JP6601051B2 - Steel powder - Google Patents

Steel powder Download PDF

Info

Publication number
JP6601051B2
JP6601051B2 JP2015161384A JP2015161384A JP6601051B2 JP 6601051 B2 JP6601051 B2 JP 6601051B2 JP 2015161384 A JP2015161384 A JP 2015161384A JP 2015161384 A JP2015161384 A JP 2015161384A JP 6601051 B2 JP6601051 B2 JP 6601051B2
Authority
JP
Japan
Prior art keywords
steel
mold
thermal conductivity
cooling
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015161384A
Other languages
Japanese (ja)
Other versions
JP2016145407A (en
Inventor
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to US15/003,675 priority Critical patent/US10975460B2/en
Priority to CA2918775A priority patent/CA2918775C/en
Priority to EP16152652.0A priority patent/EP3050649B1/en
Priority to CN201610060500.3A priority patent/CN105821327B/en
Publication of JP2016145407A publication Critical patent/JP2016145407A/en
Application granted granted Critical
Publication of JP6601051B2 publication Critical patent/JP6601051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は熱伝導性能と耐食性ともに優れた鋼の粉末に関する。 This invention relates to the end flour steel excellent in both thermal conduction performance and corrosion resistance.

樹脂やゴム等の射出成形金型,ダイカスト金型,ホットプレス(ホットスタンプやダイクエンチとも呼ばれる)金型等は、一般に鋼を溶製してインゴットを造り、その後鍛造や圧延を施してブロックや平角材を造り、それを機械加工で削って金型の形状とし、その後に焼入れ,焼戻し等の熱処理を施して製造している。
またこれら金型では、内部に冷却回路を設けてそこに冷却水を流通させることで、金型を冷却することが一般に行われている。
In general, injection molds such as resin and rubber, die-casting dies, and hot press (also called hot stamping or die quenching) dies are made by melting steel to make ingots, then forging and rolling to form blocks or flats. It is manufactured by making a square bar and machining it into a mold shape, followed by heat treatment such as quenching and tempering.
In these molds, it is generally performed to cool the mold by providing a cooling circuit therein and circulating cooling water therethrough.

このような金型にあって、冷却水による冷却効率を高めることが、サイクルタイムの短縮化、つまりは製品製造(成形)のハイサイクル化による生産性向上を図ることに繋がる。
冷却効率を高める方法として、冷却回路を金型内部で縦横無尽に複雑に曲りくねった形状とし、冷却回路の全体的な形状,レイアウト等により冷却能力を高めるといったことも考えられるが、金型を機械加工により削って製造する方法では、冷却回路をそのような複雑形状に形成することは技術的に実現できない。
In such a mold, increasing the cooling efficiency with cooling water leads to a reduction in cycle time, that is, an improvement in productivity due to a high cycle of product manufacturing (molding).
As a method of increasing the cooling efficiency, it is conceivable that the cooling circuit has a complicated and winding shape inside the mold, and the cooling capacity is increased by the overall shape and layout of the cooling circuit. In a method of cutting and manufacturing by machining, it is technically impossible to form the cooling circuit in such a complicated shape.

このような状況の下で近年、金型を積層造形法(3次元積層造形法)で造形する技術が注目されている。
積層造形法は、3次元モデルデータを材料の付着によって実体化する加工法で、この積層造形法では、先ず3次元CADデータで表現される形状を、予め定められた軸に直交する多数の面でスライスして生じる薄片の断面形状を計算して、その薄片を実際に作製及びこれを積み重ね、貼り合せることで計算機表現された形状を実体化する。
Under such circumstances, in recent years, a technique for modeling a mold by an additive manufacturing method (three-dimensional additive manufacturing method) has attracted attention.
The additive manufacturing method is a processing method that materializes the three-dimensional model data by adhering materials. In the additive manufacturing method, first, the shape expressed by the three-dimensional CAD data is a number of surfaces orthogonal to predetermined axes. The cross-sectional shape of the flakes generated by slicing is calculated, and the flakes are actually produced, stacked, and pasted together to materialize the computer-expressed shape.

この積層造形法には材料として粉末を用いる場合と、板を用いる場合とがある。
粉末を用いる方法では、粉末を層状(一層の厚みは例えば数十μm)に敷き均し、ある領域に熱エネルギー照射、例えばレーザービームや電子ビーム照射して粉末層を溶融凝固或いは焼結させ、そしてこれを一層一層積み重ねて行くことで全体の形状を造形する。
In this additive manufacturing method, there are a case where powder is used as a material and a case where a plate is used.
In the method using powder, the powder is spread in layers (the thickness of one layer is, for example, several tens of μm), and a certain region is irradiated with thermal energy, for example, laser beam or electron beam to melt and solidify or sinter the powder layer, And the whole shape is modeled by stacking this one layer further.

一方材料として板を用いる積層造形では、3次元形状データをCAD中でスライスして生じた個々のパーツ(板)を実際に機械加工等で製造し、そしてそのパーツを積み上げて拡散接合等することで全体の3次元形状を造形する。
例えばこの種積層造形法にて金型を製造する例が、下記特許文献1,特許文献2に開示されている。
On the other hand, in additive manufacturing using a plate as a material, individual parts (plates) generated by slicing 3D shape data in CAD are actually manufactured by machining, etc., and the parts are stacked and diffusion bonded. The whole three-dimensional shape is formed with.
For example, the following patent document 1 and patent document 2 disclose an example in which a mold is manufactured by this kind of additive manufacturing method.

詳しくは、下記特許文献1には「粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物」についての発明が示され、そこにおいて析出硬化型金属成分の粉末材料に光ビームを照射して、所定箇所の粉末を焼結又は溶融固化させて固化層を形成するとともに、これにより得られた固化層の上に更に固化層を形成することを繰り返して三次元形状造形物を製造する点が開示されている。   Specifically, the following Patent Document 1 discloses an invention relating to “a metal powder for powder sintering lamination, a method for producing a three-dimensional shaped article using the same, and a three-dimensional shaped article to be obtained”, and precipitation hardening therein. Irradiating the powder material of the mold metal component with a light beam to sinter or melt and solidify the powder at a predetermined location to form a solidified layer, and further form a solidified layer on the solidified layer thus obtained The point which manufactures a three-dimensional shape molded article by repeating is disclosed.

また下記特許文献2には「金型用入れ子、金型用入れ子の製造方法及び樹脂成形用金型」についての発明が示され、そこにおいて内部にスパイラル状の冷却路を有する入れ子を製造する際、そのスライスデータに基づいて、複数の金属板にそれぞれ冷却路を形成する溝を加工し、溝加工された金属板を所定の順番に積層してこれを拡散接合し、得られた金属ブロックを形状加工する点が開示されている。   Further, the following Patent Document 2 discloses an invention relating to “a mold insert, a mold insert manufacturing method, and a resin mold”, in which a insert having a spiral cooling path is manufactured. Based on the slice data, a plurality of metal plates are processed to form grooves that form cooling paths, the grooved metal plates are laminated in a predetermined order, and diffusion-bonded together. The point of shape processing is disclosed.

以上のような積層造形法は、材料を積み重ねて全体の形状を造形するものであり、切削加工では到底できないような縦横無尽に曲りくねった複雑な冷却回路でも容易に加工形成することができ、冷却回路を敢えて金型の成形面に必要以上に近づけなくても、冷却効率を従来の機械加工による切削によって造られる金型のそれよりも効果的に高めることができる。   The layered manufacturing method as described above is to form the entire shape by stacking materials, and can be easily processed and formed even with complicated cooling circuits that are twisted in length and width that can not be achieved by cutting, Even if the cooling circuit is not intentionally brought closer to the molding surface of the mold, the cooling efficiency can be more effectively improved than that of a mold produced by cutting by conventional machining.

上記のように、曲がった複雑な3次元冷却回路を金型等の内部に設けることで冷却能は上がったが、冷却効率はすでに限界にあり更なる冷却効率の向上は難しい。冷却効率の向上を妨げる原因として、(1)低熱伝導率,(2)水冷孔割れの助長,(3)低耐食性、といった問題がある。また金型における冷却効率とは別の問題として、(4)ヒートチェックの頻発が挙げられる。以下にこれら(1)〜(4)の問題点について説明する。
まず、(1)低熱伝導率の問題について述べる。一般に積層造形には18Niマルエージング鋼やSUS420J2系の粉末が使われているが、これらの鋼は熱伝導率が低い。従っていかに冷却回路を効率的に配したとしても、金型内(意匠面と冷却回路の間)での熱移動が早くないため冷却効率の向上には限界がある。
As described above, the cooling capability has been improved by providing a curved and complicated three-dimensional cooling circuit inside a mold or the like, but the cooling efficiency is already at its limit, and it is difficult to further improve the cooling efficiency. Factors that hinder the improvement of cooling efficiency include (1) low thermal conductivity, (2) promotion of water-cooled hole cracking, and (3) low corrosion resistance. Another problem separate from the cooling efficiency in the mold is (4) frequent heat check. The problems (1) to (4) will be described below.
First, (1) the problem of low thermal conductivity is described. Generally, 18Ni maraging steel and SUS420J2 series powder are used for additive manufacturing, but these steels have low thermal conductivity. Therefore, no matter how efficiently the cooling circuit is arranged, there is a limit to improving the cooling efficiency because heat transfer in the mold (between the design surface and the cooling circuit) is not fast.

次に(2)水冷孔割れの助長の問題について述べる。冷却効率を上げるためには冷却回路を意匠面に近づければよいが、近づけすぎると応力上昇と貫通距離減少の重畳によって、冷却回路からの亀裂が意匠面に進展しやすくなる。従って冷却回路の意匠面への近接には限界があり、従って冷却効率の向上にも限界がある。また18Niマルエージング鋼やSUS420J2系は低熱伝導率のため、金型内の温度勾配が大きくなることから冷却回路内面の熱応力が高くなり、冷却回路を構成する水冷孔の割れを起こし易い。この意味でも、低熱伝導率材は冷却回路と意匠面の近接を難しくし、冷却効率改善のネックになっている。   Next, (2) the problem of promoting water-cooled hole cracking is described. In order to increase the cooling efficiency, the cooling circuit may be brought close to the design surface, but if it is too close, a crack from the cooling circuit easily develops on the design surface due to superposition of stress increase and penetration distance reduction. Therefore, there is a limit to the proximity of the cooling circuit to the design surface, and thus there is a limit to improving the cooling efficiency. Further, 18Ni maraging steel and SUS420J2 system have low thermal conductivity, so that the temperature gradient in the mold becomes large, so that the thermal stress on the inner surface of the cooling circuit is increased and the water cooling holes constituting the cooling circuit are liable to crack. Also in this sense, the low thermal conductivity material makes it difficult to bring the cooling circuit and the design surface close to each other, and has become a bottleneck for improving the cooling efficiency.

更に(3)低耐食性の問題について述べる。18Niマルエージング鋼は耐食性が低いため、水冷孔が錆び易い。酸化物である錆びは熱伝導率が非常に低いため、冷却水と金型との熱交換のバリアとなり、冷却効率の向上を阻害する。錆びが顕著になると、錆びで冷却回路が細くなり、冷媒の流量が減少することによっても冷却効率が下がる。酷い場合には錆びで冷却回路が詰まってしまうこともあり、こうなるとせっかくの曲がった冷却回路が全く用を成さないものとなってしまう。   Furthermore, (3) the problem of low corrosion resistance is described. Since 18Ni maraging steel has low corrosion resistance, water-cooled holes are likely to rust. Since rust, which is an oxide, has a very low thermal conductivity, it becomes a barrier for heat exchange between the cooling water and the mold, and hinders improvement in cooling efficiency. When rust becomes prominent, the cooling circuit becomes narrow due to rust, and the cooling efficiency also decreases due to a decrease in the flow rate of the refrigerant. In severe cases, the cooling circuit may be clogged with rust, and in this case, the bent cooling circuit will be useless at all.

最後に(4)ヒートチェック頻発の問題について述べる。18Niマルエージング鋼やSUS420J2系は低熱伝導率のため、金型内の温度勾配が大きくなることから意匠面の熱応力も高くなり、ヒートチェックが発生し易い。高温強度が低いとヒートチェックの問題は更に顕在化する。   Finally, (4) the problem of frequent heat checks is described. Since 18Ni maraging steel and SUS420J2 series have low thermal conductivity, the temperature gradient in the mold increases, so the thermal stress on the design surface also increases and heat check is likely to occur. When the high temperature strength is low, the heat check problem becomes more apparent.

以上をまとめると、3次元冷却回路を有する金型や部品の問題は、低熱伝導率と低耐食性に帰着する。低熱伝導率のため冷却効率向上には限界があり、加えて水冷孔割れが助長され、ヒートチェックが頻発する。また低耐食性のため錆びで冷却効率が低下し(最悪は水冷孔が詰まり)、冷却効率の向上を更に難しくしている。
逆に言えば、高熱伝導率と高耐食性とを両立した鋼の粉末を用いて積層造形された金型や部品があれば、上記の問題は解決される。
In summary, the problems of molds and parts having a three-dimensional cooling circuit result in low thermal conductivity and low corrosion resistance. Due to the low thermal conductivity, there is a limit to improving the cooling efficiency. In addition, cracks in the water-cooled holes are promoted, and heat checks occur frequently. In addition, because of low corrosion resistance, the cooling efficiency decreases due to rusting (worst is the clogging of water cooling holes), making it more difficult to improve cooling efficiency.
In other words, the above problem can be solved if there is a mold or component that is formed by layering using steel powder that has both high thermal conductivity and high corrosion resistance.

ところが積層造形法にて金型を造形する、しないに拘らず、従来用いられているJIS SKD61やSUS420J2,マルエージング鋼等の金型用鋼は、高温強度を有するものの母相中に固溶し易いSi,Cr,Ni,Co等の元素が多く含有されているために熱伝導率が低く、熱伝導率の点から冷却効率を高めるといったことは難しい。
即ち、金型となったときに高温強度に加えて、耐食性及び熱伝導性能においても十分な性能を実現することのできる金型用の鋼は従来提供されていない。
However, regardless of whether or not the mold is formed by the additive manufacturing method, conventionally used JIS SKD61, SUS420J2, maraging steel and other mold steels have high temperature strength but are dissolved in the matrix. Since many elements such as Si, Cr, Ni, and Co are easily contained, the thermal conductivity is low, and it is difficult to increase the cooling efficiency from the viewpoint of thermal conductivity.
That is, steel for molds that can realize sufficient performance in terms of corrosion resistance and heat conduction performance in addition to high-temperature strength when it becomes a mold has not been provided.

尚、本発明に対する他の先行技術として、下記特許文献3には「熱間工具鋼」についての発明が示され、そこにおいてC:0.28〜0.55%、Si:0.15〜0.80%、Mn:0.40〜0.85%、P:0.020%以下、S:0.018%以下、Cr:2.5〜5.7%、Mo:1.4〜2.8%、V:0.20〜0.90%、W:0.01〜1.65%、Co:0.03〜0.89%、Ni:0.01〜1.65%を含有し、残部が実質的にFe及び不可避的不純物からなり、不可避的不純物のNを0.009%以下、Tiを0.003%以下、Bを0.012%以下に規制し、非金属介在物の清浄度がJIS dA0.005%以下で、d(B+C)0.020%以下であると共に、熱処理後のマルテンサイト組織の方向性が17〜33%の範囲である熱間工具鋼が開示されている。   In addition, as another prior art to the present invention, the following Patent Document 3 discloses an invention concerning “hot tool steel”, in which C: 0.28 to 0.55%, Si: 0.15 to 0 80%, Mn: 0.40 to 0.85%, P: 0.020% or less, S: 0.018% or less, Cr: 2.5 to 5.7%, Mo: 1.4 to 2. 8%, V: 0.20-0.90%, W: 0.01-1.65%, Co: 0.03-0.89%, Ni: 0.01-1.65%, The balance consists essentially of Fe and unavoidable impurities, N of the unavoidable impurities is controlled to 0.009% or less, Ti is controlled to 0.003% or less, and B is controlled to 0.012% or less to clean non-metallic inclusions. The degree of JIS dA is 0.005% or less and d (B + C) is 0.020% or less, and the directionality of the martensite structure after heat treatment Hot work tool steels is disclosed in the range of 17-33%.

更に他の先行技術として、下記特許文献4には「破砕用刃物用鋼および破砕刃の製造方法」についての発明が示され、そこにおいてC:0.3〜0.5%、Si:0.2〜0.5%、Mn:0.1〜1.0%、Cr:4.0〜6.0%、MoおよびWの内の1種または2種をMo+1/2W:0.8〜2.5%、VおよびNbの内の1種または2種をV+1/2Nb:0.3〜1.0%、を基本成分として含有し、残部をFeと不可避的不純物からなる破砕用刃物用鋼が開示されている。   Further, as another prior art, the following Patent Document 4 discloses an invention relating to “a steel for crushing blade and a method for producing a crushing blade”, in which C: 0.3 to 0.5%, Si: 0.00. 2 to 0.5%, Mn: 0.1 to 1.0%, Cr: 4.0 to 6.0%, one or two of Mo and W being Mo + 1 / 2W: 0.8 to 2 .5%, one or two of V and Nb, containing V + 1 / 2Nb: 0.3-1.0% as a basic component, the balance being steel for crushing blades composed of Fe and inevitable impurities Is disclosed.

更に他の先行技術として、下記特許文献5には「熱間鍛造金型及びその製造方法」についての発明が示され、そこにおいてC:0.32〜0.42%、Si:0.3%以下、Mn:0.3〜1.5%、Ni:0.5%以下、Cr:4.0〜6.0%、V:0.2〜1.0%、Mo+1/2W:0.8〜2.0%、及び、N:0.005〜0.04%を含有し、残部がFeおよび不可避的不純物からなる熱間鍛造金型が開示されている。   Further, as another prior art, the following Patent Document 5 discloses an invention relating to “hot forging die and manufacturing method thereof”, in which C: 0.32 to 0.42%, Si: 0.3% Hereinafter, Mn: 0.3 to 1.5%, Ni: 0.5% or less, Cr: 4.0 to 6.0%, V: 0.2 to 1.0%, Mo + 1 / 2W: 0.8 A hot forging die containing ˜2.0% and N: 0.005 to 0.04%, the balance being Fe and inevitable impurities is disclosed.

更に他の先行技術として、下記特許文献6には「熱間加工用金型」についての発明が示され、そこにおいて、C:0.30%以上0.50%未満、Si:0.10〜0.5%、Mn:0.30〜1.0%、P:0.02%以下、S:0.005%以下、Cr:4.0〜8.0%、Mo:0.2%以上1.5%未満、V:0.05〜1.0%、Al:0.03%以下、N:0.0150%以下およびO:0.0030%以下を含有し、残部がFeおよび不純物からなり、不純物としてのNiおよびWがいずれも0.7%未満の化学組成および900MPa以上の引張強度を有する熱間加工用金型であって、少なくとも被加工材と接する面に硬化深さが200μmを超える窒化層を備えるとともに、この窒化層の深さが30μm以上の位置での硬さがビッカース硬さで900以下である熱間加工用金型が開示されている。   Further, as another prior art, the following Patent Document 6 discloses an invention relating to a “hot working die”, in which C: 0.30% or more and less than 0.50%, Si: 0.10 0.5%, Mn: 0.30 to 1.0%, P: 0.02% or less, S: 0.005% or less, Cr: 4.0 to 8.0%, Mo: 0.2% or more Less than 1.5%, V: 0.05 to 1.0%, Al: 0.03% or less, N: 0.0150% or less, and O: 0.0030% or less, with the balance being Fe and impurities A hot working mold having both a chemical composition of Ni and W as impurities of less than 0.7% and a tensile strength of 900 MPa or more, with a hardening depth of 200 μm at least on the surface in contact with the workpiece And a hardness at a position where the depth of the nitride layer is 30 μm or more. Discloses a hot working mold having a Vickers hardness of 900 or less.

更に他の先行技術として、下記特許文献7には「熱間鍛造金型用鋼」についての発明が示され、そこにおいてC:0.25〜0.45%、Si:0.50%以下、Mn:0.20〜1.0%、P:0.015%以下、S:0.005%以下、Ni:0.5〜2.0%、Cr:2.8〜4.2%、Mo:1.0〜2.0%、V:0.1〜0.5%を含有し、残部はFeおよび不可避的不純物よりなる熱間鍛造金型用鋼が開示されている。   Furthermore, as another prior art, the following patent document 7 discloses an invention about “hot forging die steel”, in which C: 0.25 to 0.45%, Si: 0.50% or less, Mn: 0.20 to 1.0%, P: 0.015% or less, S: 0.005% or less, Ni: 0.5 to 2.0%, Cr: 2.8 to 4.2%, Mo : 1.0-2.0%, V: 0.1-0.5% is contained, and the balance is made of steel for hot forging dies composed of Fe and inevitable impurities.

更に他の先行技術として、下記特許文献8には「熱間工具鋼」についての発明が示され、そこにおいてC:0.25〜0.40%、Si:0.50%以下、Mn:0.30〜1.00%、P:0.015%以下、S:0.005%以下、Ni:0.50〜2.00%、Cr:2.70〜5.50%、Mo:1.00〜2.00%、V:0.40〜0.80%、B:0.0005〜0.0100%、Al:0.015〜0.10%、N:0.015%以下、を含有し、残部はFeおよび不可避的不純物からなる合金鋼で、室温での破壊靭性値(KQ)が250Kgf/mm3/2以上、高温(600℃)での耐力(0.2%PS)が60Kgf/mm以上を有する熱間工具鋼が開示されている。 Further, as another prior art, the following Patent Document 8 discloses an invention relating to “hot tool steel”, in which C: 0.25 to 0.40%, Si: 0.50% or less, Mn: 0 .30-1.00%, P: 0.015% or less, S: 0.005% or less, Ni: 0.50-2.00%, Cr: 2.70-5.50%, Mo: 1. Contains 0.00-2.00%, V: 0.40-0.80%, B: 0.0005-0.0100%, Al: 0.015-0.10%, N: 0.015% or less The balance is an alloy steel composed of Fe and inevitable impurities, the fracture toughness value (KQ) at room temperature is 250 kgf / mm 3/2 or more, and the proof stress (0.2% PS) at high temperature (600 ° C.) is 60 kgf. A hot work tool steel having a / mm 2 or greater is disclosed.

しかしながら、これら特許文献3〜8に開示のものは、何れもCの含有量が0.25%以上であり、これら特許文献に開示のものはC含有量において本発明とは異なった別異のものである。またこれら特許文献には粉末状となして積層造形法の材料として用いる点の言及もなされていない。   However, all of those disclosed in Patent Documents 3 to 8 have a C content of 0.25% or more, and those disclosed in these Patent Documents differ from the present invention in the C content. Is. In addition, these patent documents do not mention the point that the powder is used as a material for the layered manufacturing method.

国際公開WO2011/149101号公報International publication WO2011 / 149101 特開2010−194720号公報JP 2010-194720 A 特開2003−268486号公報JP 2003-268486 A 特開2007−297691号公報JP 2007-297691 A 特開2008−308745号公報JP 2008-308745 A 特開2010−65280号公報JP 2010-65280 A 特開平6−256897号公報JP-A-6-256897 特開平8−269625号公報JP-A-8-269625

本発明は以上のような事情を背景とし、積層造形法を適用して金型を製造するに際して、高熱伝導率と高耐食性とを実現可能な鋼の粉末を提供することを目的としてなされたものである。 The present invention is the background of the above circumstances, when producing a mold by applying a layered manufacturing method, it was made for the purpose of providing a flour powder possible steels achieve a high corrosion resistance and high thermal conductivity Is.

而して請求項1は鋼の粉末に関するもので、質量%で0.10≦C<0.25,0.005≦Si≦0.600,2.00≦Cr≦6.00,
−0.0125×[Cr]+0.125≦Mn≦−0.100×[Cr]+1.800・・式(1)(但し式(1)中[Cr]はCrの含有質量%を表す)
0.01≦Mo≦1.80,
−0.00447×[Mo]+0.010≦V≦−0.1117×[Mo]+0.901・・式(2)(但し式(2)中[Mo]はMoの含有質量%を表す)
0.0002≦N≦0.3000,残部がFe及び不可避的不純物の組成を有することを特徴とする。
Thus, claim 1 relates to a steel powder, and in mass%, 0.10 ≦ C <0.25, 0.005 ≦ Si ≦ 0.600, 2.00 ≦ Cr ≦ 6.00,
−0.0125 × [Cr] + 0.125 ≦ Mn ≦ −0.100 × [Cr] +1.800... Formula (1) (where [Cr] represents Cr content mass%)
0.01 ≦ Mo ≦ 1.80,
−0.00447 × [Mo] + 0.010 ≦ V ≦ −0.1117 × [Mo] +0.901... Formula (2) (where [Mo] represents the content percentage of Mo in Mo in Formula (2))
0.0002 ≦ N ≦ 0.3000, and the balance has a composition of Fe and inevitable impurities.

請求項2のものは、請求項1において、質量%で0.10<Al≦1.20を更に含有することを特徴とする。   According to a second aspect of the present invention, in the first aspect, the composition further contains 0.10 <Al ≦ 1.20 by mass%.

請求項3のものは、請求項1,2の何れかにおいて、質量%で0.30<Ni≦3.50,0.30<Cu≦2.00の少なくとも1種を更に含有することを特徴とする。   According to a third aspect of the present invention, in any one of the first and second aspects, at least one of 0.30 <Ni ≦ 3.50 and 0.30 <Cu ≦ 2.00 is further contained in mass%. And

請求項4のものは、請求項1〜3の何れかにおいて、質量%で0.0001<B≦0.0100を更に含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, 0.0001 <B ≦ 0.0100 is further contained in mass%.

請求項5のものは、請求項1〜4の何れかにおいて、質量%で0.003<S≦0.250,0.0005<Ca≦0.2000,0.03<Se≦0.50,0.005<Te≦0.100,0.01<Bi≦0.50,0.03<Pb≦0.50の少なくとも1種を更に含有することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, 0.003 <S ≦ 0.250, 0.0005 <Ca ≦ 0.2000, 0.03 <Se ≦ 0.50 in mass%. It further contains at least one of 0.005 <Te ≦ 0.100, 0.01 <Bi ≦ 0.50, 0.03 <Pb ≦ 0.50.

請求項6のものは、請求項1〜5の何れかにおいて、質量%で0.004<Ta≦0.100,0.004<Ti≦0.100,0.004<Zr≦0.100,の少なくとも1種を更に含有することを特徴とする。 A sixth aspect of the present invention is the same as in any one of the first to fifth aspects, wherein the weight percentage is 0 . It further contains at least one of 004 <Ta ≦ 0.100, 0.004 <Ti ≦ 0.100, 0.004 <Zr ≦ 0.100.

請求項7のものは、請求項1〜6の何れかにおいて、質量%で0.10<W≦5.00を更に含有することを特徴とする。 Those of claim 7, in any one of claims 1 to 6, characterized in that it further contains 0.10 <W ≦ 5.0 0 mass%.

本発明において、「金型」には金型本体はもとより、これに組み付けられて使用されるスプールコア等の金型部品も含まれる。更に、本発明の鋼からなる金型で、表面処理が施されたものも含まれる。 In the present invention, the “mold” includes not only the mold body but also mold parts such as a spool core that are assembled and used. Furthermore, the metal mold | die which consists of steel of this invention and the surface-treated thing is contained.

本発明は、高熱伝導率,高耐食性の両特性を備えた鋼の粉末が従来提供されていない状況の下で、マルエージング鋼やステンレス鋼等の高合金鋼に対し熱伝導率を低下させる合金成分の含有量を少なくする一方、Crを過度に減らすと耐食性が悪化してしまうためCrを過度に減らすことなく2.00≦Cr≦6.00とし、それら合金成分を適正にバランスさせることで、高耐食性を維持しつつ高熱伝導率を実現可能としたものである。   The present invention is an alloy that lowers the thermal conductivity of high alloy steels such as maraging steel and stainless steel under the circumstances where steel powder having both high thermal conductivity and high corrosion resistance has not been provided. While reducing the content of the component, if the Cr content is excessively reduced, the corrosion resistance will deteriorate, so that 2.00 ≦ Cr ≦ 6.00 without excessively reducing Cr, and appropriately balancing these alloy components It is possible to achieve high thermal conductivity while maintaining high corrosion resistance.

本発明の鋼の粉末は、積層造形法による造形で金型製造する際に用いられる粉末材料に好適である。
粉末を用いた積層造形法では、粉末を敷き並べた層に熱エネルギーを加えて粉末を固める際に、これを溶融凝固又は焼結させる。
その際に粉末は溶融状態等の高温状態から急速冷却され、焼入れが自動的に行われる。その際の焼入れは速い冷却速度の下で急速に行われる。即ち焼入れが粉末の積層成形過程で逐次的に同時に行われて行く。
The steel powder of the present invention is suitable for a powder material used when a mold is manufactured by modeling by the additive manufacturing method.
In the additive manufacturing method using powder, when heat energy is applied to a layer in which powders are arranged and hardened, the powder is melted and solidified or sintered.
At that time, the powder is rapidly cooled from a high temperature state such as a molten state, and quenching is automatically performed. In this case, quenching is carried out rapidly under a fast cooling rate. That is, quenching is performed sequentially and simultaneously in the process of powder lamination.

このように焼入れは速い冷却速度の下で行われるため、予め鋼の成分として焼入性向上成分の含有量を少なく抑えておいても、積層造形時に焼入れが良好に行われる。本発明によれば積層造形ままで金型に必要な硬度30〜50HRCを得ることが可能である。   Thus, since quenching is performed under a fast cooling rate, quenching is favorably performed at the time of additive manufacturing even if the content of the hardenability improving component is suppressed to a low level as a steel component in advance. According to the present invention, it is possible to obtain a hardness of 30 to 50 HRC required for a mold as it is by layered shaping.

以上のような本発明の鋼の粉末は、積層造形法によるダイカストの金型や部品に適用すると、冷却効率の向上、ヒートチェックの抑制、水冷孔の割れ防止を実現することができる。
また樹脂やゴム等の射出成形、鍛造、更には鋼板のホットプレスに用いる金型や部品に適用しても高い性能を発揮し得る。
尚、当該の金型や部品の全体を積層造形で製造する必要はない。例えば通常の製法(溶製材のブロックから機械加工)で作成した部材を土台とし、曲がった3次元冷却回路を有する部位のみを本発明の鋼の粉末を用いて積層造形法により製造しても良い。
When the steel powder of the present invention as described above is applied to a die-casting die or component by the additive manufacturing method, it is possible to improve the cooling efficiency, suppress the heat check, and prevent the water cooling holes from cracking.
Moreover, high performance can be exhibited even when applied to molds and parts used for injection molding of resin and rubber, forging, and hot pressing of steel sheets.
In addition, it is not necessary to manufacture the whole said metal mold | die and components by additive manufacturing. For example, only a part having a curved three-dimensional cooling circuit may be manufactured by the additive manufacturing method using the steel powder of the present invention based on a member created by a normal manufacturing method (machined from a block of melted material). .

次に本発明における各化学成分の限定理由を以下に説明する。
尚各化学成分の値は何れも質量%である。
1)<請求項1の化学成分について>
0.10≦C<0.25
C<0.10では、金型に必要な30HRC以上の硬さが積層造形後に焼戻しがある場合に得られない。一方、0.25≦Cでは熱伝導率が低下する。また0.25≦Cでは積層造形ままの硬さが50HRCを超え、積層造形ままで使う場合に大割れの危険が増す。
好適なCの範囲は、諸特性のバランスに優れた0.11≦C<0.24であり、より好ましくは0.12≦C<0.23である。
Next, the reasons for limiting each chemical component in the present invention will be described below.
In addition, all the values of each chemical component are mass%.
1) <Chemical component of claim 1>
0.10 ≦ C <0.25
When C <0.10, the hardness of 30 HRC or more necessary for the mold cannot be obtained when there is tempering after the layered manufacturing. On the other hand, when 0.25 ≦ C, the thermal conductivity decreases. In addition, when 0.25 ≦ C, the hardness of the layered manufacturing exceeds 50 HRC, and the risk of large cracks increases when using the layered manufacturing as it is.
A preferable range of C is 0.11 ≦ C <0.24 which is excellent in the balance of various characteristics, and more preferably 0.12 ≦ C <0.23.

0.005≦Si≦0.600
Si<0.005では被削性の劣化が著しい。一方、0.600<Siでは熱伝導率の低下が著しい。好適なSiの範囲は、諸特性のバランスに優れた0.010≦Si≦0.550であり、より好ましくは0.020≦Si≦0.200である。
0.005 ≦ Si ≦ 0.600
When Si <0.005, the machinability is significantly deteriorated. On the other hand, when 0.600 <Si, the thermal conductivity is remarkably reduced. A suitable Si range is 0.010 ≦ Si ≦ 0.550, which is excellent in the balance of various properties, and more preferably 0.020 ≦ Si ≦ 0.200.

2.00≦Cr≦6.00
Cr<2.00では耐食性が不足し、水冷回路の錆びや割れの原因になる。更に、Cr<2.00では、マルテンサイト変態点が高くなり、組織が粗大化して硬さや靭性が不足する。一方、6.00<Crでは熱伝導率が低下する。好適なCrの範囲は、諸特性のバランスに優れた2.05≦Cr≦5.90であり、より好ましくは2.10≦Cr≦5.70である。
2.00 ≦ Cr ≦ 6.00
If Cr <2.00, the corrosion resistance is insufficient, which causes rusting and cracking of the water cooling circuit. Further, when Cr <2.00, the martensitic transformation point becomes high, the structure becomes coarse, and hardness and toughness are insufficient. On the other hand, when 6.00 <Cr, the thermal conductivity decreases. A preferable Cr range is 2.05 ≦ Cr ≦ 5.90, which is excellent in the balance of various properties, and more preferably 2.10 ≦ Cr ≦ 5.70.

−0.0125×[Cr]+0.125≦Mn≦−0.100×[Cr]+1.800・・式(1)
Mn<−0.0125×[Cr]+0.125では変態点が高くなり、組織が粗大化して硬さや靭性が不足する。一方、−0.100×[Cr]+1.800<Mnでは熱伝導率が低下する。
組織が粗大化して硬さや靭性が不足する傾向は特にCrが低い場合に著しい。また熱伝導率の低下は特にCrが高い場合に著しい。
−0.0125 × [Cr] + 0.125 ≦ Mn ≦ −0.100 × [Cr] +1.800 Formula (1)
When Mn <−0.0125 × [Cr] +0.125, the transformation point becomes high, the structure becomes coarse, and hardness and toughness are insufficient. On the other hand, if -0.100 × [Cr] +1.800 <Mn, the thermal conductivity decreases.
The tendency of the structure to become coarse and lack hardness and toughness is particularly remarkable when Cr is low. The decrease in thermal conductivity is particularly remarkable when Cr is high.

0.01≦Mo≦1.80
Mo<0.01では、高温強度が不足する。またMo<0.01では、積層造形後にAc1点以下での加熱処理がある場合に30HRC以上の硬さを確保することが難しくなる。
一方、1.80<Moでは破壊靭性値の低下が大きい。好ましい範囲は0.05≦Mo≦1.70である。更に好ましい範囲は0.10≦Mo≦1.60である。
0.01 ≦ Mo ≦ 1.80
When Mo <0.01, the high temperature strength is insufficient. Further, when Mo <0.01, it is difficult to secure a hardness of 30 HRC or more when there is a heat treatment at the Ac1 point or less after the layered manufacturing.
On the other hand, when 1.80 <Mo, the fracture toughness value is greatly reduced. A preferred range is 0.05 ≦ Mo ≦ 1.70. A more preferable range is 0.10 ≦ Mo ≦ 1.60.

−0.00447×[Mo]+0.010≦V≦−0.1117×[Mo]+0.901・・式(2)
V<−0.00447×[Mo]+0.010では、高温強度が不足する。また、積層造形後にAc1点以下での加熱処理がある場合に、30HRC以上の硬さを確保することが難しくなる。更にV<−0.00447×[Mo]+0.010では、積層造形後にAc3点以上加熱する焼入れがある場合に結晶粒が粗大化して靭性が低下する。
一方、−0.1117×[Mo]+0.901<Vでは上記の効果が飽和傾向であるうえ、著しいコスト上昇を招く。
−0.00447 × [Mo] + 0.010 ≦ V ≦ −0.1117 × [Mo] +0.901 .. Formula (2)
When V <−0.00447 × [Mo] +0.010, the high temperature strength is insufficient. Moreover, when there is a heat treatment at the Ac1 point or less after the layered manufacturing, it is difficult to ensure a hardness of 30 HRC or more. Further, when V <−0.00447 × [Mo] +0.010, the crystal grains become coarse and the toughness decreases when there is quenching by heating at Ac3 point or higher after the layered manufacturing.
On the other hand, when −0.1117 × [Mo] +0.901 <V, the above effect tends to be saturated, and the cost is significantly increased.

0.0002≦N≦0.3000
N<0.0002では、30HRC以上の硬さを確保することが難しくなる。またN<0.0002では、耐食性を改善する効果に乏しい。更にN<0.0002では、積層造形後に焼入れがある場合に結晶粒が粗大化する。
一方、0.3000<Nでは高強度化や耐食性向上の効果が飽和傾向を示すと同時に、精錬コストが著しく増加する。また0.3000<Nでは積層造形時に窒素が溶融部から抜け出すことがある。こうなると積層造形部に穴が形成され、靭性などの特性が満たされない。好ましい範囲は0.0003≦N≦0.2500である。更に好ましい範囲は0.0004≦N≦0.2000である。
0.0002 ≦ N ≦ 0.3000
When N <0.0002, it is difficult to ensure a hardness of 30 HRC or more. Further, when N <0.0002, the effect of improving the corrosion resistance is poor. Further, when N <0.0002, the crystal grains become coarse when quenching is performed after additive manufacturing.
On the other hand, if 0.3000 <N, the effect of increasing the strength and improving the corrosion resistance shows a saturation tendency, and at the same time, the refining cost increases remarkably. If 0.3000 <N, nitrogen may escape from the melted part during additive manufacturing. If it becomes like this, a hole will be formed in a layered modeling part, and characteristics, such as toughness, will not be satisfied. A preferred range is 0.0003 ≦ N ≦ 0.2500. A more preferable range is 0.0004 ≦ N ≦ 0.2000.

尚本発明の鋼において、通常、下記に示す成分が不可避的不純物として下記量で含まれ得る。
P≦0.05
S≦0.003
Cu≦0.30
Ni≦0.30
Al≦0.10
W≦0.10
O≦0.05
Co≦0.10
Nb≦0.004
Ta≦0.004
Ti≦0.004
Zr≦0.004
B≦0.0001
Ca≦0.0005
Se≦0.03
Te≦0.005
Bi≦0.01
Pb≦0.03
Mg≦0.02
REM≦0.10
In addition, in the steel of this invention, the component shown below may be normally contained in the following quantity as an unavoidable impurity.
P ≦ 0.05
S ≦ 0.003
Cu ≦ 0.30
Ni ≦ 0.30
Al ≦ 0.10
W ≦ 0.10
O ≦ 0.05
Co ≦ 0.10
Nb ≦ 0.004
Ta ≦ 0.004
Ti ≦ 0.004
Zr ≦ 0.004
B ≦ 0.0001
Ca ≦ 0.0005
Se ≦ 0.03
Te ≦ 0.005
Bi ≦ 0.01
Pb ≦ 0.03
Mg ≦ 0.02
REM ≦ 0.10

2)<請求項2の化学成分について>
本発明鋼は、積層造形後に焼入れを受ける場合がある。焼入れ時のオーステナイト結晶粒の粗大化を抑制するため
0.10<Al≦1.20
を含有させることが出来る。
AlはNと結合してAlNを形成し、オーステナイト結晶粒界の移動(すなわち粒成長)を抑制する効果を有する。
また、Alは鋼中で窒化物を形成して析出強化に寄与するため、窒化処理された鋼材の表面硬さを高くする作用も有する。より高い表面硬さを求めて窒化処理をする金型(金型の一部を構成している部品も含む)には、Alを含む鋼材を使う事が有効である。
2) <Chemical component of claim 2>
The steel of the present invention may be quenched after the additive manufacturing. 0.10 <Al ≦ 1.20 in order to suppress coarsening of austenite crystal grains during quenching
Can be contained.
Al combines with N to form AlN, and has the effect of suppressing the movement of austenite grain boundaries (ie, grain growth).
Moreover, since Al forms nitrides in steel and contributes to precipitation strengthening, it also has the effect of increasing the surface hardness of the nitriding steel. It is effective to use a steel material containing Al for a mold (including a part constituting a part of the mold) for nitriding for higher surface hardness.

3)<請求項3の化学成分について>
本発明鋼は、積層造形後に焼入れを受ける場合がある。焼入れ性が悪いと、焼入れ中にフェライトやパーライトや粗大ベイナイトが析出して各種特性が劣化する。そのような懸念に対しては、Cu,Niを選択的に添加して焼入れ性を高めて対応すればよい。具体的には、
0.30<Ni≦3.50
0.30<Cu≦2.00
の少なくとも1種を含有させれば良い。
焼入れの有無によらず、Ac1点以下の温度への加熱処理がある場合、NiにはAlと結合して金属間化合物を析出し、硬度を高める効果がある。CuにもAc1点以下の温度へ加熱した場合に、時効析出で硬度を高める効果がある。好適な範囲は、
0.50≦Ni≦3.00
0.50≦Cu≦1.80
である。いずれの元素も、所定量を越えると熱伝導性や靭性を低下させる。
3) <Chemical component of claim 3>
The steel of the present invention may be quenched after the additive manufacturing. When the hardenability is poor, ferrite, pearlite, and coarse bainite are precipitated during quenching, and various properties are deteriorated. To deal with such concerns, Cu and Ni may be selectively added to enhance the hardenability. In particular,
0.30 <Ni ≦ 3.50
0.30 <Cu ≦ 2.00
What is necessary is just to contain at least 1 sort (s) of these.
Regardless of the presence or absence of quenching, when there is a heat treatment to a temperature below the Ac1 point, Ni has the effect of binding to Al and precipitating intermetallic compounds to increase the hardness. Cu also has the effect of increasing the hardness by aging precipitation when heated to a temperature below the Ac1 point. The preferred range is
0.50 ≦ Ni ≦ 3.00
0.50 ≦ Cu ≦ 1.80
It is. If any element exceeds a predetermined amount, thermal conductivity and toughness are lowered.

4)<請求項4の化学成分について>
焼入れ性の改善策として、Bの添加も有効である。具体的には、
0.0001<B≦0.0100
を含有させる。
なお、BはBNを形成すると焼入れ性の向上効果が無くなるため、鋼中にB単独で存在させる必要がある。具体的には、BよりもNとの親和力が強い元素で窒化物を形成させ、BとNを結合させなければ良い。そのような元素の例としては、Nb,Ta,Ti,Zrなどがある。これらの元素は不純物レベルで存在してもNを固定する効果はあるが、N量によっては後述する請求項6の範囲で添加する場合もある。Bが鋼中のNと結合してBNが形成されても、余剰のBが鋼中に単独で存在すれば、それが焼入れ性を高める。
Bはまた切削性や研削性の改善にも有効である。本発明鋼による金型や部品は積層造形後に切削や研削を受ける場合がある。切削性や研削性を改善する場合には、BNを形成させれば良い。BNは性質が黒鉛に類似しており、切削や研削の抵抗を下げると同時に切屑破砕性を改善する。
尚、鋼中にBとBNがある場合には、焼入れ性と被削性・研削性が同時に改善される。
4) <Chemical component of claim 4>
Addition of B is also effective as a measure for improving hardenability. In particular,
0.0001 <B ≦ 0.0100
Containing.
Note that when B forms BN, the effect of improving the hardenability is lost, and therefore B needs to be present alone in the steel. Specifically, it is sufficient that nitride is formed with an element having an affinity for N stronger than B, and B and N are not bonded. Examples of such elements include Nb, Ta, Ti, Zr and the like. Even if these elements are present at the impurity level, they have an effect of fixing N, but depending on the amount of N, they may be added within the scope of claim 6 described later. Even if B is combined with N in the steel to form BN, if surplus B exists alone in the steel, it enhances hardenability.
B is also effective in improving machinability and grindability. Molds and parts made of the steel of the present invention may be subjected to cutting and grinding after additive manufacturing. In order to improve machinability and grindability, BN may be formed. BN is similar in nature to graphite and lowers cutting and grinding resistance while improving chip crushability.
In addition, when B and BN exist in steel, hardenability, machinability and grindability are improved at the same time.

5)<請求項5の化学成分について>
本発明鋼はSi量が少ないため、機械加工性がやや悪い。加工性の改善策として、以下のS,Ca,Se,Te,Bi,Pbを選択的に添加すれば良い。具体的には、
0.003<S≦0.250
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えた場合は衝撃値の低下を招く。
5) <Chemical component of claim 5>
Since the steel of the present invention has a small amount of Si, the machinability is somewhat poor. As a workability improvement measure, the following S, Ca, Se, Te, Bi, and Pb may be selectively added. In particular,
0.003 <S ≦ 0.250
0.0005 <Ca ≦ 0.2000
0.03 <Se ≦ 0.50
0.005 <Te ≦ 0.100
0.01 <Bi ≦ 0.50
0.03 <Pb ≦ 0.50
What is necessary is just to contain at least 1 sort (s) of these.
When any element exceeds a predetermined amount, the impact value is lowered.

6)<請求項6の化学成分について>
積層造形後に焼入れがある場合、予期せぬ設備トラブルなどによって焼入れ加熱温度が高くなったり焼入れ加熱時間が長くなれば、結晶粒の粗大化による各種特性の劣化が懸念される。そのような場合に備え、Ta,Ti,Zrを選択的に添加し、これらの元素が形成する微細な析出物でオーステナイト結晶粒の粗大化を抑制することが出来る。具体的には
0.004<Ta≦0.100
0.004<Ti≦0.100
0.004<Zr≦0.100
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えると炭化物や窒化物や酸化物が過度に生成し、衝撃値の低下を招く。
6) <Chemical component of claim 6>
When quenching is performed after additive manufacturing, if the quenching heating temperature is increased or the quenching heating time is increased due to an unexpected equipment trouble or the like, various characteristics may be deteriorated due to coarsening of crystal grains. In case such a, T a, Ti, and selectively adding Zr, it is possible to suppress the coarsening of austenite grains by fine precipitates which these elements are formed. Specifically ,
0.004 <Ta ≦ 0.100
0.004 <Ti ≦ 0.100
0.004 <Zr ≦ 0.100
What is necessary is just to contain at least 1 sort (s) of these.
If any element exceeds a predetermined amount, carbides, nitrides and oxides are excessively generated, and the impact value is lowered.

7)<請求項7の化学成分について>
C<0.25と金型用の鋼としては低Cの本発明鋼を高強度化するには、Wを選択的に添加すればよい。
Wは、炭化物の微細析出によって強度を上げる。具体的には、
0.10<W≦5.0
含有させれば良い。
但し、所定量を越えると特性の飽和と著しいコスト増を招く。好適な範囲は、
0.30≦W≦4.5
ある。
7) <Chemical component of claim 7>
In order to increase the strength of the steel according to the present invention with C <0.25 and low C as the steel for the mold, W may be added selectively.
W increases the strength by fine precipitation of carbides . In concrete terms,
0.10 <W ≦ 5.0 0
The may be contained.
However , exceeding a predetermined amount causes saturation of characteristics and a significant increase in cost . Good optimal range,
0.30 ≦ W ≦ 4.5 0
It is.

以上のような本発明によれば、積層造形法を適用して金型を製造するに際して、高熱伝導率と高耐食性とを実現可能な鋼の粉末及びこれを用いて製造された金型を提供することができる。   According to the present invention as described above, a steel powder capable of realizing high thermal conductivity and high corrosion resistance and a mold manufactured using the same can be provided when a mold is manufactured by applying the additive manufacturing method. can do.

表1に示す34種類の鋼の粉末を用いて積層造形法により金型及び試験片を製造し、各種の試験を行った。具体的には、硬さ、熱伝導率、金型表面温度、ヒートチェック、水冷孔割れ、を評価する試験を行った。
尚、表1に記載した鋼の粉末には、表中で示されていない元素が不純物として規定した量の範囲内で含まれている場合がある。
また表1における比較鋼1はJIS SKD61、比較鋼2は18Niマルエージング鋼、比較鋼3はマルテンサイトステンレス鋼SUS420J2、比較鋼4は機械構造用鋼SCM435である。各比較鋼は少なくとも2元素が本発明の規定範囲外となっている。
Using 34 kinds of steel powder shown in Table 1, a mold and a test piece were manufactured by an additive manufacturing method, and various tests were performed. Specifically, tests for evaluating hardness, thermal conductivity, mold surface temperature, heat check, and water-cooled hole cracking were performed.
In addition, the steel powder described in Table 1 may contain elements not shown in the table within a range of amounts specified as impurities.
In Table 1, the comparative steel 1 is JIS SKD61, the comparative steel 2 is 18Ni maraging steel, the comparative steel 3 is martensitic stainless steel SUS420J2, and the comparative steel 4 is mechanical structure steel SCM435. Each comparative steel has at least two elements outside the specified range of the present invention.

Figure 0006601051
Figure 0006601051

これら34種類の鋼の粉末はガスアトマイズ法で製造した。粉末は球体に近い形状をしており、その直径のヒストグラムをとった場合に100μm以下の粉末が全体の80%以上である(フレーク状や瓢箪状の粉末も少し混在する)。
積層造形用の粉末として好ましいのは直径の平均値が400μm以下、直径のヒストグラムをとった場合に全体の80%以上が直径400μm以下となる微細な粉末である。
These 34 kinds of steel powders were produced by the gas atomization method. The powder has a shape close to a sphere, and when a histogram of the diameter is taken, the powder of 100 μm or less is 80% or more of the whole (flaky or bowl-shaped powder is also mixed a little).
Preferable as a powder for additive manufacturing is a fine powder having an average diameter of 400 μm or less, and when taking a histogram of diameters, 80% or more of the total has a diameter of 400 μm or less.

その粉末をSKD61のブロック状金型(これを土台とする)に電子ビームで積層造形し、金型(金型本体)を製造した。製造した金型全体の重量は約18Kgである。積層造形部には曲がった冷却回路が設けられており、冷却回路と意匠面の距離は15mmである。
比較鋼1,比較鋼3,比較鋼4については積層造形ままでは硬さが高すぎて靭性が非常に低いため、300〜650℃の範囲で1Hr焼戻して金型に適した硬さに調整した。
The powder was layered with an electron beam on an SKD61 block mold (which is the base) to produce a mold (mold body). The total weight of the manufactured mold is about 18 kg. The laminated modeling part is provided with a bent cooling circuit, and the distance between the cooling circuit and the design surface is 15 mm.
Comparative steel 1, comparative steel 3, and comparative steel 4 were too hard and very low toughness if they were layered, so they were tempered in the range of 300 to 650 ° C. for 1 hour and adjusted to a hardness suitable for the mold. .

金型を型締力135tonダイカストマシンに組み込み、鋳造テストとして質量630gの鋳造品を30000ショット鋳造した。この時の10ショット目と30000ショット目の金型表面温度(最高温度)を評価した。また30000ショット鋳造後に意匠面のヒートチェックを観察した。更にヒートチックの評価を終えた金型を切断し、冷却回路の水冷孔の腐食と割れの程度を観察した。尚、金型内部の冷却回路には約30℃の工業用水を流した。   The mold was assembled in a die-casting machine with a clamping force of 135 tons, and a cast product having a mass of 630 g was cast as 30000 shots as a casting test. The mold surface temperature (maximum temperature) at the 10th and 30000th shots at this time was evaluated. Moreover, the heat check of the design surface was observed after 30000 shot casting. Furthermore, the mold after the evaluation of the heat tic was cut, and the degree of corrosion and cracking of the water cooling holes in the cooling circuit was observed. In addition, about 30 degreeC industrial water was poured into the cooling circuit inside a metal mold | die.

また、金型とは別に積層造形で製造した小棒から熱伝導率測定用の試験片を切り出し、25℃においてレーザーフラッシュ法によって熱伝導率を測定した。
これら評価試験の結果を表2に示す。
In addition, a test piece for measuring thermal conductivity was cut out from a small bar manufactured by additive manufacturing separately from the mold, and the thermal conductivity was measured at 25 ° C. by a laser flash method.
The results of these evaluation tests are shown in Table 2.

Figure 0006601051
Figure 0006601051

表2で示すように、各発明鋼を用いて積層造形した金型の硬さは41〜49HRCであり、積層造形ままで金型に適した硬さとなっている。比較鋼も焼戻しによって36〜45HRCの適正値となっている。   As shown in Table 2, the hardness of the mold formed by layered manufacturing using each steel of the invention is 41 to 49 HRC, and the hardness is suitable for the mold as it is by layered modeling. The comparative steel also has an appropriate value of 36 to 45 HRC by tempering.

<金型表面温度>
金型の表面温度(最高温度)は、一般に410℃以下であれば不具合(焼き付き,鋳造組織不良,サイクルタイムの延長,ヒートチェック)が生じ難い。
表2によれば、金型の表面温度が鋳造初期の10ショット目で既に好ましくない410℃超に到達しているのは比較鋼の1〜3であり、何れも熱伝導率が24W/m/K以下と低い。これら比較鋼では金型の過熱による不具合が懸念される。
これに対し、29W/m/K以上の高熱伝導率である発明鋼1〜30は、何れも10ショット目で410℃を超えていない。経験的に熱伝導率が28W/m/K以上あれば高い冷却効率が得られるが、確かにこれらの発明鋼では過熱が抑制されている。
<Die surface temperature>
If the surface temperature (maximum temperature) of the mold is generally 410 ° C. or lower, defects (seizure, defective casting structure, extended cycle time, heat check) hardly occur.
According to Table 2, it is 1 to 3 of the comparative steel that the surface temperature of the mold has already reached an unfavorable temperature exceeding 410 ° C. at the 10th shot at the beginning of casting. / K or less. In these comparative steels, there are concerns about defects due to overheating of the mold.
On the other hand, all of the inventive steels 1 to 30 having a high thermal conductivity of 29 W / m / K or higher do not exceed 410 ° C. at the 10th shot. Empirically, if the thermal conductivity is 28 W / m / K or more, high cooling efficiency can be obtained, but overheating is certainly suppressed in these invention steels.

30000ショット目の金型表面温度には耐食性が大きく影響する。これは水冷孔に錆びが発生すれば、錆びによる熱交換の阻害や冷却水量の減少(錆びで水冷孔が細くなる)によって冷却効率が落ちるためである。
このような観点でみればCr量が非常に低い比較鋼2と比較鋼4は、30000ショット目の金型最高温度が10ショット目よりも大幅に高温度化しており、水冷孔に錆びが発生したことをうかがわせる。
比較鋼4は、10ショット目の金型表面温度が394℃だったが30000ショット目では410℃を超えている。
一方、比較鋼3はCr量が非常に高く非常に耐食性が良いため、30000ショット目の金型表面温度が10ショット目の金型表面温度と変わっていない。但し比較鋼3は10ショット目から410℃以上となっており、耐食性が高いだけでは十分でなく高熱伝導率でなければ金型の過熱を効果的に抑制できないことは明らかである。
Corrosion resistance greatly affects the mold surface temperature at the 30000th shot. This is because if the water cooling holes are rusted, the cooling efficiency is lowered due to the heat exchange hindrance by the rust and the reduction of the cooling water amount (the water cooling holes become narrow due to rusting).
From this point of view, the comparative steel 2 and comparative steel 4 with very low Cr content have a higher maximum mold temperature at the 30000th shot than at the 10th shot, and rust is generated in the water cooling holes. Show what you did.
In Comparative Steel 4, the mold surface temperature at the 10th shot was 394 ° C., but it exceeded 410 ° C. at the 30000th shot.
On the other hand, since the comparative steel 3 has a very high Cr content and very good corrosion resistance, the mold surface temperature at the 30000th shot is not different from the mold surface temperature at the 10th shot. However, the comparative steel 3 has a temperature of 410 ° C. or higher from the 10th shot, and it is clear that high corrosion resistance is not sufficient and it is not possible to effectively suppress overheating of the mold unless it has high thermal conductivity.

これに対し高耐食性と高熱伝導率を両立する発明鋼1〜30は、30000ショット目の金型表面温度においても410℃以下と低温度を維持している。
尚、発明鋼5,8,26のようにCr量が比較的低いものほど10ショット目との温度差は大きい傾向があり、水冷孔に僅かに錆びが発生したことをうかがわせる。但し高熱伝導率で冷却効率が高いため、錆びによる冷却能の低下はさほど顕著ではない。金型の温度を安定して低温に維持するには高耐食性と高熱伝導率が必要であることを確認した。
On the other hand, invention steels 1 to 30 that achieve both high corrosion resistance and high thermal conductivity maintain a low temperature of 410 ° C. or lower even at the mold surface temperature of the 30,000th shot.
In addition, the temperature difference from the 10th shot tends to be larger as the amount of Cr is relatively low like the inventive steels 5, 8, 26, which indicates that rust is slightly generated in the water cooling holes. However, since the cooling efficiency is high with high thermal conductivity, the decrease in cooling capacity due to rust is not so significant. It was confirmed that high corrosion resistance and high thermal conductivity were necessary to maintain the mold temperature stably.

<ヒートチェック>
次に、30000ショット後の金型の意匠面のヒートチェックを観察した。ヒートチェックが発生し易い条件は金型の高温強度が低く(初期硬さが低い、軟化抵抗が低い)、作用する熱応力が高い(熱伝導率が低い)場合である。
比較鋼1は高温強度が高く、比較鋼の中では比較的高熱伝導率のためヒートチェックは中程度であった。好ましくないこの状態を△とする。
比較鋼2は高温強度が低く(初期硬さが低い)低熱伝導率のため極めて重度のヒートチェックが発生し、×と評価した。
比較鋼3は高温強度こそ高いものの、低熱伝導率のため著しいヒートチェックを生じ、×と評価した(但し比較鋼2より多少は軽度である)。
比較例4は高温強度が低いため、高熱伝導率であっても比較鋼3と同程度のヒートチェックが生じ、×と評価した。
<Heat check>
Next, the heat check of the design surface of the mold after 30000 shots was observed. Conditions under which heat check is likely to occur are when the high-temperature strength of the mold is low (low initial hardness, low softening resistance) and high thermal stress is applied (low thermal conductivity).
The comparative steel 1 had high high-temperature strength, and the heat check was moderate among the comparative steels because of its relatively high thermal conductivity. This undesirable state is denoted by Δ.
Since comparative steel 2 has low high-temperature strength (low initial hardness) and low thermal conductivity, an extremely severe heat check was generated and evaluated as x.
Although the comparative steel 3 had high high-temperature strength, it produced a remarkable heat check due to its low thermal conductivity, and was evaluated as x (however, it was slightly milder than the comparative steel 2).
Since the comparative example 4 has low high-temperature strength, a heat check similar to that of the comparative steel 3 occurred even when the thermal conductivity was high, and was evaluated as x.

これに対し発明鋼1〜30は、高温強度と熱伝導率が共に高いためヒートチェックは極めて僅かであり、○と評価した。
今回は30000ショットで鋳造テストを終えたが、更に数万ショットは鋳造可能と思われるほどヒートチェックは少ない状況であった。ヒートチェックを抑制するには高熱伝導率が必要であることを確認した。
On the other hand, invention steels 1 to 30 have both high-temperature strength and high thermal conductivity, so the heat check is very slight, and they were evaluated as ◯.
This time, the casting test was completed with 30000 shots, but the heat check was so small that tens of thousands of shots could be cast. It was confirmed that high thermal conductivity was necessary to suppress the heat check.

<水冷孔の錆びと割れ>
次に、30000ショット鋳造した金型を切断し、冷却回路の水冷孔の錆びと割れを確認した。
錆びについては金型表面温度の結果と対応し、比較鋼2と比較鋼4では著しい錆びが発生した。ステンレス鋼の比較鋼3では錆びがほとんど発生しておらず、また比較鋼1の錆びは軽度であった。比較鋼1はステンレス鋼ではないがCrが5%と高くかなりの耐食性があった。
発明鋼についてもCr量の高い水準ほど錆びは少ない傾向であった。
<Rust and cracking of water-cooled holes>
Next, the metal mold | die cast 30000 shot was cut | disconnected, and the rust and the crack of the water cooling hole of the cooling circuit were confirmed.
Corresponding to the result of the mold surface temperature, the rust was markedly rusted in the comparative steel 2 and the comparative steel 4. In the comparative steel 3 of stainless steel, almost no rust was generated, and the rust of the comparative steel 1 was mild. Comparative steel 1 was not stainless steel, but Cr had a high corrosion resistance of 5% and a considerable corrosion resistance.
As for the inventive steel, the higher the Cr content, the less the rust.

一方、水冷孔割れが発生し易い条件は、耐食性が低く(Cr量が少なく)、熱伝導率が低い(熱応力が高い)場合である。
比較鋼1は、比較的高耐食性で亀裂の起点となる腐食部は少なかったものの、低熱伝導率のため深さ5mm程度の亀裂が進展しており、これを△と評価した。意匠面への亀裂の貫通が直ぐに起こるほどではないが深い亀裂であることには変わりなく好ましい状態ではない。
比較鋼2は、耐食性も熱伝導率も低いため10mmを超える亀裂に成長していた。意匠面と水冷孔の距離は15mmであり、意匠面への亀裂の貫通による水漏れが懸念される非常に危険な状態である。当然ながら評価は×である。
比較鋼3は、非常に耐食性が高いため亀裂の起点となる腐食部がほとんど無く、亀裂もほとんど観察されなかった。低熱伝導率ではあるが亀裂の起点発生を抑制すれば、水冷孔割れは抑制できることが分かる。
比較鋼4は、高熱伝導率であるが耐食性が低いため亀裂の発生は抑制できず、結果的に5mmほど亀裂が進展しており、△と評価した。
On the other hand, water-cooled hole cracking is likely to occur when the corrosion resistance is low (the Cr content is small) and the thermal conductivity is low (the thermal stress is high).
Although comparative steel 1 had relatively high corrosion resistance and few corroded portions as starting points of cracks, cracks with a depth of about 5 mm were developed due to low thermal conductivity, and this was evaluated as Δ. Although it is not so deep that a crack penetrates the design surface, it is not a preferable state.
Since the comparative steel 2 had low corrosion resistance and low thermal conductivity, it grew into a crack exceeding 10 mm. The distance between the design surface and the water cooling holes is 15 mm, which is a very dangerous state in which water leakage due to penetration of cracks in the design surface is a concern. Of course, the evaluation is x.
Since the comparative steel 3 has very high corrosion resistance, there are almost no corroded portions that are the starting points of cracks, and almost no cracks were observed. It can be seen that water-cooled hole cracking can be suppressed if the generation of cracks is suppressed, although the thermal conductivity is low.
The comparative steel 4 has high thermal conductivity but low corrosion resistance, so the occurrence of cracks cannot be suppressed. As a result, the cracks have progressed by about 5 mm and were evaluated as Δ.

これに対し発明鋼は、高耐食性を有し且つ熱伝導率が高いことが特徴である。このため水冷孔割れは軽度であり最大でも亀裂の深さは1mm程度であった。評価は○である。今回は30000ショットで鋳造テストを終えたが更に数万ショットは鋳造が可能と思われるほど水冷孔の亀裂は浅い状況であった。
表2の結果より高耐食性と高熱伝導率の両立が金型における冷却性能の向上、ヒートチェックの抑制、水冷孔割れ軽減に有効であることを確認した。
In contrast, the invention steel is characterized by high corrosion resistance and high thermal conductivity. For this reason, the water-cooled hole crack was mild and the depth of the crack was about 1 mm at the maximum. Evaluation is (circle). The casting test was completed with 30000 shots this time, but the cracks in the water-cooled holes were shallow enough that tens of thousands of shots could be cast.
From the results shown in Table 2, it was confirmed that compatibility between high corrosion resistance and high thermal conductivity is effective in improving the cooling performance in the mold, suppressing heat check, and reducing water-cooled hole cracking.

<水冷孔と意匠面の距離>
ところで、高耐食性の比較鋼3は10ショット目と30000ショット目の金型最高温度が変わらないという安定した冷却性能を有している。そこで比較鋼3の鋼の粉末を用いて水冷孔を意匠面から10mmの位置に近接させた金型を製造し、表2の鋳造テストと同条件で評価テストを行った。水冷孔を意匠面に近接させる薄肉化によって意匠面の熱応力は低減するため、ヒートチェック改善効果も期待できる。その結果を表3に示す。
<Distance between water-cooled hole and design surface>
By the way, the comparative steel 3 having high corrosion resistance has a stable cooling performance that the mold maximum temperature at the 10th shot and the 30000th shot does not change. Therefore, a mold having a water-cooled hole close to a position 10 mm from the design surface was manufactured using the steel powder of comparative steel 3, and an evaluation test was performed under the same conditions as the casting test of Table 2. Since the thermal stress on the design surface is reduced by making the water cooling hole close to the design surface, a heat check improvement effect can also be expected. The results are shown in Table 3.

Figure 0006601051
Figure 0006601051

表3で示すように、10ショット目の金型最高温度は397℃となり、表2の発明鋼(水冷孔と意匠面との距離は15mm)と同様に低温度化された。水冷孔を意匠面に近接させる方案は低温度化に非常に有効である。また30000ショット目においても397℃のままであり、冷却能が非常に安定している。更に想定通りヒートチェックも表2の×から△へと改善された。
しかしながら、水冷孔割れについては表2の○から×へと劣化した。この例のように意匠面と水冷孔を近接させると、意匠面の熱応力は減少するが、水冷孔表面の熱応力は逆に増加する。このため亀裂の起点となる腐食部が少なくても(高耐食性でも)、亀裂の進展が加速されたと考えられる。亀裂深さは5mmを超えており、意匠面と水冷孔の距離が10mmであることから意匠面への亀裂の貫通による水漏れが懸念される非常に危険な状態である。
このように冷却能向上のため水冷孔を意匠面に近接させると水冷孔割れが顕在化する。
As shown in Table 3, the mold maximum temperature in the 10th shot was 397 ° C., and the temperature was lowered similarly to the invention steel in Table 2 (the distance between the water-cooled hole and the design surface was 15 mm). The method of bringing the water cooling holes close to the design surface is very effective for lowering the temperature. Further, even at the 30000th shot, it remains at 397 ° C., and the cooling ability is very stable. Furthermore, the heat check was improved from x in Table 2 to Δ as expected.
However, water-cooled hole cracking deteriorated from ○ in Table 2 to ×. When the design surface and the water-cooled hole are brought close to each other as in this example, the thermal stress on the design surface decreases, but the thermal stress on the surface of the water-cooled hole increases conversely. For this reason, even if there are few corroded portions that are the starting points of cracks (even with high corrosion resistance), it is considered that the progress of cracks has been accelerated. Since the crack depth exceeds 5 mm and the distance between the design surface and the water-cooled hole is 10 mm, it is a very dangerous state in which water leakage due to penetration of the crack into the design surface is a concern.
As described above, when the water cooling holes are brought close to the design surface in order to improve the cooling ability, the water cooling hole cracks become obvious.

以上のように、熱伝導率が高くても耐食性が悪い場合は、錆びによって冷却能が大きく低下し、また腐食部が亀裂の起点となるため水冷孔割れが発生し易くなる。一方、耐食性を高めても熱伝導率が低ければ、冷却能の低下はもちろん水冷孔割れが助長され、更に耐ヒートチェック性も悪化する。
このため熱伝導率,耐食性の何れか一方だけ高めても低温度化(冷却能向上)、ヒートチェック抑制、水冷孔割れ軽減の3項目同時実現は難しい。
これに対し発明鋼は耐食性と熱伝導率が共に高いため、これら3項目を同時実現が可能である。
As described above, if the corrosion resistance is poor even if the thermal conductivity is high, the cooling capacity is greatly reduced by rust, and the water-cooled hole cracking is likely to occur because the corroded portion is the starting point of the crack. On the other hand, if the thermal conductivity is low even if the corrosion resistance is increased, water cooling hole cracking is promoted as well as the cooling ability is lowered, and the heat check resistance is also deteriorated.
For this reason, even if only one of thermal conductivity and corrosion resistance is increased, it is difficult to simultaneously realize three items of lowering the temperature (improving cooling ability), suppressing heat check, and reducing water-cooled hole cracking.
In contrast, the invention steel has both high corrosion resistance and high thermal conductivity, so these three items can be realized simultaneously.

以上本発明の実施例を詳述したがこれはあくまで一例示である。上記ではダイカスト用の金型への適用例を述べたが、熱伝導率と耐食性の高さを両立した本発明の鋼は、温度制御用の冷媒を流す回路が内部に形成された金型や部品に好適に適用することができる。具体的には樹脂やゴム等の射出成形,鍛造,更には鋼板のホットプレス用の金型や部品に適用して高い性能を発揮する。
さらに本発明の成分からなる鋼を、棒状や線状やワイヤー状にして溶接材として使えば、積層造形ままと同様に、溶接ままで適正硬さが得られ、高熱伝導率で高耐食性という特性を生かすことができる。溶接も一種の積層造形である。勿論、通常の溶接材のように硬さ調整、歪みや応力の除去、を目的とした再加熱を溶接後に行なっても良い。
また、本発明の鋼による金型を表面改質(ショットブラスト,サンドブラスト,窒化,PVD,CVD,メッキ,など)と組合せることも有効である。
その他本発明は、その趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
Although the embodiment of the present invention has been described in detail above, this is merely an example. Although the example of application to a die casting die has been described above, the steel of the present invention having both high thermal conductivity and high corrosion resistance is a die having a circuit in which a circuit for flowing a temperature control refrigerant is formed. It can be suitably applied to parts. Specifically, it exhibits high performance when applied to molds and parts for injection molding, forging, and hot pressing of steel plates.
Furthermore, if the steel of the present invention is used as a welding material in the form of a rod, wire, or wire, the same hardness can be obtained as it is as it is, and the properties of high thermal conductivity and high corrosion resistance can be obtained. Can be used. Welding is also a kind of additive manufacturing. Of course, reheating for the purpose of adjusting the hardness and removing strain and stress may be performed after welding as in the case of ordinary welding materials.
It is also effective to combine the steel mold of the present invention with surface modification (shot blasting, sand blasting, nitriding, PVD, CVD, plating, etc.).
In addition, this invention can be implemented in the aspect which added the various change in the range which does not deviate from the meaning.

Claims (7)

質量%で
0.10≦C<0.25
0.005≦Si≦0.600
2.00≦Cr≦6.00
−0.0125×[Cr]+0.125≦Mn≦−0.100×[Cr]+1.800・・式(1)
(但し式(1)中[Cr]はCrの含有質量%を表す)
0.01≦Mo≦1.80
−0.00447×[Mo]+0.010≦V≦−0.1117×[Mo]+0.901・・式(2)
(但し式(2)中[Mo]はMoの含有質量%を表す)
0.0002≦N≦0.3000
残部がFe及び不可避的不純物の組成を有することを特徴とする鋼の粉末。
0.10 ≦ C <0.25 in mass%
0.005 ≦ Si ≦ 0.600
2.00 ≦ Cr ≦ 6.00
−0.0125 × [Cr] + 0.125 ≦ Mn ≦ −0.100 × [Cr] +1.800 Formula (1)
(However, [Cr] in formula (1) represents the mass% of Cr)
0.01 ≦ Mo ≦ 1.80
−0.00447 × [Mo] + 0.010 ≦ V ≦ −0.1117 × [Mo] +0.901 .. Formula (2)
(In the formula (2), [Mo] represents the mass% of Mo)
0.0002 ≦ N ≦ 0.3000
A steel powder characterized in that the balance has a composition of Fe and inevitable impurities.
質量%で
0.10<Al≦1.20
を更に含有することを特徴とする請求項1に記載の鋼の粉末。
0.10 <Al ≦ 1.20 in mass%
The steel powder according to claim 1, further comprising:
質量%で
0.30<Ni≦3.50
0.30<Cu≦2.00
の少なくとも1種を更に含有することを特徴とする請求項1,2の何れかに記載の鋼の粉末。
In mass% 0.30 <Ni ≦ 3.50
0.30 <Cu ≦ 2.00
The steel powder according to claim 1, further comprising at least one of the following.
質量%で
0.0001<B≦0.0100
を更に含有することを特徴とする請求項1〜3の何れかに記載の鋼の粉末。
0.0001 <B ≦ 0.0100 in mass%
The steel powder according to any one of claims 1 to 3, further comprising:
質量%で
0.003<S≦0.250
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
の少なくとも1種を更に含有することを特徴とする請求項1〜4の何れかに記載の鋼の粉末。
0.003 <S ≦ 0.250 by mass%
0.0005 <Ca ≦ 0.2000
0.03 <Se ≦ 0.50
0.005 <Te ≦ 0.100
0.01 <Bi ≦ 0.50
0.03 <Pb ≦ 0.50
The steel powder according to claim 1, further comprising at least one of the following.
質量%
0.004<Ta≦0.100
0.004<Ti≦0.100
0.004<Zr≦0.100
の少なくとも1種を更に含有することを特徴とする請求項1〜5の何れかに記載の鋼の粉末。
Mass% 0.004 <Ta ≦ 0.100
0.004 <Ti ≦ 0.100
0.004 <Zr ≦ 0.100
The steel powder according to claim 1, further comprising at least one of the following.
質量%で
0.10<W≦5.0
更に含有することを特徴とする請求項1〜6の何れかに記載の鋼の粉末。
Mass% 0.10 <W ≦ 5.0 0
The steel powder according to claim 1 , further comprising:
JP2015161384A 2015-01-28 2015-08-18 Steel powder Active JP6601051B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/003,675 US10975460B2 (en) 2015-01-28 2016-01-21 Steel powder and mold using the same
CA2918775A CA2918775C (en) 2015-01-28 2016-01-25 Steel powder and mold using the same
EP16152652.0A EP3050649B1 (en) 2015-01-28 2016-01-25 Steel powder and mold using the same
CN201610060500.3A CN105821327B (en) 2015-01-28 2016-01-28 Powdered steel and the mold for using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015014809 2015-01-28
JP2015014809 2015-01-28

Publications (2)

Publication Number Publication Date
JP2016145407A JP2016145407A (en) 2016-08-12
JP6601051B2 true JP6601051B2 (en) 2019-11-06

Family

ID=56685268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015161384A Active JP6601051B2 (en) 2015-01-28 2015-08-18 Steel powder

Country Status (2)

Country Link
JP (1) JP6601051B2 (en)
CN (1) CN105821327B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3912816A1 (en) 2020-05-18 2021-11-24 Daido Steel Co., Ltd. Metal powder
EP4180549A1 (en) * 2021-11-10 2023-05-17 Daido Steel Co., Ltd. Fe-based alloy for melt-solidification-shaping and metal powder

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680300B2 (en) * 2016-09-15 2023-06-20 Liebherr-Aerospace Lindenberg Gmbh Tool for realising a press quenching and tempering method
TWI615486B (en) * 2016-11-15 2018-02-21 財團法人工業技術研究院 A low carbon steel alloy composition, powders and the method forming the objects containing the same.
CN106854731A (en) * 2016-11-23 2017-06-16 安徽瑞鑫自动化仪表有限公司 A kind of acid and alkali-resistance temperature sensor steel alloy and preparation method thereof
CN107824777B (en) * 2017-09-21 2020-06-02 东莞华晶粉末冶金有限公司 Aluminum alloy injection molding feed, aluminum alloy injection molded part and preparation method
DE102017221126A1 (en) * 2017-11-27 2019-05-29 Sms Group Gmbh rolling mill
CN111954725A (en) * 2018-05-14 2020-11-17 日立金属株式会社 Hot-work die for additive layer manufacturing, manufacturing method thereof and metal powder for additive layer manufacturing hot-work die
JP7167483B2 (en) * 2018-05-15 2022-11-09 大同特殊鋼株式会社 Steel for die casting molds and die casting molds
KR102116854B1 (en) * 2018-12-13 2020-06-01 한국표준과학연구원 High efficient additive manufacturing process apparatus for complex shaped hydrogen embrittlement resistive parts
CN112095045B (en) 2019-06-18 2022-03-22 大同特殊钢株式会社 Powder for additive manufacturing and die casting die component
CN111570814A (en) * 2020-06-05 2020-08-25 西安建筑科技大学 Preparation method of low-cost medium carbon steel spherical powder for 3D printing
JP7277426B2 (en) * 2020-12-10 2023-05-19 山陽特殊製鋼株式会社 Shaped body made from powder
JP7108014B2 (en) * 2020-12-10 2022-07-27 山陽特殊製鋼株式会社 Fe-based alloy powder
CN114231842B (en) * 2021-11-26 2022-08-30 上海镭镆科技有限公司 3D printing stainless steel material and heat treatment method after printing
WO2024063151A1 (en) * 2022-09-21 2024-03-28 株式会社プロテリアル Hot work tool steel powder for additive fabrication and additively fabricated hot work tool steel object

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230025B2 (en) * 1998-11-13 2009-02-25 山陽特殊製鋼株式会社 Clad mold for hot press and manufacturing method thereof
US8808472B2 (en) * 2000-12-11 2014-08-19 Uddeholms Ab Steel alloy, holders and holder details for plastic moulding tools, and tough hardened blanks for holders and holder details
CN102015258B (en) * 2008-04-21 2013-03-27 松下电器产业株式会社 Laminate molding device
JP2010242147A (en) * 2009-04-03 2010-10-28 Daido Steel Co Ltd Steel for plastic molding die and plastic molding die
JP2011001572A (en) * 2009-06-16 2011-01-06 Daido Steel Co Ltd Tool steel for hot work and steel product using the same
WO2012090562A1 (en) * 2010-12-27 2012-07-05 日立金属株式会社 Die steel having superior rusting resistance and thermal conductivity, and method for producing same
JP6132523B2 (en) * 2012-11-29 2017-05-24 キヤノン株式会社 Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3912816A1 (en) 2020-05-18 2021-11-24 Daido Steel Co., Ltd. Metal powder
KR20210142551A (en) 2020-05-18 2021-11-25 다이도 토쿠슈코 카부시키가이샤 Metal powder
US11807921B2 (en) 2020-05-18 2023-11-07 Daido Steel Co., Ltd. Metal powder
EP4180549A1 (en) * 2021-11-10 2023-05-17 Daido Steel Co., Ltd. Fe-based alloy for melt-solidification-shaping and metal powder
KR20230068340A (en) 2021-11-10 2023-05-17 다이도 토쿠슈코 카부시키가이샤 Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
US11884999B2 (en) 2021-11-10 2024-01-30 Daido Steel Co., Ltd. Fe-based alloy for melt-solidification-shaping and metal powder

Also Published As

Publication number Publication date
CN105821327A (en) 2016-08-03
CN105821327B (en) 2019-11-05
JP2016145407A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6601051B2 (en) Steel powder
US10975460B2 (en) Steel powder and mold using the same
JP6645725B2 (en) Mold steel and mold
US11242581B2 (en) Wear resistant alloy
JP6790610B2 (en) Mold steel and molding tools
JP6647771B2 (en) Mold steel and mold
JP2015224363A (en) Steel for metallic mold and metallic mold
KR102054803B1 (en) Steel for molds and molding tool
TW201726942A (en) Hot work tool steel
JP2009242820A (en) Steel, steel for die and die using the same
JP7144719B2 (en) Pre-hardened steel materials, molds and mold parts
JP2016017200A (en) Die steel and warm/hot-working die
KR20190115423A (en) Steel for mold, and mold
WO2017043446A1 (en) Steel for molds and molding tool
JP2013521411A (en) Tool steel for extrusion
JP5437669B2 (en) Hot and hot forging die
KR102253469B1 (en) Steel for die-casting die and die-casting die
JP6520518B2 (en) Mold repair welding material
JP2015081356A (en) Steel for metallic mold
JP2017166066A (en) Steel for mold and mold
JP2022083627A (en) Steel for mold
JP2016069661A (en) Steel for mold and mold

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190923

R150 Certificate of patent or registration of utility model

Ref document number: 6601051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150