relates to a machine part and an extruded material made of a 7000 series aluminum alloy.
  • Al—Zn—Mg—Cu-based aluminum alloys having excellent strength, corrosion resistance and light weight hereinafter, Extruded material made of 7000 series aluminum alloy is sometimes used.
  • Extruded materials made of a 7000 series aluminum alloy have high strength, and various types of materials having a tensile strength of 700 MPa or higher by T6 refining after extrusion have been proposed.
  • Patent Document 1 discloses that a 7000 series aluminum alloy wire rod extruded material having a Zn content exceeding 8 mass% can be easily imparted with a strength exceeding a tensile strength of 720 MPa by aging treatment.
  • a coarse recrystallized grain layer is formed, which causes cracking when the extruded material is subjected to plastic processing (forming processing) such as forging or rolling into a large-diameter bolt. .
  • plastic processing forming processing
  • the extrusion temperature is made at a relatively low temperature of 480 to 500 ° C.
  • the inside of the extruded 7000 series aluminum alloy has a fibrous structure
  • the thickness of the recrystallized layer of the surface layer is 10% or less
  • the recrystallized grain size is controlled to 150 ⁇ m or less.
  • the extrusion temperature is a relatively low temperature of 480 to 500 ° C. as in Patent Document 2
  • the 7000 series aluminum alloy is also recrystallized in the extrusion in this temperature range.
  • recrystallization inside is inevitable, and there is a possibility that a strength of 700 MPa or more cannot be obtained with good reproducibility and tensile strength.
  • Patent Document 3 discloses manufacturing a 7000 series aluminum alloy extruded material by hot isostatic pressing.
  • the average crystal grain size of the recrystallized grains in the surface layer portion of the extruded material is 100 ⁇ m or less as a cross-sectional structure parallel to the extrusion direction passing through the axial center portion of the extruded material in the extruded state.
  • the average intercept length in the radial direction of the crystal grains in the central portion of the extruded material axis is 35 ⁇ m or less
  • the average area ratio of the ⁇ 111> orientation crystal grains in the extrusion direction is 0.5 or more and 1.0 or less.
  • the ratio ⁇ 001> / ⁇ 111> between the average area ratio of ⁇ 001> oriented crystal grains and the average area ratio of ⁇ 111> oriented crystal grains is 0.25 or less.
  • Patent Document 3 as a result of the structure of the extruded material that has not been subjected to any heat treatment or processing other than cooling from the extrusion temperature after completion of the hot extrusion, and remains extruded (extruded), the surface layer In addition to the portion, recrystallization (recrystallization) inside the extruded material is also suppressed.
  • a fine extruded structure (fibrous structure) is obtained and a high strength of 700 MPa or more is obtained as a tensile strength after artificial aging treatment.
  • the tensile strength after the artificial aging treatment obtained is 700 MPa or more, but it is only less than about 800 MPa.
  • Patent Document 4 discloses a 7000 series aluminum alloy rolled plate for automobile structural members such as frames and pillars, not extruded materials.
  • the average crystal grain size is 15 ⁇ m or less, and the average proportion of the low-angle grain boundaries with an inclination of 5 to 15 ° is 15% or more. It has also been proposed that the average proportion of grain boundaries with a large tilt angle exceeding 15 ° is 15 to 50%.
  • the tensile strength after the obtained artificial aging treatment is less than 500 MPa as shown in Table 2 of Examples, and such a metallurgical method using a rolled sheet is a plastic working method and manufacturing. Whether or not the method is really effective for increasing the strength of 800 MPa or more of different extruded materials and machine parts can only be confirmed by actually testing.
  • the conventional 7000 series aluminum alloy extruded material can achieve a certain level of strength, it is difficult to stably obtain sufficient strength as a material for mechanical parts such as bolts and springs that require high strength. There was a case.
  • An embodiment of the present invention has been made to solve such a problem, and the purpose thereof is a 7000 series in which the tensile strength after artificial aging treatment is 800 MPa or more and the total elongation is 5% or more. It is to provide a mechanical part made of an aluminum alloy, and to provide a 7000 series aluminum alloy extruded material capable of producing a mechanical part having such excellent mechanical properties.
  • Zn 8.0 to 14.0 mass%
  • Mg 2.0 to 4.0 mass%
  • Cu 0.5 to 2.0 mass%
  • Mn 0.2 to 1 .5% by mass
  • Zr 0.05 to 0.3% by mass
  • the balance is a mechanical part made of an aluminum alloy containing Al and unavoidable impurities, with crystal grains measured by X-ray small angle scattering.
  • the average particle diameter of the fine particles is 2 nm or more and 7 nm or less, the normalized dispersion of the particle size distribution is 45% or less, the tensile strength is 800 MPa or more, and the total elongation is 5% or more. It is a part.
  • Aspect 2 of the present invention is the mechanical component according to aspect 1, further containing one or two of Cr: 0.05 to 0.3% by mass and Sc: 0.05 to 0.3% by mass. .
  • Aspect 3 of the present invention is the mechanical part according to Aspect 1 or 2, further comprising one or two of Ag: 0.05 to 0.5 mass% and Sn: 0.01 to 0.2 mass%. It is.
  • Zn 8.0 to 14.0% by mass
  • Mg 2.0 to 4.0% by mass
  • Cu 0.5 to 2.0% by mass
  • Mn 0.2 to 1 .5 mass%
  • Zr 0.05 to 0.3 mass%
  • the balance is an extrusion material for machine parts made of an aluminum alloy containing Al and unavoidable impurities. Is a wire rod extruded material having a circular diameter of 25 mm, and drawn to a wire rod material having a circular area of 10 mm ⁇ with an area reduction rate of 84%, and this wire rod material is held at a temperature of 480 ° C. for 5 hours. After solution treatment, quenching treatment was performed at an average cooling rate of up to 50 ° C.
  • the average particle diameter of the fine particles is 2 nm or more and 7 nm or less. Dispersion is 45% or less, a tensile strength of at least 800 MPa, an extruded material, wherein the total elongation is 5% or more.
  • Aspect 5 of the present invention is the extruded material according to aspect 4, further containing one or two of Cr: 0.05 to 0.3% by mass and Sc: 0.05 to 0.3% by mass. .
  • Aspect 6 of the present invention is the extruded material according to aspect 4 or 5, further comprising one or two of Ag: 0.05 to 0.5% by mass and Sn: 0.01 to 0.2% by mass. It is.
  • a mechanical component made of a 7000 series aluminum alloy having a tensile strength after artificial aging treatment of 800 MPa or more and a total elongation of 5% or more, and such an excellent machine. It is possible to provide a 7000 series aluminum alloy extruded material capable of producing mechanical parts having specific characteristics.
  • the inventors of the present invention can manufacture a mechanical part made of a 7000 series aluminum alloy having sufficiently excellent mechanical characteristics as a mechanical part such as a bolt and a spring, and 7000 capable of manufacturing a mechanical part having such excellent mechanical characteristics.
  • a mechanical part such as a bolt and a spring
  • 7000 capable of manufacturing a mechanical part having such excellent mechanical characteristics.
  • the present inventors have determined that the precipitates present at the grain boundaries by controlling the average particle diameter of the fine particles in the grains measured by X-ray small angle scattering and the normalized dispersion of the grain size distribution. From a 7000 series aluminum alloy having a tensile strength after artificial aging treatment of 800 MPa or more and a total elongation of 5% or more. It has been found that mechanical parts can be provided.
  • Machine parts refers to various parts such as bolt and nut thread parts, gears (shafts), bearings (bearings), and springs (springs) made of extruded material. It is a machine element as a functional unit of the smallest unit commonly used in various machines.
  • after artificial aging treatment means “after solution treatment and quenching treatment and artificial aging treatment”.
  • the mechanical component according to the embodiment of the present invention can be manufactured using the extruded material according to the embodiment of the present invention as a raw material as described later. Therefore, the mechanical component according to the embodiment of the present invention has fine nano-sized precipitates (in the present specification, sometimes referred to as fine particles), similar to the extruded material according to the embodiment of the present invention. Many exist in the crystal grains and achieve high strength.
  • This fine particle is an intermetallic compound of Mg and Zn (composition is MgZn 2 or the like) formed in the crystal grain, and further contains contained elements such as Cu and Zr according to other alloy compositions. It is a finely dispersed phase.
  • the size of the fine particles referred to in the embodiment of the present invention means an equivalent circle diameter of fine particles that are indefinite.
  • the mechanical part according to an embodiment of the present invention is an extruded fine structure after artificial aging treatment, an average particle diameter of fine particles in crystal grains measured by X-ray small angle scattering, a normalized dispersion of particle size distribution, By controlling the ratio, it is possible to achieve both excellent strength and elongation.
  • the structure after artificial aging treatment of a machine part manufactured by cold working a 7000 series aluminum alloy extrudate, which is a raw material is a fine particle size measured in a crystal grain by the X-ray small angle scattering method.
  • the average particle diameter of the distribution is controlled to be 2 nm or more and 7 nm or less, and the normalized dispersion of the particle size distribution is controlled to be 45% or less.
  • the tensile strength after aging treatment is 800 MPa or more. High strength can be achieved. At the same time, it is possible to suppress the precipitation of precipitates existing at the grain boundaries and coarse precipitates existing within the crystal grains, thereby achieving excellent strength and excellent elongation.
  • Average particle diameter 2 nm or more and 7 nm or less If the average particle diameter of the fine particles is too small, since the action as an obstacle to dislocation during deformation is small, high strength cannot be achieved. Therefore, the average particle diameter is 2 nm or more, preferably 3 nm or more. On the other hand, if the average particle diameter of the fine particles is too large, the distance between the particles becomes large and the action as an obstacle to dislocation becomes small. Furthermore, the production
  • Normalized dispersion of particle size distribution is an index indicating the spread of particle distribution. That is, when the normalized dispersion is large, it means that the particles are widely distributed from small particles to large particles. Conversely, when the normalized dispersion is small, it means that the difference between large particles and small particles is relatively small.
  • the normalized dispersion of the particle size distribution is 45% or less, preferably 40% or less. Note that the normalized dispersion of the particle size distribution has a production limit even by controlling the composition and heat treatment, and the lower limit can be reduced only to about 10%.
  • the fine particles having a particle diameter of 2 nm or more and 7 nm or less, the average particle diameter of the particle size distribution, and the normalized dispersion of the particle size distribution are too fine for the optical microscope used in the prior art. Therefore, it cannot be observed and measured, and can be evaluated by the prescribed X-ray small angle scattering method.
  • the mechanical component according to the embodiment of the present invention described above can achieve both excellent strength and elongation by manufacturing using the aluminum alloy extruded material according to the embodiment of the present invention as a material. .
  • an embodiment of the present invention that is excellent in strength and elongation by performing solution treatment, quenching treatment and artificial aging treatment on the aluminum alloy extruded material according to the embodiment of the present invention under the conditions described later. Can be obtained.
  • Such characteristics of the aluminum alloy extruded material according to the embodiment of the present invention are particularly remarkable by processing the alloy extruded material to simulate a mechanical part under a predetermined condition and performing measurement on the workpiece. Can be expressed. Therefore, in the embodiment of the present invention, an aluminum alloy is processed by imitating a machine part under a predetermined condition with respect to an alloy extruded material, and evaluating the structure and mechanical characteristics of the non-processed part. Extruded material is specified. Below, the concrete process conditions for evaluating an aluminum alloy extruded material concrete are described.
  • the aluminum alloy extruded material according to the embodiment of the present invention is processed into a wire rod extruded material having a circular cross section, and then drawn into a wire rod material, and the wire rod material is subjected to solution treatment and quenching treatment. And after performing an artificial aging treatment, the characteristic can be evaluated by measuring the average dispersion
  • the alloy extruded material according to the embodiment of the present invention is a wire rod extruded material having a circular cross-sectional shape and a diameter of 25 mm, and is drawn and drawn at a reduction rate of 84% to obtain a circular shape having a cross-section of 10 mm ⁇ .
  • the wire rod material is subjected to a solution treatment that is held at a temperature of 480 ° C. for 5 hours, and then subjected to a quenching treatment at an average cooling rate up to 50 ° C. of 200 ° C./second, and then at 120 ° C. for 72 hours Apply artificial aging treatment.
  • the “circular cross section” includes a perfect circle, an ellipse, and a substantially circular shape.
  • the average particle diameter of the fine particles in the crystal grains measured by X-ray small angle scattering is 2 nm. As mentioned above, it is 7 nm or less, the normalized dispersion of the particle size distribution is 45% or less, the tensile strength is 800 MPa or more, and the total elongation is 5% or more. Since the alloy extruded material according to the embodiment of the present invention has such characteristics, a mechanical component excellent in both strength and elongation can be obtained by producing a mechanical component using the alloy extruded material as a raw material. Can do.
  • the average particle diameter of the fine particles obtained by processing and measuring in this way and the normalized dispersion of the particle size distribution are strictly controlled within a predetermined range.
  • a machine part is manufactured using the alloy extruded material, a machine part having excellent strength and elongation can be provided.
  • the measurement angle 2 ⁇ is about 0.1 to 10 degrees or less in the case of X-rays having a wavelength of 1.54 mm using a Cu target.
  • the X-ray small angle scattering method by analyzing the scattered X-rays, it is possible to obtain information on the shape, size and distribution of fine particles on the order of nanometers.
  • the X-ray of the aluminum alloy plate measured by the X-ray small angle scattering method was used. Determine the scattering intensity profile.
  • the X-ray scattering intensity profile is obtained, for example, as the X-ray scattering intensity (scattering X-ray scattering intensity) on the vertical axis and the wave vector q (nm ⁇ 1 ) depending on the measurement angle 2 ⁇ and wavelength ⁇ on the horizontal axis. .
  • the average particle diameter of fine particles that are 2 nm or more and 7 nm or less, and the normalized dispersion indicating the spread of the particle size distribution can be obtained from the X-ray scattering intensity profile. That is, by performing fitting by the nonlinear least square method so that the measured X-ray scattering intensity is close to the X-ray scattering intensity calculated from the theoretical expression represented by the function of the particle diameter and size distribution, the particle diameter and A normalized dispersion value can be obtained.
  • X-ray small-angle scattering measurement apparatus As such an X-ray small-angle scattering measurement apparatus, a representative small-angle scattering apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-119906. Then, X-rays are irradiated at a minute angle (small angle), and X-rays scattered from the sample are measured using a detector such as a two-dimensional multi-wire type.
  • the region where the scattered X-rays are generated is a small angle of about 0.1 to 10 degrees or less in the case of X-rays having a wavelength of 1.54 mm.
  • the machine part and the extruded material according to the embodiment of the present invention are made of a 7000 series aluminum alloy, and the component composition only needs to have a normal chemical composition as a 7000 series aluminum alloy.
  • Zn 8.0 to 14.0% by mass Zn, together with Mg, is an element that improves the strength by forming an aging precipitate that is an intermetallic compound of Mg and Zn during an artificial aging treatment described later. If the Zn content is less than 8.0% by mass, the strength as a machine part is insufficient. Therefore, Zn content is 8.0 mass% or more, Preferably it is 9.0 mass% or more. On the other hand, if the Zn content exceeds 14.0% by mass, ingot cracking is likely to occur during casting of the billet for the extruded material, and ingot making becomes difficult. Therefore, Zn content is 14.0 mass% or less, Preferably it is 13.0 mass% or less. In addition, when Zn content is high, SCC sensitivity becomes sharp, but in order to suppress it, it is desirable to add Cu or Ag described later.
  • Mg 2.0 to 4.0% by mass Mg, together with Zn, is an element that improves the strength and elongation as a mechanical component by forming an aging precipitate, which is an intermetallic compound of Mg and Zn, defined in the embodiment of the present invention during the artificial aging treatment described later. is there. If the Mg content is less than 2.0% by mass, the strength is insufficient. Therefore, the Mg content is 2.0% by mass or more, preferably 2.5% by mass or more.
  • Mg content exceeds 4.0% by mass, the extrudability at a low temperature in the non-recrystallization temperature range (temperature range below the recrystallization temperature) of the cast billet for the extruded material is lowered, and the SCC sensitivity is reduced. Become stronger. Therefore, Mg content is 4.0 mass% or less, Preferably it is 3.5 mass% or less.
  • Cu 0.5 to 2.0 mass% Cu has the effect of improving the SCC resistance as a machine part.
  • the Cu content is 0.5% by mass or more, and preferably 0.7% by mass or more.
  • the Cu content is 2.0 mass% or less, Preferably it is 1.8 mass% or less.
  • Mn 0.2 to 1.5% by mass
  • Mn contributes to improving the strength of mechanical parts by forming dispersed particles.
  • the Mn content is 0.2% by mass or more, preferably 0.3% by mass or more.
  • the Mn content is 1.5% by mass or less, preferably 1.2% by mass or less.
  • Zr 0.05 to 0.3% by mass
  • Zr forms fine precipitates, suppresses recrystallization, and contributes to improving the strength of machine parts.
  • the content of Zr is less than 0.05% by mass, the content is insufficient and the strength is lowered. Therefore, the Zr content is 0.05% by mass or more, preferably 0.1% by mass or more.
  • the Zr content is 0.3% by mass or less, preferably 0.25% by mass or less.
  • the balance is Al and inevitable impurities.
  • trace elements such as Fe, Si, Ti and B brought in depending on the conditions of raw materials, materials, manufacturing facilities, and the like are mixed.
  • the inclusion of each of these inevitable impurities is allowed within the range specified by JIS standards for 7000 series alloys.
  • Fe and Si are each in the range of 0.5% by mass or less (including 0% by mass)
  • Ti is in the range of 0.1% by mass or less (including 0% by mass)
  • B is 0.1% by mass. Each may be contained within the following range (including 0% by mass).
  • the mechanical component and the extruded material according to the embodiment of the present invention are not limited to the above-described composition. As long as the characteristics of the machine part and the extruded material according to the embodiment of the present invention can be maintained, other elements may be further included as necessary. Other elements that can be selectively contained as described above are exemplified below.
  • the Cr content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
  • the Sc content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
  • the Cr content is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less.
  • the Sc content is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less.
  • One or two of Ag: 0.05 to 0.5 mass% and Sn: 0.01 to 0.2 mass% Ag and Sn are non-precipitated in the vicinity of the grain boundary in the artificial aging treatment Suppresses the formation of bands and contributes to improving the strength of machine parts.
  • the Ag content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
  • the Sn content is preferably 0.01% by mass or more, and more preferably 0.03% by mass or more.
  • the Ag content exceeds 0.5% by mass and / or when the Sn content exceeds 0.2% by mass, a coarse primary crystal compound is produced during the casting of the cast billet for the extruded material. It can form and cause seizure during extrusion and / or reduced elongation of the machine part as a product. Therefore, the Ag content is preferably 0.5% by mass or less, and more preferably 0.4% by mass or less. For the same reason, the Sn content is preferably 0.2% by mass or less, and more preferably 0.15% by mass or less.
  • the obtained aluminum alloy billet (ingot) is subjected to homogenization heat treatment (uniform heat treatment) to homogenize the structure (that is, crystal grains in the ingot structure). In order to eliminate segregation in the inside).
  • homogenization heat treatment the Zr-based compound and the compound composed of Mn, Cr and Sc are finely dispersed, and the crystal grain structure after extrusion and solution treatment is refined.
  • the soaking temperature is 400 ° C. or higher, preferably 410 ° C. or higher.
  • the soaking temperature is 450 ° C. or lower, preferably 440 ° C. or lower.
  • the holding time during soaking is preferably about 1 to 8 hours.
  • Hot extrusion By hot extrusion, an extruded material shape close to this final shape corresponding to the final machine part shape is obtained.
  • hot extrusion not only the surface layer portion of the extruded material but also recrystallization inside the extruded material can be suppressed, and a fine extruded structure can be obtained.
  • the extrusion start temperature exceeds 400 ° C.
  • the temperature at the time of extrusion rises and recrystallization tends to occur at a high temperature, and not only a coarse recrystallized structure is formed in the surface layer portion and the inside of the extruded material, but also coarse particles Precipitates, resulting in a decrease in strength.
  • extrusion start temperature is 400 degrees C or less, Preferably it is 380 degrees C or less.
  • the lower the extrusion start temperature the better.
  • the extrusion start temperature is preferably 300 ° C. or higher, more preferably 320 ° C. or higher.
  • the extrusion speed is preferably 10 m / min or less in order to suppress processing heat generated during extrusion and suppress the recrystallization during extrusion. More preferably, it is 7 m / min or less.
  • the average cooling rate up to 50 ° C. is 2 ° C./second or more, and preferably 4 ° C./second or more.
  • Such an average cooling rate of 2 ° C./second or more can be achieved by providing a cooling means.
  • the cooling means include air cooling using a fan and water cooling.
  • direct extrusion or indirect extrusion may be used, but there are cases where many seizures occur under the preferable extrusion conditions in the non-recrystallized region. Therefore, when extrusion is difficult, it is preferable to carry out by hydrostatic extrusion.
  • Direct extrusion and indirect extrusion are more efficient than hydrostatic extrusion, but the recrystallized grain layer on the surface of the extruded material (surface portion) is relatively fine, fibrous crystals extending in the extrusion direction.
  • the recrystallized grain layer on the surface of the extruded material is relatively fine, fibrous crystals extending in the extrusion direction.
  • extrusion below the recrystallization temperature range Processing is quite difficult.
  • the extruded material by hot isostatic pressing includes the recrystallized grain layer, or even if there is a recrystallized grain layer, the structure from the surface layer to the inside can be made uniform. As a result, the drawability, drawability, workability, and formability of the wire rod or wire rod product are significantly improved.
  • the recrystallized grain layer is suppressed as in the embodiment of the present invention, the basic characteristics such as sag resistance required for wire rod products such as aluminum alloy bolts by being a fine extruded structure. Can also be guaranteed.
  • the general processing process for machine parts such as bolts is to draw the extruded material to reduce the diameter after annealing, wash it, anneal it, and then roll or forge it into the product shape of the machine part. Good. And after completion of such product processing, solution treatment and quenching treatment are performed, and further artificial aging treatment is performed to improve the strength.
  • the annealing treatment described above is optional, and the annealing treatment may be performed during drawing or rolling.
  • the cold working such as drawing or rolling is, of course, specific applications such as bolt and nut thread parts, gears (gears), shafts (shafts), bearings (bearings), and springs (springs). Depending on the shape, the conditions are changed.
  • the solution treatment of mechanical parts may be a general heating and cooling method, and is not particularly limited. However, if the holding temperature is less than 450 ° C. or the holding time is less than 0.5 hours, the solid solution of Mg and Zn becomes insufficient and the strength may be insufficient. On the other hand, if the holding temperature exceeds 505 ° C. and the holding time exceeds 10 hours, the strength may be insufficient. Therefore, the solution treatment is preferably held at a solution treatment temperature of 450 to 550 ° C. for 0.5 to 10 hours.
  • the cooling (temperature decrease) rate from the solution treatment temperature to 50 ° C is desirably 50 ° C / second or more on average. If the average cooling rate is too low at less than 50 ° C./second, coarse recrystallization may occur and the strength may be insufficient. In addition, coarse grain boundary precipitates that lower the strength and / or elongation are formed, and the strength may be insufficient.
  • the upper limit of the average cooling rate is about 500 ° C./second from the limit of the equipment capacity.
  • the cooling rate from 50 ° C. to room temperature is not particularly limited, and may be rapidly cooled as it is, or may be cooled by stopping the rapid cooling.
  • the machine part according to the embodiment of the present invention is obtained.
  • the artificial aging treatment temperature is less than 100 ° C., the amount of fine particles formed is insufficient and the strength is lowered. Therefore, the artificial aging treatment temperature is 100 ° C. or higher, preferably 120 ° C. or higher.
  • the artificial aging treatment temperature exceeds 200 ° C., fine particles are coarsened, the particle size distribution is widened, and the strength is lowered. Therefore, the artificial aging treatment temperature is 200 ° C. or lower, preferably 180 ° C. or lower.
  • the artificial aging treatment time is 2 hours or more, preferably 4 hours or more.
  • the artificial aging treatment time exceeds 120 hours, the fine particles become coarse and the strength decreases. Therefore, the artificial aging time is 120 hours or less, preferably 110 hours or less.
  • a person skilled in the art who is in contact with the above-described method for manufacturing a mechanical part and an extruded material according to the embodiment of the present invention will perform a mechanical part according to the embodiment of the present invention by a manufacturing method different from the manufacturing method described above by trial and error. And may be able to obtain extrudates.
  • the wire rod extruded material is subjected to a drawing process with a reduction in area of 84% to simulate a machine part application to obtain a wire rod material having a circular cross section of 10 mm ⁇ .
  • the bar was subjected to a solution treatment at 480 ° C. for 5 hours, then water-cooled at an average cooling rate of up to 50 ° C. at 200 ° C./second, and subjected to artificial aging treatment under the conditions shown in Table 1.
  • the test piece collected from the wire rod material after the artificial aging treatment is a round bar smooth tensile test piece (3 mm ⁇ ⁇ 12 mmGL), and an intermediate (middle) position (1 / D of the diameter D) between the surface of the test piece and the axis center.
  • a surface (cross section) parallel to the extrusion direction at 4 positions) was collected so as to be an observation surface.
  • the X-ray small angle scattering measurement is common to each example, using a horizontal X-ray diffractometer SmartLab manufactured by Rigaku Co., Ltd., and measuring with X-rays having a wavelength of 1.54 mm. The intensity profile was measured.
  • the test apparatus enters X-rays perpendicularly to the surface of the test piece, and emits X-rays scattered backward from the test piece at a minute angle (small angle) of 0.1 to 10 degrees with respect to the incident X-ray. It is measured using a detector.
  • the measurement sample was sliced to about 80 ⁇ m and measured.
  • the X-ray scattering intensity profile is a particle size / hole analysis software manufactured by Rigaku Corporation, NANO-Solver [Ver. 3.5], the average particle diameter and the normalized dispersion are reduced by fitting by the nonlinear least square method so that the measured X-ray scattering intensity and the X-ray scattering intensity calculated by the analysis software are close to each other. Asked.
  • the average particle diameter was obtained by calculating the scattering intensity using a theoretical formula and fitting it with an experimental value, assuming that the particles are perfectly spherical.
  • the normalized dispersion was used to enable comparison of particle distribution spreads regardless of particle diameter.
  • is the normalized dispersion
  • n is the number of particles
  • x is the particle diameter
  • ⁇ x> is the arithmetic mean of the particle diameter
  • Comparative Example No. 1 in Table 1 was used.
  • Tables 1 to 5 as shown in Table 1, the aluminum alloy composition is out of the range of the embodiment of the present invention. For this reason, these comparative example No. Nos. 1 to 5 show that extruded materials and simulated machine parts are manufactured by a preferable manufacturing method.
  • the normalized dispersion of the particle size distribution is out of the specified range, or the structure is within the specified range.
  • the tensile strength is as low as less than 800 MPa, or the total elongation is low.
  • Zn deviates from the lower limit.
  • Mg deviates from the lower limit.
  • Comparative Example 3 Mn deviates from the lower limit.
  • Comparative Example 4 Mn deviates from the upper limit.
  • Comparative Example 5 Zr deviates from the lower limit.
  • Comparative Examples 6 to 11 in Table 1 although the aluminum alloy composition is within the range of the embodiment of the present invention as shown in Table 1, the manufacturing conditions simulating the machine parts are out of the above range. As a result, in these comparative examples, the normalized dispersion of the average particle diameter and / or the particle size distribution of the fine particles can be pushed out of the specified range, the tensile strength can be as low as less than 800 MPa, and even the total elongation can be low.
  • Comparative Example 6 is an example where the homogenization temperature is too high. Therefore, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles became excessive, and the tensile strength and the total elongation were reduced.
  • Comparative Example 7 is an example where the extrusion start temperature is too high. Therefore, the normalized dispersion of the particle size distribution increased and the tensile strength decreased.
  • Comparative Example 8 is an example in which the average cooling rate up to 50 ° C. after extrusion is too slow. Therefore, the average particle diameter of the fine particles became excessive, and the tensile strength was reduced.
  • Comparative Example 9 is an example in which the temperature of the artificial aging treatment is too high. Therefore, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles became excessive, and the tensile strength was lowered.
  • Comparative Example 10 is an example in which the time for artificial aging treatment is too long. Therefore, the average particle diameter of the fine particles became excessive, and the tensile strength was reduced.
  • Comparative Example 11 is an example where the homogenization temperature is too low. Therefore, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles became excessive, and the tensile strength and the total elongation were reduced.
  • the mechanical part made of an extruded material of 7000 series aluminum alloy having a tensile strength after artificial aging treatment of 800 MPa or more and a total elongation of 5% or more is obtained, and its manufacture
  • the method can provide a 7000 series aluminum alloy extruded material that is a material thereof.
  • embodiment of this invention can be used suitably as the said mechanical component reduced in weight.

Abstract

A machine component characterized by comprising an aluminium alloy containing 8.0-14.0 mass% of Zn, 2.0-4.0 mass% of Mg, 0.5-2.0 mass% of Cu, 0.2-1.5 mass% of Mn and 0.05-0.3 mass% of Zr, with the remainder being Al and unavoidable impurities, wherein the mean particle diameter of the fine particles within the crystal grains measured by small-angle X-ray scattering is 2-7 nm, the normalized dispersion of the particle size distribution is no more than 45%, the tensile strength is 800 MPa or higher, and the total elongation is 5% or more.

Description

機械部品および押出材Machine parts and extruded materials
 本開示は、アルミニウム合金からなる機械部品および押出材に関するものである。より詳細には、7000系アルミニウム合金からなる機械部品および押出材に関するものである。 The present disclosure relates to a machine part made of an aluminum alloy and an extruded material. More specifically, the present invention relates to a machine part and an extruded material made of a 7000 series aluminum alloy.
 従来から、ボルトおよびナットのねじ部品、ならびにばね(スプリング)などの様々な機械部品用の素材としては、強度、耐食性および軽量性に優れたAl-Zn-Mg-Cu系アルミニウム合金(以下において、7000系アルミニウム合金と言うことがある)からなる押出材が用いられている。 Conventionally, as materials for various machine parts such as bolts and nuts, and springs (springs), Al—Zn—Mg—Cu-based aluminum alloys having excellent strength, corrosion resistance and light weight (hereinafter, Extruded material made of 7000 series aluminum alloy is sometimes used.
 7000系アルミニウム合金からなる押出材は高強度であり、押出後にT6調質することで、引張強さが700MPa以上であるものも、従来から種々提案されている。 Extruded materials made of a 7000 series aluminum alloy have high strength, and various types of materials having a tensile strength of 700 MPa or higher by T6 refining after extrusion have been proposed.
 例えば、特許文献1では、Zn含有量が8質量%を超えるような7000系アルミニウム合金の線棒押出材につき、時効処理により容易に引張強さ720MPaを超える強度が付与できることが開示されている。しかし、同文献に係る押出材では、粗大な再結晶粒層が生じるので、押出材を大径ボルトに鍛造または転造などの塑性加工(成形加工)する際に、割れが発生する原因となる。このため、塑性加工前に押出材表面(表層部)の粗大な再結晶粒層を除去することを必須としている。 For example, Patent Document 1 discloses that a 7000 series aluminum alloy wire rod extruded material having a Zn content exceeding 8 mass% can be easily imparted with a strength exceeding a tensile strength of 720 MPa by aging treatment. However, in the extruded material according to the same document, a coarse recrystallized grain layer is formed, which causes cracking when the extruded material is subjected to plastic processing (forming processing) such as forging or rolling into a large-diameter bolt. . For this reason, it is essential to remove the coarse recrystallized grain layer on the surface of the extruded material (surface layer portion) before plastic working.
 これに対して、このような再結晶粒層自体を抑制しようとする試みも、従来から種々提案されている。例えば、特許文献2では、押出温度を480~500℃の比較的低温で行って、7000系アルミニウム合金押出材内部を繊維状組織とし、表層の再結晶層の肉厚を10%以下とし、その再結晶粒径を150μm以下に制御することが開示されている。
 しかし、特許文献2のように、押出温度を480~500℃の比較的低温で行っても、この温度域の押出では、やはり7000系アルミニウム合金は再結晶してしまうため、押出材の表層部および内部における再結晶化が避けがたく、再現性よく、引張強さで700MPa以上の強度を得ることができない可能性があった。
In contrast, various attempts to suppress such a recrystallized grain layer have been proposed. For example, in Patent Document 2, the extrusion temperature is made at a relatively low temperature of 480 to 500 ° C., the inside of the extruded 7000 series aluminum alloy has a fibrous structure, the thickness of the recrystallized layer of the surface layer is 10% or less, It is disclosed that the recrystallized grain size is controlled to 150 μm or less.
However, even if the extrusion temperature is a relatively low temperature of 480 to 500 ° C. as in Patent Document 2, the 7000 series aluminum alloy is also recrystallized in the extrusion in this temperature range. In addition, recrystallization inside is inevitable, and there is a possibility that a strength of 700 MPa or more cannot be obtained with good reproducibility and tensile strength.
 これに対して、特許文献3では、熱間静水圧押出によって7000系アルミニウム合金押出材を製造することが開示されている。当該押出材は、押出されたままの状態での、押出材の軸中心部を通る押出方向に平行な断面の組織として、押出材の表層部の再結晶粒の平均結晶粒径が100μm以下であるとともに、押出材軸中心部における結晶粒の半径方向の平均切片長さが35μm以下であり、かつ、押出方向の<111>方位の結晶粒の平均面積率が0.5以上1.0以下で、<001>方位の結晶粒の平均面積率と<111>方位の結晶粒の平均面積率との比、<001>/<111>が0.25以下であることが開示されている。 On the other hand, Patent Document 3 discloses manufacturing a 7000 series aluminum alloy extruded material by hot isostatic pressing. In the extruded material, the average crystal grain size of the recrystallized grains in the surface layer portion of the extruded material is 100 μm or less as a cross-sectional structure parallel to the extrusion direction passing through the axial center portion of the extruded material in the extruded state. In addition, the average intercept length in the radial direction of the crystal grains in the central portion of the extruded material axis is 35 μm or less, and the average area ratio of the <111> orientation crystal grains in the extrusion direction is 0.5 or more and 1.0 or less. Thus, it is disclosed that the ratio <001> / <111> between the average area ratio of <001> oriented crystal grains and the average area ratio of <111> oriented crystal grains is 0.25 or less.
 特許文献3では、これにより、熱間押出終了後、押出温度からの冷却以外には熱処理および加工処理を何も加えていない、押出されたまま(押出上がり)の押出材の組織状態として、表層部だけでなく押出材内部の再結晶(再結晶化)も抑制している。これにより、微細な押出加工組織(繊維状組織)を得て、人工時効処理後の引張強さで700MPa以上の高強度を得ることが開示されている。
 しかし、特許文献3でも、その実施例の表3の記載の通り、得られる人工時効処理後の引張強さは700MPa以上ではあるが、800MPa未満程度でしかない。
In Patent Document 3, as a result of the structure of the extruded material that has not been subjected to any heat treatment or processing other than cooling from the extrusion temperature after completion of the hot extrusion, and remains extruded (extruded), the surface layer In addition to the portion, recrystallization (recrystallization) inside the extruded material is also suppressed. Thus, it is disclosed that a fine extruded structure (fibrous structure) is obtained and a high strength of 700 MPa or more is obtained as a tensile strength after artificial aging treatment.
However, even in Patent Document 3, as shown in Table 3 of the examples, the tensile strength after the artificial aging treatment obtained is 700 MPa or more, but it is only less than about 800 MPa.
 特許文献4には、押出材では無く、フレームおよびピラーなどの自動車構造部材用の7000系アルミニウム合金圧延板が開示されている。同文献では、高強度化させるために、この圧延板の結晶方位組織として、平均結晶粒径が15μm以下であるとともに、傾角5~15°の小傾角粒界の平均割合が15%以上で、かつ傾角15°を超える大傾角粒界の平均割合が15~50%とすることも提案されている。
 しかし、この特許文献4の場合、その実施例表2の通り、得られる人工時効処理後の引張強さは500MPa未満であり、圧延板でのこのような冶金的手法が、塑性加工方法および製造方法が異なる押出材および機械部品の800MPa以上の高強度化に果たして有効かどうかは、実際に試験して確かめてみないと分らない。
Patent Document 4 discloses a 7000 series aluminum alloy rolled plate for automobile structural members such as frames and pillars, not extruded materials. In this document, in order to increase the strength, as the crystal orientation structure of the rolled plate, the average crystal grain size is 15 μm or less, and the average proportion of the low-angle grain boundaries with an inclination of 5 to 15 ° is 15% or more. It has also been proposed that the average proportion of grain boundaries with a large tilt angle exceeding 15 ° is 15 to 50%.
However, in the case of Patent Document 4, the tensile strength after the obtained artificial aging treatment is less than 500 MPa as shown in Table 2 of Examples, and such a metallurgical method using a rolled sheet is a plastic working method and manufacturing. Whether or not the method is really effective for increasing the strength of 800 MPa or more of different extruded materials and machine parts can only be confirmed by actually testing.
特開2010-236665号公報JP 2010-236665 A 特開平8-170139号公報JP-A-8-170139 特開2014-125676号公報JP 2014-125676 A 特開2014-62287号公報JP 2014-62287 A
 このように、従来の7000系アルミニウム合金押出材では、ある程度の高強度化が図れるものの、ボルトおよびバネ等の高強度が要求される機械部品の素材として十分な強度を安定的に得ることが難しい場合があった。 Thus, although the conventional 7000 series aluminum alloy extruded material can achieve a certain level of strength, it is difficult to stably obtain sufficient strength as a material for mechanical parts such as bolts and springs that require high strength. There was a case.
 本発明の実施形態は、このような課題を解決するためになされたものであって、その目的は、人工時効処理後の引張強さが800MPa以上かつ全伸びが5%以上である、7000系アルミニウム合金からなる機械部品を提供すること、およびそのような優れた機械的特性を有する機械部品を製造可能な7000系アルミニウム合金押出材を提供することである。 An embodiment of the present invention has been made to solve such a problem, and the purpose thereof is a 7000 series in which the tensile strength after artificial aging treatment is 800 MPa or more and the total elongation is 5% or more. It is to provide a mechanical part made of an aluminum alloy, and to provide a 7000 series aluminum alloy extruded material capable of producing a mechanical part having such excellent mechanical properties.
 本発明の態様1は、Zn:8.0~14.0質量%、Mg:2.0~4.0質量%、Cu:0.5~2.0質量%、Mn:0.2~1.5質量%、Zr:0.05~0.3質量%を含有し、残部がAl及び不可避的不純物であるアルミニウム合金からなる機械部品であって、X線小角散乱で測定された結晶粒内の微細粒子の平均粒子直径が2nm以上、7nm以下であり、粒度分布の規格化分散が45%以下であり、引張強さが800MPa以上、全伸びが5%以上であることを特徴とする機械部品である。 In aspect 1 of the present invention, Zn: 8.0 to 14.0 mass%, Mg: 2.0 to 4.0 mass%, Cu: 0.5 to 2.0 mass%, Mn: 0.2 to 1 .5% by mass, Zr: 0.05 to 0.3% by mass, and the balance is a mechanical part made of an aluminum alloy containing Al and unavoidable impurities, with crystal grains measured by X-ray small angle scattering. The average particle diameter of the fine particles is 2 nm or more and 7 nm or less, the normalized dispersion of the particle size distribution is 45% or less, the tensile strength is 800 MPa or more, and the total elongation is 5% or more. It is a part.
 本発明の態様2は、Cr:0.05~0.3質量%、Sc:0.05~0.3質量%のうちの一種または二種を更に含有する態様1に記載の機械部品である。 Aspect 2 of the present invention is the mechanical component according to aspect 1, further containing one or two of Cr: 0.05 to 0.3% by mass and Sc: 0.05 to 0.3% by mass. .
 本発明の態様3は、Ag:0.05~0.5質量%、Sn:0.01~0.2質量%のうちの一種または二種を更に含有する態様1または2に記載の機械部品である。 Aspect 3 of the present invention is the mechanical part according to Aspect 1 or 2, further comprising one or two of Ag: 0.05 to 0.5 mass% and Sn: 0.01 to 0.2 mass%. It is.
 本発明の態様4は、Zn:8.0~14.0質量%、Mg:2.0~4.0質量%、Cu:0.5~2.0質量%、Mn:0.2~1.5質量%、Zr:0.05~0.3質量%を含有し、残部がAl及び不可避的不純物であるアルミニウム合金からなる機械部品用押出材であって、機械部品を模擬して、断面が円形な直径25mmの線棒押出材とした上で、減面率が84%で抽伸加工して10mmφの断面が円形な線棒材とし、この線棒材を480℃の温度で5時間保持する溶体化処理後に、50℃までの平均冷却速度を200℃/秒として焼入れ処理を行い、その後120℃で72時間保持する人工時効処理を施した場合、X線小角散乱で測定された結晶粒内の微細粒子の平均粒子直径が2nm以上、7nm以下であり、粒度分布の規格化分散が45%以下であり、引張強さが800MPa以上、全伸びが5%以上であることを特徴とする押出材である。 In aspect 4 of the present invention, Zn: 8.0 to 14.0% by mass, Mg: 2.0 to 4.0% by mass, Cu: 0.5 to 2.0% by mass, Mn: 0.2 to 1 .5 mass%, Zr: 0.05 to 0.3 mass%, and the balance is an extrusion material for machine parts made of an aluminum alloy containing Al and unavoidable impurities. Is a wire rod extruded material having a circular diameter of 25 mm, and drawn to a wire rod material having a circular area of 10 mmφ with an area reduction rate of 84%, and this wire rod material is held at a temperature of 480 ° C. for 5 hours. After solution treatment, quenching treatment was performed at an average cooling rate of up to 50 ° C. at 200 ° C./second, and then artificial aging treatment was performed at 120 ° C. for 72 hours. The average particle diameter of the fine particles is 2 nm or more and 7 nm or less. Dispersion is 45% or less, a tensile strength of at least 800 MPa, an extruded material, wherein the total elongation is 5% or more.
 本発明の態様5は、Cr:0.05~0.3質量%、Sc:0.05~0.3質量%のうちの一種または二種を更に含有する態様4に記載の押出材である。 Aspect 5 of the present invention is the extruded material according to aspect 4, further containing one or two of Cr: 0.05 to 0.3% by mass and Sc: 0.05 to 0.3% by mass. .
 本発明の態様6は、Ag:0.05~0.5質量%、Sn:0.01~0.2質量%のうちの一種または二種を更に含有する態様4または5に記載の押出材である。 Aspect 6 of the present invention is the extruded material according to aspect 4 or 5, further comprising one or two of Ag: 0.05 to 0.5% by mass and Sn: 0.01 to 0.2% by mass. It is.
 本発明の実施形態によれば、人工時効処理後の引張強さが800MPa以上かつ全伸びが5%以上である、7000系アルミニウム合金からなる機械部品を提供すること、およびそのような優れた機械的特性を有する機械部品を製造可能な7000系アルミニウム合金押出材を提供することができる。 According to an embodiment of the present invention, there is provided a mechanical component made of a 7000 series aluminum alloy having a tensile strength after artificial aging treatment of 800 MPa or more and a total elongation of 5% or more, and such an excellent machine. It is possible to provide a 7000 series aluminum alloy extruded material capable of producing mechanical parts having specific characteristics.
 本発明者らは、ボルトおよびバネ等の機械部品として十分に優れた機械的特性を有する7000系アルミニウム合金からなる機械部品、およびそのような優れた機械的特性を有する機械部品を製造可能な7000系アルミニウム合金押出材を実現すべく、様々な角度から検討した。
 本発明者らは鋭意検討した結果、X線小角散乱で測定された結晶粒内の微細粒子の平均粒子直径と、粒度分布の規格化分散とを制御することにより、結晶粒界に存在する析出物および結晶粒内に存在する粗大な析出物の析出を抑制することができ、それにより、人工時効処理後の引張強さが800MPa以上かつ全伸びが5%以上である、7000系アルミニウム合金からなる機械部品を提供することができることを見出した。
The inventors of the present invention can manufacture a mechanical part made of a 7000 series aluminum alloy having sufficiently excellent mechanical characteristics as a mechanical part such as a bolt and a spring, and 7000 capable of manufacturing a mechanical part having such excellent mechanical characteristics. In order to realize an aluminum alloy extruded material, it was examined from various angles.
As a result of intensive studies, the present inventors have determined that the precipitates present at the grain boundaries by controlling the average particle diameter of the fine particles in the grains measured by X-ray small angle scattering and the normalized dispersion of the grain size distribution. From a 7000 series aluminum alloy having a tensile strength after artificial aging treatment of 800 MPa or more and a total elongation of 5% or more. It has been found that mechanical parts can be provided.
 以下に、本発明の実施形態に係る機械部品および押出材の詳細を示す。
 なお、以下に説明するアルミニウム合金組成および組織は、本発明の実施形態に係る機械部品および押出材の、共通する意義にかかるものである。
 本明細書でいう「機械部品」とは、押出材を素材とする、ボルトおよびナットのねじ部品、歯車(ギア)、軸(シャフト)、軸受け(ベアリング)、ならびにばね(スプリング)などの、様々な機械に共通して使われている最小単位の機能部品としての機械要素である。
 本明細書で言う「人工時効処理後」とは、「溶体化および焼入れ処理と人工時効処理とを施した後」という意味である。
Below, the detail of the machine component and extrusion material which concern on embodiment of this invention is shown.
It should be noted that the aluminum alloy composition and structure described below are related to the common significance of the mechanical component and the extruded material according to the embodiment of the present invention.
“Machine parts” as used herein refers to various parts such as bolt and nut thread parts, gears (shafts), bearings (bearings), and springs (springs) made of extruded material. It is a machine element as a functional unit of the smallest unit commonly used in various machines.
As used herein, “after artificial aging treatment” means “after solution treatment and quenching treatment and artificial aging treatment”.
1.組織
 本発明の実施形態に係る機械部品は、後述するように本発明の実施形態に係る押出材を素材として製造することができる。そのため、本発明の実施形態に係る機械部品は、本発明の実施形態に係る押出材と同様に、微細なナノレベルのサイズの析出物(本明細書において、微細粒子と言うことがある)が結晶粒内に多数存在し、高強度を達成している。
1. Organization The mechanical component according to the embodiment of the present invention can be manufactured using the extruded material according to the embodiment of the present invention as a raw material as described later. Therefore, the mechanical component according to the embodiment of the present invention has fine nano-sized precipitates (in the present specification, sometimes referred to as fine particles), similar to the extruded material according to the embodiment of the present invention. Many exist in the crystal grains and achieve high strength.
 この微細粒子とは、結晶粒内に生成する、MgとZnとの金属間化合物(組成はMgZn等)であり、これに他の合金組成に応じて更にCuおよびZrなどの含有元素が含まれる微細分散相である。なお、本発明の実施形態で言う微細粒子のサイズとは、不定形である微細粒子の円相当直径を意味する。 This fine particle is an intermetallic compound of Mg and Zn (composition is MgZn 2 or the like) formed in the crystal grain, and further contains contained elements such as Cu and Zr according to other alloy compositions. It is a finely dispersed phase. In addition, the size of the fine particles referred to in the embodiment of the present invention means an equivalent circle diameter of fine particles that are indefinite.
1-1.機械部品
 本発明の実施形態に係る機械部品は、人工時効処理後の押出微細組織として、X線小角散乱で測定される結晶粒内の微細粒子の平均粒子直径と、粒度分布の規格化分散とを制御することにより、優れた強度と伸びとを両立することができる。
1-1. Mechanical part The mechanical part according to an embodiment of the present invention is an extruded fine structure after artificial aging treatment, an average particle diameter of fine particles in crystal grains measured by X-ray small angle scattering, a normalized dispersion of particle size distribution, By controlling the ratio, it is possible to achieve both excellent strength and elongation.
 具体的には、素材である7000系アルミニウム合金押出材を冷間加工して製造した機械部品の人工時効処理後の組織を、X線小角散乱法により結晶粒内で測定される微細粒子の粒度分布の平均粒子直径が2nm以上7nm以下、かつ粒度分布の規格化分散が45%以下となるように制御する。 Specifically, the structure after artificial aging treatment of a machine part manufactured by cold working a 7000 series aluminum alloy extrudate, which is a raw material, is a fine particle size measured in a crystal grain by the X-ray small angle scattering method. The average particle diameter of the distribution is controlled to be 2 nm or more and 7 nm or less, and the normalized dispersion of the particle size distribution is controlled to be 45% or less.
 このように、X線小角散乱法で測定された微細粒子の平均粒子直径、および粒度分布の広がりを示す規格化分散を制御することによって、時効処理後の引張強さが800MPa以上であるような高強度化を達成できる。また同時に、粒界に存在する析出物および結晶粒内に存在する粗大な析出物の析出を抑制することが、これにより優れた強度および優れた伸びを達成することができる。 Thus, by controlling the average particle diameter of the fine particles measured by the X-ray small angle scattering method and the normalized dispersion indicating the spread of the particle size distribution, the tensile strength after aging treatment is 800 MPa or more. High strength can be achieved. At the same time, it is possible to suppress the precipitation of precipitates existing at the grain boundaries and coarse precipitates existing within the crystal grains, thereby achieving excellent strength and excellent elongation.
(1)平均粒子直径:2nm以上7nm以下
 微細粒子の平均粒子直径が小さすぎると、変形中の転位の障害としての作用が小さいため、高強度化が達成できない。そのため、平均粒子直径は2nm以上であり、好ましくは、3nm以上である。
 一方、微細粒子の平均粒子直径が大きすぎると、粒子間の距離が大きくなって転位の障害としての作用が小さくなるため、高強度化が達成できない。さらに、結晶粒界に存在する析出物および結晶粒内に存在する粗大な析出物の生成が多くなり、伸びが低下するおそれがある。そのため、平均粒子直径は7nm以下であり、好ましくは、6nm以下である。
(1) Average particle diameter: 2 nm or more and 7 nm or less If the average particle diameter of the fine particles is too small, since the action as an obstacle to dislocation during deformation is small, high strength cannot be achieved. Therefore, the average particle diameter is 2 nm or more, preferably 3 nm or more.
On the other hand, if the average particle diameter of the fine particles is too large, the distance between the particles becomes large and the action as an obstacle to dislocation becomes small. Furthermore, the production | generation of the precipitate which exists in a crystal grain boundary, and the coarse precipitate which exists in a crystal grain increases, and there exists a possibility that elongation may fall. Therefore, the average particle diameter is 7 nm or less, preferably 6 nm or less.
(2)粒度分布の規格化分散
 粒度分布の規格化分散は粒子分布の広がりを示す指標である。すなわち、規格化分散が大きい場合、小さい粒子から大きい粒子まで幅広く分布していることを意味する。逆に、規格化分散が小さい場合、大きい粒子と小さい粒子の差が比較的小さいことを意味する。
(2) Normalized dispersion of particle size distribution Normalized dispersion of particle size distribution is an index indicating the spread of particle distribution. That is, when the normalized dispersion is large, it means that the particles are widely distributed from small particles to large particles. Conversely, when the normalized dispersion is small, it means that the difference between large particles and small particles is relatively small.
 粒度分布の規格化分散が大きすぎると、変形中の転位の障害としての粒子の作用が不均一となり、高強度が達成できない。そのため、粒度分布の規格化分散は45%以下であり、好ましくは40%以下である。
 なお、粒度分布の規格化分散には、組成および熱処理の制御によっても製造限界があり、下限としては10%程度までしか小さくすることができない。
If the normalized dispersion of the particle size distribution is too large, the action of the particles as an obstacle to dislocation during deformation becomes non-uniform and high strength cannot be achieved. Therefore, the normalized dispersion of the particle size distribution is 45% or less, preferably 40% or less.
Note that the normalized dispersion of the particle size distribution has a production limit even by controlling the composition and heat treatment, and the lower limit can be reduced only to about 10%.
 本発明の実施形態の粒子直径が2nm以上7nm以下であるような微細粒子、その粒度分布の平均粒子直径、および粒度分布の規格化分散は、従来技術で用いている光学顕微鏡などでは、微細すぎて観察および測定ができず、規定しているX線小角散乱法によって評価しうる。 In the embodiment of the present invention, the fine particles having a particle diameter of 2 nm or more and 7 nm or less, the average particle diameter of the particle size distribution, and the normalized dispersion of the particle size distribution are too fine for the optical microscope used in the prior art. Therefore, it cannot be observed and measured, and can be evaluated by the prescribed X-ray small angle scattering method.
1-2.アルミニウム合金押出材
 前述した本発明の実施形態に係る機械部品は、本発明の実施形態に係るアルミニウム合金押出材を素材として用いて製造することにより、優れた強度と伸びとを両立することができる。具体的には、本発明の実施形態に係るアルミニウム合金押出材に対して、後述する条件で溶体化処理、焼入れ処理および人工時効処理を行うことにより、強度と伸びに優れた本発明の実施形態に係る機械部品を得ることができる。
1-2. Aluminum Alloy Extruded Material The mechanical component according to the embodiment of the present invention described above can achieve both excellent strength and elongation by manufacturing using the aluminum alloy extruded material according to the embodiment of the present invention as a material. . Specifically, an embodiment of the present invention that is excellent in strength and elongation by performing solution treatment, quenching treatment and artificial aging treatment on the aluminum alloy extruded material according to the embodiment of the present invention under the conditions described later. Can be obtained.
 このような本発明の実施形態に係るアルミニウム合金押出材の特性は、合金押出材を所定の条件で機械部品に模して加工し、当該被加工物に対して測定を行うことにより、とりわけ顕著に発現することができる。
 そのため、本発明の実施形態では、合金押出材に対して所定の条件で機械部品に模して加工し、当該非加工部品について、組織の評価および機械的特性の評価を行うことにより、アルミニウム合金押出材を規定している。
 以下に、具体的にアルミニウム合金押出材を評価するための具体的な加工条件を記載する。
Such characteristics of the aluminum alloy extruded material according to the embodiment of the present invention are particularly remarkable by processing the alloy extruded material to simulate a mechanical part under a predetermined condition and performing measurement on the workpiece. Can be expressed.
Therefore, in the embodiment of the present invention, an aluminum alloy is processed by imitating a machine part under a predetermined condition with respect to an alloy extruded material, and evaluating the structure and mechanical characteristics of the non-processed part. Extruded material is specified.
Below, the concrete process conditions for evaluating an aluminum alloy extruded material concrete are described.
 本発明の実施形態に係るアルミニウム合金押出材は、断面が円形である線棒押出材に加工した後、抽伸加工して線棒材とし、当該線棒材に対して、溶体化処理、焼入れ処理および人工時効処理を施した後、X線小角散乱を用いて微細粒子の平均粒子直径および粒度分布の規格化分散を測定することにより、その特性を評価することができる。 The aluminum alloy extruded material according to the embodiment of the present invention is processed into a wire rod extruded material having a circular cross section, and then drawn into a wire rod material, and the wire rod material is subjected to solution treatment and quenching treatment. And after performing an artificial aging treatment, the characteristic can be evaluated by measuring the average dispersion | distribution of the average particle diameter and particle size distribution of a fine particle using X-ray small angle scattering.
 具体的には、本発明の実施形態に係る合金押出材を、断面形状が円形な直径25mmの線棒押出材とした上で、減面率が84%で抽伸加工して断面が10mmφの円形である線棒材となるように加工する。そして、この線棒材に対して、480℃の温度で5時間保持する溶体化処理を行い、その後50℃までの平均冷却速度を200℃/秒として焼入れ処理を行い、その後120℃で72時間保持する人工時効処理を施す。このようにして、得られた非加工物に対して、後述するX線小角散乱法により組織を測定し、引張試験により機械的特性を測定することで、本発明の実施形態に係る合金押出材の特性を評価することができる。なお、「断面が円形」とは、真円、楕円形および略円形を含む。 Specifically, the alloy extruded material according to the embodiment of the present invention is a wire rod extruded material having a circular cross-sectional shape and a diameter of 25 mm, and is drawn and drawn at a reduction rate of 84% to obtain a circular shape having a cross-section of 10 mmφ. To be a wire rod material. Then, the wire rod material is subjected to a solution treatment that is held at a temperature of 480 ° C. for 5 hours, and then subjected to a quenching treatment at an average cooling rate up to 50 ° C. of 200 ° C./second, and then at 120 ° C. for 72 hours Apply artificial aging treatment. Thus, by measuring a structure | tissue by the X-ray small angle scattering method mentioned later with respect to the obtained non-working object, and measuring a mechanical characteristic by a tensile test, the alloy extrusion material which concerns on embodiment of this invention Can be evaluated. The “circular cross section” includes a perfect circle, an ellipse, and a substantially circular shape.
 本発明の実施形態に係る合金押出材は、上述のように加工した後、組織および機械的特性を評価した場合、X線小角散乱で測定された結晶粒内の微細粒子の平均粒子直径が2nm以上、7nm以下であり、粒度分布の規格化分散が45%以下であり、引張強さが800MPa以上、全伸びが5%以上である。本発明の実施形態に係る合金押出材はこのような特性を有しているので、当該合金押出材を素材として機械部品を製造することで、強度と伸びの両方に優れた機械部品を得ることができる。 When the alloy extruded material according to the embodiment of the present invention is processed as described above and then the structure and mechanical properties are evaluated, the average particle diameter of the fine particles in the crystal grains measured by X-ray small angle scattering is 2 nm. As mentioned above, it is 7 nm or less, the normalized dispersion of the particle size distribution is 45% or less, the tensile strength is 800 MPa or more, and the total elongation is 5% or more. Since the alloy extruded material according to the embodiment of the present invention has such characteristics, a mechanical component excellent in both strength and elongation can be obtained by producing a mechanical component using the alloy extruded material as a raw material. Can do.
 本発明の実施形態に係るアルミニウム合金押出材は、このように加工および測定して得られる微細粒子の平均粒子直径と粒度分布の規格化分散とが所定の範囲に厳密に制御されているため、当該合金押出材を用いて機械部品を製造する場合に、優れた強度および伸びを有する機械部品を提供することができるのである。 In the aluminum alloy extruded material according to the embodiment of the present invention, the average particle diameter of the fine particles obtained by processing and measuring in this way and the normalized dispersion of the particle size distribution are strictly controlled within a predetermined range. When a machine part is manufactured using the alloy extruded material, a machine part having excellent strength and elongation can be provided.
2.組織の評価
(1)X線を用いた小角散乱法
 X線を用いた小角散乱法自体は、ナノメートルオーダの構造情報を調べる代表的な手法として古くから知られている。物質にX線を照射すると、入射X線が物質内部の電子密度分布の情報を反映して、入射X線の周囲に散乱X線が発生する。例えば、物質中に粒子または電子密度の不均一な領域が存在すると、結晶・非晶質等にかかわらず、X線は干渉して密度揺らぎ起因の散乱が発生する。これがアルミニウム合金などの金属であれば、アルミニウム合金組織中にナノメートルオーダの微小な粒子が存在すると、粒子に由来する散乱が観測される。この散乱X線が発生する領域は、Cuターゲットを用いた波長1.54ÅのX線の場合、測定角度2θは0.1~10度程度以下である。X線小角散乱法では、この散乱X線を解析することで、ナノメートルオーダの微細な粒子の形状、大きさおよび分布の情報等を得ることができる。
2. Evaluation of tissue (1) Small-angle scattering method using X-rays The small-angle scattering method itself using X-rays has long been known as a representative method for examining structural information on the order of nanometers. When a substance is irradiated with X-rays, the incident X-rays reflect information on the electron density distribution inside the substance, and scattered X-rays are generated around the incident X-rays. For example, if a particle or an electron density non-uniform region exists in a substance, X-rays interfere with each other regardless of crystal or amorphous, and scattering due to density fluctuation occurs. If this is a metal such as an aluminum alloy, if fine particles of nanometer order exist in the aluminum alloy structure, scattering derived from the particles is observed. In the region where the scattered X-rays are generated, the measurement angle 2θ is about 0.1 to 10 degrees or less in the case of X-rays having a wavelength of 1.54 mm using a Cu target. In the X-ray small angle scattering method, by analyzing the scattered X-rays, it is possible to obtain information on the shape, size and distribution of fine particles on the order of nanometers.
 例えば、特開2011-38136号などでは、5000系のAl-Mg系アルミニウム合金板のプレス成形時のストレッチャーストレインマークの発生に関連する、微細粒子の粒度分布の平均粒子直径、およびこの粒度分布のピークサイズの数密度を測定するために用いられている。 For example, in Japanese Patent Application Laid-Open No. 2011-38136, etc., the average particle diameter of the particle size distribution of fine particles related to the generation of stretcher strain marks during the press forming of a 5000 series Al—Mg series aluminum alloy plate, and the grain size distribution It is used to measure the number density of the peak size.
 アルミニウム合金組織の微細粒子の粒度分布の平均粒子直径、およびこの粒度分布のピークサイズの数密度を測定するためには、先ず、X線小角散乱法で測定された、アルミニウム合金板のX線の散乱強度プロファイルを求める。X線の散乱強度プロファイルは、例えば、縦軸がX線の散乱強度(散乱X線の散乱強度)、横軸が測定角度2θと波長λに依存する波数ベクトルq(nm-1)として求められる。 In order to measure the average particle diameter of the particle size distribution of the fine particles of the aluminum alloy structure and the number density of the peak size of this particle size distribution, first, the X-ray of the aluminum alloy plate measured by the X-ray small angle scattering method was used. Determine the scattering intensity profile. The X-ray scattering intensity profile is obtained, for example, as the X-ray scattering intensity (scattering X-ray scattering intensity) on the vertical axis and the wave vector q (nm −1 ) depending on the measurement angle 2θ and wavelength λ on the horizontal axis. .
 本発明の実施形態の2nm以上7nm以下であるような微細粒子の平均粒子直径、およびこの粒度分布の広がりを示す規格化分散は、X線の散乱強度プロファイルから求めることができる。すなわち、測定したX線の散乱強度と、粒子直径とサイズ分布の関数で示される理論式から計算したX線散乱強度が近くなるように、非線形最小2乗法によってフィッティングを行うことで、粒子直径と規格化分散値を求めることができる。 In the embodiment of the present invention, the average particle diameter of fine particles that are 2 nm or more and 7 nm or less, and the normalized dispersion indicating the spread of the particle size distribution can be obtained from the X-ray scattering intensity profile. That is, by performing fitting by the nonlinear least square method so that the measured X-ray scattering intensity is close to the X-ray scattering intensity calculated from the theoretical expression represented by the function of the particle diameter and size distribution, the particle diameter and A normalized dispersion value can be obtained.
 ちなみに、このようなX線の散乱強度プロファイルを解析して、微小析出物の粒度分布を求める解析方法(解析ソフト)は、例えばSchmidtらによる公知の解析方法を用いてよい(I.S.Fedorovaand P.Schmidt:J.Appl.Cryst.11、405、1978参照)。 Incidentally, as an analysis method (analysis software) for analyzing the X-ray scattering intensity profile and obtaining the particle size distribution of the fine precipitates, for example, a well-known analysis method by Schmidt et al. May be used (IS FEDOROVAAND). P. Schmidt: J. Appl. Cryst. 11, 405, 1978).
(2)X線小角散乱法の測定装置
 このようなX線小角散乱法の測定装置としては、例えば特開平9-119906号公報などに代表的な小角散乱装置が開示されており、試料に対してX線を微小角度(小角)で照射し、試料から散乱されるX線を2次元のマルチワイヤー型などの検出器を用いて測定する。
(2) X-ray small-angle scattering measurement apparatus As such an X-ray small-angle scattering measurement apparatus, a representative small-angle scattering apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-119906. Then, X-rays are irradiated at a minute angle (small angle), and X-rays scattered from the sample are measured using a detector such as a two-dimensional multi-wire type.
 この散乱X線が発生する領域は、波長1.54ÅのX線の場合、測定角度は0.1~10度以下程度の小角度である。この散乱X線を前述した通りに解析することで、粒度分布など、粒子の形状、大きさ、分布の情報を得ることができる。 The region where the scattered X-rays are generated is a small angle of about 0.1 to 10 degrees or less in the case of X-rays having a wavelength of 1.54 mm. By analyzing this scattered X-ray as described above, it is possible to obtain information on the shape, size, and distribution of the particles, such as the particle size distribution.
3.化学成分組成:
 次に、本発明の実施形態に係る機械部品および押出材の組成について説明する。本発明の実施形態に係る機械部品および押出材は7000系アルミニウム合金からなるものであり、その成分組成は、7000系アルミニウム合金として通常の化学成分組成を有していればよい。
3. Chemical composition:
Next, the composition of the machine part and the extruded material according to the embodiment of the present invention will be described. The machine part and the extruded material according to the embodiment of the present invention are made of a 7000 series aluminum alloy, and the component composition only needs to have a normal chemical composition as a 7000 series aluminum alloy.
(1)Zn:8.0~14.0質量%
 Znは、Mgとともに、後述する人工時効処理時に、MgとZnとの金属間化合物である時効析出物を形成して強度を向上させる元素である。
 Zn含有量が8.0質量%未満では機械部品としての強度が不足する。そのため、Zn含有量は8.0質量%以上であり、好ましくは9.0質量%以上である。
 一方、Zn含有量が14.0質量%を超えると、素材押出材用の鋳造ビレットの鋳造時に鋳塊割れが発生しやすくなり造塊が困難となる。そのため、Zn含有量は14.0質量%以下であり、好ましくは13.0質量%以下である。
 なお、Zn含有量が高いと、SCC感受性が鋭くなるが、それを抑えるためには、後述するCuあるいはAgを添加することが望ましい。
(1) Zn: 8.0 to 14.0% by mass
Zn, together with Mg, is an element that improves the strength by forming an aging precipitate that is an intermetallic compound of Mg and Zn during an artificial aging treatment described later.
If the Zn content is less than 8.0% by mass, the strength as a machine part is insufficient. Therefore, Zn content is 8.0 mass% or more, Preferably it is 9.0 mass% or more.
On the other hand, if the Zn content exceeds 14.0% by mass, ingot cracking is likely to occur during casting of the billet for the extruded material, and ingot making becomes difficult. Therefore, Zn content is 14.0 mass% or less, Preferably it is 13.0 mass% or less.
In addition, when Zn content is high, SCC sensitivity becomes sharp, but in order to suppress it, it is desirable to add Cu or Ag described later.
(2)Mg:2.0~4.0質量%
 Mgは、Znとともに、後述する人工時効処理時に、本発明の実施形態で規定するMgとZnとの金属間化合物である時効析出物を形成して機械部品としての強度と伸びを向上させる元素である。
 Mg含有量が2.0質量%未満では強度が不足する。そのためMg含有量は2.0質量%以上であり、好ましくは2.5質量%以上である。
 一方、Mg含有量が4.0質量%を超えると、素材押出材用の鋳造ビレットの未再結晶温度域(再結晶温度未満の温度域)の低温での押出性が低下し、SCC感受性が強くなる。そのため、Mg含有量は4.0質量%以下であり、好ましくは3.5質量%以下である。
(2) Mg: 2.0 to 4.0% by mass
Mg, together with Zn, is an element that improves the strength and elongation as a mechanical component by forming an aging precipitate, which is an intermetallic compound of Mg and Zn, defined in the embodiment of the present invention during the artificial aging treatment described later. is there.
If the Mg content is less than 2.0% by mass, the strength is insufficient. Therefore, the Mg content is 2.0% by mass or more, preferably 2.5% by mass or more.
On the other hand, if the Mg content exceeds 4.0% by mass, the extrudability at a low temperature in the non-recrystallization temperature range (temperature range below the recrystallization temperature) of the cast billet for the extruded material is lowered, and the SCC sensitivity is reduced. Become stronger. Therefore, Mg content is 4.0 mass% or less, Preferably it is 3.5 mass% or less.
(3)Cu:0.5~2.0質量%
 Cuは機械部品としての耐SCC性を向上させる作用がある。
 Cu含有量が0.5質量%未満では、耐SCC性向上効果が小さい。そのため、Cu含有量は0.5質量%以上であり、好ましくは0.7質量%以上である。
 一方、Cu含有量が2.0質量%を超えると、押出材用の鋳造ビレットの鋳造時に割れが生じやすくなり、鋳造ビレットの押出性を低下させる。そのため、Cu含有量は2.0質量%以下であり、好ましくは1.8質量%以下である。
(3) Cu: 0.5 to 2.0 mass%
Cu has the effect of improving the SCC resistance as a machine part.
When the Cu content is less than 0.5% by mass, the effect of improving the SCC resistance is small. Therefore, the Cu content is 0.5% by mass or more, and preferably 0.7% by mass or more.
On the other hand, if the Cu content exceeds 2.0% by mass, cracks are likely to occur during casting of the cast billet for the extruded material, and the extrudability of the cast billet is lowered. Therefore, Cu content is 2.0 mass% or less, Preferably it is 1.8 mass% or less.
(4)Mn:0.2~1.5質量%
 Mnは、結晶粒を微細化するほか、分散粒子を形成して、機械部品の強度向上に寄与する。
 Mn含有量が0.2質量%未満では、含有量が不足して強度が低下する。そのため、Mn含有量は0.2質量%以上であり、好ましくは0.3質量%以上である。
 一方、Mn含有量が1.5質量%を超えると、粗大晶出物を形成するため伸びが低下する。そのため、Mn含有量は1.5質量%以下であり、好ましくは1.2質量%以下である。
(4) Mn: 0.2 to 1.5% by mass
In addition to refining crystal grains, Mn contributes to improving the strength of mechanical parts by forming dispersed particles.
When the Mn content is less than 0.2% by mass, the content is insufficient and the strength is lowered. Therefore, the Mn content is 0.2% by mass or more, preferably 0.3% by mass or more.
On the other hand, when the Mn content exceeds 1.5% by mass, a coarse crystallized product is formed, resulting in a decrease in elongation. Therefore, the Mn content is 1.5% by mass or less, preferably 1.2% by mass or less.
(5)Zr:0.05~0.3質量%
 Zrは、微細な析出物を形成し、再結晶も抑制して、機械部品の強度向上に寄与する。
 Zrの含有量が0.05質量%未満では、含有量が不足して強度が低下する。そのため、Zr含有量は0.05質量%以上であり、好ましくは0.1質量%以上である。
 一方、Zrの含有量が上限を超えた場合には、粗大晶出物を形成するため、伸びが低下する。そのため、Zr含有量は0.3質量%以下であり、好ましくは0.25質量%以下である。
(5) Zr: 0.05 to 0.3% by mass
Zr forms fine precipitates, suppresses recrystallization, and contributes to improving the strength of machine parts.
When the content of Zr is less than 0.05% by mass, the content is insufficient and the strength is lowered. Therefore, the Zr content is 0.05% by mass or more, preferably 0.1% by mass or more.
On the other hand, when the content of Zr exceeds the upper limit, a coarse crystallized product is formed, so that the elongation decreases. Therefore, the Zr content is 0.3% by mass or less, preferably 0.25% by mass or less.
(6)残部
 好ましい1つの実施形態では、残部は、Alおよび不可避的不純物である。不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれるFe、Si、TiおよびBなどの微量元素の混入が想定される。しかし、7000系合金のJIS規格で規定する範囲において、これら不可避的不純物の各々の含有を許容する。例えば、FeおよびSiは各0.5質量%以下(0質量%を含む)の範囲で、Tiは0.1質量%以下(0質量%を含む)の範囲で、Bは0.1質量%以下(0質量%を含む)の範囲で、それぞれ含有してもよい。
(6) Balance In one preferred embodiment, the balance is Al and inevitable impurities. As unavoidable impurities, it is assumed that trace elements such as Fe, Si, Ti and B brought in depending on the conditions of raw materials, materials, manufacturing facilities, and the like are mixed. However, the inclusion of each of these inevitable impurities is allowed within the range specified by JIS standards for 7000 series alloys. For example, Fe and Si are each in the range of 0.5% by mass or less (including 0% by mass), Ti is in the range of 0.1% by mass or less (including 0% by mass), and B is 0.1% by mass. Each may be contained within the following range (including 0% by mass).
 本発明の実施形態に係る機械部品および押出材は、上述した組成に限定されるものではない。本発明の実施形態に係る機械部品および押出材の特性を維持できる限り、必要に応じてその他の元素を更に含んでよい。そのように選択的に含有させることができるその他の元素を以下に例示する。 The mechanical component and the extruded material according to the embodiment of the present invention are not limited to the above-described composition. As long as the characteristics of the machine part and the extruded material according to the embodiment of the present invention can be maintained, other elements may be further included as necessary. Other elements that can be selectively contained as described above are exemplified below.
(7)Cr:0.05~0.3質量%、Sc:0.05~0.3質量%のうちの一種または二種
 CrおよびScは、Zrと同様、微細な析出物を形成し、再結晶も抑制して機械部品の強度向上に寄与する。
 これらをいずれか一種または二種を選択的に含有させる場合、CrおよびScの含有量がいずれもが0.05未満では、強度向上効果が得られない可能性がある。そのため、Crの含有量は0.05質量以上が好ましく、0.1質量%以上がより好ましい。同様の理由で、Sc含有量は0.05質量以上が好ましく、0.1質量%以上がより好ましい。
(7) One or two of Cr: 0.05 to 0.3% by mass and Sc: 0.05 to 0.3% by mass Cr and Sc, like Zr, form fine precipitates, It also suppresses recrystallization and contributes to improving the strength of machine parts.
When either one or two of these are selectively contained, if the Cr and Sc contents are both less than 0.05, the strength improvement effect may not be obtained. Therefore, the Cr content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. For the same reason, the Sc content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
 一方、CrおよびScの含有量がそれぞれ0.3質量%を超えた場合には、粗大晶出物を形成するため、伸びが低下する可能性がある。そのため、Cr含有量は0.3質量%以下が好ましく、0.25質量%以下がより好ましい。同様の理由から、Sc含有量は0.3質量%以下が好ましく、0.25質量%以下がより好ましい。 On the other hand, when the contents of Cr and Sc each exceed 0.3% by mass, a coarse crystallized product is formed, which may reduce the elongation. Therefore, the Cr content is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less. For the same reason, the Sc content is preferably 0.3% by mass or less, and more preferably 0.25% by mass or less.
(8)Ag:0.05~0.5質量%、Sn:0.01~0.2質量%のうちの一種または二種
 AgおよびSnは、人工時効処理での結晶粒界近傍の無析出帯の形成を抑制して機械部品の強度向上に寄与する。
 選択的に含有させる場合、Agの含有量が0.05質量%未満である場合、および/またはSnの含有量が0.01質量%未満である場合は、微細化効果が小さい可能性がある。そのため、Ag含有量は0.05質量以上が好ましく、0.1質量%以上がより好ましい。同様の理由から、Sn含有量は0.01質量以上が好ましく、0.03質量%以上がより好ましい。
(8) One or two of Ag: 0.05 to 0.5 mass% and Sn: 0.01 to 0.2 mass% Ag and Sn are non-precipitated in the vicinity of the grain boundary in the artificial aging treatment Suppresses the formation of bands and contributes to improving the strength of machine parts.
When it is selectively contained, if the Ag content is less than 0.05% by mass and / or the Sn content is less than 0.01% by mass, the effect of miniaturization may be small. . Therefore, the Ag content is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. For the same reason, the Sn content is preferably 0.01% by mass or more, and more preferably 0.03% by mass or more.
 一方、Agの含有量が0.5質量%を超える場合、および/またはSnの含有量が0.2質量%を超える場合は、素材押出材用の鋳造ビレットの鋳造時に粗大な初晶化合物を形成し、押出加工時の焼付および/または製品としての機械部品の伸びの低下をもたらす可能性がある。そのため、Ag含有量は0.5質量%以下が好ましく、0.4質量%以下がより好ましい。同様の理由から、Sn含有量は0.2質量%以下が好ましく、0.15質量%以下がより好ましい。 On the other hand, when the Ag content exceeds 0.5% by mass and / or when the Sn content exceeds 0.2% by mass, a coarse primary crystal compound is produced during the casting of the cast billet for the extruded material. It can form and cause seizure during extrusion and / or reduced elongation of the machine part as a product. Therefore, the Ag content is preferably 0.5% by mass or less, and more preferably 0.4% by mass or less. For the same reason, the Sn content is preferably 0.2% by mass or less, and more preferably 0.15% by mass or less.
4.製造方法
 本発明の実施形態に係る押出材および機械部品の製造方法について説明する。
4). Manufacturing Method The manufacturing method of the extruded material and the machine part according to the embodiment of the present invention will be described.
4-1.押出材の製造方法
 先ず、押出材(押出形材)の製造方法について、以下に工程順に説明する。
4-1. Extruded Material Manufacturing Method First, an extruded material (extruded profile) manufacturing method will be described below in the order of steps.
(1)溶解、鋳造
 溶解、鋳造工程では、上記7000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造してビレットとする。
(1) Melting and casting In the melting and casting process, an aluminum alloy melt adjusted within the above-mentioned 7000 series component composition range is appropriately selected by a normal melting casting method such as a semi-continuous casting method (DC casting method). Cast into billets.
(2)均質化熱処理
 後述する熱間押出に先立って、得られたアルミニウム合金ビレット(鋳塊)を均質化熱処理(均熱処理)して、組織の均質化(すなわち、鋳塊組織中の結晶粒内の偏析をなくす等)を行う。均質化熱処理により、Zr系化合物、ならびにMn、CrおよびScからなる化合物を微細に分散させ、押出後および溶体化後の結晶粒組織を微細化する。
(2) Homogenization heat treatment Prior to the hot extrusion described later, the obtained aluminum alloy billet (ingot) is subjected to homogenization heat treatment (uniform heat treatment) to homogenize the structure (that is, crystal grains in the ingot structure). In order to eliminate segregation in the inside). By the homogenization heat treatment, the Zr-based compound and the compound composed of Mn, Cr and Sc are finely dispersed, and the crystal grain structure after extrusion and solution treatment is refined.
 均熱温度が400℃未満では十分な微細化効果が得られない。そのため、均熱温度は400℃以上であり、好ましくは410℃以上である。
 一方、均熱温度が450℃を超えると、これらの化合物が粗大化するため、微細化効果が低下する。そのため、均熱温度は450℃以下であり、好ましくは440℃以下である。
 また、均熱時の保持時間は1~8時間程度が好ましい。
If the soaking temperature is less than 400 ° C., a sufficient effect of miniaturization cannot be obtained. Therefore, the soaking temperature is 400 ° C. or higher, preferably 410 ° C. or higher.
On the other hand, when the soaking temperature exceeds 450 ° C., these compounds are coarsened, so the effect of miniaturization is lowered. Therefore, the soaking temperature is 450 ° C. or lower, preferably 440 ° C. or lower.
The holding time during soaking is preferably about 1 to 8 hours.
(3)熱間押出
 熱間押出によって、最終の機械部品形状に応じた、この最終形状に近い押出材形状とする。熱間押出により、押出材の表層部だけでなく、押出材内部の再結晶化も抑制して、微細な押出加工組織とすることができる。
 押出開始温度が400℃を超えると、押出時の温度が上昇し、高温で再結晶が起こりやすくなり、押出材の表層部および内部に粗大な再結晶組織が形成されるだけでなく、粗大粒子が析出し、強度の低下をもたらす。そのため、押出開始温度は400℃以下であり、好ましくは380℃以下である。
 一方、押出開始温度は低いほど好ましいが、低すぎると、変形抵抗が増大して押出が困難になる。そのため、押出開始温度は300℃以上が好ましく、より好ましくは320℃以上である。
(3) Hot extrusion By hot extrusion, an extruded material shape close to this final shape corresponding to the final machine part shape is obtained. By hot extrusion, not only the surface layer portion of the extruded material but also recrystallization inside the extruded material can be suppressed, and a fine extruded structure can be obtained.
When the extrusion start temperature exceeds 400 ° C., the temperature at the time of extrusion rises and recrystallization tends to occur at a high temperature, and not only a coarse recrystallized structure is formed in the surface layer portion and the inside of the extruded material, but also coarse particles Precipitates, resulting in a decrease in strength. Therefore, extrusion start temperature is 400 degrees C or less, Preferably it is 380 degrees C or less.
On the other hand, the lower the extrusion start temperature, the better. However, if it is too low, the deformation resistance increases and the extrusion becomes difficult. Therefore, the extrusion start temperature is preferably 300 ° C. or higher, more preferably 320 ° C. or higher.
 押出速度は、押出時の加工発熱を押さえ、押出時の前記再結晶を抑制するために10m/分以下とすることが好ましい。より好ましくは7m/分以下とする。 The extrusion speed is preferably 10 m / min or less in order to suppress processing heat generated during extrusion and suppress the recrystallization during extrusion. More preferably, it is 7 m / min or less.
 熱間押出後から50℃までの平均冷却速度を所定の範囲に設定することにより、この冷却中に生成するZnおよびMgを含む粒子の析出を抑制することができる。当該温度域での冷却速度が2℃/秒未満の場合、固溶Znおよび固溶Mg量が減少して、人工時効処理後の微細粒子の直径が7nmを超え、強度が低下する。そのため、50℃までの平均冷却速度は2℃/秒以上であり、4℃/秒以上が好ましい。 By setting the average cooling rate from after hot extrusion to 50 ° C. within a predetermined range, precipitation of particles containing Zn and Mg generated during this cooling can be suppressed. When the cooling rate in the said temperature range is less than 2 degree-C / sec, the amount of solid solution Zn and solid solution Mg reduces, the diameter of the fine particle after artificial aging treatment exceeds 7 nm, and intensity | strength falls. Therefore, the average cooling rate up to 50 ° C. is 2 ° C./second or more, and preferably 4 ° C./second or more.
 このような2℃/秒以上の平均冷却速度は、冷却手段を設けることにより達成することができる。冷却手段として、例えば、ファンなどを用いた空冷、および水冷などが挙げることができる。 Such an average cooling rate of 2 ° C./second or more can be achieved by providing a cooling means. Examples of the cooling means include air cooling using a fan and water cooling.
 押出方法としては、直接押出あるいは間接押出でもよいが、前記した未再結晶域の好ましい押出条件にて、焼き付きが多く発生する場合がある。そのため、押出加工が困難な場合には静水圧押出で行うことが好ましい。 As the extrusion method, direct extrusion or indirect extrusion may be used, but there are cases where many seizures occur under the preferable extrusion conditions in the non-recrystallized region. Therefore, when extrusion is difficult, it is preferable to carry out by hydrostatic extrusion.
 直接押出および間接押出は、静水圧押出に比べて効率的ではあるが、押出材表層部(表面部)の再結晶粒層が、押出材内部の比較的細かい、押出方向に伸長した繊維状結晶粒(押出加工)組織に比して、粒状の粗大な結晶粒になりやすいという問題がある。また、本発明の実施形態のように、Zn含有量が8質量%を超えるような7000系アルミニウム合金を押出する場合には、直接押出あるいは間接押出の場合には、再結晶温度域未満の押出加工はかなり困難がある。 Direct extrusion and indirect extrusion are more efficient than hydrostatic extrusion, but the recrystallized grain layer on the surface of the extruded material (surface portion) is relatively fine, fibrous crystals extending in the extrusion direction. There is a problem that it becomes easy to become a grainy coarse crystal grain as compared with a grain (extrusion process) structure. Further, as in the embodiment of the present invention, when extruding a 7000 series aluminum alloy having a Zn content exceeding 8% by mass, in the case of direct extrusion or indirect extrusion, extrusion below the recrystallization temperature range Processing is quite difficult.
 これは、たとえ、押出素材であるビレットを再結晶温度域未満の低い加熱温度としても、直接押出あるいは間接押出では、その押出機の構造上、ビレットがコンテナ壁面およびダイスと接触して押し出されるために摩擦熱が生じる。この結果、押出中の温度は再結晶温度域となる。このため、特許文献1で問題とするような粗大な再結晶(粒)層が押出材の表層部にできやすい。 This is because, even if the billet, which is an extrusion material, has a heating temperature lower than the recrystallization temperature range, in the case of direct extrusion or indirect extrusion, the billet is extruded in contact with the container wall surface and the die due to the structure of the extruder. Frictional heat is generated. As a result, the temperature during extrusion becomes the recrystallization temperature range. For this reason, a coarse recrystallized (grain) layer which causes a problem in Patent Document 1 is easily formed on the surface layer portion of the extruded material.
 これに対して、熱間静水圧押出は、コンテナとビレットの間に潤滑剤を入れ、この潤滑剤の中に、押出用のビレットが浮いている状態を作り、ステム(ダミーブロック付き)によって押し出す。このため、ビレットは、この潤滑剤の作用によって、直接押出および間接押出と違って、コンテナおよびダイスと直接接触しない。すなわち、ビレットが直接接触するのは、ダイスの厚みの約5mm程度を通過する間だけである。この結果、摩擦および摩擦熱も軽減され、メタルフローも均一に近くなる。この結果、Zn含有量が高い、本発明の実施形態のような7000系アルミニウム合金のビレットであっても、再結晶温度未満の低温でも押出加工が可能であり、押出材の表層部および内部の再結晶粒層を抑制(微細化)することが可能となる。 On the other hand, in hot isostatic pressing, a lubricant is put between the container and the billet, and a state in which the billet for extrusion floats in this lubricant is pushed out by a stem (with a dummy block). . Thus, the billet is not in direct contact with the container and die due to the action of this lubricant, unlike direct and indirect extrusion. That is, the billet is in direct contact only while it passes through about 5 mm of the die thickness. As a result, friction and heat of friction are also reduced, and the metal flow becomes nearly uniform. As a result, even a billet of a 7000 series aluminum alloy as in the embodiment of the present invention having a high Zn content can be extruded even at a low temperature below the recrystallization temperature, and the surface layer portion and the inside of the extruded material It becomes possible to suppress (miniaturize) the recrystallized grain layer.
 このため、熱間静水圧押出による押出材は、再結晶粒層を含めて、あるいは再結晶粒層が存在していても、表層部から内部までの組織の均一性が図れる。この結果、線棒あるいは線棒製品の素材としても、抽伸性、伸線性あるいは加工性および成形性が著しく向上する。また、本発明の実施形態のように再結晶粒層を抑制すれば、微細な押出加工組織であることによって、アルミニウム合金製ボルトなどの線棒製品に要求される耐へたり性などの基本特性も保証できる。 For this reason, the extruded material by hot isostatic pressing includes the recrystallized grain layer, or even if there is a recrystallized grain layer, the structure from the surface layer to the inside can be made uniform. As a result, the drawability, drawability, workability, and formability of the wire rod or wire rod product are significantly improved. In addition, if the recrystallized grain layer is suppressed as in the embodiment of the present invention, the basic characteristics such as sag resistance required for wire rod products such as aluminum alloy bolts by being a fine extruded structure. Can also be guaranteed.
4-2.機械部品の製造方法
 以上のようにして得られた熱間押出後の押出材は、更に前記各用途の機械部品の製品形状に冷間加工される。
4-2. Manufacturing method of machine part The extruded material after hot extrusion obtained as described above is further cold-worked into the product shape of the machine part for each application.
 ボルトなどの機械部品への一般的な加工工程は、押出材を焼鈍後細径化のために抽伸し、洗浄し、更に焼鈍した上で、転造または鍛造して機械部品の製品形状としてもよい。そして、このような製品加工の完了後に、溶体化および焼入れ処理を行い、更に人工時効処理を行って強度を向上させる。 The general processing process for machine parts such as bolts is to draw the extruded material to reduce the diameter after annealing, wash it, anneal it, and then roll or forge it into the product shape of the machine part. Good. And after completion of such product processing, solution treatment and quenching treatment are performed, and further artificial aging treatment is performed to improve the strength.
 なお、前述した焼鈍処理は選択的であり、抽伸または転造の途中で焼鈍処理を行ってもよい。また、前記抽伸または転造などの冷間加工は、当然ながら、ボルトおよびナットのねじ部品、歯車(ギア)、軸(シャフト)、軸受け(ベアリング)、ばね(スプリング)などの、具体的な用途および形状に応じて、その条件も含めて変更される。 It should be noted that the annealing treatment described above is optional, and the annealing treatment may be performed during drawing or rolling. In addition, the cold working such as drawing or rolling is, of course, specific applications such as bolt and nut thread parts, gears (gears), shafts (shafts), bearings (bearings), and springs (springs). Depending on the shape, the conditions are changed.
(1)溶体化処理
 機械部品の溶体化処理は、一般的な加熱および冷却方法でよく、特に限定はされない。しかし、保持温度が450℃未満、または保持時間が0.5時間未満であれば、MgおよびZnの固溶が不十分になって、強度が不足するおそれがある。一方、保持温度が505℃超、また保持時間が10時間超であれば、強度が不足するおそれがある。
 そのため、溶体化処理は、450~550℃の溶体化処理温度で、0.5~10時間保持することが好ましい。
(1) Solution treatment The solution treatment of mechanical parts may be a general heating and cooling method, and is not particularly limited. However, if the holding temperature is less than 450 ° C. or the holding time is less than 0.5 hours, the solid solution of Mg and Zn becomes insufficient and the strength may be insufficient. On the other hand, if the holding temperature exceeds 505 ° C. and the holding time exceeds 10 hours, the strength may be insufficient.
Therefore, the solution treatment is preferably held at a solution treatment temperature of 450 to 550 ° C. for 0.5 to 10 hours.
(2)焼入れ処理
 溶体化処理後の焼入れ処理として、溶体化処理温度から50℃までの冷却(降温)速度は、平均で50℃/秒以上とすることが望ましい。平均冷却速度が50℃/秒未満と小さすぎては、粗大な再結晶が生じて、強度が不足する可能性がある。また、強度および/または伸びを低下させる粗大な粒界析出物も形成され、強度が不足する可能性がある。平均冷却速度の上限は、設備能力の限界から、およそ500℃/秒程度である。50℃から室温までの冷却速度は特に制限は無く、そのまま引き続き急冷しても、あるいは急冷を停止して放冷してもよい。
(2) Quenching treatment As a quenching treatment after the solution treatment, the cooling (temperature decrease) rate from the solution treatment temperature to 50 ° C is desirably 50 ° C / second or more on average. If the average cooling rate is too low at less than 50 ° C./second, coarse recrystallization may occur and the strength may be insufficient. In addition, coarse grain boundary precipitates that lower the strength and / or elongation are formed, and the strength may be insufficient. The upper limit of the average cooling rate is about 500 ° C./second from the limit of the equipment capacity. The cooling rate from 50 ° C. to room temperature is not particularly limited, and may be rapidly cooled as it is, or may be cooled by stopping the rapid cooling.
(3)人工時効処理
 溶体化処理後の機械部品に対して人工時効処理を行うことにより、本発明の実施形態に係る機械部品が得られる。
 人工時効処理温度が100℃未満であると、微細粒子の形成量が不足して強度が低くなる。したがって、人工時効処理温度は100℃以上であり、好ましくは120℃以上である。
 一方、人工時効処理温度が200℃を超えると、微細粒子が粗大化し、その粒度分布も広がって強度が低下する。したがって、人工時効処理温度は200℃以下であり、好ましくは180℃以下である。
(3) Artificial aging treatment By performing artificial aging treatment on the machine part after solution treatment, the machine part according to the embodiment of the present invention is obtained.
When the artificial aging treatment temperature is less than 100 ° C., the amount of fine particles formed is insufficient and the strength is lowered. Therefore, the artificial aging treatment temperature is 100 ° C. or higher, preferably 120 ° C. or higher.
On the other hand, when the artificial aging treatment temperature exceeds 200 ° C., fine particles are coarsened, the particle size distribution is widened, and the strength is lowered. Therefore, the artificial aging treatment temperature is 200 ° C. or lower, preferably 180 ° C. or lower.
 また、人工時効処理時間が2時間未満であると、微細粒子の形成量が不足して強度が低くなる。したがって、人工時効処理時間は2時間以上であり、好ましくは4時間以上である。
 一方、人工時効処理時間が120時間を超えると、微細粒子が粗大化し、強度が低下する。したがって、人工時効時間時間は120時間以下であり、好ましくは110時間以下である。
Moreover, when the artificial aging treatment time is less than 2 hours, the amount of fine particles formed is insufficient and the strength is lowered. Therefore, the artificial aging treatment time is 2 hours or more, preferably 4 hours or more.
On the other hand, when the artificial aging treatment time exceeds 120 hours, the fine particles become coarse and the strength decreases. Therefore, the artificial aging time is 120 hours or less, preferably 110 hours or less.
 以上に説明した本発明の実施形態に係る機械部品および押出材の製造方法に接した当業者であれば、試行錯誤により、上述した製造方法と異なる製造方法により本発明の実施形態に係る機械部品および押出材を得ることができる可能性がある。 A person skilled in the art who is in contact with the above-described method for manufacturing a mechanical part and an extruded material according to the embodiment of the present invention will perform a mechanical part according to the embodiment of the present invention by a manufacturing method different from the manufacturing method described above by trial and error. And may be able to obtain extrudates.
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, embodiments of the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can be implemented with modifications within a range that can be adapted to the above-described gist, which are all included in the technical scope of the present invention. Is done.
1.サンプル作成
 表1に示す組成の7000系アルミニウム合金鋳塊を鋳造後、表1に示す均質化処理温度で保持時間4時間の均質化処理を経て、熱間静水圧押出し、各例とも共通して、断面が円形な直径25mmの線棒押出材を製造した。
 この線棒押出材の押出条件は、各例とも共通して、表1に示す開始温度で熱間静水圧押出を行った。熱間押出後、表1に示す平均冷却速度にて50℃以下まで冷却した。なお、押出後から50℃までの冷却では、比較例No.8以外のサンプルについて、ファンを用いた空冷により、冷却速度を制御した。
1. Sample preparation After casting a 7000 series aluminum alloy ingot having the composition shown in Table 1, it was subjected to a homogenization treatment at a homogenization treatment temperature shown in Table 1 for a holding time of 4 hours, followed by hot isostatic pressing. A wire rod extrudate having a circular cross section and a diameter of 25 mm was produced.
As for the extrusion conditions of the wire rod extrusion material, hot isostatic extrusion was performed at the start temperature shown in Table 1 in common with each example. After hot extrusion, it was cooled to 50 ° C. or less at the average cooling rate shown in Table 1. In the cooling to 50 ° C. after the extrusion, the comparative example No. For the samples other than 8, the cooling rate was controlled by air cooling using a fan.
 各例とも共通して、機械部品用途を模擬して、線棒押出材に減面率が84%の抽伸加工を施し、断面形状が円形である10mmφの線棒材とした上で、この線棒材に、480℃で5時間の溶体化処理を施した後、50℃までの平均冷却速度を200℃/秒として水冷し、表1に示す各条件で人工時効処理を行った。 In common with each example, the wire rod extruded material is subjected to a drawing process with a reduction in area of 84% to simulate a machine part application to obtain a wire rod material having a circular cross section of 10 mmφ. The bar was subjected to a solution treatment at 480 ° C. for 5 hours, then water-cooled at an average cooling rate of up to 50 ° C. at 200 ° C./second, and subjected to artificial aging treatment under the conditions shown in Table 1.
 更に、この人工時効処理後の機械部品を模擬した線棒材から、試験片を採取し、試験片組織の、結晶粒内の微細粒子の平均粒子直径および粒度分布の規格化分散を測定した。また、この人工時効処理後の材料の機械的な特性を、測定した。これらの結果も表1に示す。
 なお、表1において、下線を付した数値は、本発明の実施形態の範囲から外れていることを示している。
Furthermore, a test piece was collected from a wire rod material simulating the mechanical part after the artificial aging treatment, and the average dispersion of the average particle diameter and the particle size distribution of fine particles in the crystal grains of the test piece structure was measured. In addition, the mechanical properties of the material after the artificial aging treatment were measured. These results are also shown in Table 1.
In Table 1, underlined numerical values indicate that they are out of the scope of the embodiment of the present invention.
 人工時効処理後の線棒材から採取した前記試験片は、丸棒平滑引張試験片(3mmφ×12mmGL)とし、この試験片の表面と軸中心との中間(真ん中)位置(直径Dの1/4位置)における、押出加工方向に平行な面(断面)を観察面とできるように採取した。 The test piece collected from the wire rod material after the artificial aging treatment is a round bar smooth tensile test piece (3 mmφ × 12 mmGL), and an intermediate (middle) position (1 / D of the diameter D) between the surface of the test piece and the axis center. A surface (cross section) parallel to the extrusion direction at 4 positions) was collected so as to be an observation surface.
2.組織の評価:
(X線小角散乱測定)
 X線小角散乱測定は、各例とも共通して、(株)リガク製 水平型X線回折装置SmartLabを用い、波長1.54ÅのX線を用いて測定し、各例とも前記X線の散乱強度プロファイルを測定した。試験装置は、試験片表面に対して垂直にX線を入射し、入射X線に対して0.1~10度の微小角度(小角)で、前記試験片から後方に散乱されるX線を検出器を用いて測定するものである。測定試料は、約80μmに薄片化し、測定を行った。
2. Organizational evaluation:
(X-ray small angle scattering measurement)
The X-ray small angle scattering measurement is common to each example, using a horizontal X-ray diffractometer SmartLab manufactured by Rigaku Co., Ltd., and measuring with X-rays having a wavelength of 1.54 mm. The intensity profile was measured. The test apparatus enters X-rays perpendicularly to the surface of the test piece, and emits X-rays scattered backward from the test piece at a minute angle (small angle) of 0.1 to 10 degrees with respect to the incident X-ray. It is measured using a detector. The measurement sample was sliced to about 80 μm and measured.
 このX線の散乱強度プロファイルを、前記したSchmidtらによる公知の解析方法が組み込まれている、解析ソフト(株)リガク製粒径・空孔解析ソフトウェア NANO-Solver[Ver.3.5]を用いて、測定したX線散乱強度と解析ソフトで計算したX線散乱強度の値が近くなるように非線形最小2乗法によってフィッティングを行うことで、平均粒子直径および規格化分散を求めた。 The X-ray scattering intensity profile is a particle size / hole analysis software manufactured by Rigaku Corporation, NANO-Solver [Ver. 3.5], the average particle diameter and the normalized dispersion are reduced by fitting by the nonlinear least square method so that the measured X-ray scattering intensity and the X-ray scattering intensity calculated by the analysis software are close to each other. Asked.
 前記平均粒子直径は、粒子としては完全な球状であると仮定して、理論式を用いて散乱強度を計算し、実験値とフィッティングして求めた。また、前記規格化分散は、粒子直径に左右されず、粒子分布の広がりを比較できるようにするために用いた。 The average particle diameter was obtained by calculating the scattering intensity using a theoretical formula and fitting it with an experimental value, assuming that the particles are perfectly spherical. The normalized dispersion was used to enable comparison of particle distribution spreads regardless of particle diameter.
 この規格化分散の式を以下に示す。
Figure JPOXMLDOC01-appb-M000001
 ここでσが規格化分散、nは粒子数、xは粒子直径、<x>は粒子直径の相加平均である。
The normalized dispersion formula is shown below.
Figure JPOXMLDOC01-appb-M000001
Here, σ is the normalized dispersion, n is the number of particles, x is the particle diameter, and <x> is the arithmetic mean of the particle diameter.
3.機械的性質の測定
 前記丸棒平滑引張試験片の機械的性質は、引張試験機を用いて、12mm/分のクロスヘッド速度で、常温中で、破断まで引張試験を行った。応力―歪速度より、引張強さ(MPa)を測定した。全伸び(%)は前記引張試験時の引張試験前後のケガキ線の間隔(引張試験前の間隔10mm)より算出した。なお、これらの測定値は、各例とも前記5個の試験片の平均値とした。
3. Measurement of mechanical properties As for the mechanical properties of the round bar smooth tensile test piece, a tensile test was performed until breakage at room temperature at a crosshead speed of 12 mm / min. The tensile strength (MPa) was measured from the stress-strain rate. The total elongation (%) was calculated from the spacing between the marking lines before and after the tensile test during the tensile test (10 mm before the tensile test). In addition, these measured values were made into the average value of the said 5 test pieces in each example.
4.まとめ
 表1の発明例No.1~6は、表1の通りアルミニウム合金組成は本発明の実施形態の範囲内である。また、熱間静水圧押出を未再結晶領域にて行うなど、好ましい製造条件にて押出材が製造されている。更に、溶体化および焼入れ処理、人工時効処理も好ましい製造条件にて行なわれている。
 この結果、発明例No.1~6は、表1の通り、微細粒子の平均粒子直径および粒度分布の規格化分散が本発明の実施形態の規定範囲内であり、引張強さが800MPa以上の高強度で、全伸びが5%以上である高い延性の特性を有する。
4). Summary Invention No. 1 in Table 1 In Tables 1 to 6, as shown in Table 1, the aluminum alloy composition is within the scope of the embodiment of the present invention. In addition, the extruded material is manufactured under preferable manufacturing conditions such as performing hot isostatic pressing in an unrecrystallized region. Furthermore, solution treatment, quenching treatment, and artificial aging treatment are also performed under preferable production conditions.
As a result, Invention Example No. 1 to 6, as shown in Table 1, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles is within the specified range of the embodiment of the present invention, the tensile strength is high strength of 800 MPa or more, and the total elongation is It has a high ductility characteristic of 5% or more.
 これに対して、表1の比較例No.1~5は、表1の通りアルミニウム合金組成が本発明の実施形態の範囲から外れている。このため、これら比較例No.1~5は、押出材および模擬した機械部品が好ましい製造方法で製造されているものの、表1の通り、粒度分布の規格化分散が規定範囲から外れ、あるいはこれら組織が規定範囲内であっても、引張強さが800MPa未満と低いか、或いは全伸びが低い。
 比較例1はZnが下限から外れる。
 比較例2はMgが下限から外れる。
 比較例3はMnが下限から外れる。
 比較例4はMnが上限から外れる。
 比較例5はZrが下限から外れる。
On the other hand, Comparative Example No. 1 in Table 1 was used. In Tables 1 to 5, as shown in Table 1, the aluminum alloy composition is out of the range of the embodiment of the present invention. For this reason, these comparative example No. Nos. 1 to 5 show that extruded materials and simulated machine parts are manufactured by a preferable manufacturing method. However, as shown in Table 1, the normalized dispersion of the particle size distribution is out of the specified range, or the structure is within the specified range. However, the tensile strength is as low as less than 800 MPa, or the total elongation is low.
In Comparative Example 1, Zn deviates from the lower limit.
In Comparative Example 2, Mg deviates from the lower limit.
In Comparative Example 3, Mn deviates from the lower limit.
In Comparative Example 4, Mn deviates from the upper limit.
In Comparative Example 5, Zr deviates from the lower limit.
 また、表1の比較例6~11は、表1の通りアルミニウム合金組成は本発明の実施形態の範囲内であるものの、機械部品を模擬した製造条件が上述した範囲から外れている。その結果、これら比較例は、微細粒子の平均粒子直径および/または粒度分布の規格化分散が、押しなべて規定範囲から外れ、引張強さが800MPa未満と低く、全伸びさえも低くなることもある。 Further, in Comparative Examples 6 to 11 in Table 1, although the aluminum alloy composition is within the range of the embodiment of the present invention as shown in Table 1, the manufacturing conditions simulating the machine parts are out of the above range. As a result, in these comparative examples, the normalized dispersion of the average particle diameter and / or the particle size distribution of the fine particles can be pushed out of the specified range, the tensile strength can be as low as less than 800 MPa, and even the total elongation can be low.
 比較例6は、均質化処理温度が高すぎる例である。そのため、微細粒子の平均粒子直径および粒度分布の規格化分散が過大になり、引張強さおよび全伸びが低下した。 Comparative Example 6 is an example where the homogenization temperature is too high. Therefore, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles became excessive, and the tensile strength and the total elongation were reduced.
 比較例7は、押出開始温度が高すぎる例である。そのため、粒度分布の規格化分散が大きくなり、引張強さが低下した Comparative Example 7 is an example where the extrusion start temperature is too high. Therefore, the normalized dispersion of the particle size distribution increased and the tensile strength decreased.
 比較例8は、押出後50℃までの平均冷却速度が遅すぎる例である。そのため、微細粒子の平均粒子直径が過大になり、引張強さが低下した。 Comparative Example 8 is an example in which the average cooling rate up to 50 ° C. after extrusion is too slow. Therefore, the average particle diameter of the fine particles became excessive, and the tensile strength was reduced.
 比較例9は、人工時効処理の温度が高すぎる例である。そのため、微細粒子の平均粒子直径および粒度分布の規格化分散が過大になり、引張強さが低下した。 Comparative Example 9 is an example in which the temperature of the artificial aging treatment is too high. Therefore, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles became excessive, and the tensile strength was lowered.
 比較例10は、人工時効処理の時間が長すぎる例である。そのため、微細粒子の平均粒子直径が過大になり、引張強さが低下した。 Comparative Example 10 is an example in which the time for artificial aging treatment is too long. Therefore, the average particle diameter of the fine particles became excessive, and the tensile strength was reduced.
 比較例11は、均質化処理温度が低すぎる例である。そのため、微細粒子の平均粒子直径および粒度分布の規格化分散が過大になり、引張強さおよび全伸びが低下した。 Comparative Example 11 is an example where the homogenization temperature is too low. Therefore, the normalized dispersion of the average particle diameter and particle size distribution of the fine particles became excessive, and the tensile strength and the total elongation were reduced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本出願は、出願日が2016年8月22日である日本国特許出願、特願第2016-161644号を基礎出願とする優先権主張を伴う。特願第2016-161644号は参照することにより本明細書に取り込まれる。 This application is accompanied by a priority claim based on Japanese Patent Application No. 2016-161644, whose application date is August 22, 2016. Japanese Patent Application No. 2016-161644 is incorporated herein by reference.
 本発明の実施形態によれば、人工時効処理後の引張強さが800MPa以上、全伸びが5%以上である高強度特性が得られる、7000系アルミニウム合金押出材からなる前記機械部品およびその製造方法、その素材である7000系アルミニウム合金押出材を提供できる。このため、本発明の実施形態は、軽量化された前記機械部品として、好適に用いることができる。 According to an embodiment of the present invention, the mechanical part made of an extruded material of 7000 series aluminum alloy having a tensile strength after artificial aging treatment of 800 MPa or more and a total elongation of 5% or more is obtained, and its manufacture The method can provide a 7000 series aluminum alloy extruded material that is a material thereof. For this reason, embodiment of this invention can be used suitably as the said mechanical component reduced in weight.

Claims (6)

  1.  Zn:8.0~14.0質量%、
     Mg:2.0~4.0質量%、
     Cu:0.5~2.0質量%、
     Mn:0.2~1.5質量%、
     Zr:0.05~0.3質量%を含有し、
     残部がAl及び不可避的不純物であるアルミニウム合金からなり、
     X線小角散乱で測定された結晶粒内の微細粒子の平均粒子直径が2nm以上、7nm以下であり、
     粒度分布の規格化分散が45%以下であり、
     引張強さが800MPa以上、全伸びが5%以上であることを特徴とする機械部品。
    Zn: 8.0 to 14.0% by mass,
    Mg: 2.0 to 4.0% by mass,
    Cu: 0.5 to 2.0% by mass,
    Mn: 0.2 to 1.5% by mass,
    Zr: 0.05 to 0.3% by mass,
    The balance is made of aluminum and an aluminum alloy that is an inevitable impurity,
    The average particle diameter of fine particles in the crystal grains measured by X-ray small angle scattering is 2 nm or more and 7 nm or less,
    The normalized dispersion of the particle size distribution is 45% or less,
    A mechanical component having a tensile strength of 800 MPa or more and a total elongation of 5% or more.
  2.  Cr:0.05~0.3質量%、
     Sc:0.05~0.3質量%
    のうちの一種または二種を更に含有する請求項1に記載の機械部品。
    Cr: 0.05 to 0.3% by mass,
    Sc: 0.05 to 0.3% by mass
    The machine part according to claim 1, further comprising one or two of them.
  3.  Ag:0.05~0.5質量%、
     Sn:0.01~0.2質量%
    のうちの一種または二種を更に含有する請求項1または2に記載の機械部品。
    Ag: 0.05 to 0.5% by mass,
    Sn: 0.01 to 0.2% by mass
    The machine part of Claim 1 or 2 which further contains 1 type or 2 types of these.
  4.  Zn:8.0~14.0質量%、
     Mg:2.0~4.0質量%、
     Cu:0.5~2.0質量%、
     Mn:0.2~1.5質量%、
     Zr:0.05~0.3質量%を含有し、
     残部がAl及び不可避的不純物であるアルミニウム合金からなる機械部品用押出材であって、
     機械部品を模擬して、断面が円形な直径25mmの線棒押出材とした上で、減面率が84%で抽伸加工して断面が10mmφの円形である線棒材とし、この線棒材を480℃の温度で5時間保持する溶体化処理後に、50℃までの平均冷却速度を200℃/秒として焼入れ処理を行い、その後120℃で72時間保持する人工時効処理を施した場合、X線小角散乱で測定された結晶粒内の微細粒子の平均粒子直径が2nm以上、7nm以下であり、粒度分布の規格化分散が45%以下であり、引張強さが800MPa以上、全伸びが5%以上であることを特徴とする押出材。
    Zn: 8.0 to 14.0% by mass,
    Mg: 2.0 to 4.0% by mass,
    Cu: 0.5 to 2.0% by mass,
    Mn: 0.2 to 1.5% by mass,
    Zr: 0.05 to 0.3% by mass,
    The balance is an extruded material for machine parts consisting of aluminum and an aluminum alloy which is an inevitable impurity,
    After simulating a machine part and making it a wire rod extruded material with a diameter of 25 mm having a circular cross section, a wire rod material having a reduction in area of 84% and drawing into a circular shape with a cross section of 10 mmφ was obtained. After a solution treatment for holding at a temperature of 480 ° C. for 5 hours, a quenching treatment was performed at an average cooling rate of up to 50 ° C. at 200 ° C./second, and then an artificial aging treatment was held at 120 ° C. for 72 hours. The average particle diameter of fine particles in the crystal grains measured by small-angle scattering is 2 nm or more and 7 nm or less, the normalized dispersion of the particle size distribution is 45% or less, the tensile strength is 800 MPa or more, and the total elongation is 5 % Extruded material characterized by being at least%.
  5.  Cr:0.05~0.3質量%、
     Sc:0.05~0.3質量%
    のうちの一種または二種を更に含有する請求項4に記載の押出材。
    Cr: 0.05 to 0.3% by mass,
    Sc: 0.05 to 0.3% by mass
    The extruded material according to claim 4, further comprising one or two of them.
  6.  Ag:0.05~0.5質量%、
     Sn:0.01~0.2質量%
    のうちの一種または二種を更に含有する請求項4または5に記載の押出材。
    Ag: 0.05 to 0.5% by mass,
    Sn: 0.01 to 0.2% by mass
    The extruded material according to claim 4 or 5, further comprising one or two of them.
PCT/JP2017/026693 2016-08-22 2017-07-24 Machine component and extruded material WO2018037810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161644 2016-08-22
JP2016161644A JP2018031026A (en) 2016-08-22 2016-08-22 Machine component and extrusion material

Publications (1)

Publication Number Publication Date
WO2018037810A1 true WO2018037810A1 (en) 2018-03-01

Family

ID=61244866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026693 WO2018037810A1 (en) 2016-08-22 2017-07-24 Machine component and extruded material

Country Status (2)

Country Link
JP (1) JP2018031026A (en)
WO (1) WO2018037810A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108416A (en) * 1984-10-30 1986-05-27 Kobe Steel Ltd Production of high intensity al-mg alloy extrusion stock
JPS61259828A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of high-strength aluminum alloy extrudate
CN101215659A (en) * 2007-12-27 2008-07-09 北京科技大学 High-toughness manganese-containing aluminum alloy
WO2014046046A1 (en) * 2012-09-20 2014-03-27 株式会社神戸製鋼所 Aluminum alloy automobile part
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength
WO2017126413A1 (en) * 2016-01-21 2017-07-27 株式会社神戸製鋼所 Machine component, method for producing same, and extruded material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108416A (en) * 1984-10-30 1986-05-27 Kobe Steel Ltd Production of high intensity al-mg alloy extrusion stock
JPS61259828A (en) * 1985-05-10 1986-11-18 Showa Alum Corp Production of high-strength aluminum alloy extrudate
CN101215659A (en) * 2007-12-27 2008-07-09 北京科技大学 High-toughness manganese-containing aluminum alloy
WO2014046046A1 (en) * 2012-09-20 2014-03-27 株式会社神戸製鋼所 Aluminum alloy automobile part
JP2014125676A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy extrusion material excellent in strength
WO2017126413A1 (en) * 2016-01-21 2017-07-27 株式会社神戸製鋼所 Machine component, method for producing same, and extruded material

Also Published As

Publication number Publication date
JP2018031026A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP5610582B2 (en) Aluminum alloy material for high pressure hydrogen gas storage container
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
WO2016140335A1 (en) Aluminum alloy plate
WO2014046046A1 (en) Aluminum alloy automobile part
JP2017155251A (en) Aluminum alloy forging material excellent in strength and ductility and manufacturing method therefor
CA2881789A1 (en) Aluminum alloy sheet for automobile part
EP3395458B1 (en) Magnesium alloy sheet and method for manufacturing same
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP6461248B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP2015124409A (en) Aluminum alloy wire material, production method of it, and aluminum alloy member
Tang et al. Effects of ECAE temperature and billet orientation on the microstructure, texture evolution and mechanical properties of a Mg–Zn–Y–Zr alloy
JP2009144190A (en) High-strength and high-ductility aluminum alloy sheet and manufacturing method therefor
WO2016204043A1 (en) High strength aluminum alloy hot-forged material
WO2015141647A1 (en) Aluminum alloy sheet for structural material
US10920306B2 (en) Aluminum alloy wire rod and producing method thereof
WO2018088351A1 (en) Aluminum alloy extruded material
Kim et al. Effect of scandium content on the hot extrusion of Al–Zn–Mg–(Sc) alloy
JP7167478B2 (en) Aluminum alloy wire rod and manufacturing method thereof
JP5905810B2 (en) Aluminum alloy sheet for forming
JP7167479B2 (en) Aluminum alloy wire rod and manufacturing method thereof
JP2017133097A (en) Mechanical member and manufacturing method and extrusion material
KR101159410B1 (en) Alluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2018204116A (en) Aluminum alloy sheet
Woźnicki et al. The effect of homogenization conditions on the structure and properties of 6082 alloy billets
WO2017126413A1 (en) Machine component, method for producing same, and extruded material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843296

Country of ref document: EP

Kind code of ref document: A1