JP2020200513A - Aluminum alloy material - Google Patents

Aluminum alloy material Download PDF

Info

Publication number
JP2020200513A
JP2020200513A JP2019109175A JP2019109175A JP2020200513A JP 2020200513 A JP2020200513 A JP 2020200513A JP 2019109175 A JP2019109175 A JP 2019109175A JP 2019109175 A JP2019109175 A JP 2019109175A JP 2020200513 A JP2020200513 A JP 2020200513A
Authority
JP
Japan
Prior art keywords
mass
content
aluminum alloy
alloy material
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019109175A
Other languages
Japanese (ja)
Inventor
匠 丸山
Takumi Maruyama
匠 丸山
克樹 奥野
Katsuki Okuno
克樹 奥野
好成 奥野
Yoshishige Okuno
好成 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2019109175A priority Critical patent/JP2020200513A/en
Publication of JP2020200513A publication Critical patent/JP2020200513A/en
Pending legal-status Critical Current

Links

Abstract

To provide a high-strength and high-toughness aluminum alloy material.SOLUTION: An aluminum alloy material has such a composition that contains Si: 13 mass%-15 mass%, Cu: 2.0 mass%-4.0 mass%, Mg: 0.2 mass%-0.8 mass%, Fe: 0.05 mass%-0.62 mass%; and contains Ni of 0.05 mass% or more, provided that if Fe content is 0.05 mass%-0.49 mass%, satisfying (Ni content [mass%])≤6.28-4.33×(Fe content [mass%]), and if Fe content is 0.49 mass%-0.62 mass%, satisfying (Ni content [mass%])≤20.29-32.72×(Fe content [mass%]), with the balance being Al and unavoidable impurities.SELECTED DRAWING: Figure 3

Description

この発明は、例えば4輪自動車用、2輪自動車用、汎用などの内燃機関部品に代表されるエンジンピストンやコンプレッサー、シリンダライナ、クランクシャフト、カムシャフト、エンジンブロック等として好適に用いられるアルミニウム合金材に関するものである。 The present invention is an aluminum alloy material suitably used as an engine piston, compressor, cylinder liner, crankshaft, camshaft, engine block, etc. represented by internal combustion engine parts for, for example, four-wheeled automobiles, two-wheeled automobiles, and general-purpose parts. It is about.

近年の自動車業界においては燃費の向上が強く求められており、それに伴って自動車に使用される各種部材例えば、内燃機関のピストンや、コンプレッサー等の軽量化および高機能化の要求が益々高まってきている。 In recent years, there has been a strong demand for improved fuel efficiency in the automobile industry, and along with this, there has been an increasing demand for weight reduction and high functionality of various components used in automobiles, such as pistons of internal combustion engines and compressors. There is.

このような自動車用の各種部材については、従来の鉄鋼材料や鋳鉄材料に代えて、重量に対する強度の比である比強度が高いアルミニウム合金材を使用する傾向が高くなっている。中でも特に高温雰囲気下等の過酷な環境でも耐え得る部材として、高温高強度を有するAl−Si系合金等のアルミニウム合金の鍛造材が注目されるようになっている。 For such various members for automobiles, there is a high tendency to use an aluminum alloy material having a high specific strength, which is a ratio of strength to weight, in place of the conventional steel material or cast iron material. Among them, forged aluminum alloys such as Al—Si alloys having high temperature and high strength have been attracting attention as members that can withstand harsh environments such as high temperature atmospheres.

この種のアルミニウム合金製鍛造材の製造方法としては、例えば特許文献1に記載されるように、所定の成分組成のアルミニウム合金溶湯をアトマイズ法等により急冷凝固した粉末に対し、熱間押出加工を行い、得られた押出材を型鍛造して所定の製品形状とすることが一般に行われている。 As a method for producing this kind of aluminum alloy forging material, for example, as described in Patent Document 1, hot extrusion processing is performed on a powder obtained by quenching and solidifying an aluminum alloy molten metal having a predetermined component composition by an atomization method or the like. It is generally practiced to mold-forge the obtained extruded material into a predetermined product shape.

特開平2−277751号Japanese Patent Application Laid-Open No. 2-277751

ところで、上記特許文献1に示す従来のアルミニウム合金製鍛造材の製造方法のように、アルミニウム合金製のアトマイズ粉末の押出材を内燃機関用部品として用いる場合、アルミニウム粉末合金特有の、靭性が低いことに起因する脆性破壊が生じる恐れがある。 By the way, when an extruded material of atomized powder made of an aluminum alloy is used as a part for an internal combustion engine as in the conventional method for manufacturing an aluminum alloy forged material shown in Patent Document 1, the toughness peculiar to the aluminum powder alloy is low. There is a risk of brittle fracture due to.

そこで靭性の低下を避けるために、アルミニウム合金製のアトマイズ粉末の押出材を用いずに、従来の一般的な鋳造材を鍛造素材として型鍛造により内燃機関部品を成形する方法を選択する場合がある。しかしながらこの方法を選択した場合に、アルミニウム粉末合金に比べると強度不足が否めず、その強度不足を補うために添加元素を多量に添加すると粗大な金属間化合物を生成して、靭性の低下およびその靭性の低下に伴う引張強さや伸び等の機械的特性の低下が発生するという課題があった。 Therefore, in order to avoid a decrease in toughness, a method of molding an internal combustion engine part by mold forging using a conventional general cast material as a forging material may be selected without using an extruded material of atomized powder made of an aluminum alloy. .. However, when this method is selected, the strength is undeniably insufficient compared to the aluminum powder alloy, and when a large amount of additive elements are added to compensate for the insufficient strength, a coarse intermetallic compound is produced, resulting in a decrease in toughness and its strength. There has been a problem that mechanical properties such as tensile strength and elongation occur due to a decrease in toughness.

この発明は、上記の課題に鑑みてなされたものであり、高強度かつ高靭性のアルミニウム合金材を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an aluminum alloy material having high strength and high toughness.

上記課題を解決するため、本発明は、以下の手段を備えるものである。 In order to solve the above problems, the present invention provides the following means.

[1]Si:13質量%〜15質量%、Cu:2.0質量%〜4.0質量%、Mg:0.2質量%〜0.8質量%、Fe:0.05質量%〜0.62質量%を含み、
Niを0.05質量%以上かつ
Fe含有率が0.05質量%〜0.49質量%の場合には、
(Ni含有率[質量%])≦6.28−4.33×(Fe含有率[質量%])
Fe含有率が0.49質量%〜0.62質量%の場合には、
(Ni含有率[質量%])≦20.29−32.72×(Fe含有率[質量%])
で表される含有率で含み、残部がAlと不可避不純物からなる組成を有することを特徴とするアルミニウム合金材。
[1] Si: 13% by mass to 15% by mass, Cu: 2.0% by mass to 4.0% by mass, Mg: 0.2% by mass to 0.8% by mass, Fe: 0.05% by mass to 0 Contains .62% by weight
When Ni is 0.05% by mass or more and the Fe content is 0.05% by mass to 0.49% by mass,
(Ni content [mass%]) ≤6.28-4.33 × (Fe content [mass%])
When the Fe content is 0.49% by mass to 0.62% by mass,
(Ni content [mass%]) ≦ 20.29-32.72 × (Fe content [mass%])
An aluminum alloy material containing the content represented by (1) and having a composition in which the balance is composed of Al and unavoidable impurities.

[2]P:0.0001〜0.02質量%を含むことを特徴とする前項1に記載のアルミニウム合金材。 [2] The aluminum alloy material according to item 1 above, wherein P: contains 0.0001 to 0.02% by mass.

[3]Mn:0.02〜0.3質量%、Cr:0.02〜0.3質量%、Ti:0.01〜0.15質量%およびZr:0.01〜0.15質量%のうち、少なくとも1種以上を含むことを特徴とする前項1または2に記載のアルミニウム合金材。 [3] Mn: 0.02 to 0.3% by mass, Cr: 0.02 to 0.3% by mass, Ti: 0.01 to 0.15% by mass and Zr: 0.01 to 0.15% by mass. The aluminum alloy material according to item 1 or 2 above, which comprises at least one of them.

上記[1]によれば、Si、Cu、Mg、Fe、Niを所定量含有していることで、Si粒子の分散による分散強化、Al−Si−Fe−Ni−Cu系化合物の分散による分散強化およびCu、Mg系の析出による析出強化等により高い強度を有するとともに、かつ初晶金属間化合物を生じないことによりアルミニウム合金特有の高い靭性を有するアルミニウム合金材が得られる。 According to the above [1], by containing a predetermined amount of Si, Cu, Mg, Fe, and Ni, dispersion strengthening by dispersion of Si particles and dispersion by dispersion of Al-Si-Fe-Ni-Cu based compound are performed. An aluminum alloy material having high strength due to strengthening and precipitation strengthening due to precipitation of Cu and Mg-based materials and having high toughness peculiar to aluminum alloys can be obtained by not producing primary intermetallic compounds.

上記[2]によれば、Pを所定量含有しているため、初晶Siの微細化および均一分散されたアルミニウム合金材が得られる。 According to the above [2], since P is contained in a predetermined amount, an aluminum alloy material in which primary crystal Si is finely dispersed and uniformly dispersed can be obtained.

上記[3]のアルミニウム合金材によれば、Mn、Cr、Ti、およびZrのうち少なくとも1種以上を所定量含有しているため、材料の機械的特性に優れた、および/または母相の結晶が微細化されたアルミニウム合金材が得られる。 According to the aluminum alloy material of the above [3], since at least one of Mn, Cr, Ti, and Zr is contained in a predetermined amount, the mechanical properties of the material are excellent and / or the matrix phase. An aluminum alloy material with finer crystals can be obtained.

この発明の一実施形態である内燃機関部品用アルミニウム合金材の製造プロセスの一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the aluminum alloy material for internal combustion engine parts which is one Embodiment of this invention. 凝固計算により得られる鋳造工程中の各温度における化合物の相分率を表すグラフの一例である。This is an example of a graph showing the phase fraction of the compound at each temperature during the casting process obtained by the solidification calculation. 凝固計算により探索した初晶金属間化合物を生成しないFe含有率およびNi含有率の範囲を表すグラフである。It is a graph which shows the range of the Fe content rate and Ni content rate which does not generate a primary intermetallic compound searched by solidification calculation.

この発明のアルミニウム合金材を実施するための形態について詳細に説明する。 A form for carrying out the aluminum alloy material of the present invention will be described in detail.

本発明のアルミニウム合金材は、Si、Cu、Mg、Fe、Niを所定量含有し、残部がAlと不可避不純物からなる。 The aluminum alloy material of the present invention contains a predetermined amount of Si, Cu, Mg, Fe, and Ni, and the balance is Al and unavoidable impurities.

また本発明のアルミニウム合金材は、Pをさらに所定量含有することが好ましい。 Further, the aluminum alloy material of the present invention preferably further contains a predetermined amount of P.

また本発明のアルミニウム合金材は、Mn、Cr、TiおよびZrのうち少なくとも1種以上をさらに所定量含有することが好ましい。 Further, the aluminum alloy material of the present invention preferably further contains at least one of Mn, Cr, Ti and Zr in a predetermined amount.

本発明のアルミニウム合金材を構成する各元素について、以下に説明する。 Each element constituting the aluminum alloy material of the present invention will be described below.

Siの添加量は13%〜15%である。Siは高温強度を向上させる効果を有している。この効果はSiが13%未満では表れ難く、13%以上で特に顕著に表れる。Siが15%を超えると初晶Siの晶出が多く室温での伸びが低下して、またアルミよりも固い初晶Siの存在によって切削加工の切削刃が欠けるおそれがある。よってSiは13%〜15%とする必要があり、好ましくは13.5%〜14.5%とするのが望ましい。 The amount of Si added is 13% to 15%. Si has the effect of improving high temperature strength. This effect is less likely to appear when Si is less than 13%, and is particularly remarkable when Si is 13% or more. If Si exceeds 15%, primary crystal Si is often crystallized and the elongation at room temperature is reduced, and the presence of primary crystal Si, which is harder than aluminum, may cause the cutting blade to be chipped. Therefore, Si needs to be 13% to 15%, preferably 13.5% to 14.5%.

Cuの添加量は2.0%〜4.0%である。Cuは高温強度、とりわけ内燃機関の実用温度域である150℃〜250℃における強度を向上させる効果を有している。この効果はCuの析出によるもので、人工時効を施すことで上記効果を得ることができる。またNiおよびFeと同時添加することで、Al−Si−Ni−Fe−Cu系化合物として晶出し分散強化を得て高温強度が一層向上する効果がある。この双方の効果は、Cuが2%未満では表れ難く、2.0%以上で顕著に表れる。また4.0%を超えると、上記効果が顕著に表れ難くなり、また比重が増すことによって比強度が向上しなくなるおそれがある。よってCuは2.0%〜4.0%とする必要があり、より好ましくは2.5%〜3.5%とするのが望ましい。 The amount of Cu added is 2.0% to 4.0%. Cu has the effect of improving high-temperature strength, particularly strength in the practical temperature range of an internal combustion engine of 150 ° C. to 250 ° C. This effect is due to the precipitation of Cu, and the above effect can be obtained by applying artificial aging. Further, by adding Ni and Fe at the same time, there is an effect that the crystallization dispersion is strengthened as an Al-Si-Ni-Fe-Cu-based compound and the high temperature strength is further improved. Both of these effects are less likely to appear when Cu is less than 2%, and are remarkable when Cu is 2.0% or more. On the other hand, if it exceeds 4.0%, the above effect is less likely to appear remarkably, and the specific strength may not be improved due to the increase in specific gravity. Therefore, Cu needs to be 2.0% to 4.0%, more preferably 2.5% to 3.5%.

Mgの添加量は0.2%〜0.8%である。Mgは高温強度を向上させる効果がある。Mgは連続鋳造時に固溶し、人工時効時にSiやCuと化合物を形成し析出することで、内燃機関の実用温度域である150℃〜250℃での強度を向上させる効果がある。この効果はMgが0.2%未満では表れ難く、0.2%以上で顕著に表れる。また0.8%を超えると上記効果が顕著に表れなくなる。よってMgは0.2%〜0.8%とする必要があり、より好ましくは0.4%〜0.6%にするのが望ましい。 The amount of Mg added is 0.2% to 0.8%. Mg has the effect of improving high temperature strength. Mg dissolves solidly during continuous casting and forms a compound with Si and Cu during artificial aging and precipitates, which has the effect of improving the strength of the internal combustion engine in the practical temperature range of 150 ° C to 250 ° C. This effect is hard to appear when Mg is less than 0.2%, and is remarkable when Mg is 0.2% or more. If it exceeds 0.8%, the above effect will not be noticeable. Therefore, Mg needs to be 0.2% to 0.8%, more preferably 0.4% to 0.6%.

Feの添加量は0.05%〜0.62%である。FeはSiおよびNi、Cuと同時添加することでAl−Si−Ni−Fe−Cu系化合物を晶出して分散強化に寄与し、コンプレッサーの実用温度域での強度を向上させる効果がある。この効果はFeが0.05%未満では表れ難く、0.05%以上で顕著に表れる。また0.62%を超えると粗大化した化合物が晶出し、靱性の低下をもたらす。よってFeは0.05%〜0.62%とする必要があり、より好ましくは0.2%〜0.4%とするのが望ましい。 The amount of Fe added is 0.05% to 0.62%. When Fe is added at the same time as Si, Ni, and Cu, it crystallizes an Al-Si-Ni-Fe-Cu compound, contributes to strengthening the dispersion, and has the effect of improving the strength of the compressor in the practical temperature range. This effect is unlikely to appear when Fe is less than 0.05%, and is remarkable when Fe is 0.05% or more. If it exceeds 0.62%, the coarsened compound crystallizes, resulting in a decrease in toughness. Therefore, Fe needs to be 0.05% to 0.62%, more preferably 0.2% to 0.4%.

Niの添加量は0.05質量%以上かつFe含有率が0.05質量%〜0.49質量%の場合には、(Ni含有率[質量%])≦6.28−4.33×(Fe含有率[質量%])Fe含有率が0.49質量%〜0.62質量%の場合には、(Ni含有率[質量%])≦20.29−32.72×(Fe含有率[質量%])である。Niは高温強度を向上させる効果および熱伝導率を低下させる効果を有している。NiはCuおよびFe、Siと同時添加することで、Al−Si−Ni−Fe−Cu系化合物を晶出させ、分散強化にて目的温度域での強度を向上させる効果がある。この効果はNiが上記範囲下限値未満では表れ難く、上記範囲下限値以上で顕著に表れる。また上記範囲上限値を超えると粗大晶出物が晶出し、靱性が著しく低下する。よってNiは上記範囲とする必要がある。 When the amount of Ni added is 0.05% by mass or more and the Fe content is 0.05% by mass to 0.49% by mass, (Ni content [mass%]) ≤ 6.28-4.33 × (Fe content [mass%]) When the Fe content is 0.49% by mass to 0.62% by mass, (Ni content [mass%]) ≦ 20.29-32.72 × (Fe content) Rate [mass%]). Ni has the effect of improving high temperature strength and the effect of lowering thermal conductivity. When Ni is added at the same time as Cu, Fe, and Si, it has the effect of crystallizing Al-Si-Ni-Fe-Cu compounds and improving the strength in the target temperature range by strengthening the dispersion. This effect is unlikely to appear when Ni is less than the above range lower limit value, and is remarkable when Ni is above the above range lower limit value. If the upper limit of the above range is exceeded, coarse crystallized products will crystallize and the toughness will be significantly reduced. Therefore, Ni needs to be in the above range.

Pは任意添加元素であり、その添加量は0.0001%〜0.02%である。PはAlP化合物を形成して初晶Siの核となり、初晶Siの微細化および均一分散に寄与する効果がある。この効果はPが0.0001%未満では表れ難く、0.0001%以上で顕著に表れる。また0.02%を超えると湯流れ性が低下し鋳造が難しくなるおそれがある。よってPは0.0001%〜0.02%とする必要があり、より好ましくは、0.010%〜0.015%とするのが望ましい。また上記Si、Cu、Mg、Fe、Niの成分範囲であれば、Pの添加によるFe、Ni系金属間化合物の晶出形態に変化は生じないため、P添加によるFe、Ni系初晶金属間化合物の生成は生じない。 P is an optional additive element, and the addition amount thereof is 0.0001% to 0.02%. P forms an AlP compound and becomes a nucleus of primary crystal Si, which has the effect of contributing to the miniaturization and uniform dispersion of primary crystal Si. This effect is hard to appear when P is less than 0.0001%, and is remarkable when P is 0.0001% or more. If it exceeds 0.02%, the flowability of the molten metal may decrease and casting may become difficult. Therefore, P needs to be 0.0001% to 0.02%, more preferably 0.010% to 0.015%. Further, within the above-mentioned Si, Cu, Mg, Fe, and Ni component ranges, the crystallization form of the Fe and Ni intermetallic compounds does not change due to the addition of P, so that the Fe and Ni primary crystal metals due to the addition of P do not change. No intermetallic formation occurs.

Mnは任意添加元素であり、その添加量は0.02%〜0.3%である。MnはAl−Si−Mn系化合物をして晶出し、材料の機械的特性を向上させる。これは0.02%未満では表れ難く、0.02%以上で顕著に表れる。また0.3%を超えるとMn系化合物が粗大化し、機械的特性が低下する。よってMnは0.02%〜0.3%とする。より好ましくは、0.1%〜0.2%とするのが望ましい。また上記Si、Cu、Mg、Fe、NiおよびPの成分範囲内であれば、Mnの添加によるFe、Ni系金属間化合物の晶出形態に変化は生じないため、Mn添加によるFe、Ni系初晶金属間化合物の生成は生じない。 Mn is an optional additive element, and the amount of Mn added is 0.02% to 0.3%. Mn forms an Al—Si—Mn-based compound and crystallizes to improve the mechanical properties of the material. This is unlikely to appear below 0.02% and is prominent at 0.02% or higher. If it exceeds 0.3%, the Mn-based compound becomes coarse and the mechanical properties deteriorate. Therefore, Mn is set to 0.02% to 0.3%. More preferably, it is 0.1% to 0.2%. Further, as long as it is within the component range of Si, Cu, Mg, Fe, Ni and P, the crystallization form of the Fe and Ni intermetallic compounds does not change due to the addition of Mn. No formation of primary intermetallic compounds occurs.

Crは任意添加元素であり、その添加量は0.02%〜0.3%である。CrはAl−Si−Cr系化合物またはAl−Si−Mn−Cr系化合物として晶出し、材料の機械的特性を向上させる。これは0.02%未満では表れ難く、0.02%以上で顕著に表れる。また0.3%を超えるとCr系化合物が粗大化し、機械的特性が低下する。よってCrは0.02%〜0.3%とする。より好ましくは、0.1%〜0.2%とするのが望ましい。また上記Si、Cu、Mg、Fe、NiおよびPの成分範囲内であれば、Crの添加によるFe、Ni系金属間化合物の晶出形態に変化は生じないため、Cr添加によるFe、Ni系初晶金属間化合物の生成は生じない。 Cr is an optional additive element, and the amount of Cr added is 0.02% to 0.3%. Cr crystallizes as an Al—Si—Cr based compound or an Al—Si—Mn—Cr based compound to improve the mechanical properties of the material. This is unlikely to appear below 0.02% and is prominent at 0.02% or higher. If it exceeds 0.3%, the Cr-based compound becomes coarse and the mechanical properties deteriorate. Therefore, Cr is set to 0.02% to 0.3%. More preferably, it is 0.1% to 0.2%. Further, as long as it is within the component range of Si, Cu, Mg, Fe, Ni and P, the crystallization form of the Fe and Ni intermetallic compounds does not change due to the addition of Cr. No formation of primary intermetallic compounds occurs.

Tiは任意添加元素であり、その添加量は0.01%〜0.15%である。Tiは母相に固溶・濃化することで母相の結晶の微細化を促進する。これは0.01%未満では表れ難く、0.01%以上で顕著に表れる。また0.15%を超えるとTi系化合物が粗大晶出し、機械的特性が低下する。よってTiは0.01%〜0.15%とする。より好ましくは0.015%〜0.05%とするのが望ましい。また上記Si、Cu、Mg、Fe、NiおよびPの成分範囲内であれば、Tiの添加によるFe、Ni系金属間化合物の晶出形態に変化は生じないため、Ti添加によるFe、Ni系初晶金属間化合物の生成は生じない。 Ti is an optional additive element, and the amount of Ti added is 0.01% to 0.15%. Ti dissolves and concentrates in the matrix phase to promote the miniaturization of crystals in the matrix phase. This is unlikely to appear below 0.01% and is prominent above 0.01%. On the other hand, if it exceeds 0.15%, the Ti-based compound crystallizes coarsely and the mechanical properties deteriorate. Therefore, Ti is set to 0.01% to 0.15%. More preferably, it is 0.015% to 0.05%. Further, as long as it is within the component range of Si, Cu, Mg, Fe, Ni and P, the crystallization form of the Fe and Ni intermetallic compounds does not change due to the addition of Ti. No formation of primary intermetallic compounds occurs.

Zrは任意添加元素であり、その添加量は0.01%〜0.15%である。ZrはTiと同様に母相に固溶・濃化することで母相の結晶の微細化を促進する。これは0.01%未満では表れ難く、0.01%以上で顕著に表れる。また0.15%を超えるとZr系化合物が粗大晶出し、機械的特性が低下する。よってZrは0.01%〜0.15%とする。より好ましくは0.015%〜0.05%とするのが望ましい。また上記Si、Cu、Mg、Fe、NiおよびPの成分範囲内であれば、Zrの添加によるFe、Ni系金属間化合物の晶出形態に変化は生じないため、Zr添加によるFe、Ni系初晶金属間化合物の生成は生じない。 Zr is an optional additive element, and the amount of Zr added is 0.01% to 0.15%. Like Ti, Zr dissolves and concentrates in the matrix phase to promote the miniaturization of crystals in the matrix phase. This is unlikely to appear below 0.01% and is prominent above 0.01%. If it exceeds 0.15%, Zr-based compounds are coarsely crystallized and the mechanical properties are deteriorated. Therefore, Zr is set to 0.01% to 0.15%. More preferably, it is 0.015% to 0.05%. Further, as long as it is within the component range of Si, Cu, Mg, Fe, Ni and P, the crystallization form of the Fe and Ni intermetallic compounds does not change due to the addition of Zr. No formation of primary intermetallic compounds occurs.

次に本実施形態における内燃機関部品用アルミニウム合金材を製造するプロセスの一例について、図1を参照しながら詳細に説明する。 Next, an example of the process of manufacturing the aluminum alloy material for internal combustion engine parts in the present embodiment will be described in detail with reference to FIG.

まず溶製することによって前述のように成分調整されたアルミニウム合金溶湯を作製する。この溶湯を用いて図1に示すように連続鋳造を行って連続鋳造材を製作する。本実施形態において、この連続鋳造材は、鍛造素材用または総切削素材用のビレットとして構成されるものであり、例えば直径φ30mm〜40mmの寸法で丸棒状に形成される。 First, the molten aluminum alloy having the components adjusted as described above is produced by melting. As shown in FIG. 1, continuous casting is performed using this molten metal to produce a continuous cast material. In the present embodiment, the continuous cast material is configured as a billet for a forging material or a total cutting material, and is formed in a round bar shape having a diameter of, for example, φ30 mm to 40 mm.

なお連続鋳造によって押出用のビレットを作製し、その押出用ビレットを押出加工して押出材を成形し、その押出材を鍛造素材または総切削素材として用いることも可能である。また連続鋳造以外にも、鋳物やダイキャストといった鋳造材全般を、切削素材として用いることも可能である。 It is also possible to produce a billet for extrusion by continuous casting, extrude the billet for extrusion to form an extruded material, and use the extruded material as a forging material or a total cutting material. In addition to continuous casting, general casting materials such as castings and die castings can also be used as cutting materials.

得られた連続鋳造材は、鋳造時に晶出物の偏析等が起きる場合が有るため、その不均一な組織を除去するために、均質化処理を施す。均質化処理においては加熱温度を480〜505℃とし、処理時間を0.5時間(hr)〜6hrとするのが良い。 Since the obtained continuous cast material may undergo segregation of crystallized material during casting, a homogenization treatment is performed in order to remove the non-uniform structure. In the homogenization treatment, the heating temperature is preferably 480 to 505 ° C., and the treatment time is preferably 0.5 hours (hr) to 6 hr.

均質化処理した後、連続鋳造材を所定の長さに切断し、鍛造素材とする。 After the homogenization treatment, the continuous cast material is cut to a predetermined length to obtain a forged material.

こうして得られた鍛造素材に対し鍛造加工を行って、鍛造材を成形する。この鍛造工程においては、金型温度を100℃〜250℃とし、素材温度を370℃〜450℃とするのが良い。 The forged material thus obtained is subjected to forging processing to form the forged material. In this forging step, the mold temperature is preferably 100 ° C. to 250 ° C., and the material temperature is preferably 370 ° C. to 450 ° C.

次にこの鍛造材に対し溶体化処理を行う。この溶体化処理においては加熱温度を485℃〜510℃とし、処理時間を1.0hr〜5.0hrとするのが良い。 Next, the forged material is subjected to a solution treatment. In this solution treatment, the heating temperature is preferably 485 ° C to 510 ° C, and the treatment time is preferably 1.0 hr to 5.0 hr.

溶体化処理を行った鍛造材に対し水焼き入れ処理を行って急冷する。この水焼き入れ処理において水温は10℃〜80℃に設定するのが良い。 The solution-treated forged material is subjected to water-quenching treatment and rapidly cooled. In this water quenching treatment, the water temperature is preferably set to 10 ° C. to 80 ° C.

水焼き入れ処理を行った鍛造材に対し人工時効処理を行う。この人工時効処理においては加熱処理温度を160℃〜220℃とし、処理時間を1hr〜18hrとするのが良い。 Artificial aging treatment is performed on the forged material that has been water-quenched. In this artificial aging treatment, the heat treatment temperature is preferably 160 ° C. to 220 ° C., and the treatment time is preferably 1 hr to 18 hr.

人工時効処理を行った後、人工時効処理済みの鍛造材(鍛造T6処理品)に対し機械加工により表面を切削し所定の製品形状を得る。その後必要に応じて表面処理、すなわちショットスピーニング処理、アルマイト処理、メッキ処理などを行い、製品を得る。 After the artificial aging treatment is performed, the surface of the forged material (forged T6 treated product) that has been artificially aged is cut by machining to obtain a predetermined product shape. After that, if necessary, surface treatment, that is, shot peening treatment, alumite treatment, plating treatment, etc. are performed to obtain a product.

こうして本実施形態の内燃機関部品用アルミニウム合金材(鍛造材)が製造される。こうして得られたアルミニウム合金材は、Si、Cu、Mg、FeおよびNiを所定量含有していることで、Si粒子の分散による分散強化、Al−Si−Ni−Fe−Cu系化合物の分散による分散強化およびCu、Mg系の析出による析出強化等により高い強度を得ながら、且つアルミニウム合金特有の高靭性を失うことがないため、内燃機関部品として高い性能を得ることができる。 In this way, the aluminum alloy material (forged material) for internal combustion engine parts of the present embodiment is manufactured. The aluminum alloy material thus obtained contains Si, Cu, Mg, Fe and Ni in a predetermined amount, so that the dispersion is strengthened by dispersing Si particles and the Al-Si-Ni-Fe-Cu based compound is dispersed. High performance can be obtained as an internal combustion engine component because high strength is obtained by dispersion strengthening and precipitation strengthening by precipitation of Cu and Mg, and the high toughness peculiar to aluminum alloy is not lost.

以下、本発明について実施例および比較例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples.

まず、本発明において規定する組成によれば、初晶金属間化合物が生成しないことをシミュレーションソフトを用いた凝固計算によって確認する。 First, according to the composition defined in the present invention, it is confirmed by solidification calculation using simulation software that a primary intermetallic compound is not formed.

凝固計算はScheil−Gulliverモデルに基づく凝固計算法が実装されているJMatPro10.1(Sente Software社製)を用い、初期温度800℃、温度間隔1℃に設定し、back diffusionを考慮せず、モデル化されている全固相を考慮して実施した。 The solidification calculation uses JMatPro 10.1 (manufactured by Center Software), which implements the solidification calculation method based on the Scheil-Gulliver model, and is set to an initial temperature of 800 ° C. and a temperature interval of 1 ° C., without considering the back diffusion. It was carried out in consideration of the whole solid phase.

凝固計算により、鋳造工程中に晶出してくる各化合物に対して、鋳造工程中の各温度における相分率が図2のように得られる。各化合物について、図2中に示すように相分率が0より大きい値をもつ最高の温度がその化合物の晶出開始温度である。 By the solidification calculation, the phase fraction at each temperature during the casting process can be obtained as shown in FIG. 2 for each compound crystallized during the casting process. For each compound, as shown in FIG. 2, the highest temperature at which the phase fraction has a value greater than 0 is the crystallization start temperature of the compound.

上記の通り算出した晶出開始温度を用い、アルミニウム母相より高温の晶出開始温度をもつ化合物(シリコンを除く)を初晶金属間化合物と判断できる。アルミニウム母相より高温の晶出開始温度をもつ化合物(シリコンを除く)が存在しない場合は、初晶金属間化合物が生成しないと判断できる。 Using the crystallization start temperature calculated as described above, a compound having a crystallization start temperature higher than that of the aluminum matrix (excluding silicon) can be determined as a primary intermetallic compound. When there is no compound (excluding silicon) having a crystallization start temperature higher than that of the aluminum matrix, it can be determined that the primary intermetallic compound is not formed.

次に、上記の判定方法を用いた初晶金属間化合物の生成しない元素含有率の範囲探索について説明する。 Next, a range search for the element content in which the primary intermetallic compound is not formed using the above determination method will be described.

Si、CuおよびMgの含有率を表1に記載の値で固定し、FeおよびNi含有率を変化させながら凝固計算を実施することで、初晶金属間化合物の生成しないFeおよびNi含有率の範囲を探索した。 By fixing the contents of Si, Cu and Mg at the values shown in Table 1 and performing the solidification calculation while changing the contents of Fe and Ni, the contents of Fe and Ni that do not form primary intermetallic compounds I searched the range.

具体的には、種々に固定したFe含有率に対して、Ni含有率を変化させながら凝固計算を実施し、初晶金属間化合物の生成しない最大のNi含有率を算出した。 Specifically, the solidification calculation was carried out with respect to the various fixed Fe contents while changing the Ni content, and the maximum Ni content in which the primary intermetallic compound was not formed was calculated.

このように算出した各Fe含有率に対する最大のNi含有率を、図3のように横軸にFe含有率、縦軸にNi含有率をとったグラフへプロットした。なお、Fe含有率によってNi含有率が算出した最大値を超えた場合に生成する初晶金属間化合物が異なり、図3中の四角印は初晶Al(Fe,Ni)、丸印は初晶β―AlFeSiがそれぞれ生成することを表している。 The maximum Ni content for each Fe content calculated in this way is plotted on a graph in which the horizontal axis represents the Fe content and the vertical axis represents the Ni content, as shown in FIG. The compounds between primary crystals produced when the Ni content exceeds the calculated maximum value differ depending on the Fe content. The squares in FIG. 3 are primary crystals Al 9 (Fe, Ni) 2 , and the circles are. It shows that primary crystal β-AlFeSi is produced respectively.

図3中の四角印、丸印ごとに直線での回帰を実施した。回帰式は以下の通りである。 A straight line regression was performed for each of the square and circle marks in FIG. The regression equation is as follows.

四角印:(Ni含有率[質量%])=6.28−4.33×(Fe含有率[質量%])
丸印:(Ni含有率[質量%])=20.29−32.72×(Fe含有率[質量%])
また、回帰直線の交点のFe含有率は下記の通りである。
Square mark: (Ni content [mass%]) = 6.28-4.33 × (Fe content [mass%])
Circle: (Ni content [mass%]) = 20.29-32.72 x (Fe content [mass%])
The Fe content at the intersection of the regression lines is as follows.

四角印の回帰直線と丸印の回帰直線との交点:0.49質量%
丸印の回帰直線とNi:0.05質量%線との交点:0.62質量%
上記2本の回帰直線とFe:0.05質量%線およびNi:0.05質量%線とに囲まれた領域(図3中の網掛け領域)では添加したFeおよびNiが化合物として晶出し分散強化に寄与し、かつ初晶金属間化合物としては生成しない。
Intersection of the regression line marked with a square and the regression line marked with a circle: 0.49% by mass
Intersection of the regression line marked with a circle and the Ni: 0.05 mass% line: 0.62 mass%
In the region surrounded by the above two regression lines and the Fe: 0.05 mass% line and the Ni: 0.05 mass% line (shaded region in FIG. 3), the added Fe and Ni crystallize as a compound. It contributes to dispersion strengthening and is not produced as a primary intermetallic compound.

一般的に添加元素量が多いほど初晶金属間化合物が生成されやすいため、表1に記載のSi、Cu、Mg含有率以下であるSi:13質量%〜15質量%、Cu:2質量%〜4質量%、Mg:0.2質量%〜0.8質量%の範囲では、図3中の網掛け領域として示したFeおよびNi含有率の範囲において初晶金属間化合物は生成しない。 Generally, the larger the amount of added elements, the easier it is to generate primary crystal metal-to-metal compounds. Therefore, Si: 13% by mass to 15% by mass and Cu: 2% by mass, which are equal to or less than the Si, Cu, and Mg contents shown in Table 1. In the range of ~ 4% by mass and Mg: 0.2% by mass to 0.8% by mass, the primary crystal metal-to-metal compound is not formed in the range of Fe and Ni contents shown as the shaded region in FIG.

したがって、本発明において規定する、Si:13質量%〜15質量%、Cu:2.0質量%〜4.0質量%、Mg:0.2質量%〜0.8質量%、Fe:0.05質量%〜0.62質量%を含み、Niを0.05質量%以上かつFe含有率が0.05質量%〜0.49質量%の場合には、(Ni含有率[質量%])≦6.28−4.33×(Fe含有率[質量%])Fe含有率が0.49質量%〜0.62質量%の場合には、(Ni含有率[質量%])≦20.29−32.72×(Fe含有率[質量%])で表される含有率で含み、残部がAlと不可避不純物からなる組成のアルミニウム合金材によれば、初晶金属間化合物は生成されず、内燃機関用部品での使用に好適である。 Therefore, Si: 13% by mass to 15% by mass, Cu: 2.0% by mass to 4.0% by mass, Mg: 0.2% by mass to 0.8% by mass, Fe: 0. When it contains 05% by mass to 0.62% by mass, contains 0.05% by mass or more of Ni, and has an Fe content of 0.05% by mass to 0.49% by mass (Ni content [mass%]). ≤6.28-4.33 x (Fe content [mass%]) When the Fe content is 0.49% by mass to 0.62% by mass, (Ni content [mass%]) ≤20. According to the aluminum alloy material having a content of 29-32.72 × (Fe content [mass%]) and the balance consisting of Al and unavoidable impurities, no primary crystal metal-to-metal compound is produced. , Suitable for use in internal combustion engine parts.

次に、上記計算結果の妥当性の検証を行う為に実際にサンプルを作製し、評価を実施した。下記にその詳細を示す。 Next, in order to verify the validity of the above calculation results, a sample was actually prepared and evaluated. The details are shown below.

表2に示す実施例1および比較例1の組成を有するアルミニウム合金溶湯をそれぞれ溶製し、各アルミニウム合金溶湯を用いて、鋳造径38mmで連続鋳造を行ってφ38mmの連続鋳造材を得た。得られた連続鋳造材を470℃×7hrにて均質化処理を施し、空冷した。 The molten aluminum alloys having the compositions of Example 1 and Comparative Example 1 shown in Table 2 were respectively melted, and continuous casting was performed using each of the molten aluminum alloys with a casting diameter of 38 mm to obtain a continuous cast material having a diameter of 38 mm. The obtained continuous cast material was homogenized at 470 ° C. × 7 hr and air-cooled.

上記で得られた連続鋳造品を10mm×10mm×10mmの角材に加工し、樹脂埋めを行い組織観察用サンプルを作製した。観察方向は、連続鋳造の軸方向に垂直な断面を観察面とし観察した。観察面をエメリー紙#240〜#2000で研磨をし、仕上げをバフ研磨0.1μmで実施した。組織観察には光学顕微鏡(Nikon EPIPHOT 300)を用いて、倍率340倍にて組織観察を実施した。組織観察より、初晶金属間化合物の有無を判断した。結果を表2に示す。 The continuous cast product obtained above was processed into a square lumber of 10 mm × 10 mm × 10 mm and embedded with resin to prepare a sample for structure observation. As for the observation direction, the cross section perpendicular to the axial direction of continuous casting was used as the observation surface. The observation surface was polished with emery paper # 240 to # 2000, and the finish was buffed with 0.1 μm. The tissue was observed using an optical microscope (Nikon EPIPHOT 300) at a magnification of 340 times. The presence or absence of the primary intermetallic compound was determined from the microstructure observation. The results are shown in Table 2.

表2より、実施例1のアルミニウム合金の場合、初晶金属間化合物が晶出していることは確認されず、比較例1のアルミニウム合金の場合、針状に粗大な金属間化合物が晶出していることが確認された。 From Table 2, in the case of the aluminum alloy of Example 1, it was not confirmed that the primary intermetallic compound was crystallized, and in the case of the aluminum alloy of Comparative Example 1, needle-like coarse intermetallic compounds were crystallized. It was confirmed that there was.

また、表2に記載の実施例1および比較例1にて上記の凝固計算を実施した。 In addition, the above solidification calculation was carried out in Example 1 and Comparative Example 1 shown in Table 2.

実施例1の化学組成について凝固計算を行うと、高温側から順にシリコンが611℃、アルミニウム母相が564℃、β―AlFeSiが562℃で晶出を開始し、初晶金属間化合物は生成しない。実際にサンプルを作製した表2に示す結果は、上記凝固計算に整合しており凝固計算が正しいことが裏付けられる。 When the solidification calculation was performed for the chemical composition of Example 1, silicon started to crystallize at 611 ° C., the aluminum matrix at 564 ° C., and β-AlFeSi at 562 ° C. in order from the high temperature side, and no primary intermetallic compound was formed. .. The results shown in Table 2 in which the sample was actually prepared are consistent with the above solidification calculation, confirming that the solidification calculation is correct.

また比較例1の化学組成について凝固計算を行うと、高温側から順にシリコンが606℃、β―AlFeSiが604℃、アルミニウム母相が561℃で晶出を開始し、β―AlFeSiが初晶金属間化合物として生成した。実際にサンプルを作製した表2に示す結果は、上記凝固計算に整合しており凝固計算が正しいことが裏付けられる。 Further, when the solidification calculation was performed on the chemical composition of Comparative Example 1, silicon started to crystallize at 606 ° C., β-AlFeSi at 604 ° C., and the aluminum matrix at 561 ° C. in order from the high temperature side, and β-AlFeSi was a primary crystal metal. It was produced as an intermetallic compound. The results shown in Table 2 in which the sample was actually prepared are consistent with the above solidification calculation, confirming that the solidification calculation is correct.

以上のとおり本発明において規定する組成によれば、初晶金属間化合物が生成しないため、粗大金属間化合物による靱性の低下を回避することができる。 As described above, according to the composition defined in the present invention, since the primary intermetallic compound is not formed, it is possible to avoid a decrease in toughness due to the coarse intermetallic compound.

したがって、本発明において規定する組成によれば、Si、Cu、Mg、FeおよびNiを所定量含有していることで高い強度を得ながら、高い靱性を備えたアルミニウム合金材を得ることができ、内燃機関用部品での使用に好適である。 Therefore, according to the composition specified in the present invention, it is possible to obtain an aluminum alloy material having high toughness while obtaining high strength by containing a predetermined amount of Si, Cu, Mg, Fe and Ni. Suitable for use in internal combustion engine parts.

この発明のアルミニウム合金材は、例えば4輪自動車用、2輪自動車用、汎用の内燃機関におけるエンジンピストンやコンプレッサー、シリンダライナ、クランクシャフト、カムシャフト、エンジンブロック等として好適に用いることができる。 The aluminum alloy material of the present invention can be suitably used, for example, as an engine piston or compressor, a cylinder liner, a crankshaft, a camshaft, an engine block, or the like in a general-purpose internal combustion engine for a four-wheeled vehicle or a two-wheeled vehicle.

Claims (3)

Si:13質量%〜15質量%、Cu:2.0質量%〜4.0質量%、Mg:0.2質量%〜0.8質量%、Fe:0.05質量%〜0.62質量%を含み、
Niを0.05質量%以上かつ
Fe含有率が0.05質量%〜0.49質量%の場合には、
(Ni含有率[質量%])≦6.28−4.33×(Fe含有率[質量%])
Fe含有率が0.49質量%〜0.62質量%の場合には、
(Ni含有率[質量%])≦20.29−32.72×(Fe含有率[質量%])
で表される含有率で含み、残部がAlと不可避不純物からなる組成を有することを特徴とするアルミニウム合金材。
Si: 13% by mass to 15% by mass, Cu: 2.0% by mass to 4.0% by mass, Mg: 0.2% by mass to 0.8% by mass, Fe: 0.05% by mass to 0.62% by mass Including%
When Ni is 0.05% by mass or more and the Fe content is 0.05% by mass to 0.49% by mass,
(Ni content [mass%]) ≤6.28-4.33 × (Fe content [mass%])
When the Fe content is 0.49% by mass to 0.62% by mass,
(Ni content [mass%]) ≦ 20.29-32.72 × (Fe content [mass%])
An aluminum alloy material containing the content represented by (1) and having a composition in which the balance is composed of Al and unavoidable impurities.
P:0.0001〜0.02質量%を含むことを特徴とする請求項1に記載のアルミニウム合金材。 The aluminum alloy material according to claim 1, wherein P: contains 0.0001 to 0.02% by mass. Mn:0.02〜0.3質量%、Cr:0.02〜0.3質量%、Ti:0.01〜0.15質量%およびZr:0.01〜0.15質量%のうち、少なくとも1種以上を含むことを特徴とする請求項1または2に記載のアルミニウム合金材。 Of Mn: 0.02 to 0.3% by mass, Cr: 0.02 to 0.3% by mass, Ti: 0.01 to 0.15% by mass and Zr: 0.01 to 0.15% by mass. The aluminum alloy material according to claim 1 or 2, which comprises at least one kind.
JP2019109175A 2019-06-12 2019-06-12 Aluminum alloy material Pending JP2020200513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019109175A JP2020200513A (en) 2019-06-12 2019-06-12 Aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019109175A JP2020200513A (en) 2019-06-12 2019-06-12 Aluminum alloy material

Publications (1)

Publication Number Publication Date
JP2020200513A true JP2020200513A (en) 2020-12-17

Family

ID=73741929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019109175A Pending JP2020200513A (en) 2019-06-12 2019-06-12 Aluminum alloy material

Country Status (1)

Country Link
JP (1) JP2020200513A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790459A (en) * 1993-09-17 1995-04-04 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP2004076110A (en) * 2002-08-20 2004-03-11 Toyota Central Res & Dev Lab Inc Aluminum cast alloy for piston, piston and method for producing the same
WO2012008470A1 (en) * 2010-07-16 2012-01-19 日本軽金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
JP2017115169A (en) * 2015-12-21 2017-06-29 昭和電工株式会社 Manufacturing method for forged piston
JP2018197366A (en) * 2017-05-23 2018-12-13 昭和電工株式会社 Aluminum alloy material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790459A (en) * 1993-09-17 1995-04-04 Mitsubishi Alum Co Ltd Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP2004076110A (en) * 2002-08-20 2004-03-11 Toyota Central Res & Dev Lab Inc Aluminum cast alloy for piston, piston and method for producing the same
WO2012008470A1 (en) * 2010-07-16 2012-01-19 日本軽金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
JP2017115169A (en) * 2015-12-21 2017-06-29 昭和電工株式会社 Manufacturing method for forged piston
JP2018197366A (en) * 2017-05-23 2018-12-13 昭和電工株式会社 Aluminum alloy material

Similar Documents

Publication Publication Date Title
CN111032897A (en) Method of forming cast aluminum alloy
CN103834835A (en) Aluminum pressure casting alloy
JP5758402B2 (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
JP2018024931A (en) Steel for mold and molding tool
US20220205067A1 (en) Aluminum Alloy for Additive Technologies
JP2017053023A (en) Steel for mold and molding tool
JP2018197366A (en) Aluminum alloy material
JP4764094B2 (en) Heat-resistant Al-based alloy
JP2016079419A (en) Aluminum alloy continuous cast material and manufacturing method therefor
CN109136681B (en) 6061 aluminum cast bar and casting process thereof
US20190093199A1 (en) Aluminum Alloy, in Particular for a Casting Method, and Method for Producing a Component from Such an Aluminum Alloy
KR102589799B1 (en) High-strength aluminum-based alloys and methods for producing articles therefrom
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JP6113371B2 (en) Aluminum alloy casting excellent in high-temperature strength and thermal conductivity, manufacturing method thereof, and aluminum alloy piston for internal combustion engine
WO2017043446A1 (en) Steel for molds and molding tool
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JP2019108579A (en) Aluminum alloy material, and method for producing aluminum alloy product
JPH0790459A (en) Production of wear resistant aluminum alloy for extrusion and wear resistant aluminum alloy material
JP2005139552A (en) Aluminum alloy for casting, aluminum-alloy casting and method for manufacturing aluminum-alloy casting
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP2020200513A (en) Aluminum alloy material
JP2020200515A (en) Aluminum alloy material
JP2020200514A (en) Aluminum alloy material
JP2020200512A (en) Aluminum alloy material
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003