JP6900199B2 - Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products - Google Patents

Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products Download PDF

Info

Publication number
JP6900199B2
JP6900199B2 JP2017023086A JP2017023086A JP6900199B2 JP 6900199 B2 JP6900199 B2 JP 6900199B2 JP 2017023086 A JP2017023086 A JP 2017023086A JP 2017023086 A JP2017023086 A JP 2017023086A JP 6900199 B2 JP6900199 B2 JP 6900199B2
Authority
JP
Japan
Prior art keywords
casting
aluminum alloy
aluminum
elongation
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017023086A
Other languages
Japanese (ja)
Other versions
JP2018127708A (en
Inventor
悠太 鈴木
悠太 鈴木
健司 和田
健司 和田
Original Assignee
エス・エス・アルミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エス・エス・アルミ株式会社 filed Critical エス・エス・アルミ株式会社
Priority to JP2017023086A priority Critical patent/JP6900199B2/en
Publication of JP2018127708A publication Critical patent/JP2018127708A/en
Application granted granted Critical
Publication of JP6900199B2 publication Critical patent/JP6900199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は鋳造用アルミニウム合金、アルミニウム合金鋳物製品およびアルミニウム合金鋳物製品の製造方法に関するものである。 The present invention relates to an aluminum alloy for casting, an aluminum alloy casting product, and a method for manufacturing an aluminum alloy casting product.

鋳造用アルミニウム合金の中で、例えばJISに定められているAC4CHやADC12等の鋳造性が良好なAl−Si系合金が多く用いられるが、脆い共晶Siが晶出するため、特に延性が低い。そのため、一部のAl−Si系合金では、熱処理により共晶Siを微細粒状化して延性を向上させている。しかし、熱処理により消費エネルギーが増加しコストが上昇する他、薄肉製品では熱歪が発生したり、製品中に巻き込んだガス等によるフクレが生じるという問題も抱えている。 Among the aluminum alloys for casting, Al—Si alloys having good castability such as AC4CH and ADC12 specified in JIS are often used, but the ductility is particularly low because brittle eutectic Si crystallizes. .. Therefore, in some Al—Si alloys, eutectic Si is finely granulated by heat treatment to improve ductility. However, in addition to the increase in energy consumption and cost due to heat treatment, there are also problems that thermal strain occurs in thin-walled products and blister due to gas or the like caught in the product occurs.

一方、例えばJISに定められているAC7AやADC5のようなAl−Mg系合金は、熱処理を行わなくとも優れた延性を備えているが、強度は十分でない。また鋳造性が悪いといった欠点がある。ここで鋳造性が悪いとは、液相線温度が高く、比熱および凝固潜熱が小さいため凝固時間が短く、溶湯の流動性に劣るということ、そしてAl−Si系合金に比べ凝固収縮量が多い、つまり引け巣が発生しやすく、鋳物表面に凝固割れが発生しやすいことである。 On the other hand, Al—Mg-based alloys such as AC7A and ADC5 defined in JIS have excellent ductility without heat treatment, but their strength is not sufficient. It also has the drawback of poor castability. Here, poor castability means that the liquidus temperature is high, the specific heat and latent heat of solidification are small, so the solidification time is short, the fluidity of the molten metal is inferior, and the amount of solidification shrinkage is larger than that of Al—Si alloys. That is, shrinkage cavities are likely to occur, and solidification cracks are likely to occur on the surface of the casting.

現在のJISでは定められていないが、過去にはMgを10質量%程度含有するAC7Bが制定されていた。この合金はβ相(AlMg)を固溶させるために溶体化熱処理を施すことで、Mgを4質量%程度を含むAC7Aよりも優れた強度および延性を得ることができた。しかしながら、この合金は溶体化熱処理後の自然時効の進行による経年変化のため、延性が急激に低下する。さらに、応力腐食割れが発生しやすいという問題を抱えていた。このような経緯もあり、AC7Bはほとんど生産されず1992年改正のJISから削除された。 Although not specified in the current JIS, AC7B containing about 10% by mass of Mg has been established in the past. By subjecting this alloy to solution heat treatment to dissolve the β phase (Al 3 Mg 2 ) as a solid solution, it was possible to obtain strength and ductility superior to that of AC7A containing about 4% by mass of Mg. However, the ductility of this alloy sharply decreases due to aging due to the progress of natural aging after solution heat treatment. Further, there is a problem that stress corrosion cracking is likely to occur. Due to such circumstances, AC7B was hardly produced and was deleted from JIS revised in 1992.

ところで、地球環境保全の観点からあらゆる産業に対して省資源、省エネルギー化が求められ、例えば自動車産業では低燃費化、リサイクルへの対応等、多くの課題を抱えている。その中でも、特に地球温暖化に直結する排気ガスの削減は大きな課題であり、低燃費化つまり燃費向上を実現する技術開発に注力している。燃費向上を実現する大きな要素の一つとして、軽量化が挙げられる。従来主に使用されてきた鉄系材料を、より軽量な材料としてアルミニウム合金、マグネシウム合金、炭素材料等へ転換するための研究が活発に行われている。中でもアルミニウム合金は、軽量性のみならず、強度や加工性、耐食性、熱伝導性ならびにリサイクル性の観点から優れており、自動車の軽量化を促進する材料として期待されている。 By the way, from the viewpoint of global environmental conservation, all industries are required to save resources and energy. For example, the automobile industry has many problems such as low fuel consumption and measures for recycling. Among them, the reduction of exhaust gas, which is directly linked to global warming, is a major issue, and we are focusing on the development of technology to achieve low fuel consumption, that is, improved fuel consumption. Weight reduction is one of the major factors that improve fuel efficiency. Research is being actively conducted to convert iron-based materials, which have been mainly used in the past, into aluminum alloys, magnesium alloys, carbon materials, etc. as lighter materials. Among them, aluminum alloy is excellent not only in lightness but also in strength, processability, corrosion resistance, thermal conductivity and recyclability, and is expected as a material for promoting weight reduction of automobiles.

自動車材料としてのアルミニウム合金は、既にエンジン、ホイールならびに熱交換器等に広く使用されているが、高い強度に加えて衝撃吸収性が求められる車体構造部材への適用は、AA規格のA365合金等の一部のダイカスト用アルミニウム合金に限られている。非特許文献1を参考にすると、耐力150MPa以上、伸び20%以上が目標特性となるが、前述したAC7AやAC7Bのような実用合金では目標特性を達成できておらず、さらに実用に供する鋳物用アルミニウム合金は良好な鋳造性が求められる。すなわち、加圧を必要としない鋳造方法であっても、熱処理をしない鋳放しのままで目標特性を実現できる鋳物用アルミニウム合金はない。 Aluminum alloys as automobile materials have already been widely used in engines, wheels, heat exchangers, etc., but application to vehicle body structural members that require high strength and shock absorption is AA standard A365 alloys, etc. Limited to some die-cast aluminum alloys. With reference to Non-Patent Document 1, the target characteristics are a proof stress of 150 MPa or more and an elongation of 20% or more, but the target characteristics cannot be achieved with the above-mentioned practical alloys such as AC7A and AC7B, and for castings to be put into practical use. Aluminum alloys are required to have good castability. That is, even if the casting method does not require pressurization, there is no aluminum alloy for casting that can realize the target characteristics as it is as-cast without heat treatment.

熱処理をしない鋳放しのままで使用できる高強度・高靱性アルミニウム合金の提案がなされている(特許文献1)。特許文献1に提案されたアルミニウム合金は、重量%でMn:0.5〜2.5%、Mg:2.5〜7%と、少なくともTi:0.15〜0.5%、Zr:0.15〜0.5%、B:0.01〜0.1%のうちの一種、および少なくともSb:0.01〜0.5%、Bi:0.01〜0.5%のうち一種を含み、残部が実質的にアルミニウムとなるように原材料を溶解し、前記原料の溶湯を0.5℃/秒以上の冷却速度で凝固させることを特徴とする高強度・高靱性アルミニウム合金部材の製造方法、およびこれに用いる鋳造用アルミニウム合金である。この合金は、引張強さが30kgf/mm以上、0.2%耐力が15kgf/mm以上、伸びが20%以上となる高強度で高靱性のアルミニウム合金部材を得ることができるとしている。 A high-strength, high-toughness aluminum alloy that can be used as it is without heat treatment has been proposed (Patent Document 1). The aluminum alloy proposed in Patent Document 1 has Mn: 0.5 to 2.5% and Mg: 2.5 to 7% in weight%, at least Ti: 0.15 to 0.5%, and Zr: 0. .15-0.5%, B: 0.01-0.1%, and at least Sb: 0.01-0.5%, Bi: 0.01-0.5% Manufacture of a high-strength, high-toughness aluminum alloy member, which comprises melting the raw material so that the balance is substantially aluminum, and solidifying the molten metal of the raw material at a cooling rate of 0.5 ° C./sec or more. The method and the aluminum alloy for casting used for this. It is said that this alloy can obtain a high-strength and high-toughness aluminum alloy member having a tensile strength of 30 kgf / mm 2 or more, a 0.2% proof stress of 15 kgf / mm 2 or more, and an elongation of 20% or more.

しかしながら、特許文献1に提案された高強度・高靱性アルミニウム合金部材の製造方法、およびこれに用いる鋳造用アルミニウム合金では、重量%でMg:4.4〜4.7%の範囲における実施例しか示していない。Mg含有量が5%を超えるとAl−Mg系の粗大な晶出物が晶出するようになり、伸びを著しく低下させることが知られているが、特許文献1にはその解決方法が示されていない。また、該引張特性を得るためには、実質的に冷却速度を5℃/秒以上とする必要があり、5℃/秒未満の冷却速度で凝固させた場合、伸びが20%を下回ることが実施例により示されている。 However, in the method for producing a high-strength and high-toughness aluminum alloy member proposed in Patent Document 1 and the aluminum alloy for casting used for the method, only examples in the range of Mg: 4.4 to 4.7% by weight%. Not shown. It is known that when the Mg content exceeds 5%, coarse Al-Mg-based crystallized products are crystallized and the elongation is significantly reduced. Patent Document 1 shows a solution thereof. It has not been. Further, in order to obtain the tensile properties, it is necessary to substantially set the cooling rate to 5 ° C./sec or more, and when solidified at a cooling rate of less than 5 ° C./sec, the elongation may be less than 20%. It is shown by an embodiment.

鋳造の冷却速度は、鋳造温度、鋳型材質・温度あるいは鋳物製品の肉厚等により変化するが、一般的には砂型鋳造では0.05〜1℃/秒、重力金型鋳造は1〜5℃/秒、加圧鋳造で1〜10℃/秒、およびダイカスト鋳造では100℃/秒以上になるとされている。特許文献1では、高圧鋳造法と称する加圧鋳造の一種によりアルミニウム合金部材を得ている。一般に、加圧鋳造やダイカスト鋳造は冷却速度が速く微細な凝固組織が得られるので、強度や伸びに優れた鋳物の製造が可能である。しかし、溶湯に高い圧力を作用させ金型に充填するため、金型の精度が厳しく金型費等の設備費が高くなる、空気や酸化物等の介在物を製品中に巻き込み易く、強度や伸びが低下する、等の欠点がある。 The cooling rate of casting varies depending on the casting temperature, mold material / temperature, wall thickness of cast products, etc., but in general, it is 0.05 to 1 ° C / sec for sand casting and 1 to 5 ° C for die casting. It is said that the temperature is 1 to 10 ° C./sec for pressure casting, and 100 ° C./sec or more for die casting. In Patent Document 1, an aluminum alloy member is obtained by a kind of pressure casting called a high pressure casting method. In general, pressure casting and die casting have a high cooling rate and a fine solidified structure can be obtained, so that it is possible to produce a casting having excellent strength and elongation. However, since high pressure is applied to the molten metal to fill the mold, the precision of the mold is strict and equipment costs such as mold costs are high, and inclusions such as air and oxides are easily caught in the product, resulting in strength and strength. There are drawbacks such as reduced elongation.

渡邉修一郎、「アルミニウム新材料による新たな用途」、素形材、一般社団法人素形材センター、平成21年12月、第50巻、第9号、p.23−29Shuichiro Watanabe, "New Uses with New Aluminum Materials", Elementary Materials, General Incorporated Association Elementary Materials Center, December 2009, Vol. 50, No. 9, p. 23-29

特開平6−330202号公報Japanese Unexamined Patent Publication No. 6-330202

上記の実情を鑑みると、熱処理をしない鋳放しのままで耐力150MPa以上、伸び20%以上を発現するアルミニウム合金、アルミニウム合金鋳物製品および安価な方法で製造できるアルミニウム合金鋳物製品の製造方法の開発が求められている。 In view of the above circumstances, the development of aluminum alloys, aluminum alloy casting products, and aluminum alloy casting products that can be manufactured by an inexpensive method with a resistance of 150 MPa or more and an elongation of 20% or more without heat treatment has been developed. It has been demanded.

本発明者は上述の課題を解決すべく、鋳造用Al−Mg系合金の組成を様々変化させ、処理をしない鋳放しのままで高い伸びを維持しつつ、高い耐力を得る方法に重点を置き研究した。その結果、Mg、Mn、Ti、BおよびZr量を最適化することで、熱処理を行わない鋳放しのままで高い伸びおよび高い耐力を得ることができる鋳造用アルミニウム合金、アルミニウム合金製品およびアルミニウム合金鋳物製品の製造方法を実現するに至った。 In order to solve the above-mentioned problems, the present inventor has focused on a method of obtaining high yield strength while maintaining high elongation in the untreated as-cast state by variously changing the composition of the Al—Mg-based alloy for casting. I studied. As a result, by optimizing the amounts of Mg, Mn, Ti, B and Zr, high elongation and high strength can be obtained as-cast without heat treatment, and aluminum alloys for casting, aluminum alloy products and aluminum alloys can be obtained. We have realized a method for manufacturing cast products.

本発明の鋳造用アルミニウム合金は、質量%でMg:5.0〜8.0%、Mn:0.5〜2.0%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部がアルミニウムと不可避不純物からなることを特徴とする鋳造用アルミニウム合金である。 The aluminum alloy for casting of the present invention has Mg: 5.0 to 8.0%, Mn: 0.5 to 2.0%, and at least Ti: 0.05 to 0.25%, B: 0 in mass%. It is an aluminum alloy for casting, which contains one of .05 to 0.15% and Zr: 0.05 to 0.25%, and the balance is composed of aluminum and unavoidable impurities.

また、Al−Mg系晶出物およびAl−Mn系晶出物から成る晶出物の平均サイズが30μm以下であり、面積率が5%以下であることを特徴とする、質量%でMg:5.0〜8.0%、Mn:0.5〜2.0%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部がアルミニウムと不可避不純物からなる鋳造用アルミニウム合金から製造したアルミニウム合金鋳物製品である。 Further, the average size of the crystallized product composed of the Al-Mg-based crystallized product and the Al-Mn-based crystallized product is 30 μm or less, and the area ratio is 5% or less. 5.0 to 8.0%, Mn: 0.5 to 2.0%, at least Ti: 0.05 to 0.25%, B: 0.05 to 0.15%, Zr: 0.05 to It is an aluminum alloy casting product produced from an aluminum alloy for casting, which contains one of 0.25% and the balance is aluminum and unavoidable impurities.

さらに、耐力150MPa以上および伸び20%以上であることを特徴とする、Al−Mg系晶出物の平均サイズが30μm以下であり、この晶出物の面積率が5%以下である質量%でMg:5.0〜8.0%、Mn:0.5〜2.0%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部がアルミニウムと不可避不純物からなる鋳造用アルミニウム合金から製造したアルミニウム合金鋳物製品である。 Further, the average size of the Al-Mg-based crystallized product, which is characterized by having a withstand capacity of 150 MPa or more and an elongation of 20% or more, is 30 μm or less, and the area ratio of the crystallized product is 5% or less by mass%. Mg: 5.0 to 8.0%, Mn: 0.5 to 2.0%, at least Ti: 0.05 to 0.25%, B: 0.05 to 0.15%, Zr: 0. It is an aluminum alloy casting product produced from an aluminum alloy for casting, which contains one of 05 to 0.25% and the balance is aluminum and unavoidable impurities.

また、質量%でMg:5.0〜8.0%、Mn:0.5〜2.0%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部が実質的にアルミニウムから成り、初晶α−Alの2次デンドライトアームスペーシング(DASII)が55μm以下であることを特徴とするアルミニウム合金鋳物製品である。 Further, in terms of mass%, Mg: 5.0 to 8.0%, Mn: 0.5 to 2.0%, and at least Ti: 0.05 to 0.25%, B: 0.05 to 0.15%. , Zr: Containing one of 0.05 to 0.25%, the balance is substantially composed of aluminum, and the secondary dendrite arm spacing (DASII) of primary crystal α-Al is 55 μm or less. It is an aluminum alloy casting product.

そして、質量%でMg:5.0〜8.0%、Mn:0.5〜2.0%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部が実質的にアルミニウムから成る溶湯を金型鋳造で製造することを特徴とするアルミニウム合金鋳物製品の製造方法である。 Then, in terms of mass%, Mg: 5.0 to 8.0%, Mn: 0.5 to 2.0%, and at least Ti: 0.05 to 0.25%, B: 0.05 to 0.15%. , Zr: A method for producing an aluminum alloy casting product, which comprises producing a molten metal containing one of 0.05 to 0.25% and having a balance substantially made of aluminum by mold casting.

質量%でMg:5.0〜8.0%、Mn:0.5〜2.0%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部が実質的にアルミニウムから成る溶湯を重力金型鋳造で製造することを特徴とするアルミニウム合金鋳物製品の製造方法である。 By mass%, Mg: 5.0 to 8.0%, Mn: 0.5 to 2.0%, and at least Ti: 0.05 to 0.25%, B: 0.05 to 0.15%, Zr. : A method for producing an aluminum alloy casting product, which comprises producing a molten metal containing one of 0.05 to 0.25% and having a balance substantially made of aluminum by gravity mold casting.

本発明の鋳造用アルミニウム合金を使用することで、熱処理をしない鋳放しのままで耐力150MPa以上、伸び20%以上となるアルミニウム合金鋳物製品を得ることができる。本発明のアルミニウム合金鋳物製品は金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により製造できる。 By using the aluminum alloy for casting of the present invention, it is possible to obtain an aluminum alloy cast product having a strength of 150 MPa or more and an elongation of 20% or more without heat treatment. The aluminum alloy casting product of the present invention can be manufactured by a manufacturing method such as mold casting, particularly gravity mold casting, which has a relatively low equipment cost.

本発明アルミニウム合金鋳物のミクロ組織を示す図(実施例1)The figure which shows the microstructure of the aluminum alloy casting of this invention (Example 1) 比較例アルミニウム合金鋳物のミクロ組織を示す図(比較例12)Comparative Example A diagram showing the microstructure of an aluminum alloy casting (Comparative Example 12)

本発明の鋳造用アルミニウム合金、アルミニウム合金鋳物製品およびアルミニウム合金鋳物製品の製造方法の限定理由を説明する。なお、特に断りの無い限り、各合金元素の含有量は質量%で示す。 The reason for limiting the manufacturing method of the aluminum alloy for casting, the aluminum alloy casting product, and the aluminum alloy casting product of the present invention will be described. Unless otherwise specified, the content of each alloy element is shown in% by mass.

本発明の鋳造用アルミニウム合金におけるマグネシウム(Mg)の含有量は5.0〜8.0%である。Mgはアルミニウム中に固溶することで強度および耐力を向上させる。Mg含有量5.0%未満では十分な耐力が得られず、8.0%を超えるとAl−Mg系晶出物が多く晶出するようになり伸びが著しく低下する。この組成範囲では、実用合金のAC7Aより優れAC7Bと同等の流動性を有し、AC7AおよびAC7Bよりも鋳造割れが生じにくい。また、応力腐食割れを防止する観点からも、Mg含有量の上限を8.0%とするのが好ましい。Mg含有量5.0〜8.0%の範囲においては、Al−Mg系晶出物の平均サイズは30μm以下、面積率は5%以下となり、高い伸びを発現する。なお、より高い強度を必要とする場合は、Mg含有量7.0〜8.0%がさらに好ましく、この組成範囲では特に優れた鋳造性を発現する。 The content of magnesium (Mg) in the aluminum alloy for casting of the present invention is 5.0 to 8.0%. Mg is dissolved in aluminum to improve strength and proof stress. If the Mg content is less than 5.0%, sufficient proof stress cannot be obtained, and if it exceeds 8.0%, a large amount of Al-Mg-based crystallized products will crystallize and the elongation will be significantly reduced. In this composition range, it is superior to the practical alloy AC7A and has the same fluidity as AC7B, and is less likely to cause casting cracks than AC7A and AC7B. Further, from the viewpoint of preventing stress corrosion cracking, the upper limit of the Mg content is preferably 8.0%. In the range of Mg content of 5.0 to 8.0%, the average size of Al-Mg-based crystals is 30 μm or less, the area ratio is 5% or less, and high elongation is exhibited. When higher strength is required, the Mg content is more preferably 7.0 to 8.0%, and particularly excellent castability is exhibited in this composition range.

Mgの酸化減耗ならびに鋳型との反応を防止するために、ベリリウム(Be)を20〜100ppm添加してよい。 20-100 ppm of beryllium (Be) may be added to prevent oxidative depletion of Mg and reaction with the mold.

マンガン(Mn)の含有量は0.5〜2.0%である。Mnはアルミニウム中に固溶することで強度および耐力を向上させる。Mn含有量0.5%未満では十分な耐力が得られず、2.0%を超えるとAl−Mn系晶出物のサイズおよび面積率が増加し、伸びを著しく低下させる。 The content of manganese (Mn) is 0.5 to 2.0%. Mn is dissolved in aluminum to improve strength and proof stress. If the Mn content is less than 0.5%, sufficient proof stress cannot be obtained, and if it exceeds 2.0%, the size and area ratio of Al—Mn-based crystals increase, and the elongation is significantly reduced.

チタン(Ti)の含有量は0.05〜0.25%である。TiとAlの化合物であるAlTiは初晶α−Alの凝固核となり、初晶α−Al結晶粒を微細化することで強度、耐力および伸びを向上させる。Ti含有量が0.05%未満では上述の効果が得られず、0.25%を超えると晶出物が増加し伸びを低下させる。 The content of titanium (Ti) is 0.05 to 0.25%. Al 3 Ti, which is a compound of Ti and Al, becomes a solidified nucleus of primary crystal α-Al, and the strength, proof stress, and elongation are improved by refining the primary crystal α-Al crystal grains. If the Ti content is less than 0.05%, the above-mentioned effect cannot be obtained, and if it exceeds 0.25%, crystallization increases and elongation decreases.

ホウ素(B)の含有量は0.05〜0.15%である。BはTiと同様に、初晶α−Al結晶粒を微細化する。Bの含有量が0.05%未満では上述の効果が得られず、0.15%を超えると粗大な晶出物が増加し伸びを低下させる。 The content of boron (B) is 0.05 to 0.15%. Similar to Ti, B refines the primary α-Al crystal grains. If the content of B is less than 0.05%, the above-mentioned effect cannot be obtained, and if it exceeds 0.15%, coarse crystallization increases and the elongation decreases.

ジルコニウム(Zr)の含有量は0.05〜0.25%である。Zrは、TiおよびBと同様の効果を有する。Zrの含有量が0.05%未満では上述の効果が得られず、0.25%を超えると粗大な晶出物が増加し伸びを低下させる。 The content of zirconium (Zr) is 0.05 to 0.25%. Zr has the same effect as Ti and B. If the Zr content is less than 0.05%, the above-mentioned effect cannot be obtained, and if it exceeds 0.25%, coarse crystallization increases and the elongation decreases.

DASIIが大きい、つまり冷却速度が遅いと伸びが大きく低下することが知られている。本発明のアルミニウム合金鋳物製品は上述の合金組成から成り、DASIIは55μm以下である。DASIIが55μm以下では伸びは高く、55μmを超えると伸びは低下する。 It is known that when DASII is large, that is, when the cooling rate is slow, the elongation is greatly reduced. The aluminum alloy casting product of the present invention has the above-mentioned alloy composition, and DASII is 55 μm or less. When DASII is 55 μm or less, the elongation is high, and when it exceeds 55 μm, the elongation decreases.

本発明のアルミニウム合金鋳物製品の製造方法は、上述の合金組成から成る溶湯を金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により製造できる。 In the method for producing an aluminum alloy casting product of the present invention, a molten metal having the above-mentioned alloy composition can be produced by a mold casting, particularly a manufacturing method such as gravity mold casting, which has a relatively low equipment cost.

以上のように、本発明の鋳造用アルミニウム合金を使用することで、熱処理をしない鋳放しのままで耐力150MPa以上、伸び20%以上となるアルミニウム合金鋳物製品を得ることができる。本発明のアルミニウム合金鋳物は金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により製造できる。 As described above, by using the aluminum alloy for casting of the present invention, it is possible to obtain an aluminum alloy casting product having a strength of 150 MPa or more and an elongation of 20% or more without heat treatment. The aluminum alloy casting of the present invention can be manufactured by a manufacturing method such as mold casting, particularly gravity mold casting, which has a relatively low equipment cost.

次に、本発明の詳細を以下の実施例により説明する。なお、以下に示す実施例は本発明の態様についての理解を容易にするためのものであり、これらの実施例に制限されるものではない。 Next, the details of the present invention will be described with reference to the following examples. The examples shown below are for facilitating understanding of aspects of the present invention, and are not limited to these examples.

表1に検討した合金の組成を示す。なお、表1に示す元素以外の残部は、実質的にアルミニウムと不可避不純物から成る。例えば、全ての実施例試料のSi含有量は0.05〜0.15%、Fe含有量は0.05〜0.25%であり、いずれもAC7Aの規格値を満たしていることを確認した。その他の元素も同様に、AC7Aの規格値を満たしていることを確認した。表1に示したアルミニウム合金を溶製し、重力金型法で鋳造して供試材採取用鋳物を作製した。 Table 1 shows the composition of the alloys examined. The rest other than the elements shown in Table 1 is substantially composed of aluminum and unavoidable impurities. For example, it was confirmed that the Si content of all the Example samples was 0.05 to 0.15% and the Fe content was 0.05 to 0.25%, both of which satisfied the standard values of AC7A. .. Similarly, it was confirmed that the other elements also satisfied the standard value of AC7A. The aluminum alloys shown in Table 1 were melted and cast by the gravity mold method to prepare a casting for collecting test materials.

Figure 0006900199
Figure 0006900199

合金の溶製および鋳造方法を以下に説明する。黒鉛製の坩堝に原材料として工業用純アルミニウム(純度99.7%以上)を装入し、大気雰囲気において電気炉を使用して溶解した。純アルミニウムが溶け落ちた後、所望の組成となるよう質量を調整したマンガン母合金(Al−75%Mn)、ジルコニウム母合金(Al−15%Zr)、チタン母合金(Al−10%Ti)、チタン−ホウ素母合金(Al−5%Ti−1%B)および金属マグネシウムを添加した。得られた溶湯中の水素ガスおよび介在物除去を目的としてアルゴンガスバブリングを行った後、溶湯を鎮静して溶湯表面の滓を取り除き、鋳造に供した。鋳造温度735℃、供試材採取用鋳型はJIS:H5202の図2に基づいた舟金型であり、型温度は常温とした。その後、自然空冷させ舟金型から取り出し供試材採取用鋳物を得た。 The method of melting and casting the alloy will be described below. Industrial pure aluminum (purity 99.7% or more) was charged into a graphite crucible as a raw material and melted in an air atmosphere using an electric furnace. Manganese mother alloy (Al-75% Mn), zirconium mother alloy (Al-15% Zr), titanium mother alloy (Al-10% Ti) whose mass was adjusted to obtain the desired composition after the pure aluminum had melted down. , Titanium-boron mother alloy (Al-5% Ti-1% B) and metallic magnesium were added. After performing argon gas bubbling for the purpose of removing hydrogen gas and inclusions in the obtained molten metal, the molten metal was sedated to remove slag on the surface of the molten metal and used for casting. The casting temperature was 735 ° C., the mold for collecting the test material was a boat mold based on FIG. 2 of JIS: H5202, and the mold temperature was set to room temperature. Then, it was naturally air-cooled and taken out from the boat mold to obtain a casting for collecting test material.

上記のように得られた供試材採取用鋳物から、JIS4号引張試験片を作製した。また、同鋳物からミクロ組織観察用試料を切出した。表2に実施例および比較例の引張試験結果およびミクロ組織観察結果を示す。観察視野に存在する晶出物の長径を手動で指定し、その長さを画像処理ソフトで測定して晶出物サイズとした。さらに、晶出物の外郭を手動で指定し、その内部面積を画像処理ソフトにて算出して晶出物面積とした。観察視野に存在する晶出物面積を合計し、その値を観察視野面積で除した値を面積率とした。DASIIは、「デンドライトアームスペーシング測定手順」(鋳造・凝固部会、軽金属学会、昭和63年1月、第38巻、第1号、p.54−60)に記載の交線法に基づき測定した。 A JIS No. 4 tensile test piece was prepared from the casting for collecting the test material obtained as described above. In addition, a sample for microstructure observation was cut out from the same casting. Table 2 shows the tensile test results and microstructure observation results of Examples and Comparative Examples. The major axis of the crystallized material existing in the observation field of view was manually specified, and the length was measured with image processing software to obtain the crystallized product size. Further, the outer shell of the crystallized product was manually specified, and the internal area thereof was calculated by image processing software to obtain the crystallized product area. The area ratio was defined as the total area of crystallized substances present in the observation field of view and the value divided by the observation field of view area. DASII was measured based on the line of intersection method described in "Dendrite Arm Spacing Measurement Procedure" (Casting / Solidification Subcommittee, Japan Institute of Light Metals, January 1988, Vol. 38, No. 1, p.54-60).

Figure 0006900199
Figure 0006900199

実施例試料1〜8はいずれも耐力150MPa以上かつ伸び20%以上となっていた。
実施例試料1〜8の代表例として、図1に実施例試料1のアルミニウム合金鋳物のミクロ組織を示す。Al−Mg系晶出物のAlMgおよびAl−Mn系晶出物であるAlMnが認められた。晶出物の平均サイズは30μm以下、かつ面積率は5%以下であった。DASIIは55μm以下であった。
All of Examples 1 to 8 had a proof stress of 150 MPa or more and an elongation of 20% or more.
As a representative example of Example Samples 1 to 8, FIG. 1 shows the microstructure of the aluminum alloy casting of Example Sample 1. Al 3 Mg 2 which is an Al-Mg-based crystallized product and Al 6 Mn which is an Al-Mn-based crystallized product were observed. The average size of the crystallization was 30 μm or less, and the area ratio was 5% or less. DASII was 55 μm or less.

Mn含有量が少ない比較例試料9、10および15は耐力が150MPaに到達しなかった。Ti、BおよびZr含有量が少ない比較例試料11〜13は、初晶α−Al結晶粒を微細化できず、DASIIが56μm以上となり、耐力は150MPaに到達せず、伸びも20%を下回った。Mn含有量が多い試料14および16は伸びが20%に到達しなかった。図2に比較例試料16のアルミニウム合金鋳物のミクロ組織を示す。Al−Mg系晶出物のAlMgが粒界に沿って晶出していることが認められた。晶出物の平均サイズは30μmより大きく、かつ面積率が5%を越えた。このように、Mn、Ti、BおよびZrの少なくとも一つが本発明の組成範囲から外れていると、耐力または伸びの少なくともいずれか一方が目標特性を満たさない。 The proof stress of Comparative Examples Samples 9, 10 and 15 having a low Mn content did not reach 150 MPa. In Comparative Examples Samples 11 to 13 having low Ti, B and Zr contents, the primary α-Al crystal grains could not be refined, the DASII was 56 μm or more, the proof stress did not reach 150 MPa, and the elongation was less than 20%. It was. The elongation of samples 14 and 16 having a high Mn content did not reach 20%. FIG. 2 shows the microstructure of the aluminum alloy casting of Comparative Example Sample 16. It was confirmed that Al 3 Mg 2, which is an Al-Mg-based crystallized product, was crystallized along the grain boundaries. The average size of the crystallization was larger than 30 μm and the area ratio exceeded 5%. As described above, when at least one of Mn, Ti, B and Zr is out of the composition range of the present invention, at least one of the yield strength and the elongation does not satisfy the target characteristic.

本発明の鋳造用アルミニウム合金の鋳造性を評価するために、流動性試験を実施した。流動性試験にはMIT式流動性試験機を使用した。試験条件は、減圧度0.0395MPa、メタルヘッド250mmとし、L字状のガラス管の一端から溶融アルミを吸引し、流動が停止した位置までの長さ(流動長)を測定した。溶湯温度は700℃、730℃および760℃の3水準とし、各水準n=3で試験を行い、平均値を算出した。表3に実施例8とJIS合金であるAC7Aならびに旧JIS合金であるAC7Bの流動性試験結果を示す。 In order to evaluate the castability of the aluminum alloy for casting of the present invention, a fluidity test was carried out. A MIT type fluidity tester was used for the fluidity test. The test conditions were a decompression degree of 0.0395 MPa and a metal head of 250 mm, and molten aluminum was sucked from one end of an L-shaped glass tube, and the length (flow length) to the position where the flow stopped was measured. The molten metal temperature was set to three levels of 700 ° C., 730 ° C. and 760 ° C., and the test was conducted at each level n = 3 to calculate the average value. Table 3 shows the fluidity test results of Example 8 and the JIS alloy AC7A and the old JIS alloy AC7B.

Figure 0006900199
Figure 0006900199

実施例試料8はAC7Aよりも優れ、AC7Bと同程度の流動性を有していた。 Example Sample 8 was superior to AC7A and had the same degree of fluidity as AC7B.

また、鋳造性の評価として割れ試験を行った。割れ試験は、「金型鋳造法」(小林一典著、日刊工業新聞社、昭和43年8月27日、p.30−31)に記されたリング状鋳型を用いた。鋳型温度は常温、注湯温度は液相線温度+100℃とした。鋳造冷却後、割れ試験片表面に見える割れの長さを測定した。各水準n=4で試験を行った。表4に実施例1、3、8とJIS合金であるAC7Aならびに旧JIS合金であるAC7Bの割れ試験結果を示す。 In addition, a crack test was conducted as an evaluation of castability. The crack test used the ring-shaped mold described in "Mold Casting Method" (written by Kazunori Kobayashi, Nikkan Kogyo Shimbun, August 27, 1968, p. 30-31). The mold temperature was normal temperature, and the pouring temperature was liquidus temperature + 100 ° C. After cooling the casting, the length of the crack visible on the surface of the crack test piece was measured. The test was conducted at each level n = 4. Table 4 shows the crack test results of Examples 1, 3 and 8 and AC7A which is a JIS alloy and AC7B which is an old JIS alloy.

Figure 0006900199
Figure 0006900199

割れ試験片採取用鋳型に溶湯を鋳込んだ直後では、AC7Aでは3試験片表面に長さ平均6mm程度の割れが注湯口近傍に認められた。また、割れ試験片を鋳型から取り外す際に、AC7Bは全ての試験片で注湯口近傍に割れが生じ、試験片が破断した。一方、実施例試料1、3および8の試験片全てで割れは生じなかった。なお、AC7Aは鋳込み直後で大半が割れたため、鋳型から取り外した後は評価していない。 Immediately after casting the molten metal into the mold for collecting crack test pieces, cracks with an average length of about 6 mm were observed on the surface of the three test pieces in AC7A near the pouring port. Further, when the cracking test piece was removed from the mold, all the test pieces of AC7B cracked in the vicinity of the pouring port, and the test piece broke. On the other hand, no cracks occurred in all the test pieces of Example Samples 1, 3 and 8. Since most of AC7A was cracked immediately after casting, it was not evaluated after it was removed from the mold.

流動性試験および割れ試験結果から、実施例試料はAC7Bと同程度の良好な流動性を有しており、かつ実用合金のAC7AおよびAC7Bよりも割れにくい合金であると認められた。 From the results of the fluidity test and the cracking test, it was confirmed that the example sample had good fluidity comparable to that of AC7B and was less crackable than the practical alloys AC7A and AC7B.

以上の結果により、熱処理を行わない鋳放しのままで高延性および高い耐力を得るMg、Mn、Ti、BおよびZr量を決定し、かつ鋳造性にも優れる鋳造用アルミニウム合金を得た。また、本発明の鋳造用アルミニウム合金を使用することで、熱処理をしない鋳放しのままで耐力150MPa以上、伸び20%以上となるアルミニウム合金鋳物製品を得ることができる。本発明のアルミニウム合金鋳物は金型鋳造、特に重力金型鋳造のような比較的設備費が安い製造方法により製造できる。








Based on the above results, the amounts of Mg, Mn, Ti, B and Zr that obtain high ductility and high strength in the as-cast state without heat treatment were determined, and an aluminum alloy for casting having excellent castability was obtained. Further, by using the aluminum alloy for casting of the present invention, it is possible to obtain an aluminum alloy casting product having a strength of 150 MPa or more and an elongation of 20% or more without heat treatment. The aluminum alloy casting of the present invention can be manufactured by a manufacturing method such as mold casting, particularly gravity mold casting, which has a relatively low equipment cost.








Claims (1)

質量%でMg:7.0〜8.0%、Mn:0.5〜1.7%と、少なくともTi:0.05〜0.25%、B:0.05〜0.15%、Zr:0.05〜0.25%のうちの一種を含有し、残部がアルミニウムと不可避不純物からなり、Al−Mg系晶出物およびAl−Mn系晶出物から成る晶出物の平均サイズが27〜30μm、面積率が5%以下であり、2次デンドライトアームスペーシング(DASII)が45〜55μmであり、耐力150MPa以上および伸び20%以上であることを特徴とするアルミニウム合金鋳物製品。
In terms of mass%, Mg: 7.0 to 8.0%, Mn: 0.5 to 1.7 %, and at least Ti: 0.05 to 0.25%, B: 0.05 to 0.15%, Zr. : Contains one of 0.05 to 0.25%, the balance is composed of aluminum and unavoidable impurities, and the average size of the crystallized product consisting of Al-Mg-based crystallized product and Al-Mn-based crystallized product is 27~30Myuemu, and the area ratio is 5% or less, the secondary dendrite arm spacing (DASII) is 45~55Myuemu, aluminum alloy casting product, characterized in that at least resistant force 150MPa and elongation of 20% or more.
JP2017023086A 2017-02-10 2017-02-10 Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products Active JP6900199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023086A JP6900199B2 (en) 2017-02-10 2017-02-10 Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023086A JP6900199B2 (en) 2017-02-10 2017-02-10 Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products

Publications (2)

Publication Number Publication Date
JP2018127708A JP2018127708A (en) 2018-08-16
JP6900199B2 true JP6900199B2 (en) 2021-07-07

Family

ID=63173652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023086A Active JP6900199B2 (en) 2017-02-10 2017-02-10 Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products

Country Status (1)

Country Link
JP (1) JP6900199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3878991A4 (en) * 2018-11-07 2021-12-15 Nippon Light Metal Co., Ltd. Aluminum alloy for die casting and die cast aluminum alloy material
JP7414452B2 (en) * 2019-10-08 2024-01-16 株式会社Uacj Aluminum alloy material and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545810A (en) * 1977-06-16 1979-01-17 Kubota Ltd Aluminium alloy for casting
JPS63179042A (en) * 1987-01-19 1988-07-23 Ryobi Ltd Corrosion-resisting aluminum alloy for die casting
JPH03202436A (en) * 1989-12-28 1991-09-04 Toyota Central Res & Dev Lab Inc High toughness aluminum alloy
JPH11293375A (en) * 1998-04-14 1999-10-26 Hitachi Metals Ltd Aluminum alloy die casting with high toughness and its production
WO2003023080A1 (en) * 2001-09-04 2003-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy

Also Published As

Publication number Publication date
JP2018127708A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
US20060011321A1 (en) Aluminum diecasting alloy
JP4187018B2 (en) Cast aluminum alloy with excellent relaxation resistance and heat treatment method
CA2721761C (en) Aluminum alloy and manufacturing method thereof
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
EP2481822B1 (en) Magnesium-aluminum based alloy with grain refiner
JP6685222B2 (en) Aluminum alloy composites with improved high temperature mechanical properties
AU2010322541B2 (en) Aluminum alloy and manufacturing method thereof
CN108559875B (en) High-strength heat-resistant aluminum alloy material for engine piston and preparation method thereof
JP6229130B2 (en) Cast aluminum alloy and casting using the same
WO2011035654A1 (en) High-strength heat-proof aluminum alloy material containing beryllium and rare earth and producing method thereof
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
WO2011035653A1 (en) High-strength heat-proof aluminum alloy material containing cobalt and rare earth and producing method thereof
WO2011035650A1 (en) Nickel-rare earth co-doped high-strength heat-proof aluminum alloy material and producing method thereof
CN110438358B (en) Composite modifier for hypereutectic aluminum-silicon-copper alloy and preparation method thereof
JP6900199B2 (en) Manufacturing method of aluminum alloy for casting, aluminum alloy casting products and aluminum alloy casting products
JP7152977B2 (en) aluminum alloy
CN113667864B (en) Preparation process of Al-Si-Mg-B-Mn casting alloy with excellent fluidity
JP2008025003A (en) Casting aluminum alloy, and casting of the aluminum alloy
EP2295608B1 (en) Aluminium-based grain refiner
Chen et al. Microstructure and mechanical properties of AZ91-Ca magnesium alloy cast by different processes
JP4575645B2 (en) Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
WO2011032433A1 (en) High-strength heat-proof aluminum alloy material containing tungsten and rare earth and producing method thereof
CA3130939C (en) Aluminium-based alloy
RU2506337C1 (en) Castable magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210616

R150 Certificate of patent or registration of utility model

Ref document number: 6900199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150