JP6132523B2 - Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product - Google Patents

Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product Download PDF

Info

Publication number
JP6132523B2
JP6132523B2 JP2012260954A JP2012260954A JP6132523B2 JP 6132523 B2 JP6132523 B2 JP 6132523B2 JP 2012260954 A JP2012260954 A JP 2012260954A JP 2012260954 A JP2012260954 A JP 2012260954A JP 6132523 B2 JP6132523 B2 JP 6132523B2
Authority
JP
Japan
Prior art keywords
metal
metal powder
weight
less
stereolithography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012260954A
Other languages
Japanese (ja)
Other versions
JP2014105373A5 (en
JP2014105373A (en
Inventor
寛太 中川
寛太 中川
知人 飯久保
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012260954A priority Critical patent/JP6132523B2/en
Publication of JP2014105373A publication Critical patent/JP2014105373A/en
Publication of JP2014105373A5 publication Critical patent/JP2014105373A5/en
Application granted granted Critical
Publication of JP6132523B2 publication Critical patent/JP6132523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属粉末に光ビームを照射して得られる焼結層を積層することで所望の三次元形状を造形する金属光造形に用いる金属粉末と、前記金属粉末を用いた金属光造形による射出成形用金型の製造方法と、前記金属粉末からなる射出成形用金型と、前記射出成形用金型を用いて製造した成形品に関するものである。   The present invention is based on metal powder used for metal stereolithography that forms a desired three-dimensional shape by laminating a sintered layer obtained by irradiating a metal powder with a light beam, and metal stereolithography using the metal powder. The present invention relates to a method for manufacturing an injection mold, an injection mold made of the metal powder, and a molded product manufactured using the injection mold.

従来、射出成形用金型は、主に金型用鋼材ブロックを工作機械で除去加工する方法で製作されていた。近年では、射出成形用金型は、金属粉末に光ビームを照射して焼結して得られる焼結層を積層することで所望の三次元形状をつくる金属光造形方法で製作されている。   Conventionally, injection molds are mainly manufactured by a method of removing a steel block for molds with a machine tool. In recent years, injection molds have been manufactured by a metal stereolithography method that forms a desired three-dimensional shape by laminating sintered layers obtained by irradiating a metal powder with a light beam and sintering.

例えば、金属光造形方法において、クロムモリブデン鋼からなる鉄系粉末を60から80重量%含む金属光造形用金属粉末を用いて作製した造形物を射出成形用金型として用いる方法が知られている(特許文献1参照)。   For example, in a metal stereolithography method, a method is known in which a model produced using a metal stereolithography metal powder containing 60 to 80% by weight of an iron-based powder made of chromium molybdenum steel is used as an injection mold. (See Patent Document 1).

特許第3687667号公報Japanese Patent No. 3687667

しかしながら、上記特許文献1に記載の粉末では、硬度がHV400程度と低いため、ガラスやカーボンなどの強化材を含有するプラスチックの射出成形用金型に用いると、金型が摩耗損傷してしまう。また熱伝導率が10W/mK程度と低いため、金型冷却能力が低い。さらには、水に対する耐食性が低いため、射出成形したプラスチックを冷却するために金型内部に形成する水管に水を流すと錆びて詰まってしまうといった課題があった。   However, since the powder described in Patent Document 1 has a hardness as low as about HV400, when used in a plastic injection mold containing a reinforcing material such as glass or carbon, the mold is worn and damaged. Moreover, since the thermal conductivity is as low as about 10 W / mK, the mold cooling capacity is low. Furthermore, since the corrosion resistance to water is low, there is a problem that rusting and clogging occur when water is poured into a water pipe formed inside the mold in order to cool the injection molded plastic.

本発明は、このような点に鑑みなされたものであり、硬度、熱伝導率、耐食性に優れた造形物を得ることができる金属光造形用金属粉末を提供するものである。また、本発明は、前記金属粉末を用いた射出成形用金型の製造方法、前記金属粉末からなる射出成形用金型および前記射出成形用金型を用いて製造した成形品を提供するものである。   This invention is made | formed in view of such a point, and provides the metal powder for metal stereolithography which can obtain the molded article excellent in hardness, thermal conductivity, and corrosion resistance. The present invention also provides a method for producing an injection mold using the metal powder, an injection mold comprising the metal powder, and a molded product produced using the injection mold. is there.

上記の課題を解決する本発明の金属光造形用の金属粉末は、金属光造形用の金属粉末であって、Fe、Cr、Ni、Cu、およびTiを含み、Co、Si、またはMnを含んでもよく、Fe+Cr+Ni+Cu+Ti+Co+Si+Mnを100重量%とした時、Feを70.9重量%以上76重量%以下、Crを10重量%以上13重量%以下、Niを4重量%以上9重量%以下、Cuを3.7重量%以上7重量%以下、Tiを1.7重量%以上3重量%以下、Coを0重量%以上4重量%以下、Siを0重量%以上0.5重量%以下、Mnを0重量%以上0.5重量%以下であり、且つCr+Niが16重量%以上19重量%以下、Cu+Ti+Coが8重量%以上、Si+Mnが0重量%以上1重量%以下であることを特徴とする。 The metal powder for metal stereolithography of the present invention that solves the above problems is a metal powder for metal stereolithography, which includes Fe, Cr, Ni, Cu, and Ti, and includes Co, Si, or Mn. However, when Fe + Cr + Ni + Cu + Ti + Co + Si + Mn is 100% by weight, Fe is 70.9 % to 76% by weight, Cr is 10% to 13% by weight, Ni is 4% to 9% by weight, and Cu is 3 %. 0.7 wt% to 7 wt%, Ti 1.7 wt% to 3 wt%, Co 0 wt% to 4 wt%, Si 0 wt% to 0.5 wt%, and Mn 0 It is characterized by being not less than 0.5% and not more than 0.5%, Cr + Ni is not less than 16% and not more than 19%, Cu + Ti + Co is not less than 8% and Si + Mn is not less than 0% and not more than 1%.

上記の課題を解決する本発明の金属光造形用の金属粉末は、金属光造形用の金属粉末であって、Fe、Cr、Ni、Cu、およびTiを含み、Co、Si、またはMnを含んでもよく、Fe+Cr+Ni+Cu+Ti+Co+Si+Mnを100重量%とした時、Feを70.9重量%以上76重量%以下、Crを10重量%以上13重量%以下、Niを4重量%以上9重量%以下、Cuを3.7重量%以上7重量%以下、Tiを1.7重量%以上3重量%以下、Coを0重量%以上4重量%以下、Siを0重量%以上0.5重量%以下、Mnを0重量%以上0.5重量%以下であり、且つCr+Niが16重量%以上19重量%以下、Cu+Ti+Coが8重量%以上、Si+Mnが0重量%以上1重量%以下であることを特徴とする。 The metal powder for metal stereolithography of the present invention that solves the above problems is a metal powder for metal stereolithography, which includes Fe, Cr, Ni, Cu, and Ti, and includes Co, Si, or Mn. However, when Fe + Cr + Ni + Cu + Ti + Co + Si + Mn is 100% by weight, Fe is 70.9 % to 76% by weight, Cr is 10% to 13% by weight, Ni is 4% to 9% by weight, and Cu is 3 %. 0.7 wt% to 7 wt%, Ti 1.7 wt% to 3 wt%, Co 0 wt% to 4 wt%, Si 0 wt% to 0.5 wt%, and Mn 0 It is characterized by being not less than 0.5% and not more than 0.5%, Cr + Ni is not less than 16% and not more than 19%, Cu + Ti + Co is not less than 8% and Si + Mn is not less than 0% and not more than 1%.

本発明の成形品の製造方法は、上記の三次元造形物の製造方法を用いて製造された射出成形用金型を用いて成形されることを特徴とする The method for producing a molded article according to the present invention is characterized by being molded using an injection molding die produced by using the above-described method for producing a three-dimensional structure .

本発明によれば、硬度、熱伝導率、耐食性に優れた造形物を得ることができる金属光造形用金属粉末を提供することができる。また、本発明によれば、前記金属粉末を用いた射出成形用金型の製造方法、前記金属粉末からなる射出成形用金型および前記射出成形用金型を用いて製造した成形品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal powder for metal stereolithography which can obtain the molded article excellent in hardness, thermal conductivity, and corrosion resistance can be provided. In addition, according to the present invention, there is provided a method for producing an injection mold using the metal powder, an injection mold comprising the metal powder, and a molded product produced using the injection mold. be able to.

本発明の射出成形用金型の製造方法に用いる金属光造形装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the metal stereolithography apparatus used for the manufacturing method of the metal mold | die for injection molding of this invention. 図1に示す金属光造形装置の概略上面図である。It is a schematic top view of the metal stereolithography apparatus shown in FIG. 造形加工データの作成方法を示す説明図である。It is explanatory drawing which shows the preparation method of modeling process data. レーザ照射パターンの一例を示す説明図である。It is explanatory drawing which shows an example of a laser irradiation pattern. 本発明の金属粉末の1例を示す走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph which shows one example of the metal powder of this invention. 本発明の金属粉末で製造した金属光造形物の倍率50倍の断面顕微鏡写真である。It is a cross-sectional microscope picture of the magnification of 50 times of the metal stereolithography thing manufactured with the metal powder of this invention. 本発明の金属粉末で製造した射出成形用金型の一例を示す説明図である。It is explanatory drawing which shows an example of the metal mold | die for injection molding manufactured with the metal powder of this invention. 金型用鋼材ブロックで製造した射出成形用金型の一例を示す説明図である。It is explanatory drawing which shows an example of the metal mold | die for injection molding manufactured with the steel material block for metal mold | die.

本発明の実施の形態を以下に詳細に説明する。   Embodiments of the present invention will be described in detail below.

本発明の金属光造形用金属粉末(「金属粉末」とも略記する。)は、金属の粉末材料に光ビームを照射して得られる焼結層を積層することで、三次元形状を造形する金属光造形に用いる金属粉末であって、Feを71重量%以上76重量%以下、Crを10重量%以上13重量%以下、Niを4重量%以上9重量%以下、Cuを4重量%以上7重量%以下、Tiを2重量%以上3重量%以下、Coを0重量%以上4重量%以下、Siを0重量%以上0.5重量%以下、Mnを0重量%以上0.5重量%以下を含有し、且つCr+Niが16重量%以上19重量%以下、Cu+Ti+Coが8重量%以上9重量%以下、Si+Mnが0重量%以上1重量%以下である組成からなることを特徴とする。   The metal stereolithographic metal powder of the present invention (also abbreviated as “metal powder”) is a metal that forms a three-dimensional shape by laminating a sintered layer obtained by irradiating a metal powder material with a light beam. Metal powder used for stereolithography, Fe 71% to 76% by weight, Cr 10% to 13% by weight, Ni 4% to 9% by weight, Cu 4% to 7% Wt% or less, Ti 2 wt% to 3 wt%, Co 0 wt% to 4 wt%, Si 0 wt% to 0.5 wt%, Mn 0 wt% to 0.5 wt% It is characterized by comprising the following: Cr + Ni: 16% by weight to 19% by weight; Cu + Ti + Co: 8% by weight to 9% by weight; and Si + Mn: 0% by weight to 1% by weight.

上記の組成からなる本発明の金属粉末において、Crが10重量%未満、およびNiが4重量%未満、およびCr+Niが16重量%未満では耐食性が低下するので好ましくない。   In the metal powder of the present invention having the above composition, if Cr is less than 10% by weight, Ni is less than 4% by weight, and Cr + Ni is less than 16% by weight, the corrosion resistance is lowered.

Crが13重量%超、およびNiが9重量%超、およびCr+Niが19重量%超では熱伝導率が低下するので好ましくない。   If Cr exceeds 13% by weight, Ni exceeds 9% by weight, and Cr + Ni exceeds 19% by weight, it is not preferable because the thermal conductivity decreases.

Cuが4重量%未満、およびTiが2重量%未満、およびCu+Ti+Coが8重量%未満では材料硬度が低下するので好ましくない。   If Cu is less than 4% by weight, Ti is less than 2% by weight, and Cu + Ti + Co is less than 8% by weight, the material hardness is not preferable.

Cuが7重量%超、およびTiが3重量%超、およびCoが4重量%超、およびCu+Ti+Coが9重量%超、およびSi+Mnが1重量%超では熱伝導率が低下するので好ましくない。   If Cu exceeds 7% by weight, Ti exceeds 3% by weight, Co exceeds 4% by weight, Cu + Ti + Co exceeds 9% by weight, and Si + Mn exceeds 1% by weight, the thermal conductivity is unfavorable.

なお、Feには粉末製造過程で混入する可能性があるCなどの不可避不純物が含まれていても良い。   Note that Fe may contain inevitable impurities such as C which may be mixed in the powder manufacturing process.

本発明の金属粉末のさらに好ましい組成としては、Feを70.9重量%以上74.5重量%以下、Crを11.7重量%以上12.3重量%以下、Niを5.7重量%以上6.3重量%以下、Cuを3.7重量%以上4.3重量%以下、Tiを1.7重量%以上2.3重量%以下、Coを2.7重量%以上3.3重量%以下、Siを0重量%以上0.3重量%以下、Mnを0重量%以上0.3重量%以下を含有するのが望ましい。   As a more preferable composition of the metal powder of the present invention, Fe is 70.9 wt% or more and 74.5 wt% or less, Cr is 11.7 wt% or more and 12.3% wt% or less, and Ni is 5.7 wt% or more. 6.3% by weight or less, Cu 3.7% to 4.3% by weight, Ti 1.7% to 2.3% by weight, Co 2.7% to 3.3% by weight In the following, it is desirable to contain Si in an amount of 0 to 0.3% by weight and Mn in an amount of 0 to 0.3% by weight.

次に、本発明の射出成形用金型の製造方法について説明する。   Next, the manufacturing method of the injection mold according to the present invention will be described.

本発明の射出成形用金型の製造方法は、前記金属粉末に光ビームを照射して第一の焼結層を得る工程、前記第一の焼結層の上に前記金属粉末を形成して光ビームを照射して第二の焼結層を積層する工程を繰り返して三次元形状の造形物からなる金型を得る工程を有することを特徴とする。   The method for producing an injection mold of the present invention includes a step of irradiating the metal powder with a light beam to obtain a first sintered layer, and forming the metal powder on the first sintered layer. It has the process of obtaining the metal mold | die which consists of a three-dimensional shaped molded object by repeating the process of irradiating a light beam, and laminating | stacking a 2nd sintered layer.

図1は、本発明の射出成形用金型の製造方法に用いる金属光造形装置の一例を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing an example of a metal stereolithography apparatus used in the method for manufacturing an injection mold according to the present invention.

図1(a)は粉末積層工程、図1(b)は初期造形工程、図1(c)は造形完了間際の状態を示す。図中、1は造形物を創生するためのベースプレート、2は造形物、3は造形物を創生するための空間(チャンバー)、4はチャンバー3に格納した金属粉末、5はチャンバー3内に備えた昇降テーブル、6はチャンバー3に供給する金属粉末、7は金属粉末6を格納した空間(チャンバー)、8はチャンバー7内に備えた昇降テーブル、9は金属粉末6をチャンバー3へ供給するスキージングブレード、10はチャンバー3内に置かれたベースプレート1の上に所定厚み分敷かれた金属粉末を溶融するためのレーザ光、11はレーザ光10を発振するためのレーザ発振器、12はレーザ光10をXおよびY方向へ光走査するための走査光学系、13はレーザ光10をベースプレート1上に集光するための集光レンズ、14は走査光学系12と集光レンズ13を備え、自身もXおよびY方向へ移動可能な加工ヘッドを示す。   FIG. 1A shows a powder laminating process, FIG. 1B shows an initial modeling process, and FIG. 1C shows a state just before the modeling is completed. In the figure, 1 is a base plate for creating a shaped object, 2 is a shaped object, 3 is a space (chamber) for creating a shaped object, 4 is a metal powder stored in the chamber 3, and 5 is in the chamber 3 Elevating table 6, 6 is a metal powder supplied to the chamber 3, 7 is a space (chamber) in which the metal powder 6 is stored, 8 is an elevating table provided in the chamber 7, and 9 is a metal powder 6 supplied to the chamber 3. A squeezing blade 10 is a laser beam for melting a metal powder spread on a base plate 1 placed in a chamber 3 by a predetermined thickness, 11 is a laser oscillator for oscillating the laser beam 10, and 12 is A scanning optical system for optically scanning the laser light 10 in the X and Y directions, 13 is a condensing lens for condensing the laser light 10 on the base plate 1, and 14 is a scanning optical system 12. Includes a light lens 13, itself shows a movable processing head in the X and Y directions.

本発明における製造工程は、昇降テーブル5が所定厚みΔtだけ下がり、昇降テーブル8が所定厚みΔt’(Δt<Δt’)分上昇した後、スキージングブレード9によってチャンバー7よりチャンバー3へ金属粉末が供給される(図1(a))。その後レーザ光10を必要部分のみに照射すれば、ベースプレート1の上に敷かれた金属粉末を選択的に溶融・固化することができる(図1(b))。この作業を繰返し行うことで、所望の三次元形状物(造形物2)を創生できる(図1(c))。   In the manufacturing process of the present invention, after the lifting table 5 is lowered by a predetermined thickness Δt and the lifting table 8 is raised by a predetermined thickness Δt ′ (Δt <Δt ′), the metal powder is transferred from the chamber 7 to the chamber 3 by the squeezing blade 9. (FIG. 1A). Thereafter, by irradiating only a necessary portion with the laser beam 10, the metal powder laid on the base plate 1 can be selectively melted and solidified (FIG. 1B). By repeating this operation, a desired three-dimensional shape (model 2) can be created (FIG. 1C).

図2は、図1に示す金属光造形装置の概略上面図である。チャンバー3およびチャンバー7はXY方向に閉じた空間となっており、金属粉末4および金属粉末6を格納できる仕様となっている。   FIG. 2 is a schematic top view of the metal stereolithography apparatus shown in FIG. The chamber 3 and the chamber 7 are spaces closed in the X and Y directions, and have specifications that can store the metal powder 4 and the metal powder 6.

なお、上記は本発明に用いる金属光造形装置の一例を示すに過ぎず、金属粉末を所定厚み分敷く手段と、金属粉末を溶融、固化するための光ビーム等の手段を備えていれば、本発明に適用することができる。   In addition, the above only shows an example of a metal stereolithography apparatus used in the present invention, provided with a means for spreading metal powder for a predetermined thickness and a means such as a light beam for melting and solidifying the metal powder, It can be applied to the present invention.

本発明の射出成形用金型の製造方法は、さらに焼結層を積層する方法において焼結層に光ビームを照射しない部分を形成し、前記光ビームを照射しない焼結しなかった部分の金属粉末を取り除き、射出成形用金型内部に媒体を通すための通路を形成する工程を有することを特徴とする。図1および図2に示した金属光造形装置を用いれば、射出成形したプラスチックを冷却するために金型内部に形成する水管を成形品に限りなく近づけることができるため、冷却能力の高い射出成形用金型を製作できる。また、前記射出成形用金型は射出成形品の温度分布を均一化できるため、変形が極めて少ない成形品を得ることができる。   The method for manufacturing an injection mold according to the present invention further comprises forming a portion of the sintered layer that is not irradiated with a light beam in the method of laminating a sintered layer, and the portion of the metal that is not sintered that is not irradiated with the light beam. It has the process of removing the powder and forming a passage for passing the medium inside the injection mold. If the metal stereolithography apparatus shown in FIG. 1 and FIG. 2 is used, the water pipe formed inside the mold for cooling the injection-molded plastic can be brought as close as possible to the molded product. A mold can be made. Further, since the injection mold can make the temperature distribution of the injection molded product uniform, it is possible to obtain a molded product with very little deformation.

図3は、造形加工データの作成方法を示す説明図である。15は3D−CADモデル、16は3D−CADモデル15から生成したSTLファイルを所定厚みΔtずつN層分スライスした断面形状モデルを示す。   FIG. 3 is an explanatory diagram showing a method of creating modeling data. Reference numeral 15 denotes a 3D-CAD model, and 16 denotes a cross-sectional shape model obtained by slicing an STL file generated from the 3D-CAD model 15 into N layers by a predetermined thickness Δt.

図4は、レーザ照射パターンの一例を示す説明図である。17は、レーザ光10の光走査経路を示す。   FIG. 4 is an explanatory diagram showing an example of a laser irradiation pattern. Reference numeral 17 denotes an optical scanning path of the laser beam 10.

レーザ光10の照射経路は、3D−CADモデル15をもとに作成する。3D−CADモデル15から生成したSTLファイルを所定厚みΔtずつN層分スライスし、各断面形状モデル16を照射範囲とする。照射範囲内におけるレーザ光10の光走査パターンには平行線状や格子状などあらゆる走査経路17が考えられるが、そのどれを用いてもよい。光走査手段には加工ヘッド14内に備えたガルバノミラーなどの光学系を用いるか、加工ヘッド14自体を移動させるか、もしくはこれらを同時に行うか選択すればよい。   The irradiation path of the laser beam 10 is created based on the 3D-CAD model 15. The STL file generated from the 3D-CAD model 15 is sliced by N layers by a predetermined thickness Δt, and each cross-sectional shape model 16 is set as an irradiation range. Any scanning path 17 such as a parallel line shape or a lattice shape can be considered as the optical scanning pattern of the laser beam 10 within the irradiation range, any of which may be used. The optical scanning means may be selected to use an optical system such as a galvanometer mirror provided in the processing head 14, move the processing head 14 itself, or perform these simultaneously.

図5は、本発明の金属粉末の1例を示す走査電子顕微鏡(SEM)写真である。前記のような金属光造形装置で金型を製造するにあたり、金属粉末にどのようなものを用いるかが金型の特性に大きく関わる。   FIG. 5 is a scanning electron microscope (SEM) photograph showing an example of the metal powder of the present invention. In manufacturing a metal mold using the metal stereolithography apparatus as described above, what kind of metal powder is used is greatly related to the characteristics of the metal mold.

図6は、本発明の金属粉末で製造した金属光造形物の倍率50倍の断面顕微鏡写真である。本発明の金属粉末を用いて、図1に示すような金属光造形装置でレーザ焼結して製造した20mm□の金属ブロックを研磨した面を倍率50倍で観察した拡大写真である。   FIG. 6 is a cross-sectional photomicrograph at a magnification of 50 times of a metal stereolithography manufactured with the metal powder of the present invention. It is the enlarged photograph which observed the surface which grind | polished the 20 mm square metal block manufactured by laser sintering with the metal stereolithography apparatus as shown in FIG. 1 using the metal powder of this invention at 50 times the magnification.

本発明の金属粉末の平均粒子径は、10μm以上50μm以下、好ましくは10μm以上38μm以下である。平均粒子径は、粉末粒子の体積に基づく平均粒子径、すなわち粒度分布が求められている一つの粉体の集合体において平均体積をもつ粒子の直径が10μm以上50μm以下のものを示す。なお、粒度分布および粒子径は、粉末粒子群にレーザ光を照射し、そこから発せられる回折・散乱光の強度分布パターンを評価するレーザ回折・散乱法を用いて算出する。平均粒子径が10μm未満では凝集による粉末積層不具合が生じ、50μm超では造形密度低下の不具合が生じる。   The average particle size of the metal powder of the present invention is 10 μm or more and 50 μm or less, preferably 10 μm or more and 38 μm or less. The average particle diameter indicates an average particle diameter based on the volume of the powder particles, that is, a particle having an average volume of 10 μm or more and 50 μm or less in an aggregate of one powder whose particle size distribution is required. The particle size distribution and the particle size are calculated using a laser diffraction / scattering method in which a powder particle group is irradiated with laser light and an intensity distribution pattern of diffracted / scattered light emitted therefrom is evaluated. If the average particle diameter is less than 10 μm, a problem of powder lamination due to aggregation occurs, and if it exceeds 50 μm, a problem of reduction in modeling density occurs.

本発明の射出成形用金型の製造方法は、三次元形状の造形物からなる金型を得る工程の後に、さらに固溶化熱処理および時効硬化熱処理の少なくとも一方を施す工程を有することを特徴とする。造形加工後の製造物に固溶化熱処理と時効硬化熱処理を施すことにより、高硬度、高熱伝導率を得ることができる。なお、固溶化熱処理とは、材料の合金成分を固溶させることのできる温度に加熱保持した後、冷却中に析出物がでないように急冷する処理のことである。時効硬化熱処理とは、固溶化熱処理を施した鋼をある一定の温度で加熱保持することで、鋼中に溶け込んでいる合金元素を微細な金属間化合物として析出させる処理のことを示す。   The method for producing an injection mold according to the present invention is characterized by further comprising a step of performing at least one of a solution heat treatment and an age hardening heat treatment after the step of obtaining a mold made of a three-dimensional shaped article. . High hardness and high thermal conductivity can be obtained by applying a solution heat treatment and an age hardening heat treatment to the product after the shaping process. The solution heat treatment is a treatment in which a material is rapidly cooled so that no precipitate is formed during cooling after being heated and held at a temperature at which the alloy components of the material can be dissolved. The age hardening heat treatment refers to a treatment for precipitating alloy elements dissolved in the steel as fine intermetallic compounds by heating and holding the solution-treated heat-treated steel at a certain temperature.

本発明の実施例を以下より詳細に説明する。   Examples of the invention are described in more detail below.

(実施例1)
図1に示す金属光造形装置を用いて、加工実験を行った。図中、レーザ光10にはFiberレーザを用いた。波長は1070nm、CW発振、レーザ出力は400W、ベースプレート1上に集光する際のビームスポット径は0.15mmである。走査光学系12にはX方向、Y方向ともにガルバノミラーを用いた。ガルバノミラーによる光走査範囲はX250mm、Y250mmである。
Example 1
Processing experiments were performed using the metal stereolithography apparatus shown in FIG. In the drawing, a fiber laser was used as the laser beam 10. The wavelength is 1070 nm, CW oscillation, the laser output is 400 W, and the beam spot diameter when condensing on the base plate 1 is 0.15 mm. As the scanning optical system 12, galvanometer mirrors were used in both the X direction and the Y direction. The optical scanning range by the galvanometer mirror is X250 mm and Y250 mm.

ベースプレート1上に敷く金属粉末の積層厚みは0.04mmとした。スキージングブレード9によりベースプレート1上に金属粉末を0.04mm敷いた後、レーザ光10を照射した。照射経路は図4(a)のようにし、ガルバノミラーによる光走査速度(=レーザスキャン速度)は900mm/secとした。   The laminated thickness of the metal powder laid on the base plate 1 was 0.04 mm. After laying 0.04 mm of metal powder on the base plate 1 with the squeezing blade 9, the laser beam 10 was irradiated. The irradiation path is as shown in FIG. 4A, and the optical scanning speed (= laser scanning speed) by the galvanometer mirror is 900 mm / sec.

使用した金属粉末は、Cr,Ni,Cu,Ti,Co,Si,Mn,Feからなる金属光造形用粉末である。金属粉末の平均粒子径は20μm(0.02mm)である。金属粉末は、粉末1から粉末13を使用した。なお、各成分の含有量(重量%)は以下の表1に示すとおりである。   The used metal powder is a metal stereolithography powder made of Cr, Ni, Cu, Ti, Co, Si, Mn, and Fe. The average particle diameter of the metal powder is 20 μm (0.02 mm). As the metal powder, powder 1 to powder 13 were used. The content (% by weight) of each component is as shown in Table 1 below.

上記金属粉末とS50C材を使用した150mm×150mm×25mmのベースプレートを用いて、60mm×60mm×20mmのテストモデルを製作した。造形加工終了後、造形物に500℃時効硬化熱処理を施して、硬度、熱伝導率、耐食性の各物性値を評価した。ガラスやカーボンなどの強化材を含有するプラスチックの射出成形用金型に用いるためには、型耐久性を考慮して材料硬度50HRC以上であることが求められる。また、射出成形した金型を効率的に冷却するためには、熱伝導率15W/mK以上、且つ、金型内部に形成する水管に水を流しても水管壁が錆びないことが求められる。   A test model of 60 mm × 60 mm × 20 mm was manufactured using a base plate of 150 mm × 150 mm × 25 mm using the metal powder and S50C material. After completion of the modeling process, the model was subjected to 500 ° C. age-hardening heat treatment, and each physical property value of hardness, thermal conductivity, and corrosion resistance was evaluated. In order to use it for a plastic injection mold containing a reinforcing material such as glass or carbon, the material hardness is required to be 50 HRC or more in consideration of mold durability. Further, in order to efficiently cool the injection-molded mold, it is required that the thermal conductivity is 15 W / mK or more and that the water pipe wall does not rust even when water is passed through the water pipe formed inside the mold. .

そこで評価基準として、材料硬度は、ロックウェル硬さ試験機もしくはビッカース硬度試験機により測定し、硬度が50HRC以上を○、未満を×とした。熱伝導率は、レーザフラッシュ法により測定し、熱伝導率が15W/mK以上を○、未満を×とした。耐食性は、金型内部に形成する媒体を通すための通路を想定して造形物内部に形成した通路に一般的な工業用水を1ヶ月間連続で流し、錆びが確認できなかったものを○、確認できたものを×とした。実験結果を下記の表2に示す。   Therefore, as an evaluation standard, the material hardness was measured with a Rockwell hardness tester or a Vickers hardness tester, and the hardness was evaluated as “◯” when the hardness was 50 HRC or more and “X” when it was less. The thermal conductivity was measured by a laser flash method. Corrosion resistance is determined by flowing general industrial water continuously for one month in the passage formed inside the molding assuming a passage for passing the medium formed inside the mold. What was confirmed was set as x. The experimental results are shown in Table 2 below.

表2の結果から、本発明の金属粉末からなる造形物は、硬度、熱伝導率、耐食性全てが設定値を上回った。一方、CrおよびNiが本発明の成分範囲より少ない場合は、耐食性が劣り、Cu、TiおよびCoが本発明の成分範囲より少ない場合は、硬度が低く、また、Fe以外の合金成分の量が本発明の成分範囲より多い場合は熱伝導率が低い結果となった。以上より、本発明の成分範囲の金属粉末を用いることで、硬度、熱伝導率、耐食性に優れた造形物を得ることができる本発明の効果が得られる。   From the result of Table 2, the hardness, thermal conductivity, and corrosion resistance of the shaped article made of the metal powder of the present invention all exceeded the set values. On the other hand, when Cr and Ni are less than the component range of the present invention, the corrosion resistance is inferior. When Cu, Ti and Co are less than the component range of the present invention, the hardness is low, and the amount of alloy components other than Fe is low. When more than the component range of the present invention, the thermal conductivity was low. As mentioned above, the effect of this invention which can obtain the molded article excellent in hardness, thermal conductivity, and corrosion resistance is acquired by using the metal powder of the component range of this invention.

(実施例2)
実施例1に示すような装置、加工方法、加工条件を用いて、加工実験を行った。使用した金属粉末は、実施例1に示す粉末1、粉末2および粉末3と同じ成分からなる金属造形用粉末である。本実施例では、平均粒子径を変えてそれぞれ4種ずつ使用した。
(Example 2)
Using the apparatus, processing method, and processing conditions as shown in Example 1, processing experiments were performed. The metal powder used is a metal shaping powder composed of the same components as powder 1, powder 2 and powder 3 shown in Example 1. In this example, four types of each were used with different average particle sizes.

造形加工終了後、造形物の密度を評価した。造形密度が95重量%を下回ると射出成形品にボイドと呼ばれる空孔が転写して外観不良を引き起こす恐れがあるため、造形密度が95重量%以上を○、未満を△とした。実験結果を以下の表3に示す。   After the modeling process was completed, the density of the model was evaluated. If the modeling density is less than 95% by weight, voids called voids may be transferred to the injection-molded product to cause an appearance defect. Therefore, the modeling density is 95% by weight or more and ◯ is less. The experimental results are shown in Table 3 below.

表2の結果から、平均粒子径が10μm以上50μm以下の金属粉末から成る造形物は、造形密度が設定値を上回った。一方、平均粒子径が小さい粉末、もしくは大きい粉末から成る造形物は、造形密度が低い結果となった。   From the results in Table 2, the modeling density of the modeled article made of the metal powder having an average particle size of 10 μm or more and 50 μm or less exceeded the set value. On the other hand, the modeling object which consists of a powder with a small average particle diameter or a large powder resulted in a low modeling density.

(実施例3)
実施例1に示すような装置、加工方法、加工条件を用いて、図7および図8に示すような射出成形用金型を製作した。
(Example 3)
An injection mold as shown in FIGS. 7 and 8 was manufactured using the apparatus, the processing method, and the processing conditions as shown in Example 1.

図7は、本発明の金属粉末で製造した射出成形用金型の一例を示す説明図である。図7において、18は射出成形品、19は金属光造形方法で製作した射出成形用金型、20は金属光造形方法で製作した射出成形用金型の内部に形成した冷却水管である。   FIG. 7 is an explanatory view showing an example of an injection mold manufactured with the metal powder of the present invention. In FIG. 7, 18 is an injection-molded product, 19 is an injection mold produced by the metal stereolithography method, and 20 is a cooling water pipe formed inside the injection mold produced by the metal stereolithography method.

図8は、金型用鋼材ブロックで製造した射出成形用金型の一例を示す説明図である。図8において、18は射出成形品、21は金型用鋼材ブロックで製作した射出成形用金型、22は金型用鋼材ブロックで製作した射出成形用金型内部に形成した冷却水管である。   FIG. 8 is an explanatory view showing an example of an injection mold manufactured with a steel block for molds. In FIG. 8, 18 is an injection-molded product, 21 is an injection-molding mold manufactured with a steel block for molds, and 22 is a cooling water pipe formed inside an injection-molding mold manufactured with a steel block for molds.

図7および図8に示す射出成形用金型を用いて射出成形の実験を行った。実験結果を以下の表4に示す。   An injection molding experiment was conducted using the injection mold shown in FIGS. The experimental results are shown in Table 4 below.

表4に示す結果によれば、本発明の金属光造形方法で製作した、図7に示す射出成形用金型は、射出成形したプラスチックを冷却するための水管を成形品形状に沿って配置できるので、図8に示す金型用鋼材ブロックで製作した射出成形用金型に比較して成形品冷却時間を50重量%短縮できた。   According to the results shown in Table 4, the injection mold shown in FIG. 7 manufactured by the metal stereolithography method of the present invention can arrange the water pipe for cooling the injection molded plastic along the shape of the molded product. Therefore, the cooling time of the molded product can be shortened by 50% by weight as compared with the injection mold manufactured with the steel block for mold shown in FIG.

本発明の金属光造形用金属粉末は、硬度、熱伝導率、耐食性に優れた造形物を得ることができるので、射出成形用金型、自動車部品等に利用することができる。   The metal powder for metal stereolithography of the present invention can be used for injection molds, automobile parts, and the like because it can obtain a molded article having excellent hardness, thermal conductivity, and corrosion resistance.

1 ベースプレート
2 造形物
3 造形チャンバー
4 造形チャンバー内の金属粉末
5 造形側昇降テーブル
6 粉末供給チャンバー内の金属粉末
7 粉末供給チャンバー
8 粉末側昇降テーブル
9 スキージングブレード
10 レーザ光
11 レーザ発振器
12 走査光学系
13 集光レンズ
14 レーザ加工ヘッド
15 3D−CADモデル
16 断面形状モデル
17 レーザ光の走査経路
18 射出成形品
19 金属光造形方法で製作した射出成形用金型
20 金属光造形方法で製作した射出成形用金型内部に形成した冷却水管
21 金型用鋼材ブロックで製作した射出成形用金型
22 金型用鋼材ブロックで製作した射出成形用金型内部に形成した冷却水管
DESCRIPTION OF SYMBOLS 1 Base plate 2 Modeling object 3 Modeling chamber 4 Metal powder in modeling chamber 5 Modeling side raising / lowering table 6 Metal powder in powder supply chamber 7 Powder supply chamber 8 Powder side raising / lowering table 9 Squeezing blade 10 Laser beam 11 Laser oscillator 12 Scanning optics System 13 Condensing lens 14 Laser processing head 15 3D-CAD model 16 Cross-sectional shape model 17 Scanning path of laser light 18 Injection molded product 19 Injection mold manufactured by metal stereolithography method 20 Injection manufactured by metal stereolithography method Cooling water pipe formed inside the molding die 21 Injection molding die made from the steel block for mold 22 Cooling water pipe formed inside the injection mold made from the steel block for mold

Claims (6)

金属光造形用の金属粉末であって、
Fe、Cr、Ni、Cu、およびTiを含み、Co、Si、またはMnを含んでもよく、
Fe+Cr+Ni+Cu+Ti+Co+Si+Mnを100重量%とした時、
Feを70.9重量%以上76重量%以下、Crを10重量%以上13重量%以下、Niを4重量%以上9重量%以下、Cuを3.7重量%以上7重量%以下、Tiを1.7重量%以上3重量%以下、Coを0重量%以上4重量%以下、Siを0重量%以上0.5重量%以下、Mnを0重量%以上0.5重量%以下であり、且つCr+Niが16重量%以上19重量%以下、Cu+Ti+Coが8重量%以上、Si+Mnが0重量%以上1重量%以下であることを特徴とする金属光造形用の金属粉末。
Metal powder for metal stereolithography,
Including Fe, Cr, Ni, Cu, and Ti, and may include Co, Si, or Mn;
When Fe + Cr + Ni + Cu + Ti + Co + Si + Mn is 100% by weight,
Fe: 70.9 % to 76% by weight, Cr: 10% to 13% by weight, Ni: 4% to 9% by weight, Cu: 3.7 % to 7% by weight, Ti 1.7 wt% or more and 3 wt% or less, Co is 0 wt% or more and 4 wt% or less, Si is 0 wt% or more and 0.5 wt% or less, Mn is 0 wt% or more and 0.5 wt% or less, A metal powder for metal stereolithography, wherein Cr + Ni is 16 wt% or more and 19 wt% or less, Cu + Ti + Co is 8 wt% or more, and Si + Mn is 0 wt% or more and 1 wt% or less.
前記金属粉末の平均粒子径が10μm以上50μm以下であることを特徴とする請求項1に記載の金属光造形用の金属粉末。 2. The metal powder for metal stereolithography according to claim 1, wherein an average particle size of the metal powder is 10 μm or more and 50 μm or less. 請求項1または2に記載の金属光造形用の金属粉末に光ビームを照射して第一の焼結層を得る工程、前記第一の焼結層の上に前記金属粉末を形成して光ビームを照射して第二の焼結層を積層する工程を繰り返して三次元形状の造形物を得る工程を有することを特徴とする金属光造形による三次元造形物の製造方法。 A step of irradiating the metal powder for metal stereolithography according to claim 1 or 2 with a light beam to obtain a first sintered layer, and forming the metal powder on the first sintered layer to form a light A method for producing a three-dimensional structure by metal stereolithography, comprising the step of obtaining a three-dimensional shaped object by repeating a step of irradiating a beam and laminating a second sintered layer. 前記三次元造形物は射出成形用金型であって、前記焼結層を積層する方法において焼結層に光ビームを照射しない部分を形成し、前記光ビームを照射しない焼結しなかった部分の金属粉末を取り除き、射出成形用金型内部に媒体を通すための通路を形成する工程を有することを特徴とする請求項3に記載の三次元造形物の製造方法。   The three-dimensional structure is an injection mold, and in the method of laminating the sintered layer, a portion not irradiated with a light beam is formed on the sintered layer, and a portion not irradiated with the light beam is not sintered 4. The method for producing a three-dimensional structure according to claim 3, further comprising a step of removing the metal powder and forming a passage for allowing the medium to pass inside the injection mold. 前記三次元形状の造形物を得る工程の後に、さらに固溶化熱処理および時効硬化熱処理の少なくとも一方を施す工程を有することを特徴とする請求項3または4に記載の三次元造形物の製造方法。   The method for producing a three-dimensional structure according to claim 3 or 4, further comprising a step of performing at least one of a solution heat treatment and an age hardening heat treatment after the step of obtaining the three-dimensional structure. 請求項4または5に記載の三次元造形物の製造方法を用いて製造された射出成形用金型を用いて成形されることを特徴とする成形品の製造方法。   A method for producing a molded product, characterized by being molded using an injection mold produced using the method for producing a three-dimensional structure according to claim 4 or 5.
JP2012260954A 2012-11-29 2012-11-29 Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product Active JP6132523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012260954A JP6132523B2 (en) 2012-11-29 2012-11-29 Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012260954A JP6132523B2 (en) 2012-11-29 2012-11-29 Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product

Publications (3)

Publication Number Publication Date
JP2014105373A JP2014105373A (en) 2014-06-09
JP2014105373A5 JP2014105373A5 (en) 2016-01-21
JP6132523B2 true JP6132523B2 (en) 2017-05-24

Family

ID=51027141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012260954A Active JP6132523B2 (en) 2012-11-29 2012-11-29 Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product

Country Status (1)

Country Link
JP (1) JP6132523B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013493A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Production method of casting alloy
JP6455701B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Alloy structure
WO2016013494A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy powder used in fused deposition modeling, and production method of said alloy powder
JP6432822B2 (en) * 2014-07-25 2018-12-05 日立金属株式会社 Alloy powder used for melt lamination molding
JP6455699B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
US10576538B2 (en) * 2014-07-23 2020-03-03 Hitachi Metals, Ltd. Alloy structure and method for producing alloy structure
WO2016013496A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Relating to alloy structure and method for producing alloy structure.
JP6459272B2 (en) * 2014-07-23 2019-01-30 日立金属株式会社 Alloy structure
WO2016013495A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy structure and manufacturing method of alloy structure
WO2016013492A1 (en) * 2014-07-23 2016-01-28 株式会社日立製作所 Alloy powder used in fused deposition modeling
JP6455700B2 (en) * 2014-07-25 2019-01-23 日立金属株式会社 Method for manufacturing alloy structure
JP6536927B2 (en) * 2014-07-25 2019-07-03 日立金属株式会社 Alloy structure
JP6443721B2 (en) * 2014-07-25 2018-12-26 日立金属株式会社 Method for manufacturing alloy structure
JP6393885B2 (en) * 2014-07-25 2018-09-26 日立金属株式会社 Method for producing alloy powder
JP6388381B2 (en) * 2014-07-23 2018-09-12 日立金属株式会社 Alloy structure
JP6393884B2 (en) * 2014-07-25 2018-09-26 日立金属株式会社 Method for producing alloy powder
US10702944B2 (en) 2014-07-23 2020-07-07 Hitachi Metals, Ltd. Alloy structure and method for producing alloy structure
JP6388278B2 (en) * 2014-07-25 2018-09-12 日立金属株式会社 Alloy powder used for melt lamination molding
EP2990140B1 (en) * 2014-08-27 2019-01-02 SLM Solutions Group AG Method for manufcaturing a component containing an iron alloy material, component and iron alloy material.
CA3151421A1 (en) * 2014-08-27 2016-03-03 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US10975460B2 (en) 2015-01-28 2021-04-13 Daido Steel Co., Ltd. Steel powder and mold using the same
JP6601051B2 (en) * 2015-01-28 2019-11-06 大同特殊鋼株式会社 Steel powder
WO2018084056A1 (en) * 2016-11-02 2018-05-11 コニカミノルタ株式会社 Metal powder, powder-sintered additively manufactured object, and manufacturing method for same
US10889872B2 (en) * 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
CN107812937B (en) * 2017-11-30 2021-05-07 钢铁研究总院 Titanium alloy powder suitable for laser additive manufacturing and preparation method
JP2020084294A (en) * 2018-11-30 2020-06-04 株式会社日立製作所 Powder for molding laminate, laminate molded body, and manufacturing method of laminate molded body
CN109482880B (en) * 2018-12-28 2019-11-08 东北大学 Preparation method that is a kind of while promoting Ni-Mn-In alloy mechanical property and magnetic heating performance
CN111822710B (en) * 2020-09-14 2020-12-11 陕西斯瑞新材料股份有限公司 Preparation method of SLM (Selective laser melting) type 3D printing CuFe alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110856B2 (en) * 2002-06-28 2008-07-02 松下電工株式会社 Manufacturing method of mold
JP3904112B2 (en) * 2002-09-30 2007-04-11 セイコーエプソン株式会社 Raw material powder for sintering, granulated powder for sintering, sintered body using the same, and method for producing sintered body
JP3687667B2 (en) * 2003-07-28 2005-08-24 松下電工株式会社 Metal powder for metal stereolithography
JP4560802B2 (en) * 2006-09-08 2010-10-13 日立金属株式会社 High hardness precipitation hardened stainless steel with excellent toughness

Also Published As

Publication number Publication date
JP2014105373A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP6132523B2 (en) Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product
Schmidt et al. Laser based additive manufacturing in industry and academia
JP2023002601A (en) Economical production method of metal component
Wang et al. Research on the fabricating quality optimization of the overhanging surface in SLM process
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
KR101780465B1 (en) 3-Dimensional manufacturing method for the metallic materials using 3D printing with controlling the microstructure
US20170016096A1 (en) Method of manufacturing aluminum alloy articles
Campagnoli et al. On the processability of copper components via powder-based additive manufacturing processes: Potentials, challenges and feasible solutions
JPWO2017077137A5 (en)
US20170016093A1 (en) Method of manufacturing aluminum alloy articles
JP2007016312A (en) Method for forming sintered compact
JP7173397B2 (en) Method for manufacturing alloy member, alloy member, and product using alloy member
US10030288B2 (en) Method of manufacturing aluminum alloy articles
JP2017186653A (en) Three-dimensional shape molded article and manufacturing method therefor
KR102128777B1 (en) Laminated molding method for metallic materials with controlling the microstructure
CN110785246A (en) Additive manufacturing techniques for precipitation hardened superalloy powder materials
KR102523864B1 (en) Metal powder
JP6819952B2 (en) Laminated molding metal powder and laminated molding using metal powder
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
JP2019039067A (en) Continuous additive manufacture of high pressure turbine
CN105798294A (en) Rapid part prototyping method for refractory materials
US20210146433A1 (en) Fused filament fabrication of braze alloys
JP7277426B2 (en) Shaped body made from powder
JP7361332B2 (en) Manufacturing method of metal additively-produced product and metal additively-produced product
JP2022122462A (en) Carbon-fixed carbon steel powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170418

R151 Written notification of patent or utility model registration

Ref document number: 6132523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151