JP2017078213A - Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same - Google Patents

Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same Download PDF

Info

Publication number
JP2017078213A
JP2017078213A JP2015207274A JP2015207274A JP2017078213A JP 2017078213 A JP2017078213 A JP 2017078213A JP 2015207274 A JP2015207274 A JP 2015207274A JP 2015207274 A JP2015207274 A JP 2015207274A JP 2017078213 A JP2017078213 A JP 2017078213A
Authority
JP
Japan
Prior art keywords
aluminum alloy
forging
alloy powder
sliding parts
forged product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015207274A
Other languages
Japanese (ja)
Inventor
匠 丸山
Takumi Maruyama
匠 丸山
崇史 藤井
Takashi Fujii
崇史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015207274A priority Critical patent/JP2017078213A/en
Priority to EP16194363.4A priority patent/EP3170594B1/en
Publication of JP2017078213A publication Critical patent/JP2017078213A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • B22F2003/175Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging by hot forging, below sintering temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy powder which makes it possible to obtain an aluminum alloy powder forging having excellent wear resistance and high-temperature strength, as a forging for a slide component used at high load, such as an automobile engine piston and others, and an aluminum alloy forging for slide components having excellent wear resistance and high-temperature strength, using the aluminum alloy powder.SOLUTION: An aluminum alloy powder for hot forging for slide components comprises Si: 10.0-19.0% and Mn: 3.0-10.0% with the balance being Al and inevitable impurities, with the average size of Si crystal grains of 15 μm or less. The aluminum alloy powder may comprise Cu: 0.5-10.0% and Mg: 0.2-3.0%. An aluminum alloy forging for slide components is obtained by hot forging the powdery extrusion material.SELECTED DRAWING: Figure 1

Description

本発明は、自動車などの内燃機関に使用されるエンジンピストン等、高温下で高速で摺動する部品として使用されるアルミニウム合金鍛造品、とりわけ粉末の押出材を熱間鍛造して得られる鍛造品に適したアルミニウム合金粉末、及びそのアルミニウム合金粉末の製造方法、さらにそのアルミニウム合金粉末を用いた摺動部品用アルミニウム合金鍛造品、及びそのアルミニウム合金鍛造品の製造方法に関するものである。   The present invention relates to an aluminum alloy forged product used as a part that slides at a high speed at high temperatures, such as an engine piston used in an internal combustion engine such as an automobile, and more particularly a forged product obtained by hot forging a powder extruded material. The present invention relates to an aluminum alloy powder suitable for the above, a method for producing the aluminum alloy powder, an aluminum alloy forged product for sliding parts using the aluminum alloy powder, and a method for producing the aluminum alloy forged product.

内燃機関のエンジンピストンは、高温下でシリンダに対し高速で摺動する部材であり、そこで優れた耐摩耗性が要求されるとともに、強度、とりわけ高温強度に優れていることが求められ、また耐焼付性にも優れていることが必要である。
一方、自動車部品としては、近年の自動車業界における燃費向上の要請から、軽量化、高機能化の要求が高まってきている。そこで自動車用のエンジンピストンの材料としても、従来の一般的な鉄鋼材や鋳鉄材に代えて、軽量なアルミニウム合金を使用する傾向が強まっている。
An engine piston of an internal combustion engine is a member that slides at a high speed with respect to a cylinder at a high temperature, and therefore requires excellent wear resistance, and is required to have excellent strength, particularly high temperature strength. It is necessary to have excellent seizure properties.
On the other hand, with respect to automobile parts, demands for weight reduction and higher functionality are increasing due to recent demands for improving fuel consumption in the automobile industry. Therefore, as a material for engine pistons for automobiles, there is an increasing tendency to use a light aluminum alloy instead of a conventional general steel material or cast iron material.

各種アルミニウム合金のうちでも、Siを約10質量%以上含有しているAl−Si系合金、すなわち共晶組成〜過共晶組成の高Siのアルミニウム合金は、熱膨張係数が小さく、優れた耐摩耗性を有していることから、自動車用エンジンの材料として従来から用いられている。
しかしながら、Siを多量に含むこの種のAl-Si系合金は、従来一般には溶解―鋳造法によって製造されているため、鋳造欠陥を完全に防止することは困難であり、また初晶Siが粗大に晶出したり、偏析することがあるため、強度および靱性の低下をもたらしており、そのため自動車用エンジンの材料として満足できるものではなかった。またこの種の高SiのAl−Si系合金は、合金元素の種類や添加量に制限があるため、飛躍的に特性を向上させた合金の開発には限界があった。
Among various aluminum alloys, an Al—Si based alloy containing about 10% by mass or more of Si, that is, an aluminum alloy having a high eutectic composition to a hypereutectic composition has a small thermal expansion coefficient and excellent resistance. Since it has abradability, it has been conventionally used as a material for automobile engines.
However, since this type of Al-Si alloy containing a large amount of Si is generally manufactured by a melting-casting method, it is difficult to completely prevent casting defects, and primary Si is coarse. In some cases, crystallization or segregation occurs, resulting in a decrease in strength and toughness, which is not satisfactory as a material for automobile engines. Further, since this type of high Si Al—Si alloy has limitations on the types and addition amounts of alloy elements, there has been a limit to the development of an alloy having dramatically improved characteristics.

そこで、アトマイズ法により得られた高SiのAl−Si系合金粉末を用い、いわゆる粉末冶金法を適用して得られた材料を自動車用エンジンの材料として使用することが考えられている。アトマイズ法によれば、急冷凝固によって微細・均一な組織を有するアルミニウム合金粉末を得ることができ、なおかつ多量の合金元素の添加が可能である。すなわち、アトマイズ法では、アルミニウム合金溶湯を10〜10℃/秒程度の高い冷却速度で急冷凝固させることができ、そのため合金構成元素の凝固時の拡散を抑制して、結晶粒や析出物の粗大化を抑制することができ、さらに平衡相や準安定相の出現抑制により、合金元素の固溶量、とりわけFe、Ni、Mnで代表される遷移元素の固溶量の拡大が可能となる。 Therefore, it is considered to use a material obtained by applying a so-called powder metallurgy method using a high-Si Al—Si alloy powder obtained by an atomizing method as a material for an automobile engine. According to the atomizing method, an aluminum alloy powder having a fine and uniform structure can be obtained by rapid solidification, and a large amount of alloy elements can be added. That is, in the atomization method, the molten aluminum alloy can be rapidly solidified at a high cooling rate of about 10 3 to 10 5 ° C./second, and therefore, diffusion of the alloy constituent elements during solidification can be suppressed, and crystal grains and precipitates can be obtained. In addition, by suppressing the appearance of equilibrium phase and metastable phase, it is possible to increase the solid solution amount of alloy elements, especially the transition element represented by Fe, Ni and Mn. Become.

従来から、高負荷のエンジンピストン等に要求される高温高強度を有する材料を得るための一つの手法として、共晶組成〜過共晶組成でかつ高融点金属であるFe、Ni、Mn等の遷移元素を比較的多量に添加したAl−Si系の高Siアルミニウム合金の粉末を、アトマイズ法により製造し、そのアトマイズ法による急冷凝固粉末を、粉末冶金法により圧縮成形、押出、鍛造した鍛造品を自動車用エンジンなど高負荷での耐摩耗性材料として使用することが、例えば特許文献1等によって提案されている。   Conventionally, as one method for obtaining a material having high temperature and high strength required for a high-load engine piston or the like, eutectic composition to hypereutectic composition and high melting point metals such as Fe, Ni, Mn, etc. Forged products in which Al-Si-based high-Si aluminum alloy powders with a relatively large amount of transition elements are produced by the atomizing method, and rapidly solidified powders by the atomizing method are compression molded, extruded, and forged by powder metallurgy. Has been proposed by, for example, Patent Document 1 and the like as a wear-resistant material under a high load such as an automobile engine.

特開昭63−266005号公報JP-A 63-266005

前記の特許文献1の技術では、強度改善のための合金元素として、遷移元素であるFe、Ni、Mnのいずれか1以上を添加することとしているが、本発明者等の実験・検討によれば、これらの遷移元素のうち、Fe又は/及びNiを用いた場合には、最終的な鍛造後の摺動部品として、必ずしも十分な耐摩耗性及び高温強度は得られないことが判明した。もちろん、Fe又は/及びNiの添加量を増加すれば耐摩耗性及び高温強度を高めることは可能であるが、その場合には材料が脆くなって、鍛造等において割れが発生する問題があり、したがって、むやみにFe又は/及びNiの添加量を増加させることは避けなければならない。   According to the technique of the above-mentioned Patent Document 1, at least one of transition elements Fe, Ni, and Mn is added as an alloy element for improving the strength. For example, when using Fe or / and Ni among these transition elements, it has been found that sufficient wear resistance and high-temperature strength are not necessarily obtained as a sliding component after final forging. Of course, if the addition amount of Fe or / and Ni is increased, it is possible to increase the wear resistance and high temperature strength, but in that case, the material becomes brittle and there is a problem that cracking occurs in forging, Therefore, it is necessary to avoid increasing the amount of Fe or / and Ni added unnecessarily.

なお、上記の特許文献1の場合、主として押出材での特性評価を行っており、押出後に鍛造を施した鍛造品の評価はほとんど行っていない。エンジンピストンを押出材から製造する場合、総削りを行う場合もあるが、メタルフローが製品形状に沿った流れを示す鍛造品の方が特性に優れ、なお且つコスト面でも有利なため、鍛造品の段階での評価が重要な要素となるが、上記のように特許文献1では鍛造品段階での評価はほとんど行っていないため、鍛造品としてエンジンピストンに最適であるか否かは不明である。   In the case of the above-mentioned Patent Document 1, evaluation of characteristics is mainly performed with an extruded material, and evaluation of a forged product subjected to forging after extrusion is hardly performed. When engine pistons are manufactured from extruded materials, total cutting may be performed, but forged products that have a metal flow that follows the shape of the product have superior characteristics and are advantageous in terms of cost. Although the evaluation at this stage is an important factor, as described above, in Patent Document 1, since the evaluation at the forged product stage is hardly performed, it is unclear whether or not the engine piston is optimal as a forged product. .

また、Fe又は/及びNiを多量に添加した場合には、次のような別の問題も発生することが確認されている。   In addition, when a large amount of Fe or / and Ni is added, it has been confirmed that another problem such as the following also occurs.

すなわち、Niは高価な元素であるから、Niを添加した場合には材料コストの上昇を招き、一方Feは、アトマイズのための合金溶製時において鉄製治具などから溶湯中に混入することが多い元素であり、そのためFeを特性性改善のための合金添加元素として使用すれば、合金中のFe量の厳密な制御が困難となるおそれがある。さらに、Fe、Niは高融点であるため、アトマイズのための合金溶湯の溶製温度を高くしなければならず、そのためコスト上昇や耐火物の問題が生じやすい。またFe、Niは、AlやSiと比較してその比重が大きく、そのためFe、Niを多量に添加すれば、軽量性が要求される自動車用エンジンピストンの用途には不利となる。   That is, since Ni is an expensive element, the addition of Ni causes an increase in material cost, while Fe may be mixed in the molten metal from an iron jig or the like during alloy melting for atomization. Therefore, if Fe is used as an alloy addition element for improving the characteristics, it is difficult to strictly control the amount of Fe in the alloy. Furthermore, since Fe and Ni have a high melting point, it is necessary to increase the melting temperature of the molten alloy for atomization, which tends to cause cost increases and refractory problems. Fe and Ni have a larger specific gravity than Al and Si. Therefore, if a large amount of Fe and Ni is added, it is disadvantageous for use in an automobile engine piston that requires light weight.

本発明は、以上の事情を背景としてなされたもので、前述のような問題を招くことなく、自動車用エンジンピストンなど、高負荷で使用される摺動部品向けの鍛造品として、耐摩耗性及び高温強度が優れたアルミニウム合金粉末鍛造品が得られるようなアルミニウム合金粉末、及びそのアルミニウム合金粉末を用いた、耐摩耗性及び高温強度が優れた摺動部品用アルミニウム合金鍛造品を提供することを課題とするものである。   The present invention has been made in the background of the above circumstances, and as a forged product for sliding parts used at high loads, such as engine pistons for automobiles, without causing the problems described above, wear resistance and To provide an aluminum alloy powder forged aluminum alloy powder with excellent high-temperature strength, and an aluminum alloy forged product for sliding parts with excellent wear resistance and high-temperature strength using the aluminum alloy powder. It is to be an issue.

前述の課題を解決するべく、本発明者等が種々事件・検討を重ねたところ、アトマイズ法により得られたAl−Si系合金粉末を圧縮成形、押出、熱間鍛造して得られる鍛造品の特性としては、遷移元素であるFe、Ni、Mnのうち、Mnを添加した場合は、Fe、Niを添加した場合と比較して、同じ添加量でも、格段に優れた耐摩耗性及び高温強度が得られることを見い出した。すなわち、自動車用エンジンピストン等の高負荷で使用される摺動部品としては、遷移元素としてMnを添加した場合には、Fe、Niを添加した場合よりも格段に優位となることが知見された。   In order to solve the above-mentioned problems, the present inventors have made various incidents and examinations. As a result, the Al-Si alloy powder obtained by the atomization method is compression-molded, extruded, and hot forged. As characteristics, among the transition elements Fe, Ni, and Mn, when Mn is added, the wear resistance and high-temperature strength are much superior even when the same amount is added compared to the case where Fe and Ni are added. I found out that That is, it has been found that, as a sliding part used at a high load such as an engine piston for automobiles, when Mn is added as a transition element, it is significantly superior to the case where Fe and Ni are added. .

さらに、Mnを使用すれば、Niを添加した場合の材料コストの上昇の問題を招くことが回避されるとともに、Feを添加した場合の鉄製治具などから溶湯中に混入するFeによる問題も招くことがないことを認識した。またMnは、Fe、Niと比較して低融点であるため、アトマイズのための合金溶湯の溶製温度を高くする必要もないこと、しかもMnは、Fe、Niと比較してその比重が小さく、そのため軽量性が要求される自動車用エンジンピストンの用途に有利となる。
このように、自動車用エンジンピストンなどの摺動部品向けの共晶組成〜過共晶組成の高SiのAl−Si系アルミニウム合金粉末としては、特性改善のための添加元素(遷移元素)として、Fe又は/及びNiではなく、もっぱらMnを使用することが有利であることを知見し、本発明をなすに至った。
Furthermore, if Mn is used, the problem of an increase in material cost when Ni is added is avoided, and a problem due to Fe mixed in the molten metal from an iron jig or the like when Fe is added is also caused. Recognized that there was nothing. Further, since Mn has a lower melting point than Fe and Ni, it is not necessary to increase the melting temperature of the molten alloy for atomization, and Mn has a lower specific gravity than Fe and Ni. Therefore, it is advantageous for the application of an engine piston for automobiles that requires light weight.
Thus, as a high Si Al-Si based aluminum alloy powder of eutectic composition to hypereutectic composition for sliding parts such as automobile engine pistons, as an additive element (transition element) for improving characteristics, It has been found that it is advantageous to use Mn exclusively rather than Fe or / and Ni, and the present invention has been made.

したがって本発明の基本的な態様(第1の態様)による摺動部品向け熱間鍛造用アルミニウム合金粉末は、
質量%で、
Si:10.0〜19.0%、
Mn:3.0〜10.0%
を含み、残部がAl及び不可避的不純物よりなり、
かつSi結晶粒の大きさが平均で15μm以下であることを特徴とするものである。
Therefore, the aluminum alloy powder for hot forging for sliding parts according to the basic aspect of the present invention (first aspect) is:
% By mass
Si: 10.0 to 19.0%,
Mn: 3.0 to 10.0%
And the balance consists of Al and inevitable impurities,
In addition, the average size of the Si crystal grains is 15 μm or less.

また本発明の第2の態様による摺動部品向け熱間鍛造用アルミニウム合金粉末は、
第1の態様において、さらに、質量%で、Cu:0.5〜10.0%およびMg:0.2〜3.0%を含むことを特徴とする。
Moreover, the aluminum alloy powder for hot forging for sliding parts according to the second aspect of the present invention,
1st aspect WHEREIN: Furthermore, Cu: 0.5-10.0% and Mg: 0.2-3.0% are contained by the mass%, It is characterized by the above-mentioned.

さらに本発明の第3の態様による摺動部品向け熱間鍛造用アルミニウム合金粉末は、
第1もしくは第2の態様において、さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種又は2種以上を、質量%で、それぞれ0.01〜5.0%含むことを特徴とする。
Furthermore, the aluminum alloy powder for hot forging for sliding parts according to the third aspect of the present invention is:
1st or 2nd aspect WHEREIN: Furthermore, 1 type (s) or 2 or more types in Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb are 0.01 to It is characterized by containing 5.0%.

また本発明の第4の態様は、
第1〜第3のいずれかの態様の摺動部品向け熱間鍛造用アルミニウム合金粉末を製造する方法であって、
第1〜第3のいずれかの態様に記載された成分組成の合金の溶湯を溶製し、その溶湯をアトマイズ法によって急冷凝固させて粉末化することを特徴とする。
The fourth aspect of the present invention is
A method of producing an aluminum alloy powder for hot forging for sliding parts according to any one of the first to third aspects,
A melt of the alloy having the component composition described in any one of the first to third aspects is melted, and the melt is rapidly solidified by an atomizing method to be pulverized.

さらに本発明の第5の態様は、
アルミニウム合金粉末の押出材を熱間鍛造してなる摺動部品用アルミニウム合金鍛造品であって、
質量%で、
Si:10.0〜19.0%、
Mn:3.0〜10.0%
を含み、残部がAl及び不可避的不純物よりなり、
かつSi結晶粒の大きさが平均で15μm以下であることを特徴とするものである。
Furthermore, the fifth aspect of the present invention provides
An aluminum alloy forged product for sliding parts formed by hot forging an extruded material of aluminum alloy powder,
% By mass
Si: 10.0 to 19.0%,
Mn: 3.0 to 10.0%
And the balance consists of Al and inevitable impurities,
In addition, the average size of the Si crystal grains is 15 μm or less.

さらに本発明の第6の態様の摺動部品用アルミニウム合金鍛造品は、
第5の態様において、
さらに、質量%で、Cu:0.5〜10.0%およびMg:0.2〜3.0%のうちの1種又は2種を含むことを特徴とする。
Furthermore, the aluminum alloy forged product for sliding parts of the sixth aspect of the present invention is:
In the fifth aspect,
Furthermore, it is characterized by containing one or two of Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0% by mass%.

また本発明の第7の態様の摺動部品用アルミニウム合金鍛造品は、
第5、第6のいずれかの態様において、
さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種又は2種以上を、質量%で、それぞれ0.01〜5.0%含むことを特徴とする。
The aluminum alloy forged product for sliding parts according to the seventh aspect of the present invention is
In any of the fifth and sixth aspects,
Furthermore, it is characterized by containing one or more of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb in 0.01% to 5.0% by mass. To do.

また本発明の第8の態様の摺動部品用アルミニウム合金鍛造品の製造方法は、
第1〜第3のいずれかの態様の摺動部品向け熱間鍛造用アルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
得られた圧粉体を熱間押出しして、押出材を得る押出工程と、
前記押出材を熱間鍛造して、Si結晶粒の大きさが平均で15μm以下である鍛造品を得る鍛造工程と
を有することを特徴とするものである。
Moreover, the manufacturing method of the aluminum alloy forged product for sliding parts according to the eighth aspect of the present invention includes:
A compression molding step of compressing the aluminum alloy powder for hot forging for sliding parts of any one of the first to third aspects to obtain a green compact; and
Extrusion process to obtain extruded material by hot extrusion of the obtained green compact,
A hot forging of the extruded material to obtain a forged product having an average Si crystal grain size of 15 μm or less.

さらに本発明の第9の態様の摺動部品用アルミニウム合金鍛造品の製造方法は、
前記アルミニウム合金粉末が、質量%で、Cu:0.5〜10.0%およびMg:0.2〜3.0%を含む場合に、
前記鍛造工程の後、さらに鍛造品に溶体化処理を施し、焼入れして時効処理を施すことを特徴とする。
Furthermore, the method for producing an aluminum alloy forged product for sliding parts according to the ninth aspect of the present invention,
When the aluminum alloy powder contains, by mass%, Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0%,
After the forging step, the forged product is further subjected to a solution treatment, quenched, and subjected to an aging treatment.

本発明によれば、自動車用エンジンピストンの如く、高負荷で使用される摺動部品向けのアルミニウム合金粉末鍛造品として、耐摩耗性及び高温強度が優れたものを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, what is excellent in abrasion resistance and high temperature strength can be obtained as an aluminum alloy powder forging product for sliding parts used with high load like an automobile engine piston.

本発明の鍛造品の製造プロセスの一例の全体を概略的に示すフロー図である。It is a flowchart which shows roughly the whole of an example of the manufacturing process of the forged product of this invention. 本発明の実施例における鍛造前後の状況を示す斜視図である。It is a perspective view which shows the condition before and after forging in the Example of this invention.

以下、本発明の摺動部品向け熱間鍛造用アルミニウム合金粉末とその製造方法、及び摺動部品用アルミニウム合金鍛造品とその製造方法の実施形態について、詳細に説明する。なお、以下に示す実施形態は例示に過ぎず、本発明がこれらの実施形態に限定されないことはもちろんである。   Hereinafter, embodiments of an aluminum alloy powder for hot forging for sliding parts and a method for producing the same, and an aluminum alloy forged product for sliding parts and a method for producing the same will be described in detail. Note that the embodiments described below are merely examples, and the present invention is of course not limited to these embodiments.

先ずアルミニウム合金粉末の成分組成について説明する。
本発明の摺動部品向け熱間鍛造用アルミニウム合金粉末は、基本的には、必須合金成分として、Si:10.0〜19.0%と、Mn:3.0〜10.0%とを含み、残部がAl及び不可避的不純物よりなるものである。また必要に応じて、上記の必須成分のほか、さらにCu:0.5〜10.0%およびMg:0.2〜3.0%を含んでいてもよい。さらに、必要に応じて、上記の必須成分のほか、もしくは上記の必須成分とCu及びMnのほか、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種または2種以上が、それぞれ0.01〜5.0%含有されていてもよい。そこで次にこれらの合金元素の限定理由を説明する。なおここで、各成分についての「%」は、全て質量%を意味する。
First, the component composition of the aluminum alloy powder will be described.
The aluminum alloy powder for hot forging for sliding parts of the present invention basically includes Si: 10.0 to 19.0% and Mn: 3.0 to 10.0% as essential alloy components. And the balance is made of Al and inevitable impurities. In addition to the above essential components, Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0% may be included as necessary. Furthermore, in addition to the above-mentioned essential components or the above-described essential components and Cu and Mn, if necessary, one of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb Or 2 or more types may contain 0.01-5.0%, respectively. Then, the reason for limitation of these alloy elements is demonstrated next. Here, “%” for each component means mass%.

<Si:10.0〜19.0%>
Siは、本発明のアルミニウム合金粉末で基本的に重要な元素であって、Ai−Si系の共晶〜過共晶域のSiを含有することによって、Si晶出物(初晶Si、共晶Si)を多量に晶出させ、特に微細なSi晶出物によって耐摩耗性向上に寄与し、また強度向上に寄与する。Si量が10%未満では、Si晶出物の量が少なくなって耐摩耗性および強度の低下をもたらし、19%を超えれば、粗大な初晶Siが晶出して強度の低下をもたらすとともに、材料の脆化をもたらして、鍛造性が低下する。そこで、高い耐摩耗性と強度、特に高温強度を得ると同時に、鍛造性を両立させるため、Si量は10.0〜19.0%の範囲内とした。なおSi量は、特に12%〜16%の範囲内が望ましい。
<Si: 10.0 to 19.0%>
Si is basically an important element in the aluminum alloy powder of the present invention. By containing Si in the Ai-Si eutectic to hypereutectic region, Si crystallized product (primary Si, co-crystal) is obtained. A large amount of crystal Si) is crystallized, and the fine Si crystallized product contributes to the improvement of wear resistance and the strength. If the amount of Si is less than 10%, the amount of Si crystallized product decreases, resulting in a decrease in wear resistance and strength, and if it exceeds 19%, coarse primary crystal Si crystallizes and causes a decrease in strength. The material becomes brittle and forgeability is reduced. Therefore, in order to obtain high wear resistance and strength, particularly high temperature strength, and at the same time achieve both forgeability, the Si content is set in the range of 10.0 to 19.0%. The amount of Si is particularly preferably in the range of 12% to 16%.

<Mn:3.0〜10.0%>
Mnは、遷移金属として金属間化合物を生成し、分散強化によって耐摩耗性、高温強度を向上させるために寄与する。既に述べたように、高SiのAl−Si系合金の強度向上のために、FeやNiを添加することがあるが、本発明者等の実験、検討によれば、Fe、Niを添加するよりも、Mnを添加した場合の方が、耐摩耗性向上効果が格段に大きいことが判明している。またそればかりでなく、高温強度の向上効果も、Mnを用いれば、Fe、Niの添加による向上効果よりも顕著となることが確認されている。さらに、Mnは安価であることから、高価なNiを添加した場合のような材料コストの上昇を招くことはなく、またMnは、合金の溶製時などにおいて混入することが少なく、そのため合金のMn量の厳密な制御が容易となる。またMnは、Fe、Niと比較して低融点であるため、アトマイズのための合金溶湯の溶製温度を高くする必要もない。さらにMnは、Fe、Niよりも低比重であるため、材料の軽量化のためには、Fe、NiよりもMnを添加することが有利であり、特に軽量性が要求される自動車用エンジンピストンの用途には有利となる。これらの観点から、本発明においては、Fe、Niは積極的には添加せず、Mnを添加することによって耐摩耗性、高温強度の向上を図ることとしている。
<Mn: 3.0 to 10.0%>
Mn generates an intermetallic compound as a transition metal, and contributes to improving wear resistance and high-temperature strength by dispersion strengthening. As already described, Fe and Ni may be added to improve the strength of a high-Si Al—Si alloy, but according to experiments and studies by the present inventors, Fe and Ni are added. It has been found that the effect of improving the wear resistance is much greater when Mn is added. In addition, it has been confirmed that the effect of improving the high temperature strength becomes more prominent than that of adding Fe and Ni when Mn is used. Furthermore, since Mn is inexpensive, there is no increase in material cost as in the case of adding expensive Ni, and Mn is rarely mixed during the melting of the alloy. Strict control of the amount of Mn becomes easy. Moreover, since Mn has a lower melting point than Fe and Ni, it is not necessary to increase the melting temperature of the molten alloy for atomization. Further, since Mn has a lower specific gravity than Fe and Ni, it is advantageous to add Mn to Fe and Ni for reducing the weight of the material, and an automobile engine piston that is particularly required to be lightweight. This is advantageous for applications. From these viewpoints, in the present invention, Fe and Ni are not positively added, but by adding Mn, wear resistance and high temperature strength are improved.

ここで、Mn量に関しては、3.0%を下回れば、金属間化合物による分散強化が十分に図れない。一方、Mn量が10.0%を超えれば、硬さや耐摩耗性が却って低くなり、成形体において材質が脆くなる傾向がある。そこでMn量は3.0〜10.0%の範囲内とした。なおMn量は、上記の範囲内でも、特に6.0〜8.0%の範囲内が好ましい。   Here, if the amount of Mn is less than 3.0%, the dispersion strengthening by the intermetallic compound cannot be sufficiently achieved. On the other hand, if the amount of Mn exceeds 10.0%, hardness and abrasion resistance are lowered, and the material tends to be brittle in the molded body. Therefore, the amount of Mn is set in the range of 3.0 to 10.0%. The amount of Mn is particularly preferably in the range of 6.0 to 8.0% even within the above range.

<Cu:0.5〜10.0%>
Cuは、Mgと共働して合金に時効硬化性を付与するに有効な元素である。したがってMgとともにCuを添加しておけば、熱処理型合金として、鍛造材に溶体化処理―焼入れ、時効硬化処理を施して、常温及び高温強度を向上させるために有効に機能する。
Cu量の含有量が0.5%未満では、充分な時効硬化性が得られず、そのため強度向上の効果が少ない。一方Cu量が10%を越えれば、押出加工性が劣化する。したがってCu含有量は0.5〜〜10%の範囲内とした。なおCu量は、上記の範囲内でも、特に2.0〜5.0%の範囲内が好ましい。
<Cu: 0.5 to 10.0%>
Cu is an element effective in cooperating with Mg and imparting age hardening to the alloy. Accordingly, if Cu is added together with Mg, it effectively functions as a heat-treatable alloy to improve the normal temperature and high-temperature strength by subjecting the forging to solution treatment-quenching and age hardening treatment.
If the Cu content is less than 0.5%, sufficient age-curing property cannot be obtained, and therefore the effect of improving the strength is small. On the other hand, if the amount of Cu exceeds 10%, extrusion processability deteriorates. Therefore, the Cu content is set in the range of 0.5 to 10%. The Cu amount is particularly preferably within the range of 2.0 to 5.0% even within the above range.

<Mg:0.2〜3.0%>
Mgは、前述のようにCuと共働して合金に時効硬化性を付与するに有効な元素である。したがってCuとともにMgを添加しておけば、熱処理型合金として、鍛造材に溶体化処理―焼入れ、時効硬化処理を施して、常温及び高温強度を向上させるために有効に機能する。
Mg量の含有量が0.2%未満では、充分な時効硬化性が得られず、そのため強度向上の効果が少ない。一方Mg量が3.0%を越えれば、押出加工性が劣化する。したがってCu含有量は0.2〜〜3.0%の範囲内とした。なおMg量は、上記の範囲内でも、特に1.0〜2.0%の範囲内が好ましい。
<Mg: 0.2-3.0%>
As described above, Mg is an element effective for cooperating with Cu and imparting age hardening to the alloy. Therefore, if Mg is added together with Cu, it effectively functions as a heat-treatable alloy to improve the normal temperature and high-temperature strength by subjecting the forging to solution treatment-quenching and age hardening treatment.
If the Mg content is less than 0.2%, sufficient age-curing property cannot be obtained, so that the effect of improving the strength is small. On the other hand, if the amount of Mg exceeds 3.0%, the extrusion processability deteriorates. Therefore, the Cu content is set in the range of 0.2 to 3.0%. The Mg amount is particularly preferably in the range of 1.0 to 2.0% even within the above range.

<Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種または2種以上:0.01〜5.0%>
これらの元素は、いずれもアルミニウム中での拡散速度が遅いため、合金の耐熱性を改善して高温強度を顕著に向上させる効果を示す。ここで、これらのいずれの元素も、その含有量が0.1未満では、上記の効果が充分に得られず、一方0.5%を超えれば、材質が脆くなる傾向を示す。なおこれらの元素の2種以上を含有させる場合の合計量は、8.0%以下とすることが好ましい。
<One or more of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb: 0.01 to 5.0%>
Since these elements all have a low diffusion rate in aluminum, they exhibit the effect of improving the heat resistance of the alloy and significantly increasing the high temperature strength. Here, if the content of any of these elements is less than 0.1, the above effect cannot be obtained sufficiently, while if it exceeds 0.5%, the material tends to become brittle. The total amount when two or more of these elements are contained is preferably 8.0% or less.

なお、Cu及びMgと、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種または2種以上とは、いずれか一方のみを含有させても、また両者を同時に含有させてもよい。   In addition, Cu and Mg and Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb may be either one or two or more of them. May be contained at the same time.

以上の各元素のほかは、基本的にはAl及び不可避的不純物とすればよい。なお、本発明において、Fe、Niは、基本的には不純物扱いとしており、通常は、Feは1.0%以下、NIは1.0%以下に規制することが好ましい。ただし、場合によっては、Fe3.0%未満、Ni2.0%未満の範囲内でFe、Niのいずれか一方もしくは双方を含有することも許容される。   In addition to the above elements, basically, Al and inevitable impurities may be used. In the present invention, Fe and Ni are basically treated as impurities, and it is usually preferable to limit Fe to 1.0% or less and NI to 1.0% or less. However, depending on the case, it is permitted to contain either one or both of Fe and Ni within the range of Fe less than 3.0% and Ni less than 2.0%.

さらに本発明の摺動部品向け熱間鍛造用アルミニウム合金粉末においては、粉末粒子中のSi結晶粒が平均で15μm以下であることが必要である。ここで、粉末粒子中のSi結晶粒とは、Si単体の結晶粒であって、初晶Si、共晶Siの両者を含む。これらのSi結晶粒のうち、初晶Siは、粗大なものとなりやすいが、平均で15μm以下に規制することにより、後述するように圧縮成形、押出、熱間鍛造後の材料(鍛造品)としても、Si結晶粒を平均で15μm以下の微細なものに抑えることが容易となり、その結果、耐摩耗性の向上、強度、高温強度の向上を図ることが可能となる。粉末粒子中のSi結晶粒が平均で15μmを超えれば、圧縮成形、押出、熱間鍛造後の鍛造品におけるSi結晶粒が粗大となり、耐摩耗性、強度、高温強度を充分に向上させることが困難となる。   Further, in the aluminum alloy powder for hot forging for sliding parts of the present invention, the Si crystal grains in the powder particles must be 15 μm or less on average. Here, the Si crystal grains in the powder particles are crystal grains of Si alone, and include both primary Si and eutectic Si. Of these Si crystal grains, primary Si is likely to be coarse, but by restricting to an average of 15 μm or less, as a material (forged product) after compression molding, extrusion, and hot forging as will be described later However, it becomes easy to suppress the Si crystal grains to fine particles having an average size of 15 μm or less, and as a result, it is possible to improve wear resistance, strength, and high-temperature strength. If the Si crystal grains in the powder particles exceed 15 μm on average, the Si crystal grains in the forged product after compression molding, extrusion, and hot forging become coarse, and the wear resistance, strength, and high temperature strength can be sufficiently improved. It becomes difficult.

なおアルミニウム合金粉末粒子の粒径は特に限定しないが、通常は平均で30〜70μm程度が好ましい。平均粒径が30μm未満では、歩留まりが著しく低下し、一方70μmを超えれば、粗大な酸化物および異物が混入するおそれがある。   The particle diameter of the aluminum alloy powder particles is not particularly limited, but is usually preferably about 30 to 70 μm on average. If the average particle size is less than 30 μm, the yield is remarkably reduced, while if it exceeds 70 μm, coarse oxides and foreign substances may be mixed.

ここで、上記のように高SiのAl−Si系合金でかつ合金元素として比較的多量のFeを含有し、しかもSi結晶粒が平均で15μm以下と微細でかつ粉末粒子の平均粒径が30〜70μm程度の微細な合金粉末は、アトマイズ法によって確実に得ることができる。すなわちアトマイズ法は、アルミニウム合金溶湯をガスとともにノズルから噴霧し、微細な合金溶湯粒子を10〜10℃/秒程度の冷却速度で急冷して凝固粉末を得る方法であるが、このように、微細な合金溶湯粒子を急速冷却によりことにより、合金元素の凝固時の拡散を抑制して、結晶粒や析出物の粗大化を抑制し、さらに平衡相や準安定相の出現抑制により、遷移元素であるMnの固溶量の拡大が可能となる。 Here, as described above, it is a high Si Al—Si alloy and contains a relatively large amount of Fe as an alloy element, and the Si crystal grains are fine as an average of 15 μm or less, and the average particle diameter of the powder particles is 30. A fine alloy powder of about ˜70 μm can be reliably obtained by the atomizing method. That is, the atomizing method is a method in which molten aluminum alloy is sprayed from a nozzle together with gas, and fine alloy molten particles are rapidly cooled at a cooling rate of about 10 2 to 10 5 ° C / second to obtain a solidified powder. By rapidly cooling the molten alloy particles, it suppresses the diffusion of alloy elements during solidification, suppresses coarsening of crystal grains and precipitates, and further suppresses the appearance of equilibrium and metastable phases. The solid solution amount of Mn, which is an element, can be increased.

次に本発明の一態様として、摺動部品用アルミニウム合金鍛造品について説明する。   Next, an aluminum alloy forged product for sliding parts will be described as one aspect of the present invention.

本発明の一態様の摺動部品用アルミニウム合金鍛造品は、前述のような摺動部品向け熱間鍛造用アルミニウム合金粉末を圧縮成形し、さらに押出した後、熱間鍛造することによって製造されることが望ましい。したがってこの鍛造品の成分組成は、前述の合金粉末と同様であればよい。すなわち、必須合金成分として、Si:10.0〜19.0%と、Mn:3.0〜10.0%とを含み、残部がAl及び不可避的不純物よりなる。また必要に応じて、上記の必須成分のほか、さらにCu:0.5〜10.0%およびMg:0.2〜3.0%を含んでいてもよい。さらに、必要に応じて、上記の必須成分のほか、もしくは上記の必須成分とCu及びMgのほか、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種または2種以上が、それぞれ0.01〜5.0%含有されていてもよい。これらの合金元素の限定理由は、既に述べたと同様である。   The aluminum alloy forged product for sliding parts according to one aspect of the present invention is manufactured by compression-molding the aluminum alloy powder for hot forging as described above, further extruding, and then hot forging. It is desirable. Therefore, the component composition of this forged product may be the same as that of the aforementioned alloy powder. That is, as essential alloy components, Si: 10.0 to 19.0% and Mn: 3.0 to 10.0% are contained, and the balance is made of Al and inevitable impurities. In addition to the above essential components, Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0% may be included as necessary. Furthermore, in addition to the above-mentioned essential components or Cu and Mg, one type of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb, if necessary. Or 2 or more types may contain 0.01-5.0%, respectively. The reasons for limiting these alloy elements are the same as described above.

またこの摺動部品用アルミニウム合金鍛造品は、既に合金粉末について述べたと同様に、Si結晶粒が平均で15μm以下であることが必要である。ここで、Si結晶粒とは、Si単体の結晶粒であって、初晶Si、共晶Siの両者を含む。これらのSi結晶粒のうち、初晶Siは、粗大なものとなりやすいが、平均で15μm以下に規制することにより、自動車用エンジンピストン等の摺動部品用材料として、耐摩耗性の向上、強度、高温強度の向上を図ることが可能となる。Si結晶粒が平均で15μmを超える粗大なものとなれば、耐摩耗性、強度、高温強度を充分に向上させることが困難となる。
ここで、合金粉末を圧縮成形、押出、熱間鍛造する過程では、Si結晶粒の平均的なサイズはほとんど変化しないから、前述のように合金粉末としてその粒子中のSi結晶粒が平均で15μm以下のものを用いればであれば、圧縮成形、押出、熱間鍛造後の鍛造品におけるSi結晶粒も、平均で15μm以下とすることが可能となる。
Further, this aluminum alloy forged product for sliding parts needs to have an average Si crystal grain of 15 μm or less in the same manner as described above for the alloy powder. Here, the Si crystal grain is a crystal grain of a simple substance of Si and includes both primary crystal Si and eutectic Si. Of these Si crystal grains, primary Si is likely to be coarse, but by controlling to an average of 15 μm or less, it is possible to improve wear resistance and strength as a material for sliding parts such as automobile engine pistons. It is possible to improve the high temperature strength. If the Si crystal grains are coarser than 15 μm on average, it is difficult to sufficiently improve the wear resistance, strength, and high-temperature strength.
Here, in the process of compression molding, extruding and hot forging the alloy powder, the average size of the Si crystal grains hardly changes, so that the average Si crystal grains in the particles as the alloy powder is 15 μm as described above. If the following are used, the Si crystal grains in the forged product after compression molding, extrusion, and hot forging can be reduced to 15 μm or less on average.

次に、本発明の一態様の摺動部品用アルミニウム合金鍛造品を製造するプロセスの一例について、図1を参照しながら説明する。   Next, an example of a process for manufacturing the aluminum alloy forged product for sliding parts of one embodiment of the present invention will be described with reference to FIG.

摺動部品用アルミニウム合金鍛造品を製造するプロセスの全体的な概念としては、図1に示しているように、アルミニウム合金を溶解してアトマイズ法により合金粉末を製造する粉末製造段階P1と、その粉末製造段階P1によって得られた合金粉末を用い、所定形状(例えば円柱状)に圧縮成形後、押出して熱間鍛造し、鍛造品を得る鍛造品製造段階P2と、Cu,Mgを含有する熱処理型合金である場合に、鍛造上がり材を溶体化処理―焼入れし、時効処理(実際には好ましくは過時効安定化処理)を施す熱処理段階P3からなる。これらの各段階について、さらに詳細に説明する。   As shown in FIG. 1, the overall concept of the process for producing an aluminum alloy forged product for sliding parts is as follows. As shown in FIG. 1, a powder production stage P1 in which an aluminum alloy is melted to produce an alloy powder by an atomizing method, Forging product production stage P2 in which the alloy powder obtained in the powder production stage P1 is compressed into a predetermined shape (for example, a cylindrical shape), extruded and hot forged to obtain a forged product, and heat treatment containing Cu and Mg In the case of a mold alloy, it comprises a heat treatment stage P3 in which the forged finished material is subjected to solution treatment-quenching and aging treatment (preferably overaging stabilization treatment in practice). Each of these steps will be described in more detail.

<粉末製造段階P1>
先ず前述のように成分調整されたアルミニウム合金溶湯を、通常の溶解法によって溶製する(S11)。得られたアルミニウム合金溶湯をアトマイズ法によって粉末化する(S12)。アトマイズ法は、噴霧ノズルから、窒素ガスなどのガス流により合金溶湯の微小液滴をミスト化して噴霧し、微小液滴を急冷凝固させ、微細な合金粉末を得る方法であり、種々の形式があるが、要は10〜10℃/秒程度の冷却速度が得られ、また平均で30〜70μm程度以下の微細な粒径の合金が得られる方法であれば、その形式は特に限定されない。アトマイズ法によって得られた合金粉末は、必要に応じて篩によって分級し(S13)、例えば150μmアンダーの合金粉末のみを次工程に送る。この段階で次工程に送られる合金粉末は、既に述べたような成分組成を有していて、かつ合金粉末粒子中のSi結晶粒が平均で15μm以下であることが必要である。
<Powder production stage P1>
First, the molten aluminum alloy whose components are adjusted as described above is melted by a normal melting method (S11). The obtained molten aluminum alloy is pulverized by an atomizing method (S12). The atomization method is a method in which fine droplets of molten alloy are misted and sprayed from a spray nozzle with a gas flow such as nitrogen gas, and the fine droplets are rapidly solidified to obtain fine alloy powder. However, the type is not particularly limited as long as it is a method capable of obtaining a cooling rate of about 10 3 to 10 5 ° C / second and obtaining an alloy having a fine particle size of about 30 to 70 µm or less on average. . The alloy powder obtained by the atomization method is classified by a sieve as necessary (S13), and only the alloy powder under 150 μm, for example, is sent to the next step. The alloy powder to be sent to the next process at this stage must have the component composition as described above, and the Si crystal grains in the alloy powder particles should be 15 μm or less on average.

<鍛造材製造段階P2>
[圧縮成形]
前述のようにして得られた合金粉末は、例えば250〜300℃程度に加熱(S21)して、例えば230〜270℃程度に予熱された金型内に充填し、所定形状に圧縮成形して(S22)、圧粉体とする。圧縮成形の圧力は特に限定されないが、通常は0.5〜3.0ton/cm程度の圧力とし、相対密度が60〜90%程度の圧粉体とすることが好ましい。また圧粉体の形状は特に限定されないが、通常は押出工程を考慮して、円柱状あるいは円盤状とすることが好ましい。
<Forging production stage P2>
[Compression molding]
The alloy powder obtained as described above is heated to, for example, about 250 to 300 ° C. (S21), filled in a mold preheated to, for example, about 230 to 270 ° C., and compressed into a predetermined shape. (S22) A green compact is obtained. Although the pressure of compression molding is not particularly limited, it is usually preferable to use a pressure of about 0.5 to 3.0 ton / cm 2 and a green compact with a relative density of about 60 to 90%. The shape of the green compact is not particularly limited, but usually it is preferably a cylindrical shape or a disk shape in consideration of the extrusion process.

[押出]
圧粉体には、必要に応じて面削等の機械加工を施してから、脱ガス処理(S23)を施し、加熱(S24)して押出工程(S25)に付す。押出前の加熱温度(予熱温度)は、例えば300〜450℃程度とすることが好ましい。押出に当たっては、圧粉体を押出コンテナ内に装入して、押出ラムにより加圧力を加え、押出ダイスから例えば丸棒状に押出すことになるが、押出コンテナも、予め300〜400℃程度に加熱しておくことが望ましい。このように熱間で押し出すことによって圧粉体の塑性変形が進行し、合金粉末粒子同士が結合して、一体化した押出体が得られる。
ここで、押出圧力は10〜25MPa程度、押出比(押出前後の外径比)は、5.0〜50程度、押出体の密度は2.80〜2.90程度とすることが好ましい。
[Extrusion]
The green compact is subjected to machining such as chamfering as necessary, and then subjected to degassing (S23), heated (S24), and subjected to an extrusion step (S25). The heating temperature (preheating temperature) before extrusion is preferably about 300 to 450 ° C., for example. In the extrusion, the green compact is charged into an extrusion container, applied with an extrusion ram, and extruded from an extrusion die into, for example, a round bar shape. It is desirable to heat it. Thus, by extruding hotly, the plastic deformation of the green compact proceeds, and the alloy powder particles are bonded together to obtain an integrated extruded body.
Here, the extrusion pressure is preferably about 10 to 25 MPa, the extrusion ratio (outer diameter ratio before and after extrusion) is about 5.0 to 50, and the density of the extruded body is preferably about 2.80 to 2.90.

[熱間鍛造]
例えば丸棒状の押出体は、必要に応じて所定長さに切断(S26)した後、熱間鍛造にに適した温度に加熱(S27)して熱間鍛造する(S28)。この熱間鍛造は、鍛造上がり材(鍛造品)が製品形状(例えばエンジンピストン形状)に近い形状となるように、密閉型鍛造もしくは半密閉型鍛造とすることが好ましいが、製品形状によっては自由鍛造でもよい。熱間鍛造の温度は、本発明で対象とする合金の場合、300〜450℃程度とすることが好ましい。
なお、場合によっては熱間鍛造の後、さらに製品形状に近い形状に仕上るために冷間鍛造を施すこともある。
[Hot forging]
For example, a round bar-shaped extruded body is cut to a predetermined length as required (S26), and then heated to a temperature suitable for hot forging (S27) and hot forged (S28). This hot forging is preferably closed die forging or semi-sealed die forging so that the forged material (forged product) has a shape close to the product shape (for example, engine piston shape), but it is free depending on the product shape. Forging may be used. In the case of the alloy targeted by the present invention, the hot forging temperature is preferably about 300 to 450 ° C.
In some cases, after hot forging, cold forging may be applied to finish the product closer to the product shape.

鍛造上がり材は、これに適宜切削加工や表面研磨等を施して、直ちに製品の摺動部品(例えばエンジンピストン)としてもよいが、アルミニウム合金が、時効硬化性を付与する合金元素であるCu及びMgを含有する熱処理型合金の場合には、次の熱処理段階P3に付す。   The forged material may be subjected to cutting or surface polishing as appropriate, and immediately used as a sliding part of the product (for example, an engine piston). However, the aluminum alloy is an alloy element that imparts age hardening and Cu and In the case of a heat treatment type alloy containing Mg, it is subjected to the next heat treatment stage P3.

<熱処理段階P3>
[溶体化処理(S31)]
溶体化処理は、時効硬化に寄与するCu、Mg等を過飽和に固溶させる処理であって、溶体化処理の加熱温度は480〜500℃が好ましい。480℃を下回れば、過飽和固溶体が十分に得られず、時効硬化能が低下し、一方、500℃を上回れば、結晶粒や共晶Siが粗大化して強度低下を招いたり、ポアの成長を促すといった問題が発生する。また溶体化処理の加熱時間は2hr〜4hrが好ましい。2hrを下回れば、過飽和固溶体が十分に得られず、4hrを上回れば、結晶粒や共晶Siの粗大化が発生する。
<Heat treatment stage P3>
[Solution Treatment (S31)]
The solution treatment is a treatment in which Cu, Mg, and the like contributing to age hardening are dissolved in supersaturation, and the heating temperature of the solution treatment is preferably 480 to 500 ° C. If the temperature is lower than 480 ° C, a supersaturated solid solution cannot be sufficiently obtained, and the age-hardening ability is lowered. On the other hand, if the temperature is higher than 500 ° C, crystal grains and eutectic Si are coarsened, leading to a decrease in strength, The problem of prompting occurs. The heating time for the solution treatment is preferably 2 hr to 4 hr. If it is less than 2 hr, a supersaturated solid solution cannot be obtained sufficiently, and if it exceeds 4 hr, crystal grains and eutectic Si are coarsened.

[焼入れ(S32)]
溶体化のための加熱後は、水焼入れなどによって急冷(焼入れ)して、常温での固溶限を超えてCu、Mg等が過飽和に固溶された材料(過飽和固溶体)とする。焼入れ温度は0〜50℃が好ましい。0℃を下回れば、急激な熱収縮により亀裂が発生して、割れに至るおそれがある。一方、50℃を上回れば、十分な過飽和固溶体が得られず、十分な強度が得られなくなる。
[Hardening (S32)]
After heating for solution treatment, quenching is performed by quenching with water or the like (quenching) to obtain a material (supersaturated solid solution) in which Cu, Mg, etc. are supersaturated in excess of the solid solution limit at room temperature. The quenching temperature is preferably 0 to 50 ° C. If the temperature is lower than 0 ° C., cracks may occur due to rapid thermal shrinkage, leading to cracks. On the other hand, if it exceeds 50 ° C., a sufficient supersaturated solid solution cannot be obtained, and sufficient strength cannot be obtained.

[時効処理(S33)]
溶体化処理―焼入れ後には、時効処理を施す。この時効処理により、Cu、Mg等を含む金属間化合物を微細に析出させて、強度、耐摩耗性を大幅に向上させることができる。但し、本発明の場合、エンジンピストンで代表される摺動部品の製造に適用され、このような摺動部品では、寸法安定性が良好であることが望まれる。例えばエンジンピストンでは、シリンダ内周面とのクリアランスを安定に維持することが望まれる。そこで、本発明の場合、時効処理は、一般的なT6処理における時効処理条件(最大強さを得るための時効処理条件)を超えて過時効とする、いわゆるT7処理における安定化処理まで進めることが望ましい。
[Aging treatment (S33)]
Solution treatment-After quenching, perform aging treatment. By this aging treatment, an intermetallic compound containing Cu, Mg and the like can be finely precipitated, and the strength and wear resistance can be greatly improved. However, in the case of the present invention, the present invention is applied to the manufacture of sliding parts represented by engine pistons, and such sliding parts are desired to have good dimensional stability. For example, in an engine piston, it is desired to maintain a stable clearance with the cylinder inner peripheral surface. Therefore, in the case of the present invention, the aging process is advanced to the stabilization process in the so-called T7 process, which exceeds the aging process condition (aging process condition for obtaining the maximum strength) in the general T6 process and is over-aged. Is desirable.

上記の観点から、時効処理の条件は、180℃〜280℃の範囲内の温度で、1hr〜4hrとすることが望ましい。時効処理温度が180℃を下回れば、長時間時効が必要となって生産効率が低下し、一方280℃を上回れば、短時間で結晶粒や共晶Siの粗大化が発生してしまい、強度が低下するおそれがある。また時効時間が1hr未満では、過時効にならず、安定化が不十分となって、十分な寸法安定性が得られず、一方4hrを上回れば、過剰な過時効により結晶粒や共晶Siの粗大化が発生して強度低下を招くおそれがある。   From the above viewpoint, it is desirable that the conditions for the aging treatment be 1 hr to 4 hr at a temperature in the range of 180 ° C. to 280 ° C. If the aging treatment temperature is lower than 180 ° C, aging is required for a long time and the production efficiency is lowered. On the other hand, if it exceeds 280 ° C, coarsening of crystal grains and eutectic Si occurs in a short time, and the strength May decrease. On the other hand, if the aging time is less than 1 hr, overaging does not occur and the stabilization becomes insufficient and sufficient dimensional stability cannot be obtained. On the other hand, if the aging time exceeds 4 hr, crystal grains and eutectic Si due to excessive overaging. There is a possibility that the coarsening of the material occurs and the strength is reduced.

上述のような時効処理後の鍛造品については、適宜切削加工などの機械加工や表面研磨処理などを施して、自動車用エンジンピストン等の摺動部品に仕上る。   The forged product after the aging treatment as described above is subjected to machining such as cutting or surface polishing as appropriate, and finished to a sliding part such as an engine piston for automobiles.

以下に本発明の実施例を記す。なお以下の実施例は、本発明の作用、効果を明確化するためのものであって、実施例に記載された条件が本発明の技術的範囲を限定するものでないことはもちろんである。   Examples of the present invention will be described below. The following examples are for clarifying the operation and effects of the present invention, and it is needless to say that the conditions described in the examples do not limit the technical scope of the present invention.

〔実施例1〕
表1のNo.1〜No.12に示す組成の高Siアルミニウム合金溶湯を、ガスにてアトマイズして粉末化し、篩により分級して−100メッシュの粉末を得た。この粉末の粒子中のSi結晶粒の大きさは、後述する供試材(鍛造品)についてのSi結晶粒の大きさの測定結果から、15μm以下であると推定される。
次いでその粉末を280℃の温度に予熱して、同じ温度に加熱保持した金型内に充填し、1.5ton/cmの圧力で圧縮成形して、直径210mm、長さ250mmの円柱状の圧粉体を得た。次に圧粉体を直径203mmまで旋盤にて面削し、圧粉体のビレットとした。次にその圧粉体ビレットを350℃に加熱し、350℃に加熱保持された内径210mmの押出コンテナ中に挿入し、内径75mmのダイスで間接押出法により押出比7.8により押出した。得られた押出材を、長さ30mmに切断した後、450℃に加熱して熱間自由鍛造を施し、φ107.5×L15mmの供試材(鍛造品)を得た。なお実際の摺動部品の製造に当たっては、型鍛造を行うことが多いが、ここでは特性評価のみを目的としていることから、自由鍛造を適用した。図2に、鍛造前の押出材10及び鍛造後の鍛造品20を示す。
[Example 1]
No. in Table 1 1-No. The high Si aluminum alloy melt having the composition shown in No. 12 was atomized with gas to be powdered, and classified with a sieve to obtain a powder of −100 mesh. The size of the Si crystal grains in the powder particles is estimated to be 15 μm or less from the measurement result of the size of the Si crystal grains for the test material (forged product) described later.
Next, the powder was preheated to a temperature of 280 ° C., filled in a mold heated and held at the same temperature, and compression-molded at a pressure of 1.5 ton / cm 2 to form a cylindrical shape having a diameter of 210 mm and a length of 250 mm. A green compact was obtained. Next, the green compact was chamfered to a diameter of 203 mm with a lathe to obtain a green compact billet. Next, the green compact billet was heated to 350 ° C., inserted into an extrusion container having an inner diameter of 210 mm that was heated and maintained at 350 ° C., and extruded with a die having an inner diameter of 75 mm at an extrusion ratio of 7.8. The obtained extruded material was cut to a length of 30 mm and then heated to 450 ° C. to perform hot free forging to obtain a test material (forged product) of φ107.5 × L15 mm. In the actual manufacturing of sliding parts, die forging is often performed, but here, for the purpose of evaluating characteristics only, free forging was applied. FIG. 2 shows the extruded material 10 before forging and the forged product 20 after forging.

得られた供試材(鍛造品)から約10mm×10mmのサンプルを切り出し、樹脂埋めしたのち、エメリー紙による粗研磨およびバフによる仕上げ研磨を行い、光学顕微鏡にて組織観察を行い、Si結晶粒径の測定を行った結果、いずれの供試材もSi結晶粒の大きさが15μm以下であることが確認された。   A sample of about 10 mm x 10 mm was cut out from the obtained specimen (forged product), filled with resin, then coarsely polished with emery paper and finished with buffing, and observed with an optical microscope. As a result of measuring the diameter, it was confirmed that the size of the Si crystal grains was 15 μm or less in any of the test materials.

得られた供試材を、溶体化処理として490℃に加熱して3hr保持した後、20℃の水に焼き入れした。その後、時効処理(過時効安定化処理)として、220℃で1hr加熱して、T7処理品とした。得られたT7処理品を、標点間距離25.4mm、平行部直径2.85mmの常温引張試験片および標点間距離20mm、平行部直径4mmのツバ付き高温引張試験片にそれぞれ加工して、常温、150、300℃にて引張試験を行った。なお引張試験は、各試験温度で、100hr保持後に行った。ここで、供試材No.1〜No5、No.8、No.11、No.12、は比較例であり、No.6、No.7No.9、No.10が本発明例である。これらの結果を表2に示す。   The obtained test material was heated to 490 ° C. and held for 3 hours as a solution treatment, and then quenched in water at 20 ° C. Thereafter, as an aging treatment (over-aging stabilization treatment), heating was performed at 220 ° C. for 1 hr to obtain a T7-treated product. The obtained T7 treated product was processed into a normal temperature tensile test piece with a distance between gauge points of 25.4 mm and a parallel part diameter of 2.85 mm and a high temperature tensile test piece with a flange with a distance between gauge points of 20 mm and a parallel part diameter of 4 mm. Tensile tests were performed at room temperature, 150, and 300 ° C. The tensile test was carried out at each test temperature after holding for 100 hours. Here, the test material No. 1-No5, No.1. 8, no. 11, no. 12 is a comparative example. 6, no. 7No. 9, no. 10 is an example of the present invention. These results are shown in Table 2.

表2から明らかな通り比較例であるNo.1〜4と比べて、本発明例のNo.6およびNo.7の鍛造品は、高温における引張強度および耐力が高い。   As is apparent from Table 2, the comparative example No. In comparison with Nos. 6 and no. The forged product No. 7 has high tensile strength and yield strength at high temperatures.

比較例であるNo.5も、高温強度には優れるが、鍛造時に割れが発生し、割れなく鍛造できる割合が20%と、鍛造性が極めて劣悪であることが確認された。   No. which is a comparative example. No. 5 is excellent in high-temperature strength, but cracks were generated during forging, and it was confirmed that the forgeability was extremely poor, with the ratio of forging without cracks being 20%.

また比較例であるNo.8は、おおかた割れなく鍛造することが出来たが、溶体化処理後の水焼き入れにより割れが発生した。この焼入れ割れを防止するために、60℃の温水焼入れを試みたが、割れ発生率は著しく改善することはなく、なおかつ強度が低下する原因にもなり、高強度を得られない結果となった。   Moreover, No. which is a comparative example. No. 8 could be forged with almost no cracking, but cracking occurred due to water quenching after solution treatment. In order to prevent this quenching cracking, hot water quenching at 60 ° C. was attempted, but the crack generation rate was not significantly improved, and the strength was lowered, resulting in a failure to obtain high strength. .

本発明例のNo.7と、それに対してSi量一定でMn量を振り分けたNo.9〜12を比較すれば、本発明例のNo.9、10は十分な耐摩耗性および高温強度を有しているが、比較例のNo.11は、Al-Mn-Si系金属間化合物の分散強化が十分に得られず高温強度に優れない。また比較例のNo.12は、過剰Mnにより靱性が低下して鍛造性が低下し、溶体化処理後の焼入時に割れが発生した。   No. of the example of the present invention. No. 7 and No. 7 in which the amount of Mn was distributed with a constant amount of Si. No. 9 to No. 12 in the example of the present invention are compared. Nos. 9 and 10 have sufficient wear resistance and high-temperature strength. No. 11 is not excellent in high temperature strength because sufficient dispersion strengthening of the Al—Mn—Si intermetallic compound cannot be obtained. The comparative example No. In No. 12, toughness decreased due to excess Mn and forgeability decreased, and cracks occurred during quenching after solution treatment.

次に前述のように熱処理した後の鍛造品を切断し、5×25×40mmの評価材(固定片)を得て大越式摩耗試験を行った。相手材(回転円板)にSS400を用いて固定片に回転円板を押し付けて摩擦し、固定片表面の摩耗痕から摩耗量および比摩耗量を算出した。比摩耗量の算出結果を表2に示す。回転円板の径および厚さと摩耗痕幅により近似式を用いて摩耗量を求め、求めた摩耗量と摩擦距離および最終荷重により比摩耗量を算出した。なお摩耗量とは評価材の摩耗した量であり、比摩耗量とは相手材のSS400の摩耗した量を表す値であり、比摩耗量が少ないほど耐摩耗性に優れる。
比摩耗量の換算式を以下に示す。
Next, the forged product after the heat treatment as described above was cut to obtain an evaluation material (fixed piece) of 5 × 25 × 40 mm, and the Ogoshi type abrasion test was performed. Using SS400 as a mating member (rotating disk), the rotating disk was pressed against the fixed piece and rubbed, and the wear amount and specific wear amount were calculated from the wear marks on the surface of the fixed piece. Table 2 shows the calculation results of the specific wear amount. The amount of wear was determined using an approximate expression based on the diameter and thickness of the rotating disk and the width of the wear scar, and the specific amount of wear was calculated based on the determined amount of wear, the friction distance, and the final load. The wear amount is the amount of wear of the evaluation material, and the specific wear amount is a value representing the amount of wear of the SS400 of the counterpart material. The smaller the specific wear amount, the better the wear resistance.
The conversion formula for specific wear is shown below.

W=B×b/12×r
Ws=B×b/8×r×P×L
=3×W/2×P×L
ここで、
W:摩耗量(mm
Ws:比摩耗量(mm/kgf)
r:回転円板半径(mm)
B:回転円板厚さ(mm)
b:摩耗痕幅(mm)
P:最終荷重(kgf)
L:摩擦距離(mm)
W = B × b 3/12 × r
Ws = B × b 3/8 × r × P × L
= 3 x W / 2 x P x L
here,
W: Wear amount (mm 3 )
Ws: specific wear amount (mm 2 / kgf)
r: Rotating disc radius (mm)
B: Rotating disc thickness (mm)
b: Wear scar width (mm)
P: Final load (kgf)
L: Friction distance (mm)

比較例であるNo.1、2、5を比較すれば、Si量が最大の20%であるNo.5が、比摩耗量が最も少なく、摩耗性が良好なのが分かる。そのNo.5と本発明例のNo.7を比較すれば、比摩耗量はほぼ同等であり、本発明材料が良好な摩耗性を有することが分かる。   No. which is a comparative example. 1, 2, and 5 are compared, No. having the maximum Si amount of 20%. 5 shows that the specific wear amount is the smallest and the wearability is good. No. 5 and No. of the present invention example. 7 shows that the specific wear amount is almost the same, and it can be seen that the material of the present invention has good wear properties.

また本発明例のNo.9、10も、比摩耗量はNo.7とほぼ同等であり、したがって本発明材料は、いずれも優れた耐摩耗性を有することが分かる。   In addition, No. of the present invention example. Nos. 9 and 10 have a specific wear amount of no. It can be seen that all of the materials of the present invention have excellent wear resistance.

さらに、Si量12.0%で、7.0%のFeを含有する比較例のNo.1、及びSi量12.0%で、7.0%のNiを含有する比較例のNo.3と、Si量12.0%で、7.0%のMnを含有する本発明例のNo.6とを比較すれば、Mn7.0%を含有する本発明例No.6の方が耐摩耗性が優れていることが分かる。また、Si量16.0%で、7.0%のFeを含有する比較例のNo.2、及びSi量16.0%で、7.0%のNiを含有する比較例のNo.4と、Si量16.0%で、7.0%のMnを含有する本発明例のNo.7とを比較すれば、Mn7.0%を含有する本発明例No.7の方が耐摩耗性が優れていることが分かる。これらの結果から、Fe、Niに代えてMnを用いた場合の優位性が明らかである。   Furthermore, in the comparative example No. 1 containing 7.0% Fe with 12.0% Si. No. 1 and Comparative Example No. 1 containing Si of 12.0% and 7.0% Ni. No. 3 of the present invention containing 7.0% Mn with a Si amount of 12.0%. 6 is compared with Example No. 6 of the present invention containing 7.0% Mn. It can be seen that No. 6 has better wear resistance. Further, in the comparative example No. 1 containing 7.0% Fe with an Si amount of 16.0%. No. 2 and Comparative Example No. 1 containing 7.0% Ni with a Si content of 16.0%. No. 4 of the present invention containing 7.0% of Mn with Si amount of 16.0%. 7 is compared with Example No. 7 of the present invention containing 7.0% Mn. It can be seen that No. 7 has better wear resistance. From these results, the superiority in the case of using Mn instead of Fe and Ni is clear.

Figure 2017078213
Figure 2017078213

Figure 2017078213
Figure 2017078213

〔実施例2〕
表1のNo.13〜No.17に示す組成、すなわち非熱処理型合金組成の高Siアルミニウム合金溶湯を、実施例1と同様にアトマイズ法により粉末とし、分級して−100meshの粉末を得た。この粉末も、粉末粒子中のSi結晶粒が15μm以下であると推定される。
次いで実施例1と同様に圧縮成形、面削し、得られた圧粉体ビレットを熱間押出し、得られた押出体を切断して、実施例1と同様に熱間で自由鍛造した。
得られた供試材(鍛造品)におけるSi結晶粒の大きさを実施例1と同様に調べたところ、いずれも15μm以下であることが確認された。
なおこの実施例2の場合は、供試材(鍛造品)に対して熱処理(溶体化処理、焼入れ、時効処理)は施さなかった。
[Example 2]
No. in Table 1 13-No. The high Si aluminum alloy melt having the composition shown in FIG. 17, that is, the non-heat-treatable alloy composition was powdered by the atomization method in the same manner as in Example 1 and classified to obtain a powder of −100 mesh. This powder is also estimated that the Si crystal grains in the powder particles are 15 μm or less.
Next, compression molding and chamfering were carried out in the same manner as in Example 1, the obtained green compact billet was hot extruded, the resulting extruded body was cut, and hot forged in the same manner as in Example 1.
When the size of the Si crystal grains in the obtained specimen (forged product) was examined in the same manner as in Example 1, it was confirmed that all were 15 μm or less.
In the case of Example 2, heat treatment (solution treatment, quenching, aging treatment) was not performed on the specimen (forged product).

また、得られた供試材(鍛造品)から、実施例1と同様な寸法、形状の常温引張試験片およびツバ付き高温引張試験片を切出し、常温、150、300℃にて引張試験を行った。なお、引張試験は各試験温度で、100hr保持後に行った。
さらに、実施例1と同様に、大越式摩耗試験を行った。
これらのNo.13〜No.17についての試験結果を、表2中に示す。
In addition, from the obtained specimen (forged product), a room temperature tensile test piece and a high temperature tensile test piece with the same dimensions and shape as in Example 1 were cut out, and a tensile test was performed at room temperature, 150, and 300 ° C. It was. The tensile test was conducted at each test temperature after holding for 100 hours.
Furthermore, the Ogoshi type abrasion test was conducted in the same manner as in Example 1.
These No. 13-No. The test results for 17 are shown in Table 2.

本発明例のNo.13〜15では、熱処理を施さずとも十分な耐摩耗性および高温強度が得られているが、比較例であるNo.16では、Al-Mn-Si系金属間化合物の分散強化が不十分で、高い高温強度が得られず、また比較例であるNo.17では、過剰Mnにより靱性が低下して鍛造性が低下し、溶体化処理後の焼入時に割れが発生した。   No. of the example of the present invention. In Nos. 13 to 15, sufficient abrasion resistance and high-temperature strength were obtained without heat treatment. No. 16, the dispersion strengthening of the Al—Mn—Si intermetallic compound is insufficient, and high high-temperature strength cannot be obtained. In No. 17, toughness decreased due to excess Mn and forgeability decreased, and cracks occurred during quenching after solution treatment.

以上のような実施例から、本発明材料は、高温強度および耐摩耗性、鍛造性を兼ね備え、自動車用エンジンピストンなど、高負荷で使用される摺動部材に好適であることが明らかとなった。   From the above examples, the material of the present invention has high temperature strength, wear resistance, and forgeability, and it is clear that the material of the present invention is suitable for sliding members used at high loads such as automobile engine pistons. .

10…押出材、 20…鍛造品。   10 ... extruded material, 20 ... forged product.

Claims (9)

質量%で、
Si:10.0〜19.0%、
Mn:3.0〜10.0%
を含み、残部がAl及び不可避的不純物よりなり、
かつSi結晶粒の大きさが平均で15μm以下であることを特徴とする摺動部品向け熱間鍛造用アルミニウム合金粉末。
% By mass
Si: 10.0 to 19.0%,
Mn: 3.0 to 10.0%
And the balance consists of Al and inevitable impurities,
An aluminum alloy powder for hot forging for sliding parts, wherein the average size of the Si crystal grains is 15 μm or less.
さらに、質量%で、Cu:0.5〜10.0%およびMg:0.2〜3.0%を含むことを特徴とする請求項1に記載の摺動部品向け熱間鍛造用アルミニウム合金粉末。   The aluminum alloy for hot forging for sliding parts according to claim 1, further comprising Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0% by mass%. Powder. さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種又は2種以上を、質量%で、それぞれ0.01〜5.0%含むことを特徴とする請求項1、請求項2のいずれかの請求項に記載の摺動部品向け熱間鍛造用アルミニウム合金粉末。   Furthermore, it is characterized by containing one or more of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb in 0.01% to 5.0% by mass. The aluminum alloy powder for hot forging for sliding parts according to any one of claims 1 and 2. 請求項1〜請求項3のいずれかの請求項に記載の摺動部品向け熱間鍛造用アルミニウム合金粉末を製造する方法であって、
請求項1〜請求項3のいずれかの請求項に記載された成分組成の合金の溶湯を溶製し、その溶湯をアトマイズ法によって急冷凝固させて粉末化することを特徴とする摺動部品向け熱間鍛造用アルミニウム合金粉末の製造方法。
A method for producing an aluminum alloy powder for hot forging for sliding parts according to any one of claims 1 to 3,
For a sliding part characterized by melting a molten alloy of the component composition described in any one of claims 1 to 3 and rapidly solidifying the molten metal by an atomizing method. Manufacturing method of aluminum alloy powder for hot forging.
アルミニウム合金粉末の押出材を熱間鍛造してなる摺動部品用アルミニウム合金鍛造品であって、
質量%で、
Si:10.0〜19.0%、
Mn:3.0〜10.0%
を含み、残部がAl及び不可避的不純物よりなり、
かつSi結晶粒の大きさが平均で15μm以下であることを特徴とする摺動部品用アルミニウム合金鍛造品。
An aluminum alloy forged product for sliding parts formed by hot forging an extruded material of aluminum alloy powder,
% By mass
Si: 10.0 to 19.0%,
Mn: 3.0 to 10.0%
And the balance consists of Al and inevitable impurities,
An aluminum alloy forged product for sliding parts, wherein the average size of the Si crystal grains is 15 μm or less.
さらに、質量%で、Cu:0.5〜10.0%およびMg:0.2〜3.0%のうちの1種又は2種を含むことを特徴とする請求項5に記載の摺動部品用アルミニウム合金鍛造品。   The sliding according to claim 5, further comprising one or two of Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0% by mass%. Aluminum alloy forgings for parts. さらに、Ti、Zr、V、W、Cr、Co、Mo、Ta、Hf、Nbのうちの1種又は2種以上を、質量%で、それぞれ0.01〜5.0%含むことを特徴とする請求項5、請求項6のいずれかの請求項に記載の摺動部品用アルミニウム合金鍛造品。   Furthermore, it is characterized by containing one or more of Ti, Zr, V, W, Cr, Co, Mo, Ta, Hf, and Nb in 0.01% to 5.0% by mass. The aluminum alloy forged product for sliding parts according to any one of claims 5 and 6. 請求項1〜請求項3のいずれかの請求項に記載の摺動部品向け熱間鍛造用アルミニウム合金粉末を圧縮成形して圧粉体を得る圧縮成形工程と、
得られた圧粉体を熱間押出しして、押出材を得る押出工程と、
前記押出材を熱間鍛造して、Si結晶粒の大きさが平均で15μm以下である鍛造品を得る鍛造工程と
を有することを特徴とする摺動部品用アルミニウム合金鍛造品の製造方法。
A compression molding step of compressing the aluminum alloy powder for hot forging for sliding parts according to any one of claims 1 to 3 to obtain a green compact;
Extrusion process to obtain extruded material by hot extrusion of the obtained green compact,
A method for producing an aluminum alloy forged product for sliding parts, comprising: forging a hot forged product of the extruded material to obtain a forged product having an average Si crystal grain size of 15 μm or less.
前記アルミニウム合金粉末が、質量%で、Cu:0.5〜10.0%およびMg:0.2〜3.0%を含む場合に、
前記鍛造工程の後、さらに鍛造品に溶体化処理を施し、焼入れして時効処理を施すことを特徴とする請求項8に記載の摺動部品用アルミニウム合金鍛造品の製造方法。
When the aluminum alloy powder contains, by mass%, Cu: 0.5 to 10.0% and Mg: 0.2 to 3.0%,
The method for producing an aluminum alloy forged product for sliding parts according to claim 8, wherein after the forging step, the forged product is further subjected to a solution treatment, quenched and subjected to an aging treatment.
JP2015207274A 2015-10-21 2015-10-21 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same Pending JP2017078213A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015207274A JP2017078213A (en) 2015-10-21 2015-10-21 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
EP16194363.4A EP3170594B1 (en) 2015-10-21 2016-10-18 Aluminum alloy powder for hot forging of sliding component, method of producing the same, aluminum alloy forged product for sliding component, and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207274A JP2017078213A (en) 2015-10-21 2015-10-21 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2017078213A true JP2017078213A (en) 2017-04-27

Family

ID=57178286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207274A Pending JP2017078213A (en) 2015-10-21 2015-10-21 Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same

Country Status (2)

Country Link
EP (1) EP3170594B1 (en)
JP (1) JP2017078213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026859A (en) * 2017-07-25 2019-02-21 昭和電工株式会社 Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
CN111872404A (en) * 2020-06-30 2020-11-03 同济大学 Aluminum-copper alloy powder for 3D printing and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738212B2 (en) * 2016-06-13 2020-08-12 昭和電工株式会社 Aluminum alloy forged product and manufacturing method thereof
JP7112275B2 (en) * 2018-07-26 2022-08-03 三菱重工業株式会社 Aluminum alloy material, method for producing aluminum alloy material, basket for cask and cask
CN112063899A (en) * 2020-09-14 2020-12-11 肇庆新联昌金属实业有限公司 High-plasticity aluminum alloy and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295301A (en) * 1985-06-25 1986-12-26 Honda Motor Co Ltd Heat-resistant high-power aluminum alloy powder and its molding
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS62247044A (en) * 1987-04-03 1987-10-28 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy of high strength
JPS6311641A (en) * 1986-06-30 1988-01-19 Sumitomo Electric Ind Ltd Aluminum alloy excellent in heat resistance and wear resistance
JPH04131304A (en) * 1990-09-20 1992-05-06 Mitsubishi Materials Corp Manufacture of al-si alloy sintered forging member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117204A (en) * 1984-11-12 1986-06-04 Honda Motor Co Ltd High-strength al alloy member for structural purpose
US4959195A (en) * 1988-05-12 1990-09-25 Sumitomo Electric Industries, Ltd. Method of forming large-sized aluminum alloy product
JPH0261023A (en) * 1988-08-27 1990-03-01 Furukawa Alum Co Ltd Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH06116671A (en) * 1992-10-02 1994-04-26 Mitsubishi Materials Corp Al sintered alloy member excellent in high temperature strength
WO2002077308A1 (en) * 2001-03-23 2002-10-03 Sumitomo Electric Industries, Ltd. Heat-resistant and creep-resistant aluminum alloy and billet thereof, and method for their production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295301A (en) * 1985-06-25 1986-12-26 Honda Motor Co Ltd Heat-resistant high-power aluminum alloy powder and its molding
JPS6210237A (en) * 1985-07-09 1987-01-19 Showa Denko Kk Aluminum alloy for hot forging
JPS6311641A (en) * 1986-06-30 1988-01-19 Sumitomo Electric Ind Ltd Aluminum alloy excellent in heat resistance and wear resistance
JPS62247044A (en) * 1987-04-03 1987-10-28 Sumitomo Electric Ind Ltd Wear resistant aluminum alloy of high strength
JPH04131304A (en) * 1990-09-20 1992-05-06 Mitsubishi Materials Corp Manufacture of al-si alloy sintered forging member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026859A (en) * 2017-07-25 2019-02-21 昭和電工株式会社 Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
CN111872404A (en) * 2020-06-30 2020-11-03 同济大学 Aluminum-copper alloy powder for 3D printing and preparation method thereof

Also Published As

Publication number Publication date
EP3170594B1 (en) 2019-04-03
EP3170594A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
EP3170594B1 (en) Aluminum alloy powder for hot forging of sliding component, method of producing the same, aluminum alloy forged product for sliding component, and method of producing the same
RU2673270C2 (en) Composition of aluminum alloy with improved mechanical properties at increased temperature
FR2573777A1 (en) HEAT-RESISTANT HEAT-RESISTANT ALUMINUM ALLOY AND METHOD FOR MANUFACTURING CARRIER COMPONENT THEREOF
JP2007092117A (en) Aluminum alloy with high strength and low specific gravity
JPS6210237A (en) Aluminum alloy for hot forging
KR102235378B1 (en) Aluminum alloy castings having excellent strength and wear resistance
JP4328321B2 (en) Piston for internal combustion engine
EP3257957A1 (en) Aluminum alloy forging and method of producing the same
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JP2019026859A (en) Aluminum alloy forging article for high speed moving component, and manufacturing method therefor
JP7033481B2 (en) Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method
JPH11209839A (en) High strength aluminum alloy powder excellent in workability, preformed body thereof, forming method therefor, and manufacture of high strength aluminum alloy member
JP4412594B2 (en) Aluminum alloy, rod-shaped material, forged molded product, machined molded product, wear-resistant aluminum alloy having excellent anodized film hardness using the same, sliding component, and production method thereof
KR20130000341A (en) A high strenth aluminum alloy for use the automobile parts pressing
JP7118705B2 (en) Compressor part for transportation machine made of aluminum alloy with excellent mechanical properties at high temperature and method for manufacturing the same
US20070187006A1 (en) Aluminum alloy containing copper and zinc
JP2000282161A (en) Heat resisting aluminum alloy excellent in toughness, and its manufacture
JPH0256401B2 (en)
JP7318283B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JPS61295301A (en) Heat-resistant high-power aluminum alloy powder and its molding
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture
JP2003096524A (en) Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy
JP2020200515A (en) Aluminum alloy material
JP2020200513A (en) Aluminum alloy material
JP2020200512A (en) Aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204