WO2017043446A1 - Steel for molds and molding tool - Google Patents

Steel for molds and molding tool Download PDF

Info

Publication number
WO2017043446A1
WO2017043446A1 PCT/JP2016/076017 JP2016076017W WO2017043446A1 WO 2017043446 A1 WO2017043446 A1 WO 2017043446A1 JP 2016076017 W JP2016076017 W JP 2016076017W WO 2017043446 A1 WO2017043446 A1 WO 2017043446A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
mold
amount
steel
thermal conductivity
Prior art date
Application number
PCT/JP2016/076017
Other languages
French (fr)
Japanese (ja)
Inventor
河野 正道
Original Assignee
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016147774A external-priority patent/JP6859623B2/en
Application filed by 大同特殊鋼株式会社 filed Critical 大同特殊鋼株式会社
Priority to KR1020187006436A priority Critical patent/KR102054803B1/en
Priority to CN201680051762.1A priority patent/CN107949651A/en
Priority to US15/750,770 priority patent/US11141778B2/en
Priority to EP16844307.5A priority patent/EP3348660B9/en
Publication of WO2017043446A1 publication Critical patent/WO2017043446A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to mold steel and a molding tool using the same.
  • the molding tool is composed of a mold or mold parts alone or in combination.
  • the molding tool is used for die casting, plastic injection molding, rubber processing, various castings, warm forging, hot forging, hot stamping and the like. These molding tools have a portion that comes into contact with a molded article having a temperature higher than room temperature.
  • Molds used for die casting, injection molding, hot-to-warm plastic processing, etc. are usually manufactured by quenching and tempering the raw material and processing it into a predetermined shape by die-sculpting.
  • the mold is subjected to a large heat cycle and a large load. Therefore, the material used for this type of mold is required to be excellent in toughness, high temperature strength, wear resistance, crack resistance, heat check resistance and the like.
  • it is difficult to improve a plurality of properties at the same time in mold steel.
  • Patent Document 1 C: 0.1 to 0.6, Si: 0.01 to 0.8, Mn: 0.1 to 2.5, Cu: 0.01 to 2.0 in mass%. Ni: 0.01 to 2.0, Cr: 0.1 to 2.0, Mo: 0.01 to 2.0, one or more of V, W, Nb and Ta in total: Mold steel comprising 0.01 to 2.0, Al: 0.002 to 0.04, N: 0.002 to 0.04, O: 0.005 or less, the balance being Fe and inevitable impurities Is disclosed.
  • This document describes that heat fatigue characteristics and softening resistance are increased by heat-treating such materials under predetermined conditions, thereby suppressing heat check and water-cooled hole cracking. .
  • Patent Document 2 by mass, C: 0.2 to 0.6%, Si: 0.01 to 1.5%, Mn: 0.1 to 2.0%, Cu: 0.01 to 2 0.0%, Ni: 0.01 to 2.0%, Cr: 0.1 to 8.0%, Mo: 0.01 to 5.0%, one or two of V, W, Nb and Ta Total of seeds or more: 0.01 to 2.0%, Al: 0.002 to 0.04%, and N: 0.002 to 0.04%, with the balance being Fe and inevitable impurities Mold steel is disclosed. According to the document, such a material has good hardenability, and by heat-treating it under a predetermined condition, a required impact value can be obtained, and the mold life can be increased. It is described that it is easy to cut.
  • Patent Document 3 C: 0.15 to 0.55 mass%, Si: 0.01 to 2.0 mass%, Mn: 0.01 to 2.5 mass%, Cu: 0.01 to 2. mass%. Selected from the group consisting of 0% by mass, Ni: 0.01-2.0% by mass, Cr: 0.01-2.5% by mass, Mo: 0.01-3.0% by mass, and V and W
  • a steel for a mold material is disclosed that contains at least one total amount of 0.01 to 1.0% by mass, and the balance being Fe and inevitable impurities. This document describes that by heat-treating such a material under predetermined conditions, softening resistance is increased and wear resistance is also improved.
  • Patent Document 4 C: 0.26 to 0.55 wt%, Cr: less than 2 wt%, Mo: 0 to 10 wt%, W: 0 to 15 wt% (however, the contents of W and Mo Is 1.8 to 15 wt% in total), (Ti, Zr, Hf, Nb, Ta): 0 to 3 wt%, V: 0 to 4 wt%, Co: 0 to 6 wt%, Si: 0 to Disclosed is a tool steel comprising 1.6 wt%, Mn: 0-2 wt%, Ni: 0-2.99 wt%, and S: 0-1 wt% with the balance being iron and inevitable impurities ing.
  • This document describes that the thermal conductivity is higher than that of conventional tool steel by using such a composition.
  • Patent Document 5 describes, in mass%, 0.35 ⁇ C ⁇ 0.50, 0.01 ⁇ Si ⁇ 0.19, 1.50 ⁇ Mn ⁇ 1.78, 2.00 ⁇ Cr ⁇ 3.05. , 0.51 ⁇ Mo ⁇ 1.25, 0.30 ⁇ V ⁇ 0.80, and 0.004 ⁇ N ⁇ 0.040, with the balance being made of Fe and inevitable impurities. Has been. This document describes that the thermal conductivity of the mold can be increased by using such a composition.
  • a molding tool constituted by a mold or a mold part alone or in combination has a portion that comes into contact with an object to be molded having a temperature higher than room temperature, it is exposed to a thermal cycle of temperature rise and fall during use. Depending on the application, high pressure may be applied. In order to withstand this severe thermal cycle, molds and mold parts are used in a quenched and tempered state.
  • the heating conditions during quenching depend on the steel composition, application, mold size, etc., but are often maintained at 1030 ° C. for about 1 to 3 hours.
  • industrially, “mixed loading” in which a large mold and a small mold are heated together during quenching is common. However, in the case of mixed loading, if the heating conditions during quenching are matched with a large mold, the small mold is excessively heated and the crystal grains become coarse.
  • high heat conductivity steel heat conductivity ⁇ : 24-27 [W / m / K]
  • heat conductivity ⁇ : 24-27 [W / m / K] heat conductivity ⁇ : 24-27 [W / m / K]
  • the Cr content is significantly lower than the Cr content (about 5%) of general hot die steel.
  • low Cr steel has a small amount of carbide remaining during quenching, it is necessary to lower the quenching temperature in order to prevent crystal grain coarsening during quenching.
  • a plurality of molds are manufactured at the same time, there is a problem that they cannot be mixed when the quenching temperature of some molds is different from the quenching temperature of other molds.
  • Japanese Unexamined Patent Publication No. 2008-056882 Japanese Unexamined Patent Publication No. 2008-121032 Japanese Unexamined Patent Publication No. 2008-169411 Japanese National Table 2010-500471 Japanese Unexamined Patent Publication No. 2011-094168
  • An object of the present invention is to provide a mold tool composed of mold steel, a mold using the mold steel, and a mold part.
  • the molding tool is It is composed of a mold or a mold part alone or in combination, and includes a portion that is in direct contact with a workpiece whose temperature is higher than room temperature.
  • At least one of the mold and the mold part is: 0.35 ⁇ C ⁇ 0.55 mass%, 0.003 ⁇ Si ⁇ 0.300 mass%, 0.30 ⁇ Mn ⁇ 1.50 mass%, 2.00 ⁇ Cr ⁇ 3.50 mass%, 0.003 ⁇ Cu ⁇ 1.200 mass%, 0.003 ⁇ Ni ⁇ 1.380 mass%, 0.50 ⁇ Mo ⁇ 3.29 mass%, 0.55 ⁇ V ⁇ 1.13 mass%, and 0.0002 ⁇ N ⁇ 0.1200 mass% And the balance consists of Fe and inevitable impurities, 0.55 ⁇ Cu + Ni + Mo ⁇ 3.29 mass% Made of mold steel that satisfies Hardness is 33HRC more than 57HRC, Old austenite grain size number at the time of quenching is 5 or more, The thermal conductivity ⁇ at 25 ° C. measured using a laser flash method is more than 27.0 [W / m / K].
  • the mold steel according to the present invention is: 0.35 ⁇ C ⁇ 0.55 mass%, 0.003 ⁇ Si ⁇ 0.300 mass%, 0.30 ⁇ Mn ⁇ 1.50 mass%, 2.00 ⁇ Cr ⁇ 3.50 mass%, 0.003 ⁇ Cu ⁇ 1.200 mass%, 0.003 ⁇ Ni ⁇ 1.380 mass%, 0.50 ⁇ Mo ⁇ 3.29 mass%, 0.55 ⁇ V ⁇ 1.13 mass%, and 0.0002 ⁇ N ⁇ 0.1200 mass% And the balance consists of Fe and inevitable impurities, 0.55 ⁇ Cu + Ni + Mo ⁇ 3.29 mass% The gist is to satisfy.
  • the mold steel according to the present invention has excellent high temperature strength and corrosion resistance, good annealing, high quenching productivity, high thermal conductivity, and fine austenite grains during quenching. Can be generated.
  • the mold steel according to the present invention contains the following elements, with the balance being Fe and inevitable impurities.
  • the kind of additive element, its component range, and the reason for limitation are as follows.
  • the amount of C is preferably more than 0.36 mass%, more preferably more than 0.37 mass%.
  • the amount of C becomes excessive, coarse carbides increase, which becomes a starting point of cracks and lowers toughness. Also, the retained austenite increases, which becomes coarse bainite during tempering, so that the toughness decreases. Furthermore, when the amount of C becomes excessive, the weldability decreases. In addition, the maximum hardness becomes too high, making machining difficult. Therefore, the amount of C needs to be less than 0.55 mass%.
  • the amount of C is preferably less than 0.54 mass%.
  • the amount of Si when the amount of Si becomes excessive, the decrease in thermal conductivity increases.
  • the steel for molds according to the present invention has a relatively large amount of V, V-based carbides are likely to crystallize during casting, and this must be dissolved in the subsequent heat treatment.
  • the amount of Si if the amount of Si is excessive, the V-based crystallized carbide tends to be large and difficult to be dissolved.
  • the V-type crystallized carbide remaining without being dissolved is harmful since it becomes a starting point of destruction during use as a mold.
  • the amount of Si when the amount of Si becomes excessive, the problem that segregation of other elements becomes remarkable at the time of casting tends to occur. Therefore, the amount of Si needs to be less than 0.300 mass%.
  • the amount of Si is preferably less than 0.230 mass%, more preferably less than 0.190 mass%.
  • the amount of Mn needs to be more than 0.30 mass%.
  • the amount of Mn is preferably more than 0.35 mass%, more preferably more than 0.40 mass%.
  • the amount of Mn becomes excessive, the annealing property is extremely deteriorated, and the heat treatment for softening becomes complicated and takes a long time, thereby increasing the manufacturing cost.
  • the deterioration of the annealing property due to the increase in Mn is remarkable in the case of low Cr, high Cu, high Ni, and high Mo.
  • the amount of Mn becomes excessive, the thermal conductivity is greatly lowered. Therefore, the amount of Mn needs to be less than 1.50 mass%.
  • the amount of Mn is preferably less than 1.35 mass%, more preferably less than 1.25 mass%.
  • the Cr amount needs to be 2.00 mass% or more.
  • the amount of Cr is preferably more than 2.05 mass%, more preferably more than 2.15 mass%, more preferably more than 3.03 mass%.
  • the Cr amount exceeds 3.03 mass%, the drag effect of Cu, Ni, Mo, etc. is large, but even when there are many elements that degrade the annealability, the annealability can be ensured.
  • the Cr amount needs to be less than 3.50 mass%.
  • the amount of Cr is preferably less than 3.45 mass%, more preferably less than 3.40 mass%.
  • the amount of Cu needs to be 0.003 mass% or more.
  • the amount of Cu is preferably 0.004 mass% or more, and more preferably 0.005 mass% or more.
  • the amount of Cu needs to be less than 1.200 mass%.
  • the amount of Cu is preferably less than 1.170 mass%, more preferably less than 1.150 mass%, and even more preferably 0.7 mass% or less. When the amount of Cu is 0.7 mass% or less, it is possible to avoid an excessive decrease in annealing and thermal conductivity while exhibiting a great drag effect.
  • Ni has a large drag effect like Cu, it can be added for the purpose of maintaining fine grains during quenching.
  • Cu may impair hot workability
  • Ni not only does not impair hot workability but also has an effect of restoring deterioration of hot workability due to the addition of Cu.
  • Ni has an effect of increasing the strength by bonding with Al when Al is present, and the effect of increasing the strength is poor when the amount of Ni is small. Further, it is not impossible to reduce Ni more than necessary by careful selection of raw materials, but it causes a significant increase in cost. Therefore, the amount of Ni needs to be 0.003 mass% or more.
  • the amount of Ni is preferably 0.004 mass% or more, and more preferably 0.005 mass% or more.
  • the amount of Ni needs to be less than 1.380 mass%.
  • the amount of Ni is preferably less than 1.250 mass%, more preferably less than 1.150 mass%, and even more preferably 0.7 mass% or less.
  • the amount of Ni is preferably 0.3 to 1.2 times the amount of Cu.
  • the amount of Ni is not necessarily 0.3 to 1.2 times the amount of Cu. .
  • Mo has a relatively large drag effect like Cu and Ni, it can be added for the purpose of maintaining fine grains during quenching. Mo also has an advantage that hot workability is not impaired like Cu.
  • the amount of Mo is small, (a) the drag effect is small, (b) the contribution of secondary curing is small, and when the tempering temperature is high, it is difficult to stably obtain a hardness exceeding 33 HRC. ) Problems such as a small effect of improving the corrosion resistance by the combined addition with Cr occur. Therefore, the Mo amount needs to be more than 0.50 mass%.
  • the amount of Mo is preferably more than 0.53 mass%, more preferably more than 0.56 mass%.
  • the Mo amount needs to be less than 3.29 mass%.
  • the amount of Mo is preferably less than 3.27 mass%, more preferably less than 3.25 mass%.
  • V amount 0.55 ⁇ V ⁇ 1.13 mass%: In order to maintain fine particles during quenching, it is necessary to use both the drag effect of solid solution elements and the pinning effect of dispersed particles. It is preferable to optimize the V amount in consideration of the C amount so that the VC of the dispersed particles becomes an appropriate amount. When the amount of V is small, the amount of VC is small, so that the effect of suppressing the coarsening of the ⁇ crystal grains (the crystal grain size number becomes small) is poor. Therefore, the V amount needs to be more than 0.55 mass%. The amount of V is preferably more than 0.56 mass%, more preferably more than 0.57 mass%.
  • the V amount needs to be less than 1.13 mass%.
  • the amount of V is preferably less than 1.11 mass%, more preferably less than 1.09 mass%.
  • the present invention has a V amount and (Cu + Ni + Mo) amount that do not exist in the past, and positively provides a drag effect of solid solution elements and a pinning effect of dispersed particles. The feature is that it is used together.
  • N also affects the amount of dispersed particles VC. As the amount of N increases, the solid solution temperature of VC increases. Therefore, even if the amount of C and V is the same, the residual VC at the time of quenching increases. When the amount of N is small, VC particles at the time of quenching are excessively reduced. Therefore, the effect of suppressing the coarsening of the ⁇ crystal grains (decreasing the crystal grain size number) is poor. In addition, N has an effect of assisting in preventing coarsening of the crystal grains by forming AlN particles when Al is present, but such an effect is small when the amount of N is small. Therefore, the N amount needs to be 0.0002 mass% or more. The amount of N is preferably more than 0.0010 mass%, more preferably more than 0.0030 mass%.
  • the N amount needs to be less than 0.1200 mass%.
  • the amount of N is preferably less than 0.1000 mass%, more preferably less than 0.0800 mass%.
  • the mold steel according to the present invention is an inevitable impurity, P ⁇ 0.05 mass%, S ⁇ 0.003 mass%, Al ⁇ 0.10 mass%, W ⁇ 0.30 mass%, O ⁇ 0.01 mass%, Co ⁇ 0.10 mass%, Nb ⁇ 0.004 mass%, Ta ⁇ 0.004 mass%, Ti ⁇ 0.004 mass%, Zr ⁇ 0.004 mass%, B ⁇ 0.0001 mass%, Ca ⁇ 0.0005 mass%, Se ⁇ 0.03 mass%, Te ⁇ 0.005 mass%, Bi ⁇ 0.01 mass%, Pb ⁇ 0.03 mass%, Mg ⁇ 0.02 mass%, or REM ⁇ 0.10 mass% May be included.
  • the mold steel according to the present invention may contain one or more elements as described above.
  • the content of the element is not more than the above upper limit value, the element behaves as an inevitable impurity.
  • a part of the element may be contained exceeding the upper limit. In this case, the effects described below are obtained depending on the type and content of the element.
  • the mold steel according to the present invention is characterized in that the total amount of Cu, Ni and Mo satisfies the relationship of the following formula (a). 0.55 ⁇ Cu + Ni + Mo ⁇ 3.29 mass% (a)
  • the amount of Cu + Ni + Mo is important. If the total amount of these elements is small, a sufficient drag effect cannot be obtained. Therefore, the total amount of these elements needs to be more than 0.55 mass%. The total amount is preferably greater than 0.60 mass%, more preferably greater than 0.70 mass%. On the other hand, if the total amount of these elements is excessive, it may cause cracking during hot working, decrease in thermal conductivity, decrease in toughness due to excessive precipitation of intermetallic compounds, decrease in fracture toughness, and the like. Therefore, the total amount of these elements needs to be less than 3.29 mass%. The total amount is preferably less than 3.28 mass%, more preferably less than 3.27 mass%.
  • the mold steel according to the present invention may further contain one or more elements as described below.
  • the kind of additive element, its component range, and the reason for limitation are as follows.
  • W or Co is effective to obtain a stable and fine ⁇ crystal grain by combining the pinning effect of VC particles and the drag effect of solute atoms.
  • the amount of W and the amount of Co each preferably exceed the lower limit values described above.
  • the W amount and the Co amount are each preferably not more than the above upper limit value.
  • either one of W or Co may be contained in the steel for metal mold
  • Nb, Ta, Ti, and / or Zr may be selectively added. When these elements are added, these elements form fine precipitates. The fine precipitates suppress the movement of the ⁇ grain boundary (pinning effect), so that a fine austenite structure can be maintained. In order to obtain such an effect, the amount of these elements is preferably an amount exceeding the above lower limit value.
  • the amount of these elements is preferably not more than the above upper limit value.
  • the mold steel may contain any one of these elements, or may contain two or more.
  • Al combines with N to form AlN and has the effect of suppressing the growth of ⁇ crystal grains (pinning effect).
  • Al has a high affinity with N and accelerates the penetration of N into the steel. For this reason, when a steel material containing Al is subjected to nitriding treatment, the surface hardness tends to increase. It is effective to use a steel material containing Al for a mold for nitriding for higher wear resistance.
  • the amount of Al is preferably more than 0.10 mass%.
  • the amount of Al is preferably 1.50 mass% or less. Even if the Al amount is an impurity level (0.10 mass% or less), the above effect may be exhibited depending on the N amount.
  • nitride may be formed with an element having an affinity for N that is greater than that of B to suppress the bond between B and N.
  • examples of such elements include Nb, Ta, Ti, and Zr described above. These elements have an effect of fixing N even when present at an impurity level (0.004 mass% or less), but depending on the amount of N, an amount exceeding the impurity level may be added. Even if a part of B is combined with N in steel to form BN, if surplus B exists alone in the steel, it enhances hardenability.
  • B is also effective in improving machinability.
  • BN may be formed.
  • BN is similar in nature to graphite and lowers cutting resistance while improving chip friability.
  • the amount of B is preferably more than 0.0001 mass%.
  • the amount of B is preferably 0.0050 mass% or less.
  • the amount of these elements is preferably an amount exceeding the above lower limit value.
  • the amount of these elements is preferably not more than the above upper limit value.
  • any 1 type of these elements may be contained in the steel for metal mold
  • the mold is required to be difficult to wear or deform. Therefore, the mold needs to have hardness. If the hardness exceeds 33 HRC, the problem of wear or deformation hardly occurs even when applied to various uses.
  • the hardness is more preferably 35 HRC or more.
  • the hardness needs to be 57 HRC or less.
  • the hardness is more preferably 56 HRC or less. This point is the same for the mold parts, and the hardness is preferably within the above range.
  • the austenite grain size number at the time of quenching needs to be 5 or more.
  • the austenite grain size number is more preferably 5.5 or more.
  • the crystal grain size number is 6 or more, or 6.5 or more. This is the same for mold parts, and the prior austenite grain size number is preferably within the above range.
  • thermal conductivity In order to reduce product damage (seizure, cracking, wear) by cooling the product quickly or reducing the temperature of the die or reducing thermal stress, it is necessary to increase the thermal conductivity of the die.
  • the thermal conductivity ⁇ at 25 ° C. of general-purpose steel used for die casting is 23.0 to 24.0 [W / m / K]. Even in steel with high thermal conductivity, ⁇ is 27.0 [W / m / K] or less, which is insufficient. In order to cool the product quickly or reduce mold damage, the thermal conductivity ⁇ needs to exceed 27.0 [W / m / K].
  • the thermal conductivity ⁇ is more preferably more than 27.5 [W / m / K].
  • thermal conductivity is 28.0 [W / m / K] or more. This is the same for mold parts, and the thermal conductivity is preferably within the above range.
  • thermal conductivity refers to a value at 25 ° C. measured using a laser flash method.
  • the forming tool has the following configuration.
  • the molding tool is It is composed of a mold or a mold part alone or in combination, and includes a portion that is in direct contact with a workpiece whose temperature is higher than room temperature.
  • At least one of the mold and the mold part is made of mold steel according to the present invention.
  • At least one of the mold and the mold part is: Hardness is 33HRC more than 57HRC, Old austenite grain size number at the time of quenching is 5 or more,
  • the thermal conductivity ⁇ at 25 ° C. measured using a laser flash method is more than 27.0 [W / m / K].
  • the molding tool according to the present invention is used for processing a molding having a temperature higher than room temperature.
  • processing include die casting, plastic injection molding, rubber processing, various castings, warm forging, hot forging, and hot stamping.
  • molding tool (A) a mold having a portion in direct contact with a workpiece having a temperature higher than room temperature; and (B) It is configured by a single or a combination of mold parts having a portion that is in direct contact with a molding whose temperature is higher than room temperature, and plays a role of molding the molding into a predetermined shape.
  • the “mold” refers to a part other than a mold part, a mold part, and a part (for example, a mold fastener) that does not have a portion in direct contact with a molding object. For example, in the case of die casting, there are molds on the movable side and the fixed side, respectively.
  • the nesting is handled as a mold part to be described later.
  • the “mold component” refers to a component that plays a role of molding a workpiece having a temperature higher than room temperature into a predetermined shape, alone or in combination with the mold. Therefore, for example, bolts and nuts for fastening the mold are not included in the “mold part” in the present invention.
  • the present invention is characterized by high thermal conductivity, and one of the objects is to quickly cool a die cast, hot stamp or injection molded product. Therefore, a mold part having a portion in contact with a molten metal, a heated steel plate, or a molten resin is an application target of the present invention.
  • mold parts include a plunger tip, a spool bush, a spool core (a diverter), a shot pin, a chill vent, and a nest.
  • the molding may be a melt or a semi-melt, and may be a solid.
  • the temperature of a to-be-molded object changes with uses of a molding tool.
  • the temperature of the object to be molded molten metal
  • the temperature of the workpiece (molten plastic) is usually 70 to 400 ° C. in a kneader.
  • the temperature of the molding unvulcanized rubber
  • the heating temperature of the molding (steel material) is usually 150 to 800 ° C.
  • the heating temperature of the molding (steel material) is usually 800 to 1350 ° C.
  • the heating temperature of the molded product (steel plate) is usually 800 to 1050 ° C.
  • a die-casting die or its component is demonstrated to an example.
  • the die casting mold is used in a quenching and tempering state.
  • the heating conditions for quenching are often quenching temperature: 1030 ° C. and holding time at quenching temperature: 1 to 3 Hr.
  • the die-casting steel sometimes becomes an austenite single phase, but generally has a mixed structure of austenite and residual carbide. Thereafter, austenite is transformed into a structure mainly composed of martensite by cooling, and hardness and toughness are imparted by combination with tempering. This is because the mold requires hardness to ensure erosion resistance and toughness to ensure crack resistance.
  • the austenite grain size number during quenching is large (the austenite crystal grain size is small). This is because cracks are less likely to propagate when the crystal grains are finer, and the effect of suppressing cracks in the mold is greater.
  • the austenite grain size number at the time of quenching is determined by the heating temperature and the holding time. The austenite grain size number becomes large (crystal grains become fine) when the heating temperature is low and the holding time is short. For this reason, care is taken in quenching so that the heating temperature does not become excessively high and the holding time does not become excessively long.
  • a technique of dispersing residual carbides in austenite may be employed.
  • it is set as the steel of the component system which optimized C amount and the amount of carbide forming elements.
  • Residual carbide has an effect of suppressing the movement of austenite grain boundaries by pinning (pinning effect), and as a result, coarsening of austenite crystal grains is prevented (a large grain size number is maintained).
  • FIG. 1 shows a schematic diagram of changes in furnace temperature and mold temperature during mixed heating. As described above, the heating time at the quenching temperature requires about 1 to 3 hours. At the time of mixed loading, a holding time of the furnace temperature is given so that a large mold meets this condition. If it does so, the small metal mold
  • the thermal conductivity ⁇ at 25 ° C. of SKD61 which is a general-purpose steel for die casting molds, is 23.0 to 24.0 [W / m / K], whereas the thermal conductivity ⁇ of high thermal conductivity steel is 24.0 to 27.0 [W / m / K].
  • the Cr content is significantly lower than the Cr content (about 5%) of general hot die steel.
  • the steel has corrosion resistance (2% ⁇ Cr ⁇ 5%) that can withstand practical use, has good annealing properties, and has an austenite grain size number of 5 or more even when held at 1030 ° C. for 5 hours. If the steel has a thermal conductivity exceeding 27.0 [W / m / K] at 25 ° C. and high temperature strength that can withstand practical use, the following four points can be realized simultaneously. (1) Cost reduction of the material (good hardenability and easy softening heat treatment). (2) Productivity improvement of hardenability (can be mixed for quenching at 1030 ° C. for large molds). (3) Reduction of die casting cycle time, die seizure and heat check (high thermal conductivity). (4) Prevention of cracking of die casting mold (fine austenite during quenching). However, at present, such steel does not exist. There is a strong industry need for high thermal conductivity steel that is difficult to coarsen during quenching.
  • the amounts of C, V and N related to VC particles which suppress the grain boundary movement of crystal grains by a pinning effect are set. Optimized. In particular, the amount of V is important. Furthermore, in order to make the austenite crystal grains fine at the time of quenching, the amounts of Cu, Ni, and Mo, which are solid solution elements that suppress the movement of crystal grain boundaries by the drag effect, were optimized. In particular, the amount of (Cu + Ni + Mo) is important.
  • a major feature of the present invention is that the pinning effect and the drag effect are positively used together, and the amount of V and the amount of (Cu + Ni + Mo) are in an unprecedented balance.
  • the addition of Ni is effective.
  • the addition of Ni is limited to an amount that does not significantly reduce the thermal conductivity when the mold is formed.
  • the steel for molds according to the present invention has an austenite grain size number of 5 or more even when quenched at 1030 ° C. for 5 hours. Therefore, the toughness after quenching and tempering is high, and cracking of the mold can be prevented. Moreover, since the steel for molds according to the present invention has a thermal conductivity exceeding 27.0 [W / m / K] after quenching and tempering, it is possible to realize a reduction in die casting cycle time and seizure. Furthermore, since a maximum hardness of 57 HRC is obtained after quenching and tempering, it is also resistant to wear due to die casting injection. High hardness is preferable because high wear resistance can be obtained even when applied to a hot stamping mold.
  • the steel for molds according to the present invention contains Cr, it has corrosion resistance that can withstand practical use. Therefore, rust hardly occurs during storage of materials and use as a mold, compared with steel containing almost no Cr (Cr ⁇ 0.5%).
  • comparative example 1 is the general-purpose steel JIS SKD61 of a die-casting die.
  • Comparative Example 2 is also a hot die steel, but is a commercially available brand steel.
  • Comparative Examples 3 and 4 are JIS SNCM439 and JIS SCM435, respectively.
  • Comparative Example 5 is a brand steel marketed as a high thermal conductivity steel.
  • test piece subjected to such pretreatment was heated to 870 ° C., kept at 2 Hr, cooled to 580 ° C. at 15 ° C./Hr, and thereafter annealed to cool to room temperature. After annealing, the Vickers hardness was measured.
  • FIG. 2 shows the relationship between the Cr content and the Vickers hardness of the annealed material.
  • the annealing cooling rate is reduced for softening, or additional heating is required after annealing.
  • the processing takes a long time and causes an increase in cost.
  • Cr> 2.15 mass% the load becomes 250 HV or less, and the machining load is considerably reduced.
  • the crystal grain size numbers of Examples 1 to 30 stably exceed 5. This is because C, V, and N are optimized to ensure the amount of VC dispersed in the matrix during quenching, and Cu, Ni, and Mo are optimized to ensure the amount of alloy that dissolves in the matrix during quenching. It is. That is, a large grain size number was realized by superimposing the pinning effect and the drag effect.
  • FIG. 3 shows the relationship between the V amount and the ⁇ grain size number during quenching. From FIG. 3, it can be seen that when 0.55 mass% ⁇ V, a grain size number of 5 or more is stably obtained.
  • FIG. 4 shows the relationship between the amount of (Cu + Ni + Mo) and the ⁇ grain size number during quenching. From FIG. 4, it can be seen that when 0.55 mass% ⁇ Cu + Ni + Mo, the grain size number 5 or more is stably obtained.
  • Comparative Example 4 shows the hardness after tempering. In Comparative Example 4, ferrite was precipitated during quenching and softening resistance was low, so that it was about 27 HRC, and the hardness required for the mold: more than 33 HRC could not be secured. Comparative Example 5 also had a low hardness ( ⁇ 20 HRC) that cannot be measured by HRC because a large amount of ferrite precipitated during quenching. It can be seen that using Comparative Example 4 and Comparative Example 5 for die-cast mold parts is virtually impossible from the viewpoint of hardenability and softening resistance. Comparative Example 1 and Comparative Example 2 were only used for die casting molds and could be tempered to 47HRC without problems. In addition, it was confirmed that all of Examples 1 to 30 could be tempered to 47 HRC and could be applied to a die casting mold from the viewpoint of hardenability and softening resistance.
  • Table 5 shows the thermal conductivity of the materials shown in Table 4. Since the comparative example 1 has many Si and Cr, it has the lowest thermal conductivity. In Comparative Example 2, since Si is not extremely large, the thermal conductivity is higher than that of Comparative Example 1, but because of the large amount of Cr, ⁇ ⁇ 27.0 remains. Since Comparative Examples 3 to 5 are low Si and low Cr, they have high thermal conductivity of ⁇ > 27.0.
  • Table 6 summarizes the above survey results. The annealing properties, the austenite grain size number when heated at 1030 ° C. ⁇ 5 Hr, the hardness in the quenched and tempered state, and the thermal conductivity are summarized. In Comparative Examples 4 and 5, the tempering hardness required for the mold: more than 33 HRC could not be obtained. Other steels could be tempered to 47HRC except for Comparative Example 3. In Table 6, “ ⁇ ” means that the target has been achieved and is good, and “ ⁇ ” means that the target has not been reached and is inferior.
  • Comparative Examples 1 to 5 there is “x” in any item. Comparative Example 1 and Comparative Example 2 have low thermal conductivity. Comparative Examples 2 and 3 have poor annealing properties. Comparative Examples 3 to 5 have a small crystal grain size number (large crystal grains). In Comparative Examples 1 and 2 with low thermal conductivity, it is difficult to reduce damage to the mold and quickly cool the product when the die-cast mold is formed. In Comparative Examples 3 to 5, there is a concern that large cracks may occur when die casting molds are obtained. Moreover, since Comparative Examples 4 and 5 have low hardenability, it is difficult to apply them to a die casting mold.
  • the austenite crystal grains at the time of quenching are as fine as a grain size number of 5 or more, and have a high thermal conductivity exceeding 27 [W / m / K] in a tempered state of 47 HRC.
  • Examples 1 to 20 are applied to a die casting mold, it is expected that the following four points can be realized simultaneously.
  • Cost reduction of the material good annealing.
  • Productivity improvement of hardenability can be mixed for quenching at 1030 ° C. for large molds).
  • Reduction of die casting cycle time, die seizure and heat check high thermal conductivity).
  • Prevention of cracking of die casting mold fine austenite during quenching).
  • the mold steel according to the present invention is suitable for die casting molds or parts thereof because austenite crystal grains are hard to be coarsened during quenching and high hardness and high thermal conductivity are obtained after tempering.
  • the die steel according to the present invention is applied to a die casting die or a part thereof, it is possible to suppress cracking or seizure of the die or the part thereof and to shorten the die casting cycle time.
  • the steel for molds according to the present invention can be made into a rod shape or a line shape and used as a welding repair material for the mold or its parts. Or it is also applicable to the metal mold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

This steel for molds contains 0.35 mass% < C < 0.55 mass%, 0.003 mass% ≤ Si < 0.300 mass%, 0.30 mass% < Mn < 1.50 mass%, 2.00 mass% ≤ Cr < 3.50 mass%, 0.003 mass% ≤ Cu < 1.200 mass%, 0.003 mass% ≤ Ni < 1.380 mass%, 0.50 mass% < Mo < 3.29 mass%, 0.55 mass% < V < 1.13 mass% and 0.0002 mass% ≤ N < 0.1200 mass%, with the balance made up of Fe and unavoidable impurities; and this steel for molds satisfies 0.55 mass% < (Cu + Ni + Mo) < 3.29 mass%. A molding tool according to the present invention comprises a mold and/or a mold component that is formed of this steel for molds.

Description

金型用鋼及び成形具Mold steel and tools
 本発明は、金型用鋼及びそれを用いた成形具に関する。成形具は、金型や金型部品の単独あるいは組み合わせで構成される。成形具は、ダイカスト、プラスチックの射出成形、ゴムの加工、各種の鋳造、温間鍛造、熱間鍛造、ホットスタンプなどに用いられる。これらの成形具は、室温よりも高温の被成形物と接触する部位を有する。 The present invention relates to mold steel and a molding tool using the same. The molding tool is composed of a mold or mold parts alone or in combination. The molding tool is used for die casting, plastic injection molding, rubber processing, various castings, warm forging, hot forging, hot stamping and the like. These molding tools have a portion that comes into contact with a molded article having a temperature higher than room temperature.
 ダイカスト、射出成形、熱間~温間における塑性加工などに用いられる金型は、通常、素材の焼入れ・焼戻しを行い、型彫加工等により所定の形状に加工することにより製造されている。また、このような金型を用いて熱間~温間での加工を行う際には、金型は、大きなヒートサイクルと大きな負荷を受ける。そのため、この種の金型に用いられる材料には、靱性、高温強度、耐摩耗性、耐割れ性、耐ヒートチェック性などに優れていることが求められる。しかしながら、一般に、金型用鋼において、複数の特性を同時に向上させるのは難しい。 Molds used for die casting, injection molding, hot-to-warm plastic processing, etc. are usually manufactured by quenching and tempering the raw material and processing it into a predetermined shape by die-sculpting. In addition, when performing a hot to warm process using such a mold, the mold is subjected to a large heat cycle and a large load. Therefore, the material used for this type of mold is required to be excellent in toughness, high temperature strength, wear resistance, crack resistance, heat check resistance and the like. However, in general, it is difficult to improve a plurality of properties at the same time in mold steel.
 そこでこの問題を解決するために、従来から種々の提案がなされている。
 例えば、特許文献1には、質量%でC:0.1~0.6、Si:0.01~0.8、Mn:0.1~2.5、Cu:0.01~2.0、Ni:0.01~2.0、Cr:0.1~2.0、Mo:0.01~2.0、V,W,Nb及びTaのうち1種類若しくは2種以上を合計で:0.01~2.0、Al:0.002~0.04、N:0.002~0.04、O:0.005以下を含み、残部がFe及び不可避的不純物からなる金型用鋼が開示されている。
 同文献には、このような材料を所定の条件下で熱処理することによって、熱疲労特性及び軟化抵抗が高くなり、これによってヒートチェック及び水冷孔割れを抑制することができる点が記載されている。
In order to solve this problem, various proposals have heretofore been made.
For example, in Patent Document 1, C: 0.1 to 0.6, Si: 0.01 to 0.8, Mn: 0.1 to 2.5, Cu: 0.01 to 2.0 in mass%. Ni: 0.01 to 2.0, Cr: 0.1 to 2.0, Mo: 0.01 to 2.0, one or more of V, W, Nb and Ta in total: Mold steel comprising 0.01 to 2.0, Al: 0.002 to 0.04, N: 0.002 to 0.04, O: 0.005 or less, the balance being Fe and inevitable impurities Is disclosed.
This document describes that heat fatigue characteristics and softening resistance are increased by heat-treating such materials under predetermined conditions, thereby suppressing heat check and water-cooled hole cracking. .
 特許文献2には、質量%で、C:0.2~0.6%,Si:0.01~1.5%,Mn:0.1~2.0%,Cu:0.01~2.0%,Ni:0.01~2.0%,Cr:0.1~8.0%,Mo:0.01~5.0%,VとWとNbとTaのうち1種類あるいは2種以上の合計:0.01~2.0%,Al:0.002~0.04%,及び、N:0.002~0.04%を含み,残部がFe及び不可避的不純物からなる金型用鋼が開示されている。
 同文献には、このような材料は焼入れ性が良好である点、及び、これを所定の条件下で熱処理することによって、所要の衝撃値が得られ、金型寿命の高寿命化が可能であり、かつ、切削加工も容易となる点が記載されている。
In Patent Document 2, by mass, C: 0.2 to 0.6%, Si: 0.01 to 1.5%, Mn: 0.1 to 2.0%, Cu: 0.01 to 2 0.0%, Ni: 0.01 to 2.0%, Cr: 0.1 to 8.0%, Mo: 0.01 to 5.0%, one or two of V, W, Nb and Ta Total of seeds or more: 0.01 to 2.0%, Al: 0.002 to 0.04%, and N: 0.002 to 0.04%, with the balance being Fe and inevitable impurities Mold steel is disclosed.
According to the document, such a material has good hardenability, and by heat-treating it under a predetermined condition, a required impact value can be obtained, and the mold life can be increased. It is described that it is easy to cut.
 特許文献3には、C:0.15~0.55質量%、Si:0.01~2.0質量%、Mn:0.01~2.5質量%、Cu:0.01~2.0質量%、Ni:0.01~2.0質量%、Cr:0.01~2.5質量%、Mo:0.01~3.0質量%、及び、V及びWからなる群から選ばれる少なくとも1種の総量:0.01~1.0質量%を含有し、残部がFe及び不可避的不純物からなる型材用鋼が開示されている。
 同文献には、このような材料を所定の条件下で熱処理することによって、軟化抵抗が高くなり、かつ、耐摩耗性も向上する点が記載されている。
In Patent Document 3, C: 0.15 to 0.55 mass%, Si: 0.01 to 2.0 mass%, Mn: 0.01 to 2.5 mass%, Cu: 0.01 to 2. mass%. Selected from the group consisting of 0% by mass, Ni: 0.01-2.0% by mass, Cr: 0.01-2.5% by mass, Mo: 0.01-3.0% by mass, and V and W A steel for a mold material is disclosed that contains at least one total amount of 0.01 to 1.0% by mass, and the balance being Fe and inevitable impurities.
This document describes that by heat-treating such a material under predetermined conditions, softening resistance is increased and wear resistance is also improved.
 特許文献4には、C:0.26~0.55重量%、Cr:2重量%未満、Mo:0~10重量%、W:0~15重量%(但し、WとMoとの含有量は合計で1.8~15重量%)、(Ti、Zr、Hf、Nb、Ta):0~3重量%、V:0~4重量%、Co:0~6重量%、Si:0~1.6重量%、Mn:0~2重量%、Ni:0~2.99重量%、及び、S:0~1重量%を含み、残部が鉄及び不可避的不純物からなる工具鋼が開示されている。
 同文献には、このような組成にすることによって、従来の工具鋼よりも熱伝導度が高くなる点が記載されている。
In Patent Document 4, C: 0.26 to 0.55 wt%, Cr: less than 2 wt%, Mo: 0 to 10 wt%, W: 0 to 15 wt% (however, the contents of W and Mo Is 1.8 to 15 wt% in total), (Ti, Zr, Hf, Nb, Ta): 0 to 3 wt%, V: 0 to 4 wt%, Co: 0 to 6 wt%, Si: 0 to Disclosed is a tool steel comprising 1.6 wt%, Mn: 0-2 wt%, Ni: 0-2.99 wt%, and S: 0-1 wt% with the balance being iron and inevitable impurities ing.
This document describes that the thermal conductivity is higher than that of conventional tool steel by using such a composition.
 さらに、特許文献5には、質量%で0.35<C≦0.50,0.01≦Si<0.19,1.50<Mn<1.78,2.00<Cr<3.05,0.51<Mo<1.25,0.30<V<0.80,及び、0.004≦N≦0.040を含み,残部がFe及び不可避的不純物からなる金型用鋼が開示されている。
 同文献には、このような組成にすることによって、金型の熱伝導率を高くすることができる点が記載されている。
Further, Patent Document 5 describes, in mass%, 0.35 <C ≦ 0.50, 0.01 ≦ Si <0.19, 1.50 <Mn <1.78, 2.00 <Cr <3.05. , 0.51 <Mo <1.25, 0.30 <V <0.80, and 0.004 ≦ N ≦ 0.040, with the balance being made of Fe and inevitable impurities. Has been.
This document describes that the thermal conductivity of the mold can be increased by using such a composition.
 金型や金型部品の単独あるいは組み合わせで構成される成形具は、室温よりも高温の被成形物と接触する部位を有するため、使用中に温度の上昇と降下という熱サイクルに曝される。用途によっては、高い圧力が付加される場合もある。この過酷な熱サイクルに耐えるため、金型や金型部品は、焼入れ・焼戻し状態で使用される。焼入れ時の加熱条件は、鋼材の組成、用途、金型の大きさ等にもよるが、1030℃で1~3Hr程度保持する場合が多い。
 一方、工業的には、焼入れ時に大きい金型と小さい金型を一緒に加熱する「混載」が一般的である。しかし、混載を行う場合において、焼入れ時の加熱条件を大きい金型に合わせると、小さい金型は過度に加熱され、結晶粒が粗大化する。
Since a molding tool constituted by a mold or a mold part alone or in combination has a portion that comes into contact with an object to be molded having a temperature higher than room temperature, it is exposed to a thermal cycle of temperature rise and fall during use. Depending on the application, high pressure may be applied. In order to withstand this severe thermal cycle, molds and mold parts are used in a quenched and tempered state. The heating conditions during quenching depend on the steel composition, application, mold size, etc., but are often maintained at 1030 ° C. for about 1 to 3 hours.
On the other hand, industrially, “mixed loading” in which a large mold and a small mold are heated together during quenching is common. However, in the case of mixed loading, if the heating conditions during quenching are matched with a large mold, the small mold is excessively heated and the crystal grains become coarse.
 また、近年、ダイカストのサイクルタイム短縮や焼付き軽減やヒートチェック軽減のため、冷却効率に優れた高熱伝導率鋼(熱伝導率λ:24~27[W/m/K])をダイカスト金型に使う場合が増えてきている。高熱伝導率鋼は、熱伝導率を高くするために、一般的な熱間ダイス鋼のCr量(約5%)よりも大幅に低Cr化されている。
 一方、低Cr鋼は、焼入れ時に残留する炭化物が少ないため、焼入れ時の結晶粒粗大化を防止するためには、焼入れ温度を低くする必要がある。しかし、複数の金型が同時に製造される場合において、一部の金型の焼入れ温度が他の金型の焼入れ温度と異なる時には、混載ができないという問題がある。
In recent years, high heat conductivity steel (heat conductivity λ: 24-27 [W / m / K]) with excellent cooling efficiency is die-cast to reduce die casting cycle time, reduce seizure, and reduce heat check. More and more cases are used. In order to increase the thermal conductivity of the high thermal conductivity steel, the Cr content is significantly lower than the Cr content (about 5%) of general hot die steel.
On the other hand, since low Cr steel has a small amount of carbide remaining during quenching, it is necessary to lower the quenching temperature in order to prevent crystal grain coarsening during quenching. However, when a plurality of molds are manufactured at the same time, there is a problem that they cannot be mixed when the quenching temperature of some molds is different from the quenching temperature of other molds.
 また、Cr含有量が少ないと、特にMnやMoの含有量が多い場合に、焼鈍しにくくなる。つまり、機械加工ができる硬さへの軟質化に長時間の熱処理を要し、コスト増につながる。
 さらに、Crを0.5mass%以下にすることで、熱伝導率λが42[W/m/K]を超える鋼も知られている。しかし、そのような鋼は高温強度と耐食性が低いため、温度サイクルに曝される金型部品に使用することは推奨されない。
Moreover, when there is little Cr content, especially when there is much content of Mn and Mo, it will become difficult to anneal. In other words, a long heat treatment is required for softening to a hardness that can be machined, leading to an increase in cost.
Furthermore, steel whose thermal conductivity λ exceeds 42 [W / m / K] by making Cr 0.5 mass% or less is also known. However, such steels have low high temperature strength and corrosion resistance and are not recommended for use in mold parts that are subjected to temperature cycling.
 すなわち、温度サイクルに曝される金型用鋼には、
(a)必要な高温強度及び耐食性を確保できること、
(b)素材の低コスト化が可能であること(すなわち、焼鈍性が良好で、軟質化の熱処理が容易であること)、
(c)焼入れの生産性向上(すなわち、混載)が可能であること、
(d)サイクルタイムの短縮や金型の焼付きやヒートチェックを軽減することが可能な程度の高い熱伝導率を有すること、及び、
(e)焼入れ時に、金型の割れを防止することが可能な程度の微細なオーステナイト結晶粒を維持できる(結晶粒の粗大化を防止できる)こと
が求められている。
 しかし、このような要求を同時に満たす鋼が提案された例は、従来にはない。
That is, for mold steels exposed to temperature cycles,
(A) The necessary high temperature strength and corrosion resistance can be ensured,
(B) It is possible to reduce the cost of the material (that is, good annealing and easy heat treatment for softening),
(C) It is possible to improve quenching productivity (ie, mixed loading),
(D) having a high thermal conductivity that can reduce cycle time, mold seizure and heat check, and
(E) At the time of quenching, it is required that fine austenite crystal grains that can prevent cracking of the mold can be maintained (the coarsening of crystal grains can be prevented).
However, there has been no example in which a steel that satisfies such a requirement has been proposed.
日本国特開2008-056982号公報Japanese Unexamined Patent Publication No. 2008-056882 日本国特開2008-121032号公報Japanese Unexamined Patent Publication No. 2008-121032 日本国特開2008-169411号公報Japanese Unexamined Patent Publication No. 2008-169411 日本国特表2010-500471号公報Japanese National Table 2010-500471 日本国特開2011-094168号公報Japanese Unexamined Patent Publication No. 2011-094168
 本発明が解決しようとする課題は、高温強度及び耐食性に優れ、焼鈍性が良好であり、焼入れの生産性が高く、高熱伝導率であり、かつ、焼入れ時に微細なオーステナイト結晶粒を生成可能な金型用鋼、及び、それを用いた金型や金型部品から構成される成形具を提供することにある。 The problems to be solved by the present invention are excellent in high-temperature strength and corrosion resistance, good in annealing, high in quenching productivity, high in thermal conductivity, and capable of generating fine austenite crystal grains during quenching. An object of the present invention is to provide a mold tool composed of mold steel, a mold using the mold steel, and a mold part.
 上記課題を解決するために本発明に係る成形具は、以下の構成を備えていることを要旨とする。
(1)前記成形具は、
 金型や金型部品の単独あるいは組み合わせで構成され、温度が室温より高い被成形物と直接接触する部位を含む。
(2)前記金型及び前記金型部品の少なくとも1つは、
 0.35<C<0.55mass%、
 0.003≦Si<0.300mass%、
 0.30<Mn<1.50mass%、
 2.00≦Cr<3.50mass%、
 0.003≦Cu<1.200mass%、
 0.003≦Ni<1.380mass%、
 0.50<Mo<3.29mass%、
 0.55<V<1.13mass%、及び、
 0.0002≦N<0.1200mass%
を含み、残部がFe及び不可避的不純物からなり、
 0.55<Cu+Ni+Mo<3.29mass%
を満たす金型用鋼からなり、
 硬さが33HRC超57HRC以下であり、
 焼入れ時の旧オーステナイト結晶粒度番号が5以上であり、
 レーザーフラッシュ法を用いて測定した25℃における熱伝導率λが27.0[W/m/K]超である。
In order to solve the above-described problems, the forming tool according to the present invention is summarized as having the following configuration.
(1) The molding tool is
It is composed of a mold or a mold part alone or in combination, and includes a portion that is in direct contact with a workpiece whose temperature is higher than room temperature.
(2) At least one of the mold and the mold part is:
0.35 <C <0.55 mass%,
0.003 ≦ Si <0.300 mass%,
0.30 <Mn <1.50 mass%,
2.00 ≦ Cr <3.50 mass%,
0.003 ≦ Cu <1.200 mass%,
0.003 ≦ Ni <1.380 mass%,
0.50 <Mo <3.29 mass%,
0.55 <V <1.13 mass%, and
0.0002 ≦ N <0.1200 mass%
And the balance consists of Fe and inevitable impurities,
0.55 <Cu + Ni + Mo <3.29 mass%
Made of mold steel that satisfies
Hardness is 33HRC more than 57HRC,
Old austenite grain size number at the time of quenching is 5 or more,
The thermal conductivity λ at 25 ° C. measured using a laser flash method is more than 27.0 [W / m / K].
 本発明に係る金型用鋼は、
 0.35<C<0.55mass%、
 0.003≦Si<0.300mass%、
 0.30<Mn<1.50mass%、
 2.00≦Cr<3.50mass%、
 0.003≦Cu<1.200mass%、
 0.003≦Ni<1.380mass%、
 0.50<Mo<3.29mass%、
 0.55<V<1.13mass%、及び、
 0.0002≦N<0.1200mass%
を含み、残部がFe及び不可避的不純物からなり、
 0.55<Cu+Ni+Mo<3.29mass%
を満たすことを要旨とする。
The mold steel according to the present invention is:
0.35 <C <0.55 mass%,
0.003 ≦ Si <0.300 mass%,
0.30 <Mn <1.50 mass%,
2.00 ≦ Cr <3.50 mass%,
0.003 ≦ Cu <1.200 mass%,
0.003 ≦ Ni <1.380 mass%,
0.50 <Mo <3.29 mass%,
0.55 <V <1.13 mass%, and
0.0002 ≦ N <0.1200 mass%
And the balance consists of Fe and inevitable impurities,
0.55 <Cu + Ni + Mo <3.29 mass%
The gist is to satisfy.
 本発明においては、
(a)焼戻し硬さを確保するために、C、Mo及びVの量を適正化し、
(b)高熱伝導率を確保するために、Si、Cr及びMnの量を適正化し、かつ、
(c)焼入れ性及び焼鈍性を確保するために、Cr及びMnの量を適正化した。
 さらに、本発明においては、旧オーステナイト結晶粒を微細化するために、ピン止め効果(pinning effect)と引きずり効果(solute drag effect)を積極的に併用した。
 すなわち、
(d)結晶粒界の移動をピン止め効果(pinning effect)により抑制するVC粒子に関するC、V、及びNの量を適正化し、
(e)結晶粒界の移動を引きずり効果(solute drag effect)により抑制する固溶元素であるCu、Ni、及びMoの量を適正化した。
 その結果、本発明に係る金型用鋼は、高温強度及び耐食性に優れ、焼鈍性が良好であり、焼入れの生産性が高く、高熱伝導率であり、かつ、焼入れ時に微細なオーステナイト結晶粒を生成させることができる。
In the present invention,
(A) In order to ensure tempering hardness, the amounts of C, Mo and V are optimized,
(B) In order to ensure high thermal conductivity, the amounts of Si, Cr and Mn are optimized, and
(C) The amount of Cr and Mn was optimized in order to ensure hardenability and annealing.
Furthermore, in the present invention, in order to refine the prior austenite crystal grains, the pinning effect and the dragging effect were positively used together.
That is,
(D) optimizing the amount of C, V, and N related to VC particles that suppress the movement of grain boundaries by the pinning effect;
(E) The amounts of Cu, Ni, and Mo, which are solid solution elements that suppress the movement of crystal grain boundaries by the drag effect, are optimized.
As a result, the mold steel according to the present invention has excellent high temperature strength and corrosion resistance, good annealing, high quenching productivity, high thermal conductivity, and fine austenite grains during quenching. Can be generated.
混載の加熱時における炉温と金型温度の推移の模式図である。It is a schematic diagram of transition of the furnace temperature and mold temperature at the time of mixed heating. Cr量と焼鈍材のビッカース硬さとの関係を示す図である。It is a figure which shows the relationship between Cr amount and the Vickers hardness of an annealing material. V量と焼入れ時のγ結晶粒度番号との関係を示す図である。It is a figure which shows the relationship between V amount and (gamma) grain size number at the time of hardening. (Cu+Ni+Mo)量と焼入れ時のγ結晶粒度番号との関係を示す図である。It is a figure which shows the relationship between the amount of (Cu + Ni + Mo) and the gamma grain size number at the time of quenching.
 以下に、本発明の一実施の形態について詳細に説明する。
[1. 金型用鋼]
 本発明に係る金型用鋼は、以下のような元素を含み、残部がFe及び不可避的不純物からなる。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Steel for molds]
The mold steel according to the present invention contains the following elements, with the balance being Fe and inevitable impurities. The kind of additive element, its component range, and the reason for limitation are as follows.
[1.1. 主構成元素]
(1)0.35<C<0.55mass%:
 焼入れ速度が遅く、かつ焼戻し温度が高い場合において、C量が少なくなるほど、33HRCを超える硬さを安定して得にくくなる。従って、C量は、0.35mass%超である必要がある。C量は、好ましくは、0.36mass%超、さらに好ましくは、0.37mass%超である。
 一方、C量が過剰になると、粗大な炭化物が増加し、それが亀裂の起点となって靱性が低下する。また、残留オーステナイトが増え、それが焼戻しの際に粗大なベイナイトになるため、靱性が低下する。さらに、C量が過剰になると、溶接性が低下する。また、最高硬さが高くなりすぎて機械加工も困難となる。従って、C量は、0.55mass%未満である必要がある。C量は、好ましくは、0.54mass%未満である。
[1.1. Main constituent elements]
(1) 0.35 <C <0.55 mass%:
In the case where the quenching speed is slow and the tempering temperature is high, as the amount of C decreases, it becomes difficult to stably obtain a hardness exceeding 33 HRC. Therefore, the amount of C needs to be more than 0.35 mass%. The amount of C is preferably more than 0.36 mass%, more preferably more than 0.37 mass%.
On the other hand, when the amount of C becomes excessive, coarse carbides increase, which becomes a starting point of cracks and lowers toughness. Also, the retained austenite increases, which becomes coarse bainite during tempering, so that the toughness decreases. Furthermore, when the amount of C becomes excessive, the weldability decreases. In addition, the maximum hardness becomes too high, making machining difficult. Therefore, the amount of C needs to be less than 0.55 mass%. The amount of C is preferably less than 0.54 mass%.
(2)0.003≦Si<0.300mass%:
 一般に、Si量が少なくなるほど、熱伝導率が高くなる。しかし、Si量を必要以上に低減しても、熱伝導率向上の効果が飽和傾向となり、高熱伝導率化の効果を更には得にくい。また、Si量が少なくなりすぎると、機械加工時の被削性が著しく劣化する。さらに、Si量を必要以上に低減するのは、原材料の厳選や精錬の適正化で不可能とは言えないものの、著しいコスト上昇を招く。従って、Si量は、0.003mass%以上である必要がある。Si量は、好ましくは、0.005mass%以上、さらに好ましくは、0.007mass%以上である。
(2) 0.003 ≦ Si <0.300 mass%:
In general, the smaller the amount of Si, the higher the thermal conductivity. However, even if the amount of Si is reduced more than necessary, the effect of improving the thermal conductivity tends to be saturated, and it is more difficult to obtain the effect of increasing the thermal conductivity. Further, if the amount of Si is too small, the machinability during machining is remarkably deteriorated. Furthermore, although reducing the amount of Si more than necessary is not impossible by careful selection of raw materials and optimization of refining, it causes a significant cost increase. Therefore, the amount of Si needs to be 0.003 mass% or more. The amount of Si is preferably 0.005 mass% or more, and more preferably 0.007 mass% or more.
 一方、Si量が過剰になると、熱伝導率の低下が大きくなる。また、本発明に係る金型用鋼は、V量が比較的多いため、鋳造時にV系の炭化物が晶出しやすく、これを後続する熱処理で固溶させる必要がある。しかし、Si量が過剰であると、このV系の晶出炭化物が大きくなりやすく、固溶させるのが難しくなる。固溶せずに残存したV系の晶出炭化物は、金型としての使用中に破壊の起点となるため、有害である。さらに、Si量が過剰になると、鋳造時に他元素の偏析が著しくなるという問題も発生しやすい。従って、Si量は、0.300mass%未満である必要がある。Si量は、好ましくは、0.230mass%未満、さらに好ましくは、0.190mass%未満である。 On the other hand, when the amount of Si becomes excessive, the decrease in thermal conductivity increases. In addition, since the steel for molds according to the present invention has a relatively large amount of V, V-based carbides are likely to crystallize during casting, and this must be dissolved in the subsequent heat treatment. However, if the amount of Si is excessive, the V-based crystallized carbide tends to be large and difficult to be dissolved. The V-type crystallized carbide remaining without being dissolved is harmful since it becomes a starting point of destruction during use as a mold. Furthermore, when the amount of Si becomes excessive, the problem that segregation of other elements becomes remarkable at the time of casting tends to occur. Therefore, the amount of Si needs to be less than 0.300 mass%. The amount of Si is preferably less than 0.230 mass%, more preferably less than 0.190 mass%.
(3)0.30<Mn<1.50mass%:
 Mn量が少ないと焼入れ性が不足し、ベイナイトの混入による靱性の低下を招く。従って、Mn量は、0.30mass%超である必要がある。Mn量は、好ましくは、0.35mass%超、さらに好ましくは、0.40mass%超である。
 一方、Mn量が過剰になると、焼鈍性が非常に劣化し、軟質化させる熱処理が複雑かつ長時間となって製造コストを増加させる。高Mn化による焼鈍性の劣化は、低Cr、高Cu、高Ni、及び高Moの場合に顕著である。また、Mn量が過剰になると、熱伝導率の低下も大きい。従って、Mn量は、1.50mass%未満である必要がある。Mn量は、好ましくは、1.35mass%未満、さらに好ましくは、1.25mass%未満である。
(3) 0.30 <Mn <1.50 mass%:
If the amount of Mn is small, the hardenability is insufficient and the toughness is reduced due to the mixing of bainite. Therefore, the amount of Mn needs to be more than 0.30 mass%. The amount of Mn is preferably more than 0.35 mass%, more preferably more than 0.40 mass%.
On the other hand, when the amount of Mn becomes excessive, the annealing property is extremely deteriorated, and the heat treatment for softening becomes complicated and takes a long time, thereby increasing the manufacturing cost. The deterioration of the annealing property due to the increase in Mn is remarkable in the case of low Cr, high Cu, high Ni, and high Mo. Moreover, when the amount of Mn becomes excessive, the thermal conductivity is greatly lowered. Therefore, the amount of Mn needs to be less than 1.50 mass%. The amount of Mn is preferably less than 1.35 mass%, more preferably less than 1.25 mass%.
(4)2.00≦Cr<3.50mass%:
 Cr量が少ないと、焼入れ性が不足し、耐食性が極端に悪くなり、焼鈍性が非常に劣化する。従って、Cr量は、2.00mass%以上である必要がある。Cr量は、好ましくは、2.05mass%超、さらに好ましくは、2.15mass%超、さらに好ましくは、3.03mass%超である。Cr量を3.03mass%超とすると、Cu、Ni、Moなどの引きずり効果は大きいが焼鈍性を劣化させる元素が多い場合であっても、焼鈍性を確保することができる。
 一方、Cr量が過剰になると、熱伝導率の低下が大きくなる。従って、Cr量は、3.50mass%未満である必要がある。Cr量は、好ましくは、3.45mass%未満、さらに好ましくは、3.40mass%未満である。
(4) 2.00 ≦ Cr <3.50 mass%:
When the amount of Cr is small, the hardenability is insufficient, the corrosion resistance is extremely deteriorated, and the annealability is extremely deteriorated. Therefore, the Cr amount needs to be 2.00 mass% or more. The amount of Cr is preferably more than 2.05 mass%, more preferably more than 2.15 mass%, more preferably more than 3.03 mass%. When the Cr amount exceeds 3.03 mass%, the drag effect of Cu, Ni, Mo, etc. is large, but even when there are many elements that degrade the annealability, the annealability can be ensured.
On the other hand, when the amount of Cr becomes excessive, the decrease in thermal conductivity increases. Therefore, the Cr amount needs to be less than 3.50 mass%. The amount of Cr is preferably less than 3.45 mass%, more preferably less than 3.40 mass%.
(5)0.003≦Cu<1.200mass%:
 Cu量が少ないと、焼入れ時のγ粒界の移動を抑制する引きずり効果(solute drag effect)が乏しくなり、したがって結晶粒の粗大化(結晶粒度番号が小さくなる)を抑制する効果が得られない。また、Cu量が少ないと、(a)焼入れ性を改善する効果に乏しい、(b)Cr-Cu-Niを含有する鋼としての耐候性も発現し難い、(c)時効硬化によって硬さを増す効果にも乏しい、(d)被削性の改善効果も小さい、等の問題が生じる。さらに、Cu量を必要以上に低減するのは、原材料の厳選や各方面で研究されている精錬によるCu除去技術を適用すれば不可能ではないが、著しいコスト増を招く。従って、Cu量は、0.003mass%以上である必要がある。Cu量は、好ましくは、0.004mass%以上、さらに好ましくは、0.005mass%以上である。
(5) 0.003 ≦ Cu <1.200 mass%:
When the amount of Cu is small, the drag effect that suppresses the movement of the γ grain boundary during quenching is poor, and thus the effect of suppressing the coarsening of the crystal grains (the crystal grain size number becomes small) cannot be obtained. . Further, when the amount of Cu is small, (a) the effect of improving the hardenability is poor, (b) the weather resistance as a steel containing Cr—Cu—Ni is hardly exhibited, and (c) the hardness is increased by age hardening. Problems such as poor effect of increasing, (d) small effect of improving machinability, and the like arise. Further, it is not impossible to reduce the amount of Cu more than necessary by applying a Cu removal technique by careful selection of raw materials and refining that has been studied in various fields, but it causes a significant increase in cost. Therefore, the amount of Cu needs to be 0.003 mass% or more. The amount of Cu is preferably 0.004 mass% or more, and more preferably 0.005 mass% or more.
 一方、Cu量が過剰になると、(a)熱間加工時の割れが顕在化する、(b)熱伝導率が低下する、(c)コスト上昇も顕著となる、(d)被削性の改善効果や時効硬化による高硬度化も飽和に近づく、等の問題が生じる。従って、Cu量は、1.200mass%未満である必要がある。Cu量は、好ましくは、1.170mass%未満、さらに好ましくは、1.150mass%未満、さらに好ましくは、0.7mass%以下である。Cu量を0.7mass%以下とすると、引きずり効果を大きく発現させつつ、焼鈍性や熱伝導率の過度の低下を避けることができる。 On the other hand, when the amount of Cu becomes excessive, (a) cracks during hot working become obvious, (b) thermal conductivity decreases, (c) cost increases become significant, (d) machinability. Problems such as improvement and higher hardness due to age hardening also approach saturation. Therefore, the amount of Cu needs to be less than 1.200 mass%. The amount of Cu is preferably less than 1.170 mass%, more preferably less than 1.150 mass%, and even more preferably 0.7 mass% or less. When the amount of Cu is 0.7 mass% or less, it is possible to avoid an excessive decrease in annealing and thermal conductivity while exhibiting a great drag effect.
(6)0.003≦Ni<1.380mass%:
 Niは、Cuと同様に引きずり効果が大きいため、焼入れ時の微細粒維持を目的として添加することができる。一方、Cuは熱間加工性を害することがあるのに対し、Niは、熱間加工性を害しないだけでなく、Cu添加による熱間加工性の劣化を回復させる効果もある。
(6) 0.003 ≦ Ni <1.380 mass%:
Since Ni has a large drag effect like Cu, it can be added for the purpose of maintaining fine grains during quenching. On the other hand, while Cu may impair hot workability, Ni not only does not impair hot workability but also has an effect of restoring deterioration of hot workability due to the addition of Cu.
 しかし、Ni量が少なくなると、(a)引きずり効果が乏しくなる、(b)焼入れ性の改善効果も小さくなる、(c)Cr-Cu-Niを含有する鋼としての耐候性も発現し難くなる、等の問題が生じる。また、Niは、Alが存在する場合にAlと結合して金属間化合物を形成し、強度を高める効果があるが、Ni量が少ないと、このような効果に乏しくなる。さらに、Niを必要以上に低減するのは、原材料の厳選で不可能ではないが、著しいコスト増を招く。従って、Ni量は、0.003mass%以上である必要がある。Ni量は、好ましくは、0.004mass%以上、さらに好ましくは、0.005mass%以上である。 However, when the amount of Ni decreases, (a) the drag effect becomes poor, (b) the effect of improving the hardenability decreases, and (c) the weather resistance as a steel containing Cr—Cu—Ni is hardly exhibited. Problems arise. Further, Ni has an effect of increasing the strength by bonding with Al when Al is present, and the effect of increasing the strength is poor when the amount of Ni is small. Further, it is not impossible to reduce Ni more than necessary by careful selection of raw materials, but it causes a significant increase in cost. Therefore, the amount of Ni needs to be 0.003 mass% or more. The amount of Ni is preferably 0.004 mass% or more, and more preferably 0.005 mass% or more.
 一方、Ni量が過剰になると、(a)Cu添加による熱間加工性の劣化を回復させる効果が飽和する、(b)熱伝導率の低下が顕著となる、(c)Alと結合した金属間化合物の析出による靱性の低下が顕著となる、(d)偏析も著しくなって、特性の均質化が難しくなる、等の問題が生じる。従って、Ni量は、1.380mass%未満である必要がある。Ni量は、好ましくは、1.250mass%未満、さらに好ましくは、1.150mass%未満、さらに好ましくは、0.7mass%以下である。Ni量を0.7mass%以下とすると、引きずり効果を大きく発現させつつ、焼鈍性や熱伝導率の過度の低下を避けることができる。 On the other hand, when the amount of Ni becomes excessive, (a) the effect of recovering the deterioration of hot workability due to the addition of Cu is saturated, (b) the decrease in thermal conductivity becomes significant, (c) the metal bonded to Al Problems such as significant decrease in toughness due to precipitation of intermetallic compounds, (d) significant segregation, and difficulty in homogenizing characteristics. Therefore, the amount of Ni needs to be less than 1.380 mass%. The amount of Ni is preferably less than 1.250 mass%, more preferably less than 1.150 mass%, and even more preferably 0.7 mass% or less. When the amount of Ni is 0.7 mass% or less, an excessive decrease in annealing and thermal conductivity can be avoided while a drag effect is greatly expressed.
 なお、ある程度以上のCuを含有しており、熱間加工性が著しく悪い場合、Ni量は、Cu量の0.3~1.2倍が好ましい。
 一方、Cuを含有している場合であっても、加工温度や加工方法などの適正化で割れを軽減できる時には、Ni量をCu量の0.3~1.2倍にする必要は必ずしも無い。
In addition, when it contains a certain amount or more of Cu and the hot workability is extremely poor, the amount of Ni is preferably 0.3 to 1.2 times the amount of Cu.
On the other hand, even if Cu is contained, if the cracking can be reduced by optimizing the processing temperature, processing method, etc., the amount of Ni is not necessarily 0.3 to 1.2 times the amount of Cu. .
(7)0.50<Mo<3.29mass%:
 Moは、CuやNiと同様に比較的引きずり効果が大きいため、焼入れ時の微細粒維持を目的として添加できる。Moは、Cuのように熱間加工性を害しない利点もある。Mo量が少ないと、(a)引きずり効果が小さい、(b)2次硬化の寄与が小さく、焼戻し温度が高い場合には33HRCを超える硬さを安定して得ることが困難となる、(c)Crとの複合添加で耐食性を改善する効果も小さい、等の問題が生じる。従って、Mo量は、0.50mass%超である必要がある。Mo量は、好ましくは、0.53mass%超、さらに好ましくは、0.56mass%超である。
(7) 0.50 <Mo <3.29 mass%:
Since Mo has a relatively large drag effect like Cu and Ni, it can be added for the purpose of maintaining fine grains during quenching. Mo also has an advantage that hot workability is not impaired like Cu. When the amount of Mo is small, (a) the drag effect is small, (b) the contribution of secondary curing is small, and when the tempering temperature is high, it is difficult to stably obtain a hardness exceeding 33 HRC. ) Problems such as a small effect of improving the corrosion resistance by the combined addition with Cr occur. Therefore, the Mo amount needs to be more than 0.50 mass%. The amount of Mo is preferably more than 0.53 mass%, more preferably more than 0.56 mass%.
 一方、Mo量が過剰になると、(a)破壊靱性が低下する、(b)素材コストの上昇も著しい、等の問題を生じる。従って、Mo量は、3.29mass%未満である必要がある。Mo量は、好ましくは、3.27mass%未満、さらに好ましくは、3.25mass%未満である。 On the other hand, when the amount of Mo becomes excessive, problems such as (a) a decrease in fracture toughness and (b) a significant increase in material cost occur. Therefore, the Mo amount needs to be less than 3.29 mass%. The amount of Mo is preferably less than 3.27 mass%, more preferably less than 3.25 mass%.
(8)0.55<V<1.13mass%:
 焼入れ時の微細粒維持には、固溶元素の引きずり効果と分散粒子のピン止め効果を併用する必要がある。分散粒子のVCが適量になるように、C量を考慮して、V量を適正化するのが好ましい。V量が少ないと、VC量が少なくなるため、γ結晶粒の粗大化(結晶粒度番号が小さくなる)を抑制する効果に乏しい。従って、V量は、0.55mass%超である必要がある。V量は、好ましくは、0.56mass%超、さらに好ましくは、0.57mass%超である。
(8) 0.55 <V <1.13 mass%:
In order to maintain fine particles during quenching, it is necessary to use both the drag effect of solid solution elements and the pinning effect of dispersed particles. It is preferable to optimize the V amount in consideration of the C amount so that the VC of the dispersed particles becomes an appropriate amount. When the amount of V is small, the amount of VC is small, so that the effect of suppressing the coarsening of the γ crystal grains (the crystal grain size number becomes small) is poor. Therefore, the V amount needs to be more than 0.55 mass%. The amount of V is preferably more than 0.56 mass%, more preferably more than 0.57 mass%.
 一方、Vを必要以上に添加しても、微細結晶粒を維持する効果が飽和する。また、V量が過剰になると、粗大な晶出炭化物(凝固時に析出するもの)が増加し、それが亀裂の起点となるため靱性が低下する。さらに、V量が多くなるほど、コスト増も著しい。従って、V量は、1.13mass%未満である必要がある。V量は、好ましくは、1.11mass%未満、さらに好ましくは、1.09mass%未満である。
 本発明は、規定範囲の他の元素を含むことに加えて、V量及び(Cu+Ni+Mo)量が従来にない範囲となっており、固溶元素の引きずり効果と分散粒子のピン止め効果を積極的に併用している点が特徴である。
On the other hand, even if V is added more than necessary, the effect of maintaining fine crystal grains is saturated. Further, when the amount of V is excessive, coarse crystallized carbides (those that precipitate during solidification) increase, which becomes the starting point of cracks, and the toughness decreases. Further, the cost increases as the amount of V increases. Therefore, the V amount needs to be less than 1.13 mass%. The amount of V is preferably less than 1.11 mass%, more preferably less than 1.09 mass%.
In addition to the inclusion of other elements within the specified range, the present invention has a V amount and (Cu + Ni + Mo) amount that do not exist in the past, and positively provides a drag effect of solid solution elements and a pinning effect of dispersed particles. The feature is that it is used together.
(9)0.0002≦N<0.1200mass%:
 Nもまた、分散粒子VCの量に影響する。N量が多くなるほど、VCの固溶温度が高くなる。そのため、CとVの量が同じであっても、焼入れ時の残留VCは多くなる。
 N量が少ないと、焼入れ時のVC粒子が過度に少なくなる。そのため、γ結晶粒の粗大化(結晶粒度番号が小さくなること)を抑制する効果に乏しい。また、Nは、Alが存在する場合にAlN粒子を形成して結晶粒粗大化を補助的に防止する効果があるが、N量が少ないと、このような効果が小さい。従って、N量は、0.0002mass%以上である必要がある。N量は、好ましくは、0.0010mass%超、さらに好ましくは、0.0030mass%超である。
(9) 0.0002 ≦ N <0.1200 mass%:
N also affects the amount of dispersed particles VC. As the amount of N increases, the solid solution temperature of VC increases. Therefore, even if the amount of C and V is the same, the residual VC at the time of quenching increases.
When the amount of N is small, VC particles at the time of quenching are excessively reduced. Therefore, the effect of suppressing the coarsening of the γ crystal grains (decreasing the crystal grain size number) is poor. In addition, N has an effect of assisting in preventing coarsening of the crystal grains by forming AlN particles when Al is present, but such an effect is small when the amount of N is small. Therefore, the N amount needs to be 0.0002 mass% or more. The amount of N is preferably more than 0.0010 mass%, more preferably more than 0.0030 mass%.
 一方、N量が過剰になると、N添加に要する精錬の時間とコストが増加し、素材コストの上昇を招く。さらに、N量が過剰になると、粗大な窒化物、炭窒化物、あるいは炭化物が増加し、それが亀裂の起点となるため、靱性が低下する。従って、N量は、0.1200mass%未満である必要がある。N量は、好ましくは、0.1000mass%未満、さらに好ましくは、0.0800mass%未満である。 On the other hand, if the amount of N becomes excessive, the refining time and cost required for N addition increase, leading to an increase in material cost. Further, when the amount of N becomes excessive, coarse nitrides, carbonitrides, or carbides increase, which becomes a starting point of cracks, so that toughness decreases. Therefore, the N amount needs to be less than 0.1200 mass%. The amount of N is preferably less than 0.1000 mass%, more preferably less than 0.0800 mass%.
(10)不可避的不純物:
 本発明に係る金型用鋼は、不可避的不純物として、
 P≦0.05mass%、
 S≦0.003mass%、
 Al≦0.10mass%、
 W≦0.30mass%、
 O≦0.01mass%、
 Co≦0.10mass%、
 Nb≦0.004mass%、
 Ta≦0.004mass%、
 Ti≦0.004mass%、
 Zr≦0.004mass%、
 B≦0.0001mass%、
 Ca≦0.0005mass%、
 Se≦0.03mass%、
 Te≦0.005mass%、
 Bi≦0.01mass%、
 Pb≦0.03mass%、
 Mg≦0.02mass%、又は、
 REM≦0.10mass%
が含まれていても良い。
(10) Inevitable impurities:
The mold steel according to the present invention is an inevitable impurity,
P ≦ 0.05 mass%,
S ≦ 0.003 mass%,
Al ≦ 0.10 mass%,
W ≦ 0.30 mass%,
O ≦ 0.01 mass%,
Co ≦ 0.10 mass%,
Nb ≦ 0.004 mass%,
Ta ≦ 0.004 mass%,
Ti ≦ 0.004 mass%,
Zr ≦ 0.004 mass%,
B ≦ 0.0001 mass%,
Ca ≦ 0.0005 mass%,
Se ≦ 0.03 mass%,
Te ≦ 0.005 mass%,
Bi ≦ 0.01 mass%,
Pb ≦ 0.03 mass%,
Mg ≦ 0.02 mass%, or
REM ≦ 0.10 mass%
May be included.
 本発明に係る金型用鋼は、上述した1又は2以上の元素を含んでいても良い。上記元素の含有量が上記の上限値以下である場合、その元素は、不可避的不純物として振る舞う。
 一方、上記元素の一部は、上記の上限値を超えて含まれていても良い。この場合、元素の種類及び含有量に応じて、後述するような効果が得られる。
The mold steel according to the present invention may contain one or more elements as described above. When the content of the element is not more than the above upper limit value, the element behaves as an inevitable impurity.
On the other hand, a part of the element may be contained exceeding the upper limit. In this case, the effects described below are obtained depending on the type and content of the element.
[1.2. 成分バランス]
 本発明に係る金型用鋼は、上記の元素を含むことに加えて、Cu、Ni及びMoの総量が次の(a)式の関係を満たしていることを特徴とする。
 0.55<Cu+Ni+Mo<3.29mass%   ・・・(a)
[1.2. Ingredient balance]
In addition to containing the above elements, the mold steel according to the present invention is characterized in that the total amount of Cu, Ni and Mo satisfies the relationship of the following formula (a).
0.55 <Cu + Ni + Mo <3.29 mass% (a)
 引きずり効果の指標として、Cu+Ni+Moの量は、重要である。これらの元素の総量が少ないと、十分な引きずり効果がえられない。従って、これらの元素の総量は、0.55mass%超である必要がある。総量は、好ましくは、0.60mass%超、さらに好ましくは、0.70mass%超である。
 一方、これらの元素の総量が過剰になると、熱間加工時の割れの顕在化、熱伝導率の低下、金属間化合物の過度の析出による靱性の低下、破壊靱性の低下などの原因となる。従って、これらの元素の総量は、3.29mass%未満である必要がある。総量は、好ましくは、3.28mass%未満、さらに好ましくは、3.27mass%未満である。
As an index of the drag effect, the amount of Cu + Ni + Mo is important. If the total amount of these elements is small, a sufficient drag effect cannot be obtained. Therefore, the total amount of these elements needs to be more than 0.55 mass%. The total amount is preferably greater than 0.60 mass%, more preferably greater than 0.70 mass%.
On the other hand, if the total amount of these elements is excessive, it may cause cracking during hot working, decrease in thermal conductivity, decrease in toughness due to excessive precipitation of intermetallic compounds, decrease in fracture toughness, and the like. Therefore, the total amount of these elements needs to be less than 3.29 mass%. The total amount is preferably less than 3.28 mass%, more preferably less than 3.27 mass%.
[1.3. 副構成元素]
 本発明に係る金型用鋼は、上述した主構成元素に加えて、以下のような1又は2以上の元素をさらに含んでいても良い。添加元素の種類、その成分範囲、及び、その限定理由は、以下の通りである。
[1.3. Sub-constituent elements]
In addition to the main constituent elements described above, the mold steel according to the present invention may further contain one or more elements as described below. The kind of additive element, its component range, and the reason for limitation are as follows.
(1)0.30<W≦5.00mass%:
(2)0.10<Co≦4.00mass%:
 本発明は、ダイカスト金型の汎用鋼であるSKD61などと比較して、MnとCrの合計量が少ないため、焼入れ性もそれほど高くない。このため、焼入れ速度が遅く、かつ高温で焼戻した場合には、33HRCを超える硬さの確保が難しい。そのような場合には、WやCoを選択的に添加し、強度確保を図れば良い。Wは、炭化物の析出によって強度を上げる。Coは、母材への固溶によって強度を上げると同時に、炭化物形態の変化を介して析出硬化にも寄与する。
(1) 0.30 <W ≦ 5.00 mass%:
(2) 0.10 <Co ≦ 4.00 mass%:
In the present invention, since the total amount of Mn and Cr is small as compared with SKD61, which is a general-purpose steel of a die casting mold, the hardenability is not so high. For this reason, when the quenching speed is slow and tempering is performed at a high temperature, it is difficult to ensure hardness exceeding 33 HRC. In such a case, W or Co may be selectively added to ensure strength. W increases the strength by precipitation of carbides. Co increases strength by solid solution in the base material, and at the same time contributes to precipitation hardening through a change in the form of carbide.
 また、これらの元素は、焼入れ時のγ中に固溶して、比較的大きな引きずり効果も発揮する。VC粒子のピン止め効果と、溶質原子の引きずり効果を併せて、安定して微細なγ結晶粒を得るには、WやCoの添加が有効である。このような効果を得るためには、W量及びCo量は、それぞれ、上記の下限値を超える量が好ましい。
 一方、これらの元素の量が過剰になると、特性の飽和と著しいコスト増を招く。従って、W量及びCo量は、それぞれ上記の上限値以下が好ましい。
 なお、金型用鋼には、W又はCoのいずれか一方が含まれていても良く、あるいは、双方が含まれていても良い。
Further, these elements are dissolved in γ during quenching and exhibit a relatively large drag effect. Addition of W or Co is effective to obtain a stable and fine γ crystal grain by combining the pinning effect of VC particles and the drag effect of solute atoms. In order to obtain such an effect, the amount of W and the amount of Co each preferably exceed the lower limit values described above.
On the other hand, if the amount of these elements is excessive, characteristic saturation and significant cost increase are caused. Therefore, the W amount and the Co amount are each preferably not more than the above upper limit value.
In addition, either one of W or Co may be contained in the steel for metal mold | die, or both may be contained.
(3)0.004<Nb≦0.100mass%:
(4)0.004<Ta≦0.100mass%:
(5)0.004<Ti≦0.100mass%:
(6)0.004<Zr≦0.100mass%:
 予期せぬ設備トラブルなどによって、焼入れ加熱温度が高くなったり、あるいは、焼入れ時間が長くなった場合、本発明に係る金型用鋼の基本成分であっても、結晶粒の粗大化が懸念される。そのような場合に備えて、Nb、Ta、Ti、及び/又は、Zrを選択的に添加しても良い。これらの元素を添加すると、これらの元素が微細な析出物を形成する。微細な析出物は、γ結晶粒界の移動を抑制(ピン止め効果)するため、微細なオーステナイト組織を維持することができる。このような効果を得るためには、これらの元素の量は、それぞれ、上記の下限値を超える量が好ましい。
(3) 0.004 <Nb ≦ 0.100 mass%:
(4) 0.004 <Ta ≦ 0.100 mass%:
(5) 0.004 <Ti ≦ 0.100 mass%:
(6) 0.004 <Zr ≦ 0.100 mass%:
If the quenching heating temperature becomes high or the quenching time becomes long due to unexpected equipment troubles, etc., there is a concern about the coarsening of crystal grains even if it is a basic component of the mold steel according to the present invention. The In preparation for such a case, Nb, Ta, Ti, and / or Zr may be selectively added. When these elements are added, these elements form fine precipitates. The fine precipitates suppress the movement of the γ grain boundary (pinning effect), so that a fine austenite structure can be maintained. In order to obtain such an effect, the amount of these elements is preferably an amount exceeding the above lower limit value.
 一方、これらの元素の量が過剰になると、炭化物、窒化物、又は酸化物が過度に生成し、靱性の低下を招く。従って、これらの元素の量は、それぞれ、上記の上限値以下が好ましい。
 なお、金型用鋼には、これらの元素のいずれか一種が含まれていても良く、あるいは、2種以上が含まれていても良い。
On the other hand, when the amount of these elements is excessive, carbides, nitrides, or oxides are excessively generated, resulting in a decrease in toughness. Therefore, the amount of these elements is preferably not more than the above upper limit value.
The mold steel may contain any one of these elements, or may contain two or more.
(7)0.10<Al≦1.50mass%:
 Alは、Nと結合してAlNを形成し、γ結晶粒の成長を抑制する効果(ピン止め効果)を有する。また、Alは、Nとの親和力が高く、鋼中へのNの侵入を加速する。このため、Alを含有する鋼材を窒化処理すると、表面硬さが高くなりやすい。より高い耐摩耗性を求めて窒化処理する金型には、Alを含む鋼材を使うことが有効である。このような効果を得るためには、Al量は、0.10mass%超が好ましい。
 一方、Al量が過剰になると、熱伝導率や靱性の低下を招く。従って、Al量は、1.50mass%以下が好ましい。
 なお、Al量が不純物レベル(0.10mass%以下)であっても、N量によっては上記の効果が発現する場合がある。
(7) 0.10 <Al ≦ 1.50 mass%:
Al combines with N to form AlN and has the effect of suppressing the growth of γ crystal grains (pinning effect). Al has a high affinity with N and accelerates the penetration of N into the steel. For this reason, when a steel material containing Al is subjected to nitriding treatment, the surface hardness tends to increase. It is effective to use a steel material containing Al for a mold for nitriding for higher wear resistance. In order to obtain such an effect, the amount of Al is preferably more than 0.10 mass%.
On the other hand, when the amount of Al becomes excessive, thermal conductivity and toughness are reduced. Therefore, the amount of Al is preferably 1.50 mass% or less.
Even if the Al amount is an impurity level (0.10 mass% or less), the above effect may be exhibited depending on the N amount.
(8)0.0001<B≦0.0050mass%:
 B添加は、焼入れ性の改善策として有効である。しかし、BがBNを形成すると、焼入れ性の向上効果が無くなるため、鋼中にB単独で存在させる必要がある。具体的には、BよりもNとの親和力が強い元素で窒化物を形成させ、BとNの結合を抑制すれば良い。そのような元素としては、上述したNb、Ta、Ti、Zrなどがある。これらの元素は、不純物レベル(0.004mass%以下)で存在していてもNを固定する効果はあるが、N量によっては、不純物レベルを超える量を添加する場合もある。Bの一部が鋼中のNと結合してBNが形成されても、余剰のBが鋼中に単独で存在すれば、それが焼入れ性を高める。
(8) 0.0001 <B ≦ 0.0050 mass%:
Addition of B is effective as a measure for improving hardenability. However, when B forms BN, the effect of improving the hardenability is lost, so it is necessary to make B exist alone in the steel. Specifically, a nitride may be formed with an element having an affinity for N that is greater than that of B to suppress the bond between B and N. Examples of such elements include Nb, Ta, Ti, and Zr described above. These elements have an effect of fixing N even when present at an impurity level (0.004 mass% or less), but depending on the amount of N, an amount exceeding the impurity level may be added. Even if a part of B is combined with N in steel to form BN, if surplus B exists alone in the steel, it enhances hardenability.
 Bはまた、被削性の改善にも有効である。被削性を改善するには、BNを形成させれば良い。BNは、性質が黒鉛に似ており、切削抵抗を下げると同時に、切屑破砕性を改善する。さらに、鋼中にBとBNがある場合には、焼入れ性と被削性が同時に改善される。
 このような効果を得るためには、B量は、0.0001mass%超が好ましい。
 一方、B量が過剰になると、かえって焼入れ性が低下する。従って、B量は、0.0050mass%以下が好ましい。
B is also effective in improving machinability. In order to improve machinability, BN may be formed. BN is similar in nature to graphite and lowers cutting resistance while improving chip friability. Furthermore, when B and BN are present in the steel, hardenability and machinability are improved at the same time.
In order to obtain such an effect, the amount of B is preferably more than 0.0001 mass%.
On the other hand, when the amount of B becomes excessive, the hardenability is lowered. Therefore, the amount of B is preferably 0.0050 mass% or less.
(9)0.003<S≦0.050mass%:
(10)0.0005<Ca≦0.2000mass%:
(11)0.03<Se≦0.50mass%:
(12)0.005<Te≦0.100mass%:
(13)0.01<Bi≦0.50mass%:
(14)0.03<Pb≦0.50mass%:
 被削性の改善には、S、Ca、Se、Te、Bi、又はPbを選択的に添加することも有効である。このような効果を得るためには、これらの元素の量は、それぞれ、上記の下限値を超える量が好ましい。
 一方、これらの元素の量が過剰になると、被削性の改善効果が飽和するだけでなく、熱間加工性の劣化、衝撃値や鏡面研磨性の低下を招く。従って、これらの元素の量は、それぞれ、上記の上限値以下が好ましい。
 なお、金型用鋼には、これらの元素のいずれか1種が含まれていても良く、あるいは、2種以上が含まれていても良い。
(9) 0.003 <S ≦ 0.050 mass%:
(10) 0.0005 <Ca ≦ 0.2000 mass%:
(11) 0.03 <Se ≦ 0.50 mass%:
(12) 0.005 <Te ≦ 0.100 mass%:
(13) 0.01 <Bi ≦ 0.50 mass%:
(14) 0.03 <Pb ≦ 0.50 mass%:
For improving machinability, it is also effective to selectively add S, Ca, Se, Te, Bi, or Pb. In order to obtain such an effect, the amount of these elements is preferably an amount exceeding the above lower limit value.
On the other hand, when the amount of these elements is excessive, not only the machinability improving effect is saturated, but also hot workability is deteriorated, impact value and mirror polishability are reduced. Therefore, the amount of these elements is preferably not more than the above upper limit value.
In addition, any 1 type of these elements may be contained in the steel for metal mold | die, or 2 or more types may be contained.
[1.4. 特性]
 本発明に係る金型用鋼を適切な条件下で熱処理すると、
 硬さが33HRC超57HRC以下となり、
 焼入れ時の旧オーステナイト結晶粒度番号が5以上となり、かつ、
 レーザーフラッシュ法を用いて測定した25℃における熱伝導率λが27.0[W/m/K]超となる。
[1.4. Characteristic]
When heat-treating the mold steel according to the present invention under appropriate conditions,
Hardness is over 33HRC and below 57HRC,
The prior austenite grain size number at the time of quenching is 5 or more, and
The thermal conductivity λ at 25 ° C. measured by using the laser flash method exceeds 27.0 [W / m / K].
[1.4.1. 硬さ]
 金型には、摩耗し難さや変形し難さが求められる。そのため、金型には、硬さが必要である。硬さが33HRCを超えていれば、様々な用途に適用しても、摩耗や変形の問題は起き難い。硬さは、さらに好ましくは、35HRC以上である。
 一方、硬さが高すぎると、金型の仕上げ機械加工が非常に困難となるだけでなく、金型としての使用中に大割れや欠けを生じやすくなる。そのため、硬さは、57HRC以下にする必要がある。硬さは、さらに好ましくは、56HRC以下である。
 この点は、金型部品も同様であり、その硬さは、上記の範囲内にあるのが好ましい。
[1.4.1. Hardness]
The mold is required to be difficult to wear or deform. Therefore, the mold needs to have hardness. If the hardness exceeds 33 HRC, the problem of wear or deformation hardly occurs even when applied to various uses. The hardness is more preferably 35 HRC or more.
On the other hand, if the hardness is too high, not only finish machining of the mold becomes very difficult but also large cracks and chips are likely to occur during use as a mold. Therefore, the hardness needs to be 57 HRC or less. The hardness is more preferably 56 HRC or less.
This point is the same for the mold parts, and the hardness is preferably within the above range.
[1.4.2. 旧オーステナイト結晶粒度番号]
 金型の割れや欠けを防止するには、焼入れ時のオーステナイト結晶粒度番号を大きく(オーステナイト結晶粒を微細に)する方が良い。結晶粒度番号が小さいと亀裂が進展しやすく、割れや欠けが発生しやすくなる。従って、焼入れ時のオーステナイト結晶粒度番号は、5以上が必要である。オーステナイト結晶粒度番号は、より好ましくは、5.5以上である。製造条件を最適化すると、結晶粒度番号は、6以上、あるいは、6.5以上となる。
 この点は、金型部品も同様であり、その旧オーステナイト結晶粒度番号は、上記の範囲内にあるのが好ましい。
[1.4.2. Old austenite grain size number]
In order to prevent cracking and chipping of the mold, it is better to increase the austenite grain size number at the time of quenching (fine austenite crystal grains). If the grain size number is small, cracks tend to develop and cracks and chips are likely to occur. Therefore, the austenite grain size number at the time of quenching needs to be 5 or more. The austenite grain size number is more preferably 5.5 or more. When the manufacturing conditions are optimized, the crystal grain size number is 6 or more, or 6.5 or more.
This is the same for mold parts, and the prior austenite grain size number is preferably within the above range.
[1.4.3. 熱伝導率]
 製品を速く冷却したり、金型の低温度化や熱応力軽減で金型損傷(焼付き、割れ、摩耗)を軽減するには、金型を高熱伝導率化する必要がある。ダイカストなどに用いられる汎用鋼の25℃における熱伝導率λは、23.0~24.0[W/m/K]である。高熱伝導率とされる鋼でもλは、27.0[W/m/K]以下であり、不十分である。製品を速く冷却したり、金型損傷を軽減するには、熱伝導率λは、27.0[W/m/K]超である必要がある。熱伝導率λは、さらに好ましくは、27.5[W/m/K]超である。製造条件を最適化すると、熱伝導率は、28.0[W/m/K]以上となる。
 この点は、金型部品も同様であり、その熱伝導率は、上記の範囲内にあるのが好ましい。
 なお、本発明において、「熱伝導率」とは、レーザーフラッシュ法を用いて測定した25℃における値をいう。
[1.4.3. Thermal conductivity]
In order to reduce product damage (seizure, cracking, wear) by cooling the product quickly or reducing the temperature of the die or reducing thermal stress, it is necessary to increase the thermal conductivity of the die. The thermal conductivity λ at 25 ° C. of general-purpose steel used for die casting is 23.0 to 24.0 [W / m / K]. Even in steel with high thermal conductivity, λ is 27.0 [W / m / K] or less, which is insufficient. In order to cool the product quickly or reduce mold damage, the thermal conductivity λ needs to exceed 27.0 [W / m / K]. The thermal conductivity λ is more preferably more than 27.5 [W / m / K]. When the manufacturing conditions are optimized, the thermal conductivity is 28.0 [W / m / K] or more.
This is the same for mold parts, and the thermal conductivity is preferably within the above range.
In the present invention, “thermal conductivity” refers to a value at 25 ° C. measured using a laser flash method.
[2. 成形具]
 本発明に係る成形具は、以下の構成を備えている。
(1)前記成形具は、
 金型や金型部品の単独あるいは組み合わせで構成され、温度が室温より高い被成形物と直接接触する部位を含む。
(2)前記金型及び前記金型部品の少なくとも1つは、本発明に係る金型用鋼からなる。
(3)前記金型及び前記金型部品の少なくとも1つは、
 硬さが33HRC超57HRC以下であり、
 焼入れ時の旧オーステナイト結晶粒度番号が5以上であり、
 レーザーフラッシュ法を用いて測定した25℃における熱伝導率λが27.0[W/m/K]超である。
[2. Molding tool]
The forming tool according to the present invention has the following configuration.
(1) The molding tool is
It is composed of a mold or a mold part alone or in combination, and includes a portion that is in direct contact with a workpiece whose temperature is higher than room temperature.
(2) At least one of the mold and the mold part is made of mold steel according to the present invention.
(3) At least one of the mold and the mold part is:
Hardness is 33HRC more than 57HRC,
Old austenite grain size number at the time of quenching is 5 or more,
The thermal conductivity λ at 25 ° C. measured using a laser flash method is more than 27.0 [W / m / K].
[2.1. 用途]
 本発明に係る成形具は、温度が室温より高い被成形物を加工するために用いられる。このような加工としては、例えば、ダイカスト、プラスチックの射出成形、ゴムの加工、各種の鋳造、温間鍛造、熱間鍛造、ホットスタンプなどがある。
[2.1. Application]
The molding tool according to the present invention is used for processing a molding having a temperature higher than room temperature. Examples of such processing include die casting, plastic injection molding, rubber processing, various castings, warm forging, hot forging, and hot stamping.
[2.2. 定義]
 本発明において、「成形具」とは、
(a)温度が室温より高い被成形物と直接接触する部位がある金型、及び、
(b)温度が室温より高い被成形物と直接接触する部位がある金型部品
の単独あるいは組み合わせで構成され、被成形物を所定の形状に成形する役割を果たすものを指す。
 本発明において、「金型」とは、成形具の内、金型部品、及び、被成形物と直接接触する部位がない部品(例えば、金型の締結具)以外のものを指す。例えば、ダイカストの場合、可動側と固定側にそれぞれ金型がある。金型には、キャビティやコアや入れ子と称呼されるものもある。なお、本発明において、入れ子は、後述する金型部品として扱う。
 本発明において、「金型部品」とは、単独あるいは前記金型と組み合わせることで、温度が室温より高い被成形物を所定の形状に成形する役割を果たすものを指す。従って、例えば金型を留めるボルトやナットなどは、本発明にいう「金型部品」には含まれない。本発明は、高熱伝導率を特徴とし、ダイカストやホットスタンプや射出成形の製品を速く冷却することが目的の1つである。従って、溶融金属や加熱された鋼板や溶融樹脂と接触する部位のある金型部品が本発明の適用対象となる。
 例えば、ダイカストの成形具の場合、金型部品としては、プランジャーチップ、スプールブッシュ、スプールコア(分流子)、射抜きピン、チルベント、入れ子などがある。
[2.2. Definition]
In the present invention, "molding tool"
(A) a mold having a portion in direct contact with a workpiece having a temperature higher than room temperature; and
(B) It is configured by a single or a combination of mold parts having a portion that is in direct contact with a molding whose temperature is higher than room temperature, and plays a role of molding the molding into a predetermined shape.
In the present invention, the “mold” refers to a part other than a mold part, a mold part, and a part (for example, a mold fastener) that does not have a portion in direct contact with a molding object. For example, in the case of die casting, there are molds on the movable side and the fixed side, respectively. Some molds are called cavities, cores, and inserts. In the present invention, the nesting is handled as a mold part to be described later.
In the present invention, the “mold component” refers to a component that plays a role of molding a workpiece having a temperature higher than room temperature into a predetermined shape, alone or in combination with the mold. Therefore, for example, bolts and nuts for fastening the mold are not included in the “mold part” in the present invention. The present invention is characterized by high thermal conductivity, and one of the objects is to quickly cool a die cast, hot stamp or injection molded product. Therefore, a mold part having a portion in contact with a molten metal, a heated steel plate, or a molten resin is an application target of the present invention.
For example, in the case of a die-casting tool, mold parts include a plunger tip, a spool bush, a spool core (a diverter), a shot pin, a chill vent, and a nest.
 被成形物は、融体又は半融体である場合と、固体である場合とがある。また、被成形物の温度は、成形具の用途により異なる。
 例えば、ダイカストの場合、被成形物(溶融金属)の温度は、溶解炉中で、通常、580~750℃である。プラスチックの射出成形の場合、被加工物(溶融プラスチック)の温度は、混練機中で、通常、70~400℃である。ゴムの加工の場合、被成形物(未加硫ゴム)の温度は、通常、50~250℃である。温間鍛造の場合、被成形物(鋼材)の加熱温度は、通常、150~800℃である。熱間鍛造の場合、被成形物(鋼材)の加熱温度は、通常、800~1350℃である。ホットスタンプの場合、被成形物(鋼板)の加熱温度は、通常、800~1050℃である。
The molding may be a melt or a semi-melt, and may be a solid. Moreover, the temperature of a to-be-molded object changes with uses of a molding tool.
For example, in the case of die casting, the temperature of the object to be molded (molten metal) is usually 580 to 750 ° C. in a melting furnace. In the case of plastic injection molding, the temperature of the workpiece (molten plastic) is usually 70 to 400 ° C. in a kneader. In the case of rubber processing, the temperature of the molding (unvulcanized rubber) is usually 50 to 250 ° C. In the case of warm forging, the heating temperature of the molding (steel material) is usually 150 to 800 ° C. In the case of hot forging, the heating temperature of the molding (steel material) is usually 800 to 1350 ° C. In the case of hot stamping, the heating temperature of the molded product (steel plate) is usually 800 to 1050 ° C.
[2.3. 金型用鋼]
 本発明に係る成形具は、金型及び金型部品の全部又は一部が本発明に係る金型用鋼からなる。金型用鋼の組成、及び、適切な熱処理後に得られる特性(硬さ、旧オーステナイト結晶粒度番号、熱伝導率)の詳細については、上述した通りであるので、説明を省略する。
[2.3. Steel for molds]
In the molding tool according to the present invention, all or part of the mold and the mold parts are made of the mold steel according to the present invention. The details of the composition of the mold steel and the properties (hardness, prior austenite grain size number, thermal conductivity) obtained after appropriate heat treatment are as described above, and thus the description thereof is omitted.
[3. 作用]
[3.1. 要求される特性]
 以下では、ダイカスト金型又はその部品を例に説明する。ダイカスト金型は、焼入れ焼戻し状態で使用される。焼入れの加熱条件は、焼入れ温度:1030℃、焼入れ温度での保持時間:1~3Hr、である場合が多い。
 焼入れ加熱時、ダイカスト用鋼は、オーステナイト単相となる場合もあるが、オーステナイトと残留炭化物の混合組織となるのが一般的である。その後、冷却によってオーステナイトはマルテンサイトを主体とする組織に変態し、焼戻しとの組み合わせによって、硬さと靱性が付与される。金型には、耐エロージョン性を確保するための硬さと、耐割れ性を確保するための靱性が必要だからである。
[3. Action]
[3.1. Required characteristics]
Below, a die-casting die or its component is demonstrated to an example. The die casting mold is used in a quenching and tempering state. The heating conditions for quenching are often quenching temperature: 1030 ° C. and holding time at quenching temperature: 1 to 3 Hr.
At the time of quenching and heating, the die-casting steel sometimes becomes an austenite single phase, but generally has a mixed structure of austenite and residual carbide. Thereafter, austenite is transformed into a structure mainly composed of martensite by cooling, and hardness and toughness are imparted by combination with tempering. This is because the mold requires hardness to ensure erosion resistance and toughness to ensure crack resistance.
 ここで、靱性を考えると、焼入れ時のオーステナイト結晶粒度番号は大きい(オーステナイト結晶粒径が小さい)方が望ましい。この理由は、結晶粒が微細な方が亀裂が伝搬し難いため、金型の割れを抑制する効果が大きいためである。
 焼入れ時のオーステナイト結晶粒度番号は、加熱温度と保持時間で決まる。オーステナイト結晶粒度番号が大きく(結晶粒が微細に)なるのは、加熱温度が低く、保持時間が短い場合である。このため、焼入れにおいては、加熱温度が過度に高くならないように、かつ、保持時間が過度に長くならないように、注意を払う。
Here, considering toughness, it is desirable that the austenite grain size number during quenching is large (the austenite crystal grain size is small). This is because cracks are less likely to propagate when the crystal grains are finer, and the effect of suppressing cracks in the mold is greater.
The austenite grain size number at the time of quenching is determined by the heating temperature and the holding time. The austenite grain size number becomes large (crystal grains become fine) when the heating temperature is low and the holding time is short. For this reason, care is taken in quenching so that the heating temperature does not become excessively high and the holding time does not become excessively long.
 結晶粒の粗大化を防止するため、オーステナイト中に残留炭化物を分散させる手法が採られることもある。この場合には、C量と炭化物形成元素量を適正化させた成分系の鋼とする。残留炭化物には、オーステナイト結晶粒界の移動をピン止めで抑制する効果(pinning effect)があり、この結果、オーステナイト結晶粒の粗大化が防止される(大きな結晶粒度番号が維持される)。 In order to prevent coarsening of crystal grains, a technique of dispersing residual carbides in austenite may be employed. In this case, it is set as the steel of the component system which optimized C amount and the amount of carbide forming elements. Residual carbide has an effect of suppressing the movement of austenite grain boundaries by pinning (pinning effect), and as a result, coarsening of austenite crystal grains is prevented (a large grain size number is maintained).
 ここで、焼入れでは、大きい金型と小さい金型を一緒に加熱する「混載」が一般的である。混載する理由は、金型を1個ずつ処理していたのでは、生産性が上がらず高コストになるためである。図1に、混載の加熱時における炉温と金型温度の推移の模式図を示す。
 上述した通り、焼入れ温度での加熱時間は、1~3Hr程度必要である。混載時には、大きい金型がこの条件になるような炉温の保持時間を与える。そうすると、温度上昇が速い小さい金型は、最長で5Hr近くの保持を受けることになり、結晶粒が粗大化してしまう(結晶粒度番号が小さくなる)。
Here, in quenching, “mixed loading” in which a large mold and a small mold are heated together is generally used. The reason for the mixed loading is that if the molds are processed one by one, the productivity is not increased and the cost is increased. FIG. 1 shows a schematic diagram of changes in furnace temperature and mold temperature during mixed heating.
As described above, the heating time at the quenching temperature requires about 1 to 3 hours. At the time of mixed loading, a holding time of the furnace temperature is given so that a large mold meets this condition. If it does so, the small metal mold | die with a quick temperature rise will receive holding | maintenance of 5Hr at the longest, and a crystal grain will coarsen (crystal grain size number becomes small).
 近年、ダイカストのサイクルタイム短縮や焼付き軽減やヒートチェック軽減のため、冷却効率に優れた高熱伝導率鋼をダイカスト金型に使う場合が増えてきた。ダイカスト金型の汎用鋼であるSKD61の25℃における熱伝導率λは、23.0~24.0[W/m/K]であるのに対し、高熱伝導率鋼の熱伝導率λは、24.0~27.0[W/m/K]である。このような鋼は、熱伝導率を高くするため、一般的な熱間ダイス鋼のCr量(約5%)よりも大幅に低Cr化されている。 Recently, in order to shorten the die casting cycle time, reduce seizure, and reduce heat check, the use of high thermal conductivity steel with excellent cooling efficiency in die casting molds has increased. The thermal conductivity λ at 25 ° C. of SKD61, which is a general-purpose steel for die casting molds, is 23.0 to 24.0 [W / m / K], whereas the thermal conductivity λ of high thermal conductivity steel is 24.0 to 27.0 [W / m / K]. In order to increase the thermal conductivity of such a steel, the Cr content is significantly lower than the Cr content (about 5%) of general hot die steel.
 ところが、このような鋼は、1030℃の焼入れ時に残留する炭化物が少ないか、あるいは、ほぼ無い。そこで、焼入れ時の結晶粒粗大化を防止する(オーステナイト結晶粒度番号≧5にする)ためには、焼入れ温度を1020℃未満に低くする必要がある。そうすると、その鋼の金型だけが他と焼入れ温度が違うため、個別に焼入れをしなければならない。つまり、大きな炉にその鋼の金型1個だけを装入して熱処理することになり、非常に生産性が低くなる。 However, such steel has little or almost no carbide remaining when quenched at 1030 ° C. Therefore, in order to prevent crystal grain coarsening during quenching (austenite grain size number ≧ 5), it is necessary to lower the quenching temperature to less than 1020 ° C. Then, since only the steel mold has a different quenching temperature, it must be individually quenched. That is, only one steel mold is charged in a large furnace and heat-treated, resulting in a very low productivity.
 Cr含有量が少ないと、特にMnやMoの含有量が多い場合に、焼鈍しにくくなる。つまり、機械加工ができる硬さへの軟質化に長時間の熱処理を要し、コスト増につながる。
 また、Crをほとんど含有しない(Cr≦0.5%)ことで、熱伝導率λが42.0[W/m/K]を超える鋼もある。しかし、そのような鋼は、高温強度と耐食性が低いため、ダイカスト金型に使うことは推奨されない。
When the Cr content is low, annealing becomes difficult particularly when the content of Mn and Mo is high. In other words, a long heat treatment is required for softening to a hardness that can be machined, leading to an increase in cost.
Some steels have a thermal conductivity λ exceeding 42.0 [W / m / K] by containing almost no Cr (Cr ≦ 0.5%). However, such steels are not recommended for use in die casting molds due to their low high temperature strength and corrosion resistance.
 以上をまとめると、実用に耐える耐食性(2%≦Cr≪5%)を持ち、焼鈍性が良く、1030℃で5Hr保持してもオーステナイト結晶粒度番号が5以上であり、その状態から焼入れ焼戻しをした場合の25℃における熱伝導率が27.0[W/m/K]を超え、実用に耐える高温強度を持つ鋼が存在すれば、以下4点の同時実現が可能となる。
(1)素材の低コスト化(焼入れ性が良好で、軟質化の熱処理が容易)。
(2)焼入れ性の生産性向上(大きな金型の1030℃での焼入れに混載が可能)。
(3)ダイカストのサイクルタイムの短縮や金型の焼付きやヒートチェックの軽減(高熱伝導率)。
(4)ダイカスト金型の割れ防止(焼入れ時の微細なオーステナイト)。
 しかし、現状では、このような鋼は、存在しない。焼入れ時に粗粒化しにくい高熱伝導率鋼を求める産業界のニーズは非常に強い。
To summarize the above, it has corrosion resistance (2% ≦ Cr << 5%) that can withstand practical use, has good annealing properties, and has an austenite grain size number of 5 or more even when held at 1030 ° C. for 5 hours. If the steel has a thermal conductivity exceeding 27.0 [W / m / K] at 25 ° C. and high temperature strength that can withstand practical use, the following four points can be realized simultaneously.
(1) Cost reduction of the material (good hardenability and easy softening heat treatment).
(2) Productivity improvement of hardenability (can be mixed for quenching at 1030 ° C. for large molds).
(3) Reduction of die casting cycle time, die seizure and heat check (high thermal conductivity).
(4) Prevention of cracking of die casting mold (fine austenite during quenching).
However, at present, such steel does not exist. There is a strong industry need for high thermal conductivity steel that is difficult to coarsen during quenching.
[3.2. 成分の最適化]
 上記を実現する鋼が本発明である。焼戻し硬さを確保するためにCr、Mo及びVの量を適正化した。また、高熱伝導率を維持するために、Si、Cr及びMnの量を適正化した。また、焼入れ性及び焼鈍性を確保するために、Cr及びMnの量を適正化した。
[3.2. Ingredient optimization]
Steel that realizes the above is the present invention. In order to ensure the tempering hardness, the amounts of Cr, Mo and V were optimized. In order to maintain high thermal conductivity, the amounts of Si, Cr and Mn were optimized. Moreover, in order to ensure hardenability and annealing, the amount of Cr and Mn was optimized.
 また、焼入れ時のオーステナイト結晶粒を微細とする(結晶粒度番号を大きくする)ため、結晶粒の粒界移動をピン止め効果(pinning effect)で抑制するVC粒子に関するC、V及びNの量を適正化した。特に、V量が重要である。
 さらに、焼入れ時のオーステナイト結晶粒を微細とするために、結晶粒界の移動を引きずり効果(solute drag effect)で抑制する固溶元素であるCu、Ni及びMoの量を適正化した。特に、(Cu+Ni+Mo)量が重要である。
 本発明の大きな特徴は、ピン止め効果と引きずり効果を積極的に併用したことであり、V量と(Cu+Ni+Mo)量が従来にないバランスとなっている。
Further, in order to make the austenite crystal grains fine during quenching (increase the crystal grain size number), the amounts of C, V and N related to VC particles which suppress the grain boundary movement of crystal grains by a pinning effect are set. Optimized. In particular, the amount of V is important.
Furthermore, in order to make the austenite crystal grains fine at the time of quenching, the amounts of Cu, Ni, and Mo, which are solid solution elements that suppress the movement of crystal grain boundaries by the drag effect, were optimized. In particular, the amount of (Cu + Ni + Mo) is important.
A major feature of the present invention is that the pinning effect and the drag effect are positively used together, and the amount of V and the amount of (Cu + Ni + Mo) are in an unprecedented balance.
 なお、Cuを多く添加する場合には、熱間加工時の割れが顕在化しやすい。それを防止するために、Ni添加が効果を発揮する。但し、Ni添加は、金型となった場合の熱伝導率を大きく低下させない量に制限する。 In addition, when adding much Cu, the crack at the time of hot processing tends to become obvious. In order to prevent this, the addition of Ni is effective. However, the addition of Ni is limited to an amount that does not significantly reduce the thermal conductivity when the mold is formed.
 本発明に係る金型用鋼は、1030℃で5Hr保持する焼入れでもオーステナイト結晶粒度番号が5以上となる。そのため、焼入れ焼戻し後の靱性が高く、金型の割れを防止することができる。
 また、本発明に係る金型用鋼は、焼入れ焼戻し後に27.0[W/m/K]を超える熱伝導率を有するため、ダイカストのサイクルタイム短縮や焼付きの軽減を実現できる。
 さらに、焼入れ焼戻し後に最大で57HRCの硬さが得られるため、ダイカストの射出による摩耗にも強い。高硬度は、ホットスタンプの金型に適用した場合にも高い耐摩耗性が得られるため、好ましい。
The steel for molds according to the present invention has an austenite grain size number of 5 or more even when quenched at 1030 ° C. for 5 hours. Therefore, the toughness after quenching and tempering is high, and cracking of the mold can be prevented.
Moreover, since the steel for molds according to the present invention has a thermal conductivity exceeding 27.0 [W / m / K] after quenching and tempering, it is possible to realize a reduction in die casting cycle time and seizure.
Furthermore, since a maximum hardness of 57 HRC is obtained after quenching and tempering, it is also resistant to wear due to die casting injection. High hardness is preferable because high wear resistance can be obtained even when applied to a hot stamping mold.
 本発明に係る金型用鋼は、Crを含有するため、実用に耐える耐食性も有している。そのため、Crをほとんど含有しない(Cr≦0.5%)鋼と比べ、素材の保管中や金型としての使用中に錆が発生し難い。
 Cuを意図的に添加した鋼材は既に存在するが、そのCu添加の目的は高硬度化や被削性改善である。本発明では、Cuの強力な引きずり効果に着目した点が従来のCu添加鋼と決定的に異なる。
Since the steel for molds according to the present invention contains Cr, it has corrosion resistance that can withstand practical use. Therefore, rust hardly occurs during storage of materials and use as a mold, compared with steel containing almost no Cr (Cr ≦ 0.5%).
Steel materials to which Cu is intentionally added already exist, but the purpose of the addition of Cu is to increase hardness and improve machinability. In this invention, the point which paid its attention to the strong drag effect of Cu differs decisively from the conventional Cu addition steel.
(実施例1~30、比較例1~5)
[1. 試料の作製]
 表1に示す成分の溶鋼を50kgのインゴットに鋳込んだ後、1240℃で均質化処理を施した。そして、熱間鍛造によって60mm×45mmの矩形断面の棒状に仕上げた。
 引き続き、1020℃に加熱して急冷する焼ならしと、630℃に加熱する焼戻しを施した。さらに、棒鋼を820~900℃に加熱した後、600℃までを15℃/Hrで制御冷却し、100℃以下まで放冷し、引き続き630℃に加熱する焼鈍を行った。このようにして軟質化させた棒鋼から試験片を切り出し、各種の調査に用いた。
(Examples 1 to 30, Comparative Examples 1 to 5)
[1. Preparation of sample]
Molten steel having the components shown in Table 1 was cast into a 50 kg ingot, and then homogenized at 1240 ° C. And it finished in the rod shape of a rectangular cross section of 60 mm x 45 mm by hot forging.
Subsequently, normalizing by heating to 1020 ° C. and quenching and tempering by heating to 630 ° C. were performed. Further, after the steel bar was heated to 820 to 900 ° C., it was controlled and cooled down to 600 ° C. at 15 ° C./Hr, allowed to cool to 100 ° C. or lower, and subsequently annealed to 630 ° C. A test piece was cut out from the steel bar softened in this way and used for various investigations.
 なお、比較例1は、ダイカスト金型の汎用鋼JIS SKD61である。比較例2は、同じく熱間ダイス鋼であるが、市販のブランド鋼である。比較例3及び4は、それぞれ、JIS SNCM439、及び、JIS SCM435である。比較例5は、高熱伝導率鋼として市販されているブランド鋼である。 In addition, the comparative example 1 is the general-purpose steel JIS SKD61 of a die-casting die. Comparative Example 2 is also a hot die steel, but is a commercially available brand steel. Comparative Examples 3 and 4 are JIS SNCM439 and JIS SCM435, respectively. Comparative Example 5 is a brand steel marketed as a high thermal conductivity steel.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[2. 試験方法]
[2.1. 焼鈍性]
 焼鈍後の棒材から切り出した15mm×15mm×25mmの小さいブロックを試験片とした。このブロックに対して、
(a)熱間加工を模擬して、1240℃に加熱して0.5Hr保持後、室温まで冷却し、
(b)焼きならしとして、1020℃に加熱して2Hr保持後、室温まで冷却し、
(c)焼戻しとして、670℃に加熱して6Hr保持後に室温まで冷却した。
 これら一連の熱処理は、実生産での焼鈍前の工程に準じている。
 このような前処理を施した試験片に対し、870℃に加熱して2Hr保持し、580℃まで15℃/Hrで冷却し、以降は室温まで放冷する焼鈍を施した。焼鈍後、ビッカース硬さを測定した。
[2. Test method]
[2.1. Annealing]
A small block of 15 mm × 15 mm × 25 mm cut out from the bar after annealing was used as a test piece. For this block,
(A) Simulating hot working, heating to 1240 ° C. and holding for 0.5 Hr, then cooling to room temperature,
(B) As normalization, after heating to 1020 ° C. and holding for 2 hours, cooling to room temperature,
(C) As tempering, the sample was heated to 670 ° C. and held for 6 hours, and then cooled to room temperature.
These series of heat treatments are in accordance with the steps before annealing in actual production.
The test piece subjected to such pretreatment was heated to 870 ° C., kept at 2 Hr, cooled to 580 ° C. at 15 ° C./Hr, and thereafter annealed to cool to room temperature. After annealing, the Vickers hardness was measured.
[2.2. 結晶粒度]
 焼鈍後の棒鋼から切り出した15mm×15mm×25mmの小さいブロックを試験片とした。このブロックを1030℃に加熱して5Hr保持した後、50℃/minの速度で冷却してマルテンサイト変態させた。その後、腐食液で変態前の旧オーステナイト結晶粒界を現出し、結晶粒度番号を評価した。
[2.2. Crystal grain size]
A small block of 15 mm × 15 mm × 25 mm cut out from the steel bar after annealing was used as a test piece. The block was heated to 1030 ° C. and held for 5 hours, and then cooled at a rate of 50 ° C./min to cause martensitic transformation. Thereafter, prior austenite grain boundaries before transformation were revealed with a corrosive solution, and the grain size number was evaluated.
[2.3. 硬さ]
 結晶粒度番号を評価した後の小さいブロックを、580~630℃の一般的な焼戻し温度で加熱保持し、ダイカスト金型の代表的な硬さである47HRCへの調質を試みた。焼戻し後、ロックウェル硬さを測定した。
[2.4. 熱伝導率]
 焼戻した小さいブロックから直径10mm×厚さ2mmの小さい円盤状試験片を作製した。この試験片の25℃における熱伝導率λ[W/m/K]をレーザーフラッシュ法で測定した。
[2.3. Hardness]
After evaluating the grain size number, the small block was heated and held at a general tempering temperature of 580 to 630 ° C. to attempt tempering to 47 HRC, which is a typical hardness of a die casting mold. After tempering, the Rockwell hardness was measured.
[2.4. Thermal conductivity]
A small disk-shaped test piece having a diameter of 10 mm and a thickness of 2 mm was produced from the tempered small block. The thermal conductivity λ [W / m / K] at 25 ° C. of this test piece was measured by a laser flash method.
[3. 結果]
[3.1. 焼鈍性]
[3.1.1. 実施例と比較例の対比]
 表2に、焼鈍後のビッカース硬さを示す。機械加工を容易に行うためには、焼鈍材の硬さは280HV未満が好ましい。MnとMoが多い比較例2が304HV、Crが少なく、CとMnとNiが多い比較例3が321HV、と硬い。これらの鋼では、焼鈍材であっても機械加工に困難を伴うことが予想される。他の比較例は、いずれも280HV未満である。
 一方、実施例1~30は、すべて210~276HVに軟化した。実施例1~30が通常の焼鈍工程で充分に軟化することを確認した。
[3. result]
[3.1. Annealing]
[3.1.1. Comparison between Example and Comparative Example]
Table 2 shows the Vickers hardness after annealing. In order to perform machining easily, the hardness of the annealed material is preferably less than 280 HV. Comparative Example 2 with a large amount of Mn and Mo is 304 HV, Cr is small, and Comparative Example 3 with a large amount of C, Mn and Ni is 321 HV, which is hard. These steels are expected to be difficult to machine even for annealed materials. All the other comparative examples are less than 280HV.
On the other hand, Examples 1 to 30 were all softened to 210 to 276 HV. It was confirmed that Examples 1 to 30 were sufficiently softened by a normal annealing process.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[3.1.2.焼鈍性に及ぼすCr量の影響]
 金型形状への機械加工性の観点から、焼鈍材の硬さは低い方が望ましい。そこで、0.40C-0.08Si-1.05Mn-0.18Cu-0.09Ni-1.01Mo-0.62V-0.019Nを基本成分としてCr量を変化させた鋼材に対して、上記の焼鈍を行った。図2に、Cr量と焼鈍材のビッカース硬さとの関係を示す。
 Cr<2.00mass%では280HV以上となり、硬さの上昇が著しい(焼鈍性が悪い)。一般に、280HV未満が機械加工を効率的に行うために必要な硬度範囲とされる。従って、Cr<2.00mass%の鋼では、軟質化のために焼鈍の冷却速度を小さくするか、焼鈍後に追加の加熱が必要になる。この結果、処理が長時間化してコスト増を招く。Cr>2.15mass%では250HV以下となり、機械加工の負荷はかなり軽減される。
[3.1.2. Effect of Cr content on annealing properties]
From the viewpoint of machinability to mold shape, it is desirable that the hardness of the annealed material is low. Therefore, with respect to a steel material in which the Cr content is changed using 0.40C-0.08Si-1.05Mn-0.18Cu-0.09Ni-1.01Mo-0.62V-0.19N as a basic component, Annealing was performed. FIG. 2 shows the relationship between the Cr content and the Vickers hardness of the annealed material.
When Cr <2.00 mass%, the hardness is 280 HV or more, and the hardness is remarkably increased (the annealing property is poor). Generally, a hardness range of less than 280 HV is necessary for efficient machining. Therefore, in the steel of Cr <2.00 mass%, the annealing cooling rate is reduced for softening, or additional heating is required after annealing. As a result, the processing takes a long time and causes an increase in cost. When Cr> 2.15 mass%, the load becomes 250 HV or less, and the machining load is considerably reduced.
[3.2. 結晶粒度番号]
[3.2.1. 実施例と比較例の対比]
 表3に、結晶粒度番号を示す。CとCrとVが多い比較例1の結晶粒度番号は、10程度と非常に大きい。比較例2は、CとVがそれほど多くないが、CrとMoが多いために、結晶粒度番号は、7程度と充分に大きい。比較例3は、V量と(Cr+Ni+Mo)量が共に少ないため、結晶粒度番号は、約2と粗大粒である。比較例4と5は、焼入れ性が悪いため、フェライトが析出した。フェライトの量は、比較例5の方が多い。フェライトがオーステナイト結晶粒界に析出すると、旧オーステナイト粒界は拡散してしまい判別が難しくなる。このため、フェライトが析出した比較例4、5の変態前のオーステナイト結晶粒度は、参考値である。但し、明らかに結晶粒度番号は、5より小さく、2程度と判断された。
[3.2. Grain size number]
[3.2.1. Comparison between Example and Comparative Example]
Table 3 shows the crystal grain size numbers. The crystal grain size number of Comparative Example 1 having a large amount of C, Cr and V is as large as about 10. In Comparative Example 2, although C and V are not so much, since the amount of Cr and Mo is large, the crystal grain size number is as large as about 7. In Comparative Example 3, since both the V amount and the (Cr + Ni + Mo) amount are small, the crystal grain size number is about 2 and coarse particles. In Comparative Examples 4 and 5, since the hardenability was poor, ferrite precipitated. The amount of ferrite is greater in Comparative Example 5. When ferrite precipitates at austenite grain boundaries, the prior austenite grain boundaries diffuse and become difficult to distinguish. For this reason, the austenite grain size before the transformation of Comparative Examples 4 and 5 in which ferrite is precipitated is a reference value. However, it was clearly judged that the crystal grain size number was smaller than 5 and about 2.
 これに対し、実施例1~30の結晶粒度番号は、安定して5を超えている。この理由は、CとVとNを適正化して焼入れ時に母相中に分散するVC量を確保し、CuとNiとMoを適正化して焼入れ時に母相中に固溶する合金量を確保したためである。すなわち、ピン止め効果と引きずり効果の重畳によって、大きな結晶粒度番号を実現したのである。 On the other hand, the crystal grain size numbers of Examples 1 to 30 stably exceed 5. This is because C, V, and N are optimized to ensure the amount of VC dispersed in the matrix during quenching, and Cu, Ni, and Mo are optimized to ensure the amount of alloy that dissolves in the matrix during quenching. It is. That is, a large grain size number was realized by superimposing the pinning effect and the drag effect.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[3.2.2. 結晶粒度番号に及ぼすV量の影響]
 0.43C-0.07Si-0.10Cu-0.12Ni-0.81Mn-2.96Cr-1.12Mo-0.021Nを基本成分とし、V量を変化させた場合の結晶粒度番号を調べた。図3に、V量と焼入れ時のγ結晶粒度番号との関係を示す。図3より、0.55mass%<Vでは安定して結晶粒度番号5以上が得られていることがわかる。
[3.2.2. Effect of V amount on grain size number]
0.43C-0.07Si-0.10Cu-0.12Ni-0.81Mn-2.96Cr-1.12Mo-0.021N was used as a basic component, and the crystal grain size number when the V amount was changed was examined. . FIG. 3 shows the relationship between the V amount and the γ grain size number during quenching. From FIG. 3, it can be seen that when 0.55 mass% <V, a grain size number of 5 or more is stably obtained.
[3.2.3.結晶粒度番号に及ぼす(Cu+Ni+Mo)量の影響]
 0.40C-0.09Si-0.78Mn-2.99Cr-0.61V-0.020Nを基本成分とし、(Cu+Ni+Mo)量を変化させた場合の結晶粒度番号を調べた。図4に、(Cu+Ni+Mo)量と焼入れ時のγ結晶粒度番号との関係を示す。図4より、0.55mass%<Cu+Ni+Moでは安定して結晶粒度番号5以上が得られていることがわかる。
[3.2.3. Effect of (Cu + Ni + Mo) amount on grain size number]
The grain size number was examined when 0.40C-0.09Si-0.78Mn-2.99Cr-0.61V-0.020N was the basic component and the amount of (Cu + Ni + Mo) was changed. FIG. 4 shows the relationship between the amount of (Cu + Ni + Mo) and the γ grain size number during quenching. From FIG. 4, it can be seen that when 0.55 mass% <Cu + Ni + Mo, the grain size number 5 or more is stably obtained.
[3.3. 硬さ]
 表4に、焼戻し後の硬さを示す。比較例4は、焼入れ時にフェライトが析出した上、軟化抵抗が低いため、27HRC程度となり、金型に必要な硬さ:33HRC超を確保できなかった。比較例5も、焼入れ時に多量のフェライトが析出したため、HRCでは測定できない低硬度(<20HRC)となった。比較例4と比較例5をダイカストの金型部品に使うことは、焼入れ性や軟化抵抗の観点から、事実上は不可能に近いことが分かる。
 比較例1と比較例2は、ダイカスト金型に使われるだけあって、47HRCへ問題なく調質できた。また、実施例1~30もすべて47HRCに調質でき、焼入れ性や軟化抵抗の観点から、ダイカスト金型への適用が可能であることを確認した。
[3.3. Hardness]
Table 4 shows the hardness after tempering. In Comparative Example 4, ferrite was precipitated during quenching and softening resistance was low, so that it was about 27 HRC, and the hardness required for the mold: more than 33 HRC could not be secured. Comparative Example 5 also had a low hardness (<20 HRC) that cannot be measured by HRC because a large amount of ferrite precipitated during quenching. It can be seen that using Comparative Example 4 and Comparative Example 5 for die-cast mold parts is virtually impossible from the viewpoint of hardenability and softening resistance.
Comparative Example 1 and Comparative Example 2 were only used for die casting molds and could be tempered to 47HRC without problems. In addition, it was confirmed that all of Examples 1 to 30 could be tempered to 47 HRC and could be applied to a die casting mold from the viewpoint of hardenability and softening resistance.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[3.4. 熱伝導率]
 表5に、表4に示した材料の熱伝導率を示す。比較例1は、SiとCrが多いため、熱伝導率が最も低い。比較例2は、Siが極端に多くはないため、比較例1よりは高熱伝導率であるが、Crが多いためにλ≦27.0に留まっている。比較例3~5は、低Siで、かつ、低Crであるため、λ>27.0の高熱伝導率である。
[3.4. Thermal conductivity]
Table 5 shows the thermal conductivity of the materials shown in Table 4. Since the comparative example 1 has many Si and Cr, it has the lowest thermal conductivity. In Comparative Example 2, since Si is not extremely large, the thermal conductivity is higher than that of Comparative Example 1, but because of the large amount of Cr, λ ≦ 27.0 remains. Since Comparative Examples 3 to 5 are low Si and low Cr, they have high thermal conductivity of λ> 27.0.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[3.5. 評価の総括]
 表6に、以上の調査結果の総括を示す。焼鈍性と、1030℃×5Hrで加熱した場合のオーステナイト結晶粒度番号と、焼入れ焼戻し状態の硬さと、熱伝導率とをまとめた。比較例4と比較例5は、金型に必要な焼戻し硬さ:33HRC超を得られなかった。それ以外の鋼は、比較例3を除き、47HRCに調質できた。表6中、「○」は目標達成で、良好であることを意味し、「×」は目標未達で、劣ることを意味する。
[3.5. Summary of evaluation]
Table 6 summarizes the above survey results. The annealing properties, the austenite grain size number when heated at 1030 ° C. × 5 Hr, the hardness in the quenched and tempered state, and the thermal conductivity are summarized. In Comparative Examples 4 and 5, the tempering hardness required for the mold: more than 33 HRC could not be obtained. Other steels could be tempered to 47HRC except for Comparative Example 3. In Table 6, “◯” means that the target has been achieved and is good, and “×” means that the target has not been reached and is inferior.
 比較例1~5には、いずれかの項目に「×」がある。比較例1と比較例2は、熱伝導率が低い。比較例2と3は、焼鈍性が悪い。比較例3~5は、結晶粒度番号が小さい(結晶粒が大きい)。低熱伝導率の比較例1、2は、ダイカスト金型となった際に金型の損傷軽減や製品の迅速冷却が難しい。
 比較例3~5は、ダイカスト金型となった際に大割れが懸念される。また、比較例4、5は、焼入れ性が低いため、ダイカスト金型に適用すること自体が難しい。
In Comparative Examples 1 to 5, there is “x” in any item. Comparative Example 1 and Comparative Example 2 have low thermal conductivity. Comparative Examples 2 and 3 have poor annealing properties. Comparative Examples 3 to 5 have a small crystal grain size number (large crystal grains). In Comparative Examples 1 and 2 with low thermal conductivity, it is difficult to reduce damage to the mold and quickly cool the product when the die-cast mold is formed.
In Comparative Examples 3 to 5, there is a concern that large cracks may occur when die casting molds are obtained. Moreover, since Comparative Examples 4 and 5 have low hardenability, it is difficult to apply them to a die casting mold.
 これに対し、実施例1~30は、焼入れ時のオーステナイト結晶粒が粒度番号5以上と微細で、47HRCの調質状態で27[W/m/K]を超える高熱伝導率である。実際に実施例1~20をダイカスト金型に適用した場合には、下記4点を同時実現できることが期待される。
(1)素材の低コスト化(焼鈍性が良好)。
(2)焼入れ性の生産性向上(大きな金型の1030℃での焼入れに混載が可能)。
(3)ダイカストのサイクルタイムの短縮や金型の焼付きやヒートチェックの軽減(高熱伝導率)。
(4)ダイカスト金型の割れ防止(焼入れ時の微細なオーステナイト)。
On the other hand, in Examples 1 to 30, the austenite crystal grains at the time of quenching are as fine as a grain size number of 5 or more, and have a high thermal conductivity exceeding 27 [W / m / K] in a tempered state of 47 HRC. Actually, when Examples 1 to 20 are applied to a die casting mold, it is expected that the following four points can be realized simultaneously.
(1) Cost reduction of the material (good annealing).
(2) Productivity improvement of hardenability (can be mixed for quenching at 1030 ° C. for large molds).
(3) Reduction of die casting cycle time, die seizure and heat check (high thermal conductivity).
(4) Prevention of cracking of die casting mold (fine austenite during quenching).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。 The embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 本発明に係る金型用鋼は、焼入れ時のオーステナイト結晶粒が粗大化し難く、焼戻し後には高硬度と高熱伝導率が得られるため、ダイカスト金型又はその部品に好適である。本発明に係る金型用鋼をダイカストの金型又はその部品に適用すると、金型又はその部品の割れや焼付きなどの抑制、ダイカストのサイクルタイムの短縮が実現する。 The mold steel according to the present invention is suitable for die casting molds or parts thereof because austenite crystal grains are hard to be coarsened during quenching and high hardness and high thermal conductivity are obtained after tempering. When the die steel according to the present invention is applied to a die casting die or a part thereof, it is possible to suppress cracking or seizure of the die or the part thereof and to shorten the die casting cycle time.
 また、プラスチックを射出成形する金型又はその部品に適用しても、ダイカストの場合と同様の効果が得られる。
 温間鍛造、亜熱間鍛造、又は熱間鍛造の金型に適用すると、金型表面の過熱を高熱伝導率によって抑制でき、かつ高温強度や靱性も十分なため、摩耗や割れを軽減できる。
 高強度鋼板の成形方法であるホットスタンプ(ホットプレスやプレスクエンチとも言われる)に適用しても、高熱伝導率によるハイサイクル化、金型の摩耗や割れの抑制、の効果が得られる。
Further, even when applied to a mold for injection molding of plastic or its parts, the same effect as in the case of die casting can be obtained.
When applied to a mold for warm forging, sub-hot forging, or hot forging, overheating of the mold surface can be suppressed by high thermal conductivity, and high temperature strength and toughness are sufficient, so that wear and cracking can be reduced.
Even when applied to hot stamping (also referred to as hot pressing or press quenching), which is a method for forming high-strength steel sheets, the effects of high cycle due to high thermal conductivity and suppression of mold wear and cracking can be obtained.
 さらに、本発明に係る金型用鋼を表面改質(ショットブラスト、サンドブラスト、窒化、PVD、CVD、メッキ、窒化など)と組み合わせることも有効である。
 本発明に係る金型用鋼を棒状や線状にし、金型又はその部品の溶接補修材として使用することもできる。あるいは、板や粉末の積層造形によって製造される金型又はその部品に適用することもできる。この場合、金型又はその部品の全体を積層造形する必要はなく、金型又はその部品の一部を積層造形により形作っても良い。また、積層造形した部位に複雑な内部冷却回路を設ければ、本発明に係る金型用鋼の高熱伝導率の効果が更に大きく発揮される。
Furthermore, it is also effective to combine the mold steel according to the present invention with surface modification (shot blasting, sand blasting, nitriding, PVD, CVD, plating, nitriding, etc.).
The steel for molds according to the present invention can be made into a rod shape or a line shape and used as a welding repair material for the mold or its parts. Or it is also applicable to the metal mold | die manufactured by the lamination molding of a board or powder, or its components. In this case, it is not necessary to laminate-mold the entire mold or its parts, and a part of the mold or its parts may be formed by additive modeling. Moreover, if a complicated internal cooling circuit is provided in the layered and formed site, the effect of high thermal conductivity of the mold steel according to the present invention can be further exerted.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年9月11日出願の日本特許出願(特願2015-180193)及び2016年7月27日出願の日本特許出願(特願2016-147774)に基づくものであり、その内容はここに参照として取り込まれる。
 
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on September 11, 2015 (Japanese Patent Application No. 2015-180193) and a Japanese patent application filed on July 27, 2016 (Japanese Patent Application No. 2016-147774). Incorporated herein by reference.

Claims (14)

  1.  以下の構成を備えた成形具。
    (1)前記成形具は、
     金型や金型部品の単独あるいは組み合わせで構成され、温度が室温より高い被成形物と直接接触する部位を含む。
    (2)前記金型及び前記金型部品の少なくとも1つは、
     0.35<C<0.55mass%、
     0.003≦Si<0.300mass%、
     0.30<Mn<1.50mass%、
     2.00≦Cr<3.50mass%、
     0.003≦Cu<1.200mass%、
     0.003≦Ni<1.380mass%、
     0.50<Mo<3.29mass%、
     0.55<V<1.13mass%、及び、
     0.0002≦N<0.1200mass%
    を含み、残部がFe及び不可避的不純物からなり、
     0.55<Cu+Ni+Mo<3.29mass%
    を満たす金型用鋼からなり、
     硬さが33HRC超57HRC以下であり、
     焼入れ時の旧オーステナイト結晶粒度番号が5以上であり、
     レーザーフラッシュ法を用いて測定した25℃における熱伝導率λが27.0[W/m/K]超である。
    A molding tool having the following configuration.
    (1) The molding tool is
    It is composed of a mold or a mold part alone or in combination, and includes a portion that is in direct contact with a workpiece whose temperature is higher than room temperature.
    (2) At least one of the mold and the mold part is:
    0.35 <C <0.55 mass%,
    0.003 ≦ Si <0.300 mass%,
    0.30 <Mn <1.50 mass%,
    2.00 ≦ Cr <3.50 mass%,
    0.003 ≦ Cu <1.200 mass%,
    0.003 ≦ Ni <1.380 mass%,
    0.50 <Mo <3.29 mass%,
    0.55 <V <1.13 mass%, and
    0.0002 ≦ N <0.1200 mass%
    And the balance consists of Fe and inevitable impurities,
    0.55 <Cu + Ni + Mo <3.29 mass%
    Made of mold steel that satisfies
    Hardness is 33HRC more than 57HRC,
    Old austenite grain size number at the time of quenching is 5 or more,
    The thermal conductivity λ at 25 ° C. measured using a laser flash method is more than 27.0 [W / m / K].
  2.  前記金型用鋼は、
     0.30<W≦5.00mass%、及び/又は、
     0.10<Co≦4.00mass%
    をさらに含む請求項1に記載の成形具。
    The mold steel is
    0.30 <W ≦ 5.00 mass%, and / or
    0.10 <Co ≦ 4.00 mass%
    The molding tool according to claim 1, further comprising:
  3.  前記金型用鋼は、
     0.004<Nb≦0.100mass%、
     0.004<Ta≦0.100mass%、
     0.004<Ti≦0.100mass%、及び、
     0.004<Zr≦0.100mass%
    からなる群から選ばれるいずれか1種以上の元素をさらに含む請求項1又は2に記載の成形具。
    The mold steel is
    0.004 <Nb ≦ 0.100 mass%,
    0.004 <Ta ≦ 0.100 mass%,
    0.004 <Ti ≦ 0.100 mass%, and
    0.004 <Zr ≦ 0.100 mass%
    The molding tool according to claim 1 or 2, further comprising any one or more elements selected from the group consisting of:
  4.  前記金型用鋼は、
     0.10<Al≦1.50mass%
    をさらに含む請求項1から3までのいずれか1項に記載の成形具。
    The mold steel is
    0.10 <Al ≦ 1.50 mass%
    The molding tool according to any one of claims 1 to 3, further comprising:
  5.  前記金型用鋼は、
     0.0001<B≦0.0050mass%
    をさらに含む請求項1から4までのいずれか1項に記載の成形具。
    The mold steel is
    0.0001 <B ≦ 0.0050 mass%
    The molding tool according to any one of claims 1 to 4, further comprising:
  6.  前記金型用鋼は、
     0.003<S≦0.050mass%、
     0.0005<Ca≦0.2000mass%、
     0.03<Se≦0.50mass%、
     0.005<Te≦0.100mass%、
     0.01<Bi≦0.50mass%、及び、
     0.03<Pb≦0.50mass%
    からなる群から選ばれるいずれか1種以上の元素をさらに含む請求項1から5までのいずれか1項に記載の成形具。
    The mold steel is
    0.003 <S ≦ 0.050 mass%,
    0.0005 <Ca ≦ 0.2000 mass%,
    0.03 <Se ≦ 0.50 mass%,
    0.005 <Te ≦ 0.100 mass%,
    0.01 <Bi ≦ 0.50 mass%, and
    0.03 <Pb ≦ 0.50 mass%
    The molding tool according to any one of claims 1 to 5, further comprising at least one element selected from the group consisting of:
  7.  前記金型部品は、プランジャーチップ、スプールブッシュ、スプールコア、射抜きピン、チルベント、又は、入れ子を含む請求項1から6までのいずれか1項に記載の成形具。 The molding tool according to any one of claims 1 to 6, wherein the mold part includes a plunger tip, a spool bush, a spool core, a shot pin, a chill vent, or a nest.
  8.  0.35<C<0.55mass%、
     0.003≦Si<0.300mass%、
     0.30<Mn<1.50mass%、
     2.00≦Cr<3.50mass%、
     0.003≦Cu<1.200mass%、
     0.003≦Ni<1.380mass%、
     0.50<Mo<3.29mass%、
     0.55<V<1.13mass%、及び、
     0.0002≦N<0.1200mass%
    を含み、残部がFe及び不可避的不純物からなり、
     0.55<Cu+Ni+Mo<3.29mass%
    を満たす金型用鋼。
    0.35 <C <0.55 mass%,
    0.003 ≦ Si <0.300 mass%,
    0.30 <Mn <1.50 mass%,
    2.00 ≦ Cr <3.50 mass%,
    0.003 ≦ Cu <1.200 mass%,
    0.003 ≦ Ni <1.380 mass%,
    0.50 <Mo <3.29 mass%,
    0.55 <V <1.13 mass%, and
    0.0002 ≦ N <0.1200 mass%
    And the balance consists of Fe and inevitable impurities,
    0.55 <Cu + Ni + Mo <3.29 mass%
    Meets mold steel.
  9.  硬さが33HRC超57HRC以下であり、
     焼入れ時の旧オーステナイト結晶粒度番号が5以上であり、
     レーザーフラッシュ法を用いて測定した25℃における熱伝導率λが27.0[W/m/K]超である請求項8に記載の金型用鋼。
    Hardness is 33HRC more than 57HRC,
    Old austenite grain size number at the time of quenching is 5 or more,
    The mold steel according to claim 8, wherein the thermal conductivity λ at 25 ° C. measured using a laser flash method is more than 27.0 [W / m / K].
  10.  0.30<W≦5.00mass%、及び/又は、
     0.10<Co≦4.00mass%
    をさらに含む請求項8又は9に記載の金型用鋼。
    0.30 <W ≦ 5.00 mass%, and / or
    0.10 <Co ≦ 4.00 mass%
    The mold steel according to claim 8 or 9, further comprising:
  11.  0.004<Nb≦0.100mass%、
     0.004<Ta≦0.100mass%、
     0.004<Ti≦0.100mass%、及び、
     0.004<Zr≦0.100mass%
    からなる群から選ばれるいずれか1種以上の元素をさらに含む請求項8から10までのいずれか1項に記載の金型用鋼。
    0.004 <Nb ≦ 0.100 mass%,
    0.004 <Ta ≦ 0.100 mass%,
    0.004 <Ti ≦ 0.100 mass%, and
    0.004 <Zr ≦ 0.100 mass%
    The mold steel according to any one of claims 8 to 10, further comprising at least one element selected from the group consisting of:
  12.  0.10<Al≦1.50mass%
    をさらに含む請求項8から11までのいずれか1項に記載の金型用鋼。
    0.10 <Al ≦ 1.50 mass%
    The steel for mold according to any one of claims 8 to 11, further comprising:
  13.  0.0001<B≦0.0050mass%
    をさらに含む請求項8から12までのいずれか1項に記載の金型用鋼。
    0.0001 <B ≦ 0.0050 mass%
    The mold steel according to any one of claims 8 to 12, further comprising:
  14.  0.003<S≦0.050mass%、
     0.0005<Ca≦0.2000mass%、
     0.03<Se≦0.50mass%、
     0.005<Te≦0.100mass%、
     0.01<Bi≦0.50mass%、及び、
     0.03<Pb≦0.50mass%
    からなる群から選ばれるいずれか1種以上の元素をさらに含む請求項8から13までのいずれか1項に記載の金型用鋼。
    0.003 <S ≦ 0.050 mass%,
    0.0005 <Ca ≦ 0.2000 mass%,
    0.03 <Se ≦ 0.50 mass%,
    0.005 <Te ≦ 0.100 mass%,
    0.01 <Bi ≦ 0.50 mass%, and
    0.03 <Pb ≦ 0.50 mass%
    The mold steel according to any one of claims 8 to 13, further comprising at least one element selected from the group consisting of:
PCT/JP2016/076017 2015-09-11 2016-09-05 Steel for molds and molding tool WO2017043446A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187006436A KR102054803B1 (en) 2015-09-11 2016-09-05 Steel for molds and molding tool
CN201680051762.1A CN107949651A (en) 2015-09-11 2016-09-05 Die steel and forming tool
US15/750,770 US11141778B2 (en) 2015-09-11 2016-09-05 Steel for molds and molding tool
EP16844307.5A EP3348660B9 (en) 2015-09-11 2016-09-05 Steel for molds and molding tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-180193 2015-09-11
JP2015180193 2015-09-11
JP2016147774A JP6859623B2 (en) 2015-09-11 2016-07-27 Mold steel and molding tools
JP2016-147774 2016-07-27

Publications (1)

Publication Number Publication Date
WO2017043446A1 true WO2017043446A1 (en) 2017-03-16

Family

ID=58239691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076017 WO2017043446A1 (en) 2015-09-11 2016-09-05 Steel for molds and molding tool

Country Status (1)

Country Link
WO (1) WO2017043446A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560569A (en) * 2020-06-30 2020-08-21 潘少俊 High-toughness high-mirror-surface pre-hardened steel die steel and manufacturing process thereof
WO2020246099A1 (en) * 2019-06-06 2020-12-10 日立金属株式会社 Steel for hot stamp die, hot stamp die and manufacturing method thereof
CN113122779A (en) * 2021-04-26 2021-07-16 江苏沙钢集团淮钢特钢股份有限公司 Fine-grain normalizing-free tool steel and production method thereof
US11319621B2 (en) 2018-04-02 2022-05-03 Daido Steel Co., Ltd. Steel for mold, and mold

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308784A (en) * 2006-05-22 2007-11-29 Daido Steel Co Ltd Alloy steel
JP2008169411A (en) * 2007-01-10 2008-07-24 Daido Steel Co Ltd Steel for die materials
JP2009242819A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2009242820A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2015209588A (en) * 2014-04-30 2015-11-24 大同特殊鋼株式会社 Steel for mold and mold
JP2016132797A (en) * 2015-01-19 2016-07-25 大同特殊鋼株式会社 Steel for metal mold, and metal mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308784A (en) * 2006-05-22 2007-11-29 Daido Steel Co Ltd Alloy steel
JP2008169411A (en) * 2007-01-10 2008-07-24 Daido Steel Co Ltd Steel for die materials
JP2009242819A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2009242820A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2015209588A (en) * 2014-04-30 2015-11-24 大同特殊鋼株式会社 Steel for mold and mold
JP2016132797A (en) * 2015-01-19 2016-07-25 大同特殊鋼株式会社 Steel for metal mold, and metal mold

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319621B2 (en) 2018-04-02 2022-05-03 Daido Steel Co., Ltd. Steel for mold, and mold
WO2020246099A1 (en) * 2019-06-06 2020-12-10 日立金属株式会社 Steel for hot stamp die, hot stamp die and manufacturing method thereof
CN113939604A (en) * 2019-06-06 2022-01-14 日立金属株式会社 Steel for hot stamping die, and method for producing same
JP7540437B2 (en) 2019-06-06 2024-08-27 株式会社プロテリアル Steel for hot stamping dies, hot stamping dies and their manufacturing method
CN111560569A (en) * 2020-06-30 2020-08-21 潘少俊 High-toughness high-mirror-surface pre-hardened steel die steel and manufacturing process thereof
CN113122779A (en) * 2021-04-26 2021-07-16 江苏沙钢集团淮钢特钢股份有限公司 Fine-grain normalizing-free tool steel and production method thereof
CN113122779B (en) * 2021-04-26 2022-06-07 江苏沙钢集团淮钢特钢股份有限公司 Fine-grain normalizing-free tool steel and production method thereof

Similar Documents

Publication Publication Date Title
WO2017038879A1 (en) Steel for molds and molding tool
JP6859623B2 (en) Mold steel and molding tools
JP6601051B2 (en) Steel powder
JP2015209588A (en) Steel for mold and mold
JP6647771B2 (en) Mold steel and mold
JP2009242820A (en) Steel, steel for die and die using the same
EP3550051B1 (en) Steel for mold, mold, use of a steel for manufacturing a mold, and a process of manufacturing a mold
JP2015224363A (en) Steel for metallic mold and metallic mold
WO2017043446A1 (en) Steel for molds and molding tool
JP2009013465A (en) Tool steel, member for forming using the same, and method for verifying quality of tool steel
JP2016017200A (en) Die steel and warm/hot-working die
JP6459539B2 (en) Mold steel and mold
JP5402529B2 (en) Steel for mold
EP3569719B1 (en) Steel for die-casting die, die-casting die and use of the die-casting die
JP2010168639A (en) Steel for die-casting mold
JP2017166066A (en) Steel for mold and mold
JP2021038443A (en) Die steel and die
JP2016069661A (en) Steel for mold and mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750770

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187006436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE