WO2016013493A1 - Production method of casting alloy - Google Patents

Production method of casting alloy Download PDF

Info

Publication number
WO2016013493A1
WO2016013493A1 PCT/JP2015/070466 JP2015070466W WO2016013493A1 WO 2016013493 A1 WO2016013493 A1 WO 2016013493A1 JP 2015070466 W JP2015070466 W JP 2015070466W WO 2016013493 A1 WO2016013493 A1 WO 2016013493A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
less
concentration
powder
solidified
Prior art date
Application number
PCT/JP2015/070466
Other languages
French (fr)
Japanese (ja)
Inventor
隆彦 加藤
孝介 桑原
正 藤枝
青田 欣也
高橋 勇
佐竹 弘之
山賀 賢史
元 村上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014150027A external-priority patent/JP6388381B2/en
Priority claimed from JP2014151340A external-priority patent/JP6393884B2/en
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016013493A1 publication Critical patent/WO2016013493A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a method of manufacturing a cast alloy.
  • Alloy materials are used in a variety of applications including structural members that form the framework of structures and devices, various mechanical members, etc. For applications in harsh environments where it is difficult to use steel or aluminum materials It is often used.
  • nickel-based alloys, cobalt-based alloys and the like have been developed which are applied to turbine members and the like provided in aircraft, generators and the like and can be applied to ultra-high heat environments of 1000 ° C. or more.
  • high alloy steels and the like that can exhibit high corrosion resistance and wear resistance even under such ultra-high heat environment are also developed.
  • high-entropy alloys As a type of alloy material A multi-element alloy called is attracting attention.
  • a high entropy alloy is considered to be an alloy which is composed of about five or more kinds of plural elements and which contains each element at an equal atomic ratio or an atomic ratio in the vicinity thereof. Since it has the feature that the rate of atomic diffusion is slow and is excellent in heat resistance, high temperature strength, corrosion resistance and the like, application to applications in severe environments is expected.
  • Patent Document 1 discloses a method for producing a cemented carbide composite material, in which at least one ceramic phase powder and a multicomponent high entropy alloy powder are mixed to form a mixture The steps of: compacting the mixture; and sintering the mixture to form a cemented carbide composite, wherein the multicomponent high entropy alloy powder comprises 5 to 11 major elements, each major element There is disclosed a manufacturing method in which 5% to 35% by mole of the multicomponent high entropy alloy powder is contained.
  • Non-Patent Document 1 discloses that in a high entropy alloy having an equiatomic ratio of Al, Co, Cr, Fe, and Ni, analysis of the dimensional effect on the microstructure and mechanical properties is disclosed.
  • the main elements constituting the high-entropy alloy are dissolved in an equiatomic ratio
  • the alloy material disclosed in Non-Patent Document 1 is only a small piece of 10 mm in diameter ⁇ 70 mm in height (volume 5495 mm 3 ) even for the largest prototype material, and it is difficult to apply as a material of a structure.
  • an object of the present invention is to provide an alloy structure having an arbitrary shape and size with high uniformity of distribution of elemental composition and mechanical strength, and having good high temperature strength and corrosion resistance.
  • the present invention adopts, for example, the configuration described in the claims.
  • FIG. 1 It is a conceptual diagram which shows an example of the process of the manufacturing method of the alloy material which concerns on this embodiment. It is sectional drawing which showed the outline of the metal structure which an alloy structure has.
  • (A) is a cross-sectional view of the alloy structure according to the present embodiment
  • (b) is an enlarged cross-sectional view of part A in (a)
  • (c) is a schematic view of the metal structure of the alloy material according to the comparative example. It is sectional drawing which showed.
  • FIG. 7 is a view showing the shape and dimensions of an alloy structure according to Example 3;
  • FIG. 16 is a compression true stress-compression true strain diagram in the alloy structure according to Example 3.
  • FIG. 18 is a view showing test temperature dependency of tensile strength in the alloy structure according to Example 4. It is a figure which shows the range of the main component which can form a solid solution phase in an alloy structure. It is a figure which shows the shape dimension of the alloy structure which concerns on Example 6.
  • the alloy structure according to the present embodiment is mainly composed of iron (Fe) and at least four other elements (hereinafter sometimes referred to as non-Fe main component elements) that form a solid solution with Fe. It is a metal shaped object which is made of an entropy alloy and formed into a desired shape and dimension by additive manufacturing.
  • This alloy structure contains the non-Fe main component element and the element of Fe at an atomic concentration in the range of 5 at% or more and 30 at% or less for each individual element, and at least four of these elements are It has an elemental composition with substantially equal atomic proportions.
  • the non-Fe main component element and the atoms of Fe form a solid solution phase in which these plural types of elements are solidly dissolved.
  • this alloy structure has high heat resistance, high temperature strength, wear resistance, and corrosion resistance as general properties as a high entropy alloy.
  • this alloy structure has a unique solidified structure formed by additive manufacturing, and has a feature of high uniformity of distribution of elemental composition and mechanical strength.
  • the main crystals substantially consist of a collection of columnar crystals at normal temperature and normal pressure.
  • the presence ratio of columnar crystals is at least 50% or more in an occupied area ratio in any cross section of the solidified structure, and is 90% or more or 95% or more according to the formation condition of the solidified structure in the manufacturing method described later It is also possible.
  • the average crystal grain size of the columnar crystals is 100 ⁇ m or less, and it is also possible to further refine it to 10 ⁇ m or less.
  • the average grain size can be determined according to the method defined in JIS G 0551 (2013).
  • the main crystals of the alloy material structure have a crystal structure of face-centered cubic lattice or body-centered cubic lattice at normal temperature and normal pressure.
  • the composition By selectively designing the composition, it is possible to make the existing ratio of the crystal structure of the face-centered cubic lattice 90% or more or 95% or more in the occupied area ratio in any cross section of the solidified structure.
  • the proportion of the crystal structure of the body-centered cubic lattice can be 90% or more or 95% or more in an occupied area ratio in an arbitrary cross section of the solidified structure.
  • a non-Fe main component element is an element having an atomic number 13 to an atomic number 79 included in Groups 3 to 16 (Group 3A to Group 6B) of the periodic table of elements, and an atomic radius with respect to a Fe atom At least four or more elements are selected from elements other than Fe having a ratio of 0.83 or more and 1.17 or less.
  • non-Fe main component elements specifically, Al, Si, P, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sn, Sb, Te, Ta, W, Re, Os, Ir, Pt, Au can be mentioned.
  • non-Fe main component element it is more preferable to contain an element having a ratio of atomic radius to Fe atom of 0.92 or more and 1.08 or less, and it is more preferable to contain only such an element together with Fe.
  • specific examples of non-Fe main component elements that become main component elements with Fe include Si, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Tc, Ru, Rh, Re, Os, Ir are mentioned.
  • the more preferable non-Fe main component is V, Cr, Mn, Co, Ni, Cu, Ge, Mo, and it is particularly preferable to contain Co, Cr and Ni.
  • the elements of the alloy of the members are used as the alloy of the members of the members of the alloy and the members.
  • CoCrFeNiCuAl, MnCrFeNiAl, MoCrFeNiCu, TiCoCrFeNi, TiCoCrFeNiMo, CoCrFeNiCuAl It can be exemplified MnCrFeNiCu, TiCoCrFeNi, TiCoCrFeNiAl, CoCrFeNiMo, CoCrFeNiAlMo, TiCoCrFeNiCu, CoCrFeNiCuAlMn, TiCoCrFeNiMo, CoCrFeNiCuAlV, TiCoCrFeNiCuVMn, AlTiCoCrFeNiCuVMn, CoCrFeNiCuAlMn, CoCrFeNiAlMo, CoCrFeNiCu
  • the atomic composition (molar ratio of atoms) of each element is an atomic composition in which the atomic concentration is in the range of 5 at% to 30 at%, and at least four elements have substantially equal atomic proportions.
  • Various values can be taken as long as However, when Ti is contained as a component element, Ti should not be a component having the maximum atomic concentration among the component elements, and preferably the atomic concentration per alloy structure is 5 at% or more and less than 10 at%.
  • the alloy structure is allowed to contain elements of non-Fe main component element and Fe, as well as other unavoidable impurities.
  • an element of unavoidable impurities P, Si, S, Sn, Sb, As, Mn, O, N etc. are mentioned, for example.
  • P is preferably 0.005 wt% or less, more preferably 0.002 wt% or less
  • Si is preferably 0.040 wt% or less, more preferably 0.010 wt% or less
  • S is Preferably, the content is 0.002 wt% or less, more preferably 0.001 wt% or less, for Sn preferably 0.005 wt% or less, more preferably 0.002 wt% or less, for Sb preferably 0.002 wt% Or less, more preferably 0.001 wt% or less, As 0.005, preferably 0.005 wt% or less, more preferably 0.001 wt% or less, Mn, preferably 0.050 wt% or less, more preferably 0 Limit to .020 wt% or less.
  • O is preferably 0.001 wt% or less (10 ppm or less), more preferably 0.0003 wt% or less (3 ppm or less), and N is preferably 0.002 wt% or less (20 ppm or less), more preferably Is limited to 0.001 wt% or less (10 ppm or less).
  • concentration of the element need not be limited in this manner.
  • the alloy structure contains a non-Fe main component element and at least four elements of Fe in a substantially equiatomic ratio in the atomic concentration range of 5 at% or more and 23.75 at% or less. At this time, other elements are contained in an atomic concentration range of 5 at% or more and 30 at% or less, and the balance is composed of unavoidable impurities. As described above, when at least four elements are contained in an equiatomic ratio, the mixed entropy term of the free energy is increased, so that the solid solution phase is stabilized.
  • substantially equal atomic ratio means that the difference in atomic concentration is in the range of less than 3 at%.
  • the element type and atomic ratio that constitute the alloy structure can be selected and designed by, for example, determining the enthalpy of formation, the entropy or the Gibbs energy by thermodynamic calculation.
  • the ratio of the atomic concentration of at least four elements contained in equal atomic proportions to the other elements can be appropriately changed within the aforementioned atomic concentration range.
  • the crystal structure of the alloy structure can be changed by changing the ratio of the atomic concentrations of these main component elements, and the mechanical strength, the spreadability, the hardness, the density, and the like can be adjusted.
  • a first principle calculation method a Calphad (Calculation of phase diagrams) method, a molecular dynamics method, a phase-field method, a finite element method or the like can be used in combination as appropriate.
  • the alloy structure contains, for example, Al in an atomic concentration range of 5 at% or more and 30 at% or less, and substantially in an atomic concentration range of 15 at% or more and 23.75 at% or less of Co, Cr, Fe and Ni. It can be set as the elemental composition contained by an equiatomic ratio.
  • the atomic concentration of Al contained in the alloy structure is reduced in the range of 5 at% or more and 30 at% or less, the main phase of the alloy structure can be made to have a crystal structure of face-centered cubic lattice.
  • the main phase of the alloy structure can be made to have a crystal structure of a body-centered cubic lattice.
  • the atomic concentration of Al contained in the alloy structure is 5 at% or more, there is a low possibility that the mechanical strength of the alloy structure is excessively reduced, and on the other hand, the atomic concentration of Al contained in the alloy structure is 30 at. If the content is less than 10%, the main phase of the alloy structure does not easily become an Al-based intermetallic compound, and therefore, the possibility of the ductility of the alloy material being excessively reduced is low.
  • Co is contained substantially at an atomic ratio of 5 at% to 30 at%
  • Al, Co, Fe and Ni are contained in an equiatomic ratio substantially in an atomic concentration range of 15 at% or more and 23.75 at% or less, or 5 at% or more and 30 at% or less of Fe, Al, Co , Cr and Ni in an atomic ratio range of 15 at% or more and 23.75 at% or less substantially, or at least 5 at% or more and 30 at% or less of Ni, and 15 at% or more of Al, Co, Cr, and Fe It is also possible to contain substantially equiatomic proportions in the atomic concentration range of 23.75 at% or less.
  • the alloy structure according to the present embodiment can be manufactured by powder laminate molding using an alloy powder.
  • the method for producing an alloy structure according to the present embodiment includes a powder preparation step of preparing an alloy powder used for layered formation, and a lamination forming step of shaping an alloy structure using the prepared alloy powder.
  • an alloy powder is prepared which contains the same main component and additive elements as the alloy structure to be produced, and has an elemental composition in which the main components are substantially equiatomic.
  • the alloy powder is preferably in the form of a particle assembly in which each powder particle has substantially the same elemental composition as the alloy structure to be produced.
  • a part of the alloy components may be volatilized and lost, so the range of the atomic concentration is set to a high range in consideration of the composition change due to such volatilization. It is also good.
  • a method of producing a metal powder which is conventionally and generally used can be used.
  • an atomizing method in which a molten metal alloy is sprayed with a fluid to be scattered and solidified
  • a crushing method in which a molten metal alloy is solidified and then mechanically crushed, a metal alloy is mixed, and pressure welding and crushing are repeated to form an alloy
  • An appropriate method such as an ingot method, a melt spinning method in which a molten alloy of alloy is caused to flow down on a rotating roll to solidify can be used.
  • the atomizing method is suitable, and the gas atomizing method is more preferably used, and the gas atomizing method performed in an inert gas atmosphere using an inert gas as a fluid is more preferably used.
  • the gas atomizing method it is possible to prepare an alloy powder having high sphericity and less contamination with impurities.
  • the resistance at the time of spreading the alloy powder in lamination molding can be suppressed, so that unevenness of the alloy powder can be reduced.
  • an inert gas the mixing of oxide impurities and the like is suppressed, so that the metal structure of the manufactured alloy material can be made more uniform.
  • the alloy powder can have an appropriate particle diameter according to the melting conditions such as the method of spreading the alloy powder in lamination molding and the output of a heat source for melting the alloy powder.
  • the particle size distribution of the alloy powder is preferably in the range of 1 ⁇ m to 500 ⁇ m. If the particle size of the alloy powder is 1 ⁇ m or more, rolling up and floating of the alloy powder are suppressed, or the oxidation reactivity of the metal is suppressed, thereby reducing the possibility of dust explosion and the like. On the other hand, if the particle diameter of the alloy powder is 500 ⁇ m or less, it is advantageous in that the surface of the solidified layer formed in lamination molding tends to be smooth.
  • FIG. 1 is a conceptual diagram which shows an example of the process of the manufacturing method of the alloy structure which concerns on this embodiment.
  • the layered manufacturing process shown in order from FIG. 1 (a) to (g) is repeatedly performed to perform three-dimensional formation of the alloy structure.
  • the lamination molding process can be carried out using a powder lamination molding apparatus for metal generally used conventionally, and the alloy powder prepared in the powder preparation process is a raw material of such lamination molding process. It is used as a powder.
  • a heating means provided in the layered modeling apparatus for example, one based on an appropriate heating principle such as electron beam heating, laser heating, microwave heating, plasma heating, condensing heating, high frequency heating and the like is used.
  • a lamination molding apparatus by electron beam heating or laser heating is particularly preferable. Electron beam heating or laser heating is relatively easy to control the output of the heat source, the miniaturization of the heated region of the alloy powder, the shaping accuracy of the alloy structure, and the like.
  • the layer forming process includes a powder spreading process and a solidified layer forming process.
  • a layered solidified structure (coagulated layer) is formed through steps shown in FIG. 1A to FIG. 1G sequentially, and formation of the layered solidified structure (coagulated layer) is repeated. , Forming an alloy structure consisting of a set of solidified structures.
  • the layered manufacturing apparatus is provided with a vertically movable piston having a base mounting table 21 at its upper end.
  • a processing table 22 which is not interlocked with the piston is provided around the substrate mounting table 21, and a powder feeder (not shown) for supplying the raw material powder 10 onto the processing table 22 spreads the supplied raw material powder 10.
  • the recoater 23, the heating means 24 for heating the raw material powder 10, an air blast (not shown) for removing the raw material powder 10 on the processing table 22, a temperature controller (not shown) and the like are provided.
  • the processing table 22 and these devices are accommodated in a chamber, and the atmosphere in the chamber is a vacuum atmosphere or an inert gas atmosphere such as argon gas according to the type of the heating means 24 and the atmosphere pressure and temperature are It is supposed to be managed.
  • the base material 15 is previously mounted on the base material mounting table 21 and aligned so that the surface to be molded (upper surface) of the base material 15 and the upper surface of the processing table 22 are flush with each other .
  • the base material 15 Any appropriate material can be used as the base material 15 as long as it has heat resistance to the heating by the heating means 24.
  • the layered structure of the alloy structure is performed on the surface to be formed of the base material 15 to form a shaped object in a state in which the base material 15 and the alloy structure are integrated. It will be obtained. Therefore, as the base material 15, the base material 15 having a suitable shape such as a flat plate can be used on the assumption that it is separated from the alloy structure by a cutting process or the like.
  • the prepared alloy powder 10 is spread on the surface to be shaped. That is, the alloy powder 10 is spread on the base material 15 placed on the layered modeling apparatus in the first powder spreading process in the layered modeling.
  • the spreading of the alloy powder 10 is, as shown in FIG. 1 (b), the alloy powder 10 (see FIG. 1 (a)) supplied on the processing table 22 by a powder feeder (not shown). It can carry out by sweeping so that it may pass on the surface (base material 15), and laying the alloy powder 10 in thin layers.
  • the thickness of the thin layer of the alloy powder 10 formed by spreading can be appropriately adjusted according to the output of the heating means for melting the alloy powder 10, the average particle diameter of the alloy powder 10, etc. Is in the range of about 10 ⁇ m to 1000 ⁇ m.
  • the expanded alloy powder 10 is locally heated and melted and then solidified, and the solidified layer is obtained by scanning the heated region by the local heating with respect to the plane on which the alloy powder 10 is expanded.
  • Shape 40 According to two-dimensional shape information obtained from three-dimensional shape information (such as 3D-CAD data) representing the three-dimensional shape of the alloy structure to be manufactured, the formation of the solidified layer 40 (see FIG. It is carried out by scanning the heated region by the heating means 24.
  • the two-dimensional shape information virtually divides the three-dimensional shape of the alloy structure to be manufactured by a predetermined thickness interval and virtually specifies the shape of each thin layer when divided into a plurality of thin layer groups. It is information. According to such two-dimensional shape information, a solidified layer 40 having a predetermined two-dimensional shape and thickness is formed.
  • the local heating of the alloy powder 10 is carried out by limiting the heated region on the spread alloy powder 10 by the heating means 24 as shown in FIG. This is performed by selectively melting the part so that a minute molten pool (melting part 20) is formed.
  • the size of the molten portion 20 formed by melting the alloy powder 10 is preferably 1 mm or less in diameter.
  • the region to be heated by the local heating of the alloy powder 10 is scanned so as to move parallel to the surface to be shaped, as shown in FIG. 1 (d).
  • the scanning of the heated region can be performed by scanning the irradiation spot of the heat source with a galvano mirror or the like in addition to scanning of the main body of the heating means 24, and it is performed by an appropriate method such as raster scanning.
  • overlap scanning with a plurality of radiation sources may be performed to flatten the irradiated energy density.
  • the molten portion 20 is cooled and solidified under the ambient temperature.
  • the solidified portion 30 formed by the solidification of the molten portion 20 forms a dense aggregate of the solidified portion 30 while being integrated with the base material and the solidified portion 30 already formed.
  • the scanning speed, output, energy density and scanning width of the heating means 24 are estimated from the elemental composition of the alloy powder 10, the particle size distribution, the material of the base 15, the positional relationship between the melting portion 20 and the solidification portion 30, chamber temperature etc. It may be adjusted appropriately based on heat conduction and heat radiation. Further, the cooling temperature for cooling the molten portion 20 may be set in consideration of dimensional change, thermal strain and the like according to the elemental composition of the alloy structure. By performing scanning while maintaining the size of the melting portion 20, the melting rate, the cooling rate, the time interval of melting and cooling, etc. in a predetermined range, the strength distribution of the shaped alloy structure is made uniform, It is possible to reduce residual stress and surface roughness.
  • melting and solidification of the alloy powder 10 are repeated on the base material 15 placed on the base material placement table 21 to form a set of solidification parts 30.
  • a solidified layer 40 having a predetermined two-dimensional shape and thickness is formed.
  • the base material mounting table 21 is solidified The height is lowered corresponding to the thickness of the layer 40 so that the new surface to be shaped of the upper surface of the solidified layer 40 is flush with the upper surface of the processing table 22.
  • the powder spreading process is performed in the same manner as in FIGS. 1 (a) to 1 (b), and as shown in FIG. 1 (g), a new surface is formed on the upper surface of the solidified layer 40 already formed.
  • the supplied alloy powder 10 is spread.
  • the solidified layer shaping step is performed, and the solidified layer 40 of the next layer is laminated.
  • the solidified portion 30 to be laminated is integrated with a part of the lower solidified layer 40 to be densely sintered.
  • the powder spreading process and the solidified layer forming process with the upper surface of the formed solidified layer 40 as a surface to be shaped can be repeated to laminate and model the alloy structure having a desired shape and size.
  • shape forming processing and surface processing of the solidified portion 30 to the solidified layer 40 can be performed in a high temperature state until the solidified portion 30 is formed after the alloy powder 10 is melted. .
  • Such processing is performed, for example, in a metal or an alloy in a state where the surface temperature of the molten portion 30 to the solidified portion 40 is about 500 ° C. or higher, preferably 50% to 75% of the melting point (Tm) of the alloy. It can be carried out by processing using a tool made of an inorganic or inorganic composite material such as a diamond powder, an intermetallic compound powder, or a powder compact of tungsten carbide or the like. By such processing, it is possible to form or decorate an alloy structure that is difficult to work into a shape with higher precision.
  • a hot isostatic pressing (HIP) treatment may be separately performed on the alloy structure layered and shaped by repeating the powder spreading step and the solidified layer shaping step.
  • HIP hot isostatic pressing
  • the solidified structure of the alloy structure may be made more compact or defects of the solidified structure may be removed in some cases.
  • each elemental composition of the minute solidified structure (solidified portion 30) well reflects the elemental composition of the used alloy powder, so uniformity of elemental composition distribution and uniformity of mechanical strength distribution A high solid solution phase can be formed. Furthermore, since the solidified structure (solidified portion 30) is formed by heating from one direction, and the solidified structure (solidified layer 40) in which the crystal growth direction is oriented in substantially one direction can be stacked, the anisotropy is high. An alloy structure can be formed.
  • FIG. 2 is a cross-sectional view schematically showing the metal structure of the alloy structure.
  • (A) is a cross-sectional view of the alloy structure according to the present embodiment,
  • (b) is an enlarged cross-sectional view of part A in (a)
  • (c) is a schematic view of the metal structure of the alloy material according to the comparative example. It is sectional drawing which showed.
  • the alloy structure 1 has a metal structure derived from the above-described manufacturing method by lamination molding, and a solidified structure (solidified structure formed by solidification of a melted alloy) It consists of a set of parts 30).
  • a part of the alloy structure manufactured by lamination molding is extracted, and the cross section is shown.
  • Each solidified structure (solidified portion 30) has a substantially hemispherical original shape derived from the contour shape of the molten pool (melted portion 20) by local heating, and is integrated with other solidified portions 30 in the periphery. It forms a fine metal structure.
  • the solidified portions 30 are arranged in a two-dimensional manner, with the arc side facing in the same direction, so that a layered solidified layer 40 formed of a set of solidified portions 30 is formed. Then, by laminating a large number of solidified layers 40 formed in this manner, a metal structure in which solidified portions 30 are three-dimensionally arranged is formed.
  • the solidified portion 30 forming the solidified layer 40 may be integrated with other solidified portions 30 around the same layer, or the chord side of each solidified portion 30 Because it may be integrated with the other solidified layer 40 laminated, the substantially hemispherical original shape of the solidified portion or the melting boundary 100 between the solidified portions 30 may not be observed in the solidified structure. .
  • the alloy structure 1 uses as main crystals columnar crystals in which non-Fe main component elements and Fe are solid-solved.
  • FIG. 2B the cross section of the metallographic structure of the alloy structure is shown enlarged to a viewing angle of several hundred ⁇ m to several mm.
  • Each crystal grain 50 contained in the metal structure of the alloy structure grows epitaxially with the crystal orientation substantially along the stacking direction of the solidified layer 40, and the grain boundary 110 (high angle grain boundary) is oriented in the stacking direction A structure is produced which extends beyond the melting boundary 100 between the solidified portions 30 while being oriented.
  • Each crystal grain 50 may be refined to an average crystal grain size of 10 ⁇ m or less.
  • the refined crystal grains 50 maintain the crystal orientation, and the low angle grain boundary 120 may be observed inside the area divided into the high angle grain boundaries 110.
  • the low angle grain boundary 120 is defined as a grain boundary with a tilt angle of 15 ° or less
  • the high angle grain boundary 110 is defined as a grain boundary with a tilt angle of 15 ° or more.
  • the refined crystal grains 50 tend to be an aggregation of crystal grains having a small twist angle as well as a tilt angle.
  • the conventional high entropy alloy material (the alloy material according to the comparative example) has a metal structure derived from the manufacturing method by casting.
  • the alloy material according to the comparative example as shown in FIG. 2C, isotropically extending grain boundaries 110 are recognized, and coarse equiaxed crystal grains having an average crystal grain size exceeding 100 ⁇ m are formed.
  • the cross section of the metallographic structure of the alloy material is enlarged and shown at a viewing angle of several hundred ⁇ m to several mm.
  • the alloy material according to the comparative example segregation is likely to occur as the nuclei grow, the uniformity of the composition distribution is lowered, or the crystal grains are coarse, so that the stress is difficult to be dispersed, and the surface causing cleavage or slip is long As a result, the mechanical strength is not sufficient.
  • the solid solution phase can not grow well, there is a problem that the size is small and a complicated shape can not be formed.
  • the alloy structure according to the present embodiment since crystals having relatively uniform crystal orientation are epitaxially grown, and consist of aggregates of crystal grains 50 grown favorably in the same environment, the alloy powder is adjusted The elemental composition thus obtained is easily maintained regardless of the shape and size of the alloy structure, and the uniformity of the composition distribution is enhanced.
  • the crystal grains 50 are miniaturized, strain due to stress is not easily concentrated locally, and the uniformity of mechanical strength is enhanced.
  • the surface which produces cleavage and slip becomes short, it is advantageous at the point which mechanical strength improves.
  • the crystal growth direction is oriented and anisotropy is increased, it is also effective in using direction strength and magnetic characteristics.
  • FIG. 3 is a schematic flow chart showing an example of a method of producing an alloy powder used as a raw material of an alloy structure.
  • the various properties of the alloy structure according to the present embodiment are likely to reflect the influence of the elemental composition of the alloy powder used in additive manufacturing. Therefore, it is preferable to make the alloy powder used as a raw material into an elemental composition in which the concentration of unavoidable impurities is reduced, and as a method of manufacturing the alloy powder, vacuum carbon deoxidation capable of manufacturing an alloy with high cleanliness. It is a preferable form to use a manufacturing method by complex refining using a method.
  • the manufacturing method of the alloy powder shown in FIG. 3 is that the degree of cleanliness is improved by performing out-of-core refining using a ladle and using the crude metal as the raw metal for the composite smelting using a vacuum carbon deoxidation method. It is a method of refining a high alloy and preparing an alloy powder using the alloy, which is a method which can be applied as a process of preparing the above-mentioned alloy powder.
  • the electric furnace 301 performs a melting process to melt the metal lump 302 of the rough metal which is a raw material of the alloy powder.
  • the electric furnace 301 is a three-phase AC arc furnace including an electrode 304 such as a carbon electrode for generating arc discharge in the furnace and an oxygen burner 305 for blowing oxygen gas into the furnace.
  • an electrode 304 such as a carbon electrode for generating arc discharge in the furnace
  • an oxygen burner 305 for blowing oxygen gas into the furnace.
  • the metal mass 302 metal scraps, scrap metal, etc. can be used. It is preferable that the type of the metal mass 302 be blended so as to have an elemental composition compatible with the alloy powder to be manufactured, and that a type with few impurity elements be selected in advance. If it is not contained as a non-Fe main component, the kind should be selected so that the range is 0.005 wt% or less for Sn, 0.002 wt% or less for Sb, and 0.005 wt% or less for As. preferable.
  • the metal block 302 is placed in the furnace of the electric furnace 301, and an arc discharge 303 is generated between the electrode 304 and the metal block 302, thereby forming the metal block 302. Is melted and made into molten metal 310.
  • the oxygen gas 306 is blown into the molten metal 310 by the oxygen burner 305 to perform a peroxidation treatment to form a slag.
  • impurity elements such as Si, Mn, and P contained in the molten metal 310 can be transferred as oxides into the slag.
  • the molten metal 310 is discharged from the outlet port 308 of the electric furnace 301 and transferred to the ladle 309 as shown in FIG. 3 (c).
  • the slag containing a large amount of impurity elements floated on the liquid surface of the molten metal 310 separates the molten metal 310 and the slag so as not to transfer to the ladle 309, and the concentration of impurity elements such as Si, Mn, P etc.
  • a reduced melt 310 is obtained.
  • the molten metal 310 is tapped from the bottom of the ladle 309 and transferred to the ladle refining furnace 311.
  • the ladle smelting furnace 311 has a porous plug 313 at the bottom, and argon bubbling is performed by supplying argon gas 314 from the gas supply unit (not shown) into the furnace through the porous plug 313. There is.
  • argon bubbling the molten metal 310 transferred to the ladle smelting furnace 311 is homogenized by stirring, and impurity elements such as O and N are degassed.
  • the primary heat treatment of the molten metal 310 is performed.
  • the molten metal 310 transferred to the ladle smelting furnace 311 is heated by generating an arc discharge with the electrode 304 and continuously performing bottom bubbling argon bubbling through the porous plug 313, thereby the elemental component and the temperature are reduced. It can be made uniform.
  • the molten metal 310 is degassed using a vacuum degassing apparatus 316.
  • the inside of the vacuum degassing apparatus 316 is depressurized through an exhaust hole 317 to which a vacuum pump (not shown) is connected, and the molten metal 310 is sucked by moving relative to the ladle refining furnace 311 up and down. , And the apparatus for degassing the gas contained in the molten metal 310.
  • DH vacuum degassing furnace (Dortmund Hoerde type) having one immersion pipe as the vacuum degassing apparatus 316, the shroud without the immersion pipe is made of a ladle It may be in the form of covering the furnace 311, or it may be in the form of RH vacuum degassing furnace (Ruhrstahl Heraeus type) or RH injection furnace.
  • the gas of the impurity element degassed from the molten metal 310 can be efficiently exhausted by performing argon bubbling while reducing the gas phase atmosphere in the apparatus by the vacuum degassing apparatus 316. it can.
  • the molten metal 310 is heated by a heater (not shown) to prevent a decrease in temperature, and a powder for desulfurization is appropriately injected into the molten metal 310.
  • a heater not shown
  • the molten metal 310 in which the concentration of impurity elements such as S, O, H and the like is reduced can be obtained.
  • the secondary heat treatment of the molten metal 310 is performed.
  • the elemental composition and temperature of the molten metal 310 are finally adjusted.
  • the molten metal 310 of the ladle refining furnace 311 is subjected to a casting process.
  • the molten metal 310 is discharged from the bottom of the ladle refining furnace 311 and transferred to the tundish 318, and the impurity element is separated as slag in the tundish 318.
  • the molten metal 310 is poured from the bottom of the tundish 318 and poured into a mold 321 installed in the vacuum vessel 319.
  • a vacuum pump (not shown) is connected to the vacuum vessel 319 via the exhaust hole 320 so that the inside of the vessel in which the mold 321 is installed is made into a reduced pressure atmosphere.
  • an alloy block 322 having an arbitrary shape is cast.
  • an alloy in which the concentration of impurity elements such as N, O and H is reduced can be obtained.
  • the alloy refined by the above method can be used as a metal for preparing an alloy powder used in a powder preparation process.
  • the composite smelting using vacuum carbon deoxidation method results in an alloy with high purity in which the concentration of impurity elements is reduced, so that it is composed of particles with high uniformity of the elemental composition distribution, and the elemental composition between particles is The uniformity is also suitable for preparing an alloy powder with high uniformity. From the viewpoint of maintaining the cleanliness of the alloy refined in this manner, it is preferable to perform powdering treatment using a vacuum carbon deoxidation method when preparing the alloy powder.
  • the powderization process using a vacuum carbon deoxidation method can be performed using a vacuum furnace 324 to which a gas atomizer is directly connected as shown in FIG. 3 (i).
  • the vacuum furnace 324 is an electric furnace provided with an electrode 304 for generating arc discharge in the furnace, a gas injection lance (not shown) for blowing argon gas into the furnace, and an exhaust hole (not shown) to which a vacuum pump is connected. Be done.
  • a nozzle 328 is provided, and below the nozzle 328, an atomizing chamber 330 is provided so as to airtightly cover the outlet of the nozzle 328.
  • a gas injection hole 329 for blowing an inert gas such as argon gas to the molten metal 326 flowing down from the nozzle 328 is provided.
  • the alloy obtained by the complex refining described above is introduced into the furnace, and an arc discharge is generated between the electrode 304 and the alloy to form a molten metal 326 of the alloy.
  • the temperature of the molten metal 326 heated is a temperature range which exceeds 1600 degreeC and is 2500 degrees C or less.
  • the molten metal 326 is degassed while performing argon bubbling under a reduced pressure atmosphere by a vacuum pump connected to an exhaust hole (not shown), and the concentration of impurity elements such as N, O and H is further reduced. .
  • the molten metal 326 in a degassed state and in which the cleanliness is maintained flows downward from the nozzle 328.
  • the molten metal 328 which has flowed down is atomized by spraying an inert gas jetted from the gas injection holes 329 and solidified in the atomizing chamber 330 to be a powder 331 and accumulated at the bottom.
  • the vacuum furnace 324 may be a heat-resistant and refractory heating furnace so as to melt a high entropy alloy having a relatively high melting point, and the furnace wall may be a water-cooled type or the like.
  • a furnace wall of the vacuum furnace 324 for example, graphite (graphite), quartz (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), Al 2 O 3 ⁇ SiO 2 ⁇ Fe 2 O 3 ⁇ Na 2
  • Al 2 O 3 ⁇ MgO ⁇ SiO 2 ⁇ magnesia ceramics consisting of a mixture sintered body such as CaO ⁇ Fe 2 O 3, Al 2 O 3 ⁇ MgO ⁇ ZrO 2 ⁇ SiO 2 ⁇ CaO ⁇ Fe 2 O 3 ⁇ TiO 2 zirconia comprising a mixed sintered body such as Ceramics, spinel-like ceramics composed of mixed sintered bodies of Al 2 O 3 ⁇ MgO ⁇ SiO 2 ⁇ CaO ⁇ Fe 2 O 3 etc.
  • siliceous ceramics consisting of Al 2 O 3 ⁇ SiO 2 ⁇ Fe 2 O 3 ⁇ TiO 2 mixed sintered body such as.
  • carbides such as TiC, ZrC, HfC, NbC, TaC and the like.
  • FIG. 4 is a diagram showing an example of the change in concentration of impurity elements in an alloy powder prepared using a vacuum carbon deoxidation method.
  • the period B3 corresponding to f) and corresponding to the elapsed time 6.5 h to 8.2 h corresponds to the secondary heat treatment (see FIG. 3 (g)) in the ladle smelting furnace 311, and the elapsed time 8.
  • the C period corresponding to 2 h or later corresponds to the degassing process (see FIG. 3I) in the vacuum furnace 324.
  • P, Si, S, Sn, Sb, As, and the like can be appropriately adjusted by appropriately adjusting the number of times of slag separation, the time of degassing treatment, and the like in the process of preparing the alloy powder using the vacuum carbon deoxidation method. It is possible to limit the concentration of impurity elements such as Mn, O and N to a desired range. In addition, when the element of P, Si, Sn, Sb, As or Mn is contained in the alloy structure as a non-Fe main element, the metal is selected in anticipation of the concentration decrease in the refining process, or slag The number of separations may be adjusted as appropriate.
  • the alloy structure according to the present embodiment described above can be applied as a structural member, a mechanical member, and the like.
  • the shape can be any shape within the layer-formable range, and the length dimension can exceed 70 mm and the volume can exceed 5495 mm 3 . It can be used for applications in severe environments such as high temperature environments, high radiation dose environments, and highly corrosive environments as well as applications in ordinary environments.
  • the invention can be suitably used for applications which are left in a high temperature environment for a long time.
  • the present invention includes, for example, structural materials for plants including casings, pipes, valves, etc., structural materials for generators, structural materials for nuclear reactors, structural materials for aerospace, members for hydraulic equipment, turbine blades, etc.
  • the present invention can be used for applications such as members for turbines, members for boilers, members for engines, members for nozzles, mechanical members for bearings, pistons, and the like.
  • the alloy structure according to the present embodiment is applied so as to cover the surface of a structure made of metal or alloy, such as a structural member or a mechanical member, whereby a heat resistant coating, a corrosion resistant coating, a wear resistant coating, It can also be used as a diffusion barrier layer or the like that serves as a barrier to atomic diffusion.
  • FSW Frition Stir welding
  • ferrous material which high high temperature strength and abrasion resistance are required for. It can be suitably used.
  • alloy structures according to Examples 1-1 to 1-4 and Examples 2-1 to 2-3 are manufactured, and observation of solidified structure, distribution of elemental composition, mechanical The characteristics were evaluated.
  • alloy structures according to Comparative Examples 1-1 to 1-4 and Comparative Examples 2-1 to 2-4 were manufactured and evaluated together.
  • Example 1-1 As Example 1-1, an alloy structure having an elemental composition represented by Al 0.3 CoCrFeNi was manufactured by lamination molding.
  • the atomic concentration ratio is about 7 at% of Al and about 23.3 at% of Co, Cr, Fe, and Ni.
  • an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al of about 7 at% and an atomic concentration of Co, Cr, Fe, and Ni of about 23.3 at% as a base metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to the range of 50 ⁇ m to 100 ⁇ m, and the volume-based average particle size was about 70 ⁇ m.
  • the layered structure forming apparatus was used to form an alloy structure on the substrate.
  • the electron beam fusion lamination molding apparatus "A2X” (made by Arcam) which made the heat source the electron beam was used.
  • a cylindrical alloy structure having a diameter of 10 mm and a height of 50 mm was manufactured by repeatedly performing a powder spreading process and a solidified layer forming process on a base material in a vacuum atmosphere. At this time, melting of the alloy powder was performed while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy in advance to suppress scattering of the spread alloy powder. The alloy structure was then separated from the substrate.
  • Embodiment 1-2 As Example 1-2, an alloy structure having an elemental composition represented by AlCoCrFeNi was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • Example 1-2 The alloy structure according to Example 1-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used to prepare the alloy powder was changed.
  • Comparative Example 1-1 As Comparative Example 1-1, an alloy structure having an elemental composition represented by Al 0.3 CoCrFeNi was manufactured by casting. The atomic concentration ratio is about 7 at% of Al and about 23.3 at% of Co, Cr, Fe, and Ni.
  • an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al of about 7 at% and an atomic concentration of Co, Cr, Fe, and Ni of about 23.3 at% as a base metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to the range of 50 ⁇ m to 100 ⁇ m, and the volume-based average particle size was about 70 ⁇ m.
  • the obtained alloy powder is put into an alumina crucible, melted by high frequency induction heating in a vacuum atmosphere, poured into a water-cooled mold made of copper, cooled and solidified to obtain a diameter.
  • a cylinder-shaped alloy structure of 10 mm and 50 mm in height was manufactured.
  • Comparative Example 1-2 As Comparative Example 1-2, an alloy structure having an elemental composition represented by Al 0.2 CoCrFeNi was manufactured by lamination molding. The atomic concentration ratio is about 4.8 at% for Al and about 23.8 at% for Co, Cr, Fe and Ni.
  • the alloy structure according to Comparative Example 1-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used to prepare the alloy powder was changed.
  • Embodiment 1-3 As Example 1-3, an alloy structure having an elemental composition represented by Al 1.5 CoCrFeNi was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentration of Al is about 27.2 at%, and the atomic concentrations of Co, Cr, Fe and Ni are about 18.2 at%.
  • an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al of about 27.2 at% and an atomic concentration of Co, Cr, Fe, and Ni of about 18.2 at% as a base metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 20 ⁇ m to 50 ⁇ m, and the volume-based average particle size was about 30 ⁇ m.
  • the laminate molding apparatus was used to model the alloy material on the base material.
  • a base material carbon steel "S45C” for cylinder-like machine structure for diameter 10 mm and height 50 mm was used.
  • the laser fusion lamination molding apparatus "EOSINT M270" (made by EOS company) which made the heat source the laser beam was used.
  • EOSINT M270 made by EOS company
  • a 200 ⁇ m multilayer film-like alloy material was manufactured by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a nitrogen atmosphere.
  • Comparative Example 1-3 As Comparative Example 1-3, an alloy structure having an elemental composition represented by AlCoCrFeNi was produced by thermal spraying.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • each metal powder of Al, Co, Cr, Fe and Ni was mixed such that the atomic concentration of Al, Co, Cr, Fe and Ni was about 20.0 at%.
  • each metal powder was classified, and while limiting particle diameter distribution to the range of 50 micrometers or more and 150 micrometers or less, it was made for the average particle diameter on a volume basis to be about 70 micrometers.
  • the mixed metal powder was sprayed onto the base material by plasma spraying under a nitrogen atmosphere to produce a 200 ⁇ m film-like alloy structure.
  • a base material carbon steel "S45C" for machine-structure-use cylindrical shape with a diameter of 100 mm and a height of 10 mm was used.
  • Comparative Example 1-4 As Comparative Example 1-4, an alloy structure having an elemental composition represented by Al 2.0 CoCrFeNi was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentration of Al is about 33.3 at%, and the atomic concentrations of Co, Cr, Fe, and Ni are about 16.7 at%.
  • the alloy structure according to Comparative Example 1-4 was manufactured in the same manner as Example 1-2 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • Embodiment 1-4 As Example 1-4, an alloy structure whose elemental composition is represented by AlCoCrFeNiMo 0.5 was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 18.2 at% and the atomic concentration of Mo is about 9.1 at%.
  • an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al, Co, Cr, Fe and Ni of about 18.2 at% and an atomic concentration of Mo of about 9.1 at% as a base metal. . Then, the obtained alloy powder was classified, and the particle size distribution was limited to the range of 50 ⁇ m to 100 ⁇ m, and the volume-based average particle size was about 70 ⁇ m.
  • the layered structure forming apparatus was used to form an alloy structure on the substrate.
  • a base material a cylindrical carbon steel for machine structure "S45C” with a diameter of 300 mm and a height of 10 mm was used.
  • the electron beam fusion lamination molding apparatus "A2X” (made by Arcam) which made the heat source the electron beam was used.
  • the layered molding apparatus manufactured a substantially cylindrical impeller-shaped alloy structure having a diameter of 300 mm and a height of 100 mm by repeatedly performing a powder spreading process and a solidified layer forming process on a base material in a vacuum atmosphere. . At this time, melting of the alloy powder was performed while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy in advance to suppress scattering of the spread alloy powder. Thereafter, the impeller-shaped alloy structure was separated from the substrate.
  • Tm melting point
  • Example 2-1 As Example 2-1, an alloy structure represented by Al 0.3 CoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by lamination molding.
  • the atomic concentration ratio is about 7 at% of Al and about 23.3 at% of Co, Cr, Fe, and Ni.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • Example 2-1 The alloy structure according to Example 2-1 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • Embodiment 2-2 As Example 2-2, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • Example 2-2 The alloy structure according to Example 2-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • Comparative Example 2-1 As Comparative Example 2-1, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by casting.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • the alloy structure according to Comparative Example 2-1 was manufactured in the same manner as Comparative Example 1-1 except that the composition of the base metal used for preparing the alloy powder was changed.
  • Comparative Example 2-2 As Comparative Example 2-2, an alloy structure having an elemental composition represented by Al 0.2 CoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by casting.
  • the atomic concentration ratio is about 4.8 at% for Al and about 23.8 at% for Co, Cr, Fe and Ni.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • the alloy structure according to Comparative Example 2-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • Example 2-3 As Example 2-3, an alloy structure represented by Al 1.5 CoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentration of Al is about 27.2 at%, and the atomic concentrations of Co, Cr, Fe and Ni are about 18.2 at%.
  • the concentration of P is 0.005 wt% or less
  • the concentration of Si is 0.040 wt% or less
  • the concentration of S is 0.002 wt% or less
  • the concentration of Sn is 0.005 wt% or less
  • the concentration of Sb is 0.002 wt%
  • the concentration of As was limited to 0.005 wt% or less
  • the concentration of Mn to 0.050 wt% or less the concentration of O to 0.001 wt% or less
  • the concentration of N to 0.002 wt% or less.
  • the atomic concentration of Al is about 27.2 at%
  • the atomic concentrations of Co, Cr, Fe and Ni are about 18.2 at%
  • the concentration of P is 0.005 wt% or less
  • the concentration of Si is 0.040 wt%
  • the concentration of S is 0.002 wt% or less
  • the concentration of Sn is 0.005 wt% or less
  • the concentration of Sb is 0.002 wt% or less
  • the concentration of As is 0.005 wt% or less
  • the concentration of Mn is 0.050 wt%
  • an alloy powder was prepared by gas atomization using an alloy in which the concentration of O was limited to 0.001 wt% or less and the concentration of N to 0.002 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 20 ⁇ m to 50 ⁇ m, and the volume-based average particle size was about 30 ⁇ m.
  • the laminate molding apparatus was used to model the alloy material on the base material.
  • a base material carbon steel "S45C” for machine-structure-use cylindrical shape with a diameter of 100 mm and a height of 10 mm was used.
  • the laser fusion lamination molding apparatus "EOSINT M270" (made by EOS company) which made the heat source the laser beam was used.
  • EOSINT M270 made by EOS company
  • a 200 ⁇ m multilayer film-like alloy material was manufactured by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a nitrogen atmosphere.
  • Comparative Example 2-3 As Comparative Example 2-3, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by thermal spraying.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • the atomic concentration of Al, Co, Cr, Fe and Ni is about 20.0 at%
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt%
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt% or less
  • the concentration of As is 0.001 wt% or less
  • the concentration of Mn is 0.020 wt% or less
  • the concentration of O is 0.0003 wt%
  • metal powders of Al, Co, Cr, Fe and Ni in which the concentration of N is limited to 0.001 wt% or less were mixed.
  • each metal powder was classified, and while limiting particle diameter distribution to the range of 50 micrometers or more and 150 micrometers or less, it was made for the average particle diameter on a volume basis to be about 70 micrometers.
  • the mixed metal powder was sprayed onto the base material by plasma spraying under a nitrogen atmosphere to produce a 200 ⁇ m film-like alloy structure.
  • a base material carbon steel "S45C" for machine-structure-use cylindrical shape with a diameter of 100 mm and a height of 10 mm was used.
  • Comparative Example 2-4 As Comparative Example 2-4, an alloy structure in which the elemental composition was expressed as Al 2.0 CoCrFeNi and in which the concentration of unavoidable impurities was limited was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentration of Al is about 33.3 at%, and the atomic concentrations of Co, Cr, Fe, and Ni are about 16.7 at%.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • the alloy structure according to Comparative Example 2-4 was manufactured in the same manner as Example 2-2 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • SEM-EDX scanning electron microscope-energy dispersive X-ray spectroscopy
  • the results of the observation of the solidified structure, the analysis of the nickel concentration distribution, and the hardness measurement are shown in Table 1.
  • the column of element composition in Table 1 indicates the atomic concentration ratio of the main component element to the additive element.
  • indicates an example in which the unavoidable impurities are not limited, an example in which “-” slightly restricts the inevitable impurities, and “-” indicates an example in which the inevitable impurities are more restricted.
  • the column of "Crystal structure” indicates the crystal structure of the main crystal. “*” In the “hardness” column indicates that a crack has occurred.
  • the alloy structures according to Examples 1-1 to 1-4 and Examples 2-1 to 2-3 have the crystal structure or body-centered cubic lattice of the face-centered cubic lattice. It was confirmed to have any of the crystal structures of Further, it is understood from the values of the nickel concentration distribution and the hardness that the standard deviation is small and the uniformity of the distribution of the elemental composition and the mechanical strength is high. Further, from the observation of the solidified structure, a solidified structure and a crystal structure as shown in FIGS. 2 (a) and 2 (b) were confirmed.
  • the values of the nickel concentration distribution and the hardness have a large standard deviation, and the elements It can be seen that the uniformity of the composition and the distribution of mechanical strength is low. In addition, it was recognized that the crystal structure reflects the low uniformity of the elemental composition, and a multiphase structure is formed. In particular, when the atomic concentration of Al is lowered, the hardness remains lower than that of mild steel, and it has been found that it is unsuitable as a structural member, a mechanical member or the like. In addition, when the atomic concentration of Al was increased, a B2 type intermetallic compound was formed, and a crack was generated at the time of the test, which proved to be unsuitable as a structural member, a mechanical member or the like.
  • Example 3-1 and Example 3-2 were manufactured, and stress-strain characteristics were evaluated.
  • FIG. 5 is a view showing the shape and dimensions of the alloy structure according to the third embodiment.
  • Example 3-1 As Example 3-1, an alloy structure shown in FIG. 5 in which the elemental composition is expressed as AlCoCrFeNi and the concentration of unavoidable impurities is limited was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • the atomic concentration of Al is about 7 at%
  • the atomic concentrations of Co, Cr, Fe and Ni are about 23.3 at%
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt% or less
  • the concentration of As is 0.001 wt% or less
  • the concentration of Mn is 0.020 wt% or less
  • An alloy powder was prepared by gas atomization using an alloy in which the concentration of O was limited to 0.0003 wt% or less and the concentration of N to 0.001 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 45 ⁇ m to 105 ⁇ m, and the volume-based average particle size was about 70 ⁇ m.
  • the laminate molding apparatus was used to model the alloy material on the base material.
  • a plate-like carbon steel for machine structure "S45C” of 200 mm ⁇ 200 mm ⁇ 10 mm was used.
  • the electron beam fusion lamination molding apparatus "A2X” made by Arcam which made the heat source the electron beam was used.
  • a plate-shaped object of 150 mm ⁇ 150 mm ⁇ 30 mm (a plate-like structure (plate shape) as shown in FIG. 5 by repeatedly performing a powder spreading step and a solidified layer forming step on a substrate under a vacuum atmosphere.
  • Parts were formed, and a total of 16 28 mm ⁇ 28 mm ⁇ 20 mm rectangular parallelepiped shaped objects (rectangular parallelepiped parts) were formed at intervals of 6 mm in length and width.
  • melting of the alloy powder was carried out while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy powder in advance to suppress scattering of the spread alloy powder.
  • Tm melting point
  • the volume of the whole modeling thing was 925880 mm 3 .
  • Example 3-2 As Example 3-2, an alloy structure shown in FIG. 5 in which the elemental composition is represented by AlCoCrFeNi and the concentration of unavoidable impurities is not limited was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the alloy structure according to Example 3-2 was manufactured in the same manner as Example 3-1 except that the composition of the base metal used to prepare the alloy powder was changed.
  • the concentration of unavoidable impurities in the alloy powder is 0.008 wt% of P, 0.040 wt% of Si, 0.012 wt% of S, and 0.006 wt% of Sn.
  • the concentration was 0.002 wt%
  • the concentration of As was 0.006 wt%
  • the concentration of Mn was 0.300 wt%
  • the concentration of O was 0.002 wt%
  • the concentration of N was 0.003 wt%.
  • Example 3-1 and Example 3-2 analysis of nickel concentration distribution was performed.
  • the analysis of nickel concentration distribution was arbitrarily extracted by a scanning electron microscope-energy dispersive X-ray detector (SEM-EDX) 10 for each of a total of 16 rectangular parallelepiped parts. It carried out by measuring nickel concentration about the field of a part.
  • Table 2 shows the results of the average value and standard deviation of the Ni concentration distribution for a total of 16 rectangular parallelepiped parts.
  • test piece was extract
  • the test piece is a dumbbell-shaped test piece whose major axis is the stacking direction in the alloy structure, which is cut out from each rectangular parallelepiped portion to the plate-like portion, and the size of the parallel portion is 4 mm in diameter ⁇ 30 mm in height. It was.
  • the measurement results of the compression true stress-compression true strain diagram at room temperature are shown in FIG. 6 as an average for a total of 16 rectangular portions.
  • FIG. 6 is a compression true stress-compression true strain diagram in the alloy structure according to the third embodiment.
  • Example 3-1 and Example 3-2 the variation of the true stress-true strain diagram is hardly recognized in any of Example 3-1 and Example 3-2, and the line width diagram shown in FIG. 6 is drawn. did it. That is, in the alloy structure having a volume about 160 times or more larger than that of the alloy material shown in Non-Patent Document 2, it has been confirmed that the uniformity of the mechanical characteristics is enhanced over the entire region of the shaped object.
  • the tensile strength is about 2800 MPa and the total elongation is about 38% in Example 3-2
  • the tensile strength is about 3850 MPa and the total elongation is about 43% in Example 3-1. It can be seen that the strength is about 1.37 times and the total elongation is about 1.1 times. Therefore, it is recognized that mechanical properties can be further improved by reducing the concentration of unavoidable impurities.
  • Example 4-1 As Example 4-1, an alloy structure represented by AlCoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt%
  • the concentration of As was limited to 0.001 wt% or less
  • the concentration of O to 0.0003 wt% or less
  • the concentration of N to 0.001 wt% or less.
  • the atomic concentration of Al is about 7 at%
  • the atomic concentrations of Co, Cr, Fe and Ni are about 23.3 at%
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • the concentration of S is 0.001 wt% or less
  • the concentration of Sn is 0.002 wt% or less
  • the concentration of Sb is 0.001 wt% or less
  • the concentration of As is 0.001 wt% or less
  • the concentration of Mn is 0.020 wt% or less
  • An alloy powder was prepared by gas atomization using an alloy in which the concentration of O was limited to 0.0003 wt% or less and the concentration of N to 0.001 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 45 ⁇ m to 105 ⁇ m, and the volume-based average particle size was about 70 ⁇ m.
  • the layered structure forming apparatus was used to form an alloy structure on the substrate.
  • a plate-like carbon steel for machine structure "S45C” of 200 mm ⁇ 200 mm ⁇ 10 mm was used.
  • the electron beam fusion lamination molding apparatus "A2X” (made by Arcam) which made the heat source the electron beam was used.
  • the dumbbell-shaped test piece whose horizontal axis is the stacking direction of the solidified layer is formed as an alloy structure did.
  • the dumbbell-shaped test piece was shaped in a state of being placed horizontally on the base together with the support member for supporting the test piece main body, and the parallel portion was made to have a diameter of 4 mm ⁇ height 30 mm.
  • Embodiment 4-2 As Example 4-2, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the concentration of P is 0.002 wt% to 0.005 wt%, the concentration of Si 0.010 wt% to 0.040 wt%, the concentration of S 0.001 wt% to 0.002 wt%, the concentration of Sn 0..
  • the alloy structure according to Example 4-2 was manufactured in the same manner as Example 4-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • Example 4-3 As Example 4-3, an alloy structure represented by AlCoCrFeNi and not limiting the concentration of unavoidable impurities was manufactured by lamination molding.
  • the atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
  • the alloy structure according to Example 4-3 was manufactured in the same manner as Example 4-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
  • the concentration of unavoidable impurities in the alloy powder is 0.008 wt% of P, 0.040 wt% of Si, 0.012 wt% of S, and 0.006 wt% of Sn.
  • the concentration was 0.002 wt%
  • the concentration of As was 0.006 wt%
  • the concentration of Mn was 0.300 wt%
  • the concentration of O was 0.002 wt%
  • the concentration of N was 0.003 wt%.
  • FIG. 7 is a view showing test temperature dependency of tensile strength in the alloy structure according to Example 4.
  • the alloy structures according to Examples 4-1 to 4-2 in which the unavoidable impurities are limited the alloy structures according to Example 4-3 in which the unavoidable impurities are not limited.
  • the tensile strength is improved.
  • the tensile strength is improved in a wide temperature range. Therefore, it has been confirmed that it is effective to further improve the mechanical characteristics by reducing the concentration of unavoidable impurities.
  • Example 5 the alloy structure according to Example 5, Example 6, Example 7, and Example 8 was manufactured by changing the kind of the main component element, and the evaluation was performed.
  • thermodynamic calculation it was estimated by thermodynamic calculation whether or not it is possible to form a solid phase of a high entropy alloy with iron (Fe) and other plural elements as main components.
  • thermodynamic calculation is performed using the first principle calculation method on the assumption that the case of containing five or more kinds of elements including Fe in an elemental composition that is an equiatomic ratio, and in such an elemental composition It was confirmed whether a solid solution phase could be formed at normal temperature and normal pressure.
  • a plurality of elements of the main component were selected from the element group of atomic number 3 to atomic number 83 contained in Groups 3 to 16 of the periodic table of elements in addition to Fe.
  • FIG. 8 is a diagram showing the range of main component elements capable of forming a solid solution phase in the alloy structure.
  • the vertical axis indicates the atomic number of the element
  • the horizontal axis indicates the ratio of atomic radius to Fe atom (atomic radius of each element / atomic radius of Fe).
  • the shape of each plot has shown the crystal structure in normal temperature and a normal pressure. Double squares are face-centered cubic lattices, double circles are body-centered cubic lattices, hexagons are hexagonal close-packed, and squares are other crystal lattices.
  • thermodynamic calculation is performed for various combinations of elements of the main component, it is possible to form a solid solution phase for an element composition containing the elements in the region surrounded by a dashed line in FIG. It turned out to be.
  • an element non-Fe main component element which is recognized to be able to form a solution together with Fe has a ratio of atomic radius to Fe atom from Al of atomic number 13 to Au of atomic number 79.
  • Example 5 As Example 5, an alloy structure shown in FIG. 5 in which the elemental composition was AlTiCoCrFeNiCuVMn and the concentration of unavoidable impurities was limited was manufactured by lamination molding.
  • the atomic concentration ratio was made to be a substantially equiatomic ratio by arranging the atomic concentration difference within ⁇ 3% for atomic concentrations of Al, Ti, Co, Cr, Fe, Ni, Cu, V and Mn.
  • the concentration of P is 0.005 wt% to 0.002 wt%
  • the concentration of Si is 0.040 wt% to 0.010 wt%
  • the concentration of S is 0.002 wt% to 0.001 wt%
  • the concentration of Sn is 0.1.
  • the atomic concentrations of Al, Ti, Co, Cr, Fe, Ni, Cu, V and Mn are approximately equiatomic ratio
  • the concentration of P is 0.002 wt% or less
  • the concentration of Si is 0.010 wt% or less
  • S concentration of 0.001 wt% or less Sn concentration of 0.002 wt% or less
  • Sb concentration of 0.001 wt% or less As concentration of 0.001 wt% or less
  • An alloy powder was prepared by gas atomization using an alloy in which the concentration of O is limited to 0.0003 wt% or less and the concentration of N to 0.001 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 45 ⁇ m to 105 ⁇ m, and the volume-based average particle size was about 70 ⁇ m.
  • the laminate molding apparatus was used to model the alloy material on the base material.
  • a base material a plate-like carbon steel for machine structure "S45C” of 200 mm ⁇ 200 mm ⁇ 10 mm was used.
  • the electron beam fusion lamination molding apparatus "A2X” (made by Arcam) which made the heat source the electron beam was used.
  • the layer-forming apparatus it was shaped by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a vacuum atmosphere. At this time, melting of the alloy powder was carried out while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy powder in advance to suppress scattering of the spread alloy powder.
  • the manufactured alloy structure according to Example 5 had substantially the same shape as the alloy structure shown in FIG. 5, and the volume of the entire three- dimensional object was 856,700 mm 3 .
  • test piece was extract
  • the test piece is a dumbbell-shaped test piece whose major axis is the stacking direction in the alloy structure, which is cut out from each rectangular parallelepiped portion to the plate-like portion, and the size of the parallel portion is 8 mm in diameter ⁇ 12 mm in height. It was.
  • analysis of the Fe concentration distribution was performed. The analysis of the Fe concentration distribution was performed by measuring the iron concentration in 10 arbitrarily extracted regions by scanning electron microscopy-energy dispersive X-ray spectroscopy for a total of 16 rectangular parallelepiped portions.
  • the variation of the true stress-true strain diagram and the Fe concentration distribution were both within the range of a difference of 1 to 3% or less.
  • the standard deviation was 1.20% or less, and the uniformity of the distribution of the elemental composition was enhanced.
  • the elemental composition of the alloy structure according to Example 5 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ⁇ 3%, and the elemental composition distribution, melting rate, cooling It was confirmed that the unevenness due to the speed and the like is eliminated and the uniformity of the distribution of the elemental composition and the mechanical strength can be secured.
  • Example 6 an alloy structure (see FIG. 9) having an arc-like shape in which the elemental composition was AlTiCoCrFeNiCuVMn and the concentration of unavoidable impurities was limited was manufactured by lamination molding.
  • FIG. 9 is a view showing the shape and dimensions of the alloy structure according to the sixth embodiment.
  • the alloy structural body 1A according to the sixth embodiment is a columnar body having a circular arc-shaped cross section, and has a shape that can be applied to a turbine blade or the like.
  • the alloy structure 1A having such a shape is manufactured in the same manner as in Example 5 except that the three-dimensional shape to be laminated and formed is changed, and the width (W) 149 mm x depth (D) 110 mm x height (height) H) It modeled as a 153 mm arc-shaped object.
  • the manufactured alloy structure according to Example 6 has a volume of 184480 mm 3 and a surface area of 60470 mm 2 , and has a volume of about 33 times the volume of the alloy material shown in Non-Patent Document 2 and having a volume of 184480 mm 3 . It was possible.
  • analysis of the Fe concentration distribution was performed.
  • the analysis of the Fe concentration distribution was performed by measuring the iron concentration in 10 arbitrarily extracted regions by scanning electron microscopy-energy dispersive X-ray spectroscopy.
  • the elemental composition of the alloy structure according to Example 6 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ⁇ 3%, the elemental composition distribution, the melting rate, It has been confirmed that the unevenness due to the cooling rate etc. is eliminated and also the uniformity of the distribution of the elemental composition and the mechanical strength can be secured.
  • Example 7 As Example 7, an alloy structure having an elemental composition of AlTiCoCrFeNiCuVMn and a dumbbell-like shape in which the concentration of unavoidable impurities is limited was manufactured by lamination molding.
  • the alloy structure according to Example 7 is manufactured and solidified in the same manner as in Example 4-1 except that the composition of the base metal used for preparation of the alloy powder and the three-dimensional shape to be layered are changed. It was set as the dumbbell-shaped shaped article which makes the lamination direction of a layer a horizontal axis.
  • the elemental composition of the alloy structure according to Example 7 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ⁇ 3%, the elemental composition distribution, the melting rate, It has been confirmed that the unevenness due to the cooling rate etc. is eliminated and also the uniformity of the distribution of the elemental composition and the mechanical strength can be secured.
  • the surface is smooth and the metallic gloss is strongly developed, and the surface characteristics are improved by dividing the element composition of the alloy structure. It was found that the effect of reforming was obtained.
  • Example 8 As Example 8, an alloy structure having an elemental composition of AlTiCoCrFeNiCuVMn and a rod-like shape in which the concentration of unavoidable impurities is limited was manufactured by lamination molding.
  • the alloy structure according to Example 8 was shaped in the same manner as Example 4-1 except that the composition of the base metal used for preparation of the alloy powder and the three-dimensional shape to be layered and formed were changed.
  • the elemental composition of the alloy structure according to Example 8 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ⁇ 3%, the elemental composition distribution, the melting rate, It has been confirmed that the unevenness due to the cooling rate etc. is eliminated and also the uniformity of the distribution of the elemental composition and the mechanical strength can be secured.
  • the manufactured alloy structure according to Example 8 as a friction stir tool, friction stir welding was performed on a soft iron plate having a thickness of 10 mm or less. As a result, it was possible to join without causing a defect in the joining portion, and it was possible to perform good joining with almost no warping.
  • the alloy structure according to the example 8 which is diversified is applicable to the friction stir welding of a material mainly composed of Fe, which is required to have high temperature strength and wear resistance, and which was conventionally difficult.
  • a shaped object appropriately processed is obtained by performing shape forming processing and surface processing of the solidified portion or the solidified layer in a high temperature state until the solidified portion is formed. It was also confirmed that it was possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

In order to provide an alloy structure of any shape and size that has a high uniformity of elemental composition and mechanical strength distribution, and has excellent high temperature strength and corrosion resistance, this production method of a casting alloy comprises a melting step for melting raw material metal ingots to form a melt, a peroxidation step for blowing an oxygen gas into the melt to form slag, a separation step for separating the slag floating on the surface of the melt from the melt, a deaeration step for deaerating the gas component in the melt by blowing an argon gas into the melt from which the slag has been separated, and a casting step for casting the deaerated melt to form a cast alloy.

Description

鋳込み合金の製造方法Method of manufacturing cast alloy
 本発明は、鋳込み合金の製造方法に関する。 The present invention relates to a method of manufacturing a cast alloy.
 合金材は、構造物や機器の骨格を成す構造部材、各種の機構部材等をはじめとした種々の用途に用いられており、鉄鋼材やアルミニウム材を利用することが困難な過酷環境における用途に利用されることも多い。例えば、航空機や発電機等に備えられるタービン部材等に適用され、1000℃以上の超高熱環境にも適用し得るニッケル基合金、コバルト基合金等が開発されてきた。また、このような超高熱環境下においても高い耐食性や耐摩耗性を示すことができる高合金鋼等も開発されている。 Alloy materials are used in a variety of applications including structural members that form the framework of structures and devices, various mechanical members, etc. For applications in harsh environments where it is difficult to use steel or aluminum materials It is often used. For example, nickel-based alloys, cobalt-based alloys and the like have been developed which are applied to turbine members and the like provided in aircraft, generators and the like and can be applied to ultra-high heat environments of 1000 ° C. or more. In addition, high alloy steels and the like that can exhibit high corrosion resistance and wear resistance even under such ultra-high heat environment are also developed.
 近年、合金材の一種として、高エントロピー合金(high-entropy alloys;HEAs)
と呼ばれる多元合金が注目されている。高エントロピー合金は、一般に、5種類程度以上の複数元素で組成され、各元素を等原子比率乃至その近傍の原子比率で含有する合金であるとされている。原子拡散の速度が遅い特徴を有し、耐熱性、高温強度、耐腐食性等に優れるため、過酷環境における用途への応用が期待されている。
In recent years, high-entropy alloys (HEAs) as a type of alloy material
A multi-element alloy called is attracting attention. Generally, a high entropy alloy is considered to be an alloy which is composed of about five or more kinds of plural elements and which contains each element at an equal atomic ratio or an atomic ratio in the vicinity thereof. Since it has the feature that the rate of atomic diffusion is slow and is excellent in heat resistance, high temperature strength, corrosion resistance and the like, application to applications in severe environments is expected.
 高エントロピー合金を応用した技術として、例えば、特許文献1には、超硬複合材料の製造方法であって、少なくとも1種のセラミック相粉末と多元高エントロピー合金粉末とを混合して混合物を形成する工程、前記混合物を圧粉する工程、および、前記混合物を焼結して超硬複合材料を形成する工程、を含み、前記多元高エントロピー合金粉末が5から11の主要元素からなり、各主要元素が前記多元高エントロピー合金粉末の5から35モル%を占める製造方法が開示されている。 As a technique to which a high entropy alloy is applied, for example, Patent Document 1 discloses a method for producing a cemented carbide composite material, in which at least one ceramic phase powder and a multicomponent high entropy alloy powder are mixed to form a mixture The steps of: compacting the mixture; and sintering the mixture to form a cemented carbide composite, wherein the multicomponent high entropy alloy powder comprises 5 to 11 major elements, each major element There is disclosed a manufacturing method in which 5% to 35% by mole of the multicomponent high entropy alloy powder is contained.
 また、非特許文献1には、Al、Co、Cr、Fe、Niを等原子比率とした高エントロピー合金において、微細組織や機械的性質についての寸法効果を解析したことが開示されている。 In addition, Non-Patent Document 1 discloses that in a high entropy alloy having an equiatomic ratio of Al, Co, Cr, Fe, and Ni, analysis of the dimensional effect on the microstructure and mechanical properties is disclosed.
特開2009-074173号公報JP, 2009-074173, A
 構造部材、機構部材等の構造体の材料として高エントロピー合金を応用し、その特性を活かした構造体を製造するためには、高エントロピー合金を組成する主成分元素を等原子比率で固溶させると共に、形状寸法が多岐にわたる構造体の全域で元素組成分布の均一性が高くなるように固溶相を形成させることが望まれる。 In order to apply a high-entropy alloy as a material of a structural member such as a structural member or a mechanical member and manufacture a structural body taking advantage of its characteristics, the main elements constituting the high-entropy alloy are dissolved in an equiatomic ratio In addition, it is desirable to form a solid solution phase so that the uniformity of the elemental composition distribution is high throughout the structure having a wide variety of shapes and sizes.
 しかしながら、特許文献1に開示されるメカニカルアロイング法や、非特許文献1に開示されるアーク溶解法等に例示される従来の高エントロピー合金の製造方法では、元素組成分布、溶融速度、冷却速度等にむらが生じ易く、均一な元素組成分布を有する凝固組織を形成することができず、各元素が実質的に等原子比率で固溶した固溶相を大型化させることが困難であった。例えば、非特許文献1に開示される合金材は、最大の試作材についても直径10mm×高さ70mm(体積5495mm3)の小片にすぎず、構造体の材料として適用することは難しい。 However, in the conventional high entropy alloy manufacturing method exemplified by the mechanical alloying method disclosed in Patent Document 1 and the arc melting method disclosed in Non-patent Document 1, the elemental composition distribution, the melting rate, the cooling rate Unevenness easily occurs, etc., and it is difficult to form a solidified structure having a uniform elemental composition distribution, and it is difficult to enlarge the solid solution phase in which each element is substantially solid-solved at an equal atomic ratio . For example, the alloy material disclosed in Non-Patent Document 1 is only a small piece of 10 mm in diameter × 70 mm in height (volume 5495 mm 3 ) even for the largest prototype material, and it is difficult to apply as a material of a structure.
 特に、比較的大型の構造体を鋳造しようとする場合には、多量の地金を溶融させたり溶湯を凝固させたりする工程が必要となるため、元素組成分布、溶融速度、冷却速度等のむらの影響が強く表出することになり、高エントロピー合金の固溶相が形成され難くなるという問題がある。また、高エントロピー合金は、良好な高温強度と耐食性とを有するものの、原子拡散の速度が遅い特徴を有しているため、凝固後の熱処理によっては元素組成や機械的強度の均一性を確保することが困難である。また、難加工性であるため、凝固後の切り出し等によって任意形状の構造体とすることも困難であり、元素組成及び機械的強度の分布の均一性が高い高エントロピー合金の構造体を得るのが難しい現状がある。 In particular, when a relatively large structure is to be cast, a process of melting a large amount of metal or solidifying a molten metal is required, so unevenness of element composition distribution, melting rate, cooling rate, etc. The influence is strongly expressed, and there is a problem that it becomes difficult to form a solid solution phase of the high entropy alloy. In addition, high-entropy alloys have good high-temperature strength and corrosion resistance, but have a feature that the speed of atomic diffusion is slow. Therefore, depending on heat treatment after solidification, uniformity of elemental composition and mechanical strength is ensured. It is difficult. In addition, because it is difficult to process, it is also difficult to form a structure of an arbitrary shape by cutting out after solidification etc., and obtain a structure of high entropy alloy with high uniformity of distribution of elemental composition and mechanical strength. There is a difficult current situation.
 そこで、本発明は、元素組成及び機械的強度の分布の均一性が高く、良好な高温強度と耐食性とを有する任意の形状寸法の合金構造体を提供することを目的とする。 Therefore, an object of the present invention is to provide an alloy structure having an arbitrary shape and size with high uniformity of distribution of elemental composition and mechanical strength, and having good high temperature strength and corrosion resistance.
 前記課題を解決するために本発明は、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the problems, the present invention adopts, for example, the configuration described in the claims.
 本発明によれば、元素組成及び機械的強度の分布の均一性が高く、良好な高温強度と耐食性とを有する任意の形状寸法の合金構造体を提供することができる。 According to the present invention, it is possible to provide an alloy structure of any shape and dimension with high uniformity of distribution of elemental composition and mechanical strength, and good temperature strength and corrosion resistance.
本実施形態に係る合金材の製造方法の工程の一例を示す概念図である。It is a conceptual diagram which shows an example of the process of the manufacturing method of the alloy material which concerns on this embodiment. 合金構造体が有する金属組織の概略を示した断面図である。(a)は、本実施形態に係る合金構造体の断面図、(b)は、(a)におけるA部の拡大断面図、(c)は、比較例に係る合金材が有する金属組織の概略を示した断面図である。It is sectional drawing which showed the outline of the metal structure which an alloy structure has. (A) is a cross-sectional view of the alloy structure according to the present embodiment, (b) is an enlarged cross-sectional view of part A in (a), (c) is a schematic view of the metal structure of the alloy material according to the comparative example. It is sectional drawing which showed. 合金構造体の原料として用いられる合金粉末の製造方法の一例を示す概略流れ図である。It is a schematic flowchart which shows an example of the manufacturing method of the alloy powder used as a raw material of an alloy structure. 真空炭素脱酸法を利用して調製された合金粉末における不純物元素の濃度変化の経過の一例を示した図である。It is the figure which showed an example of progress of the density | concentration change of the impurity element in the alloy powder prepared using the vacuum carbon deoxidation method. 実施例3に係る合金構造体の形状寸法を示す図である。FIG. 7 is a view showing the shape and dimensions of an alloy structure according to Example 3; 実施例3に係る合金構造体における圧縮真応力―圧縮真歪線図である。FIG. 16 is a compression true stress-compression true strain diagram in the alloy structure according to Example 3. 実施例4に係る合金構造体における引張強度の試験温度依存性を示す図である。FIG. 18 is a view showing test temperature dependency of tensile strength in the alloy structure according to Example 4. 合金構造体において固溶相を形成することができる主成分元素の範囲を示す図である。It is a figure which shows the range of the main component which can form a solid solution phase in an alloy structure. 実施例6に係る合金構造体の形状寸法を示す図である。It is a figure which shows the shape dimension of the alloy structure which concerns on Example 6. FIG.
 以下、本発明の一実施形態に係る合金構造体について説明する。なお、各図において共通する構成については、同一の符号を付し、重複した説明を省略する。 Hereinafter, an alloy structure according to an embodiment of the present invention will be described. In addition, about the structure which is common in each figure, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 本実施形態に係る合金構造体は、鉄(Fe)と、Feと固溶化する少なくとも4種以上の他の元素(以下、非Fe主成分元素ということがある。)とを主成分とする高エントロピー合金からなり、積層造形によって所望の形状寸法に造形された金属造形物である。この合金構造体は、非Fe主成分元素及びFeの元素を、個々の各元素についてそれぞれ5at%以上30at%以下の範囲の原子濃度で含有し、これらの元素のうちの少なくとも4種の元素が実質的に等原子比率となる元素組成を有している。そして、非Fe主成分元素及びFeの原子は、これら複数種の元素が多元的に固溶した固溶相を形成している。そのため、この合金構造体は、高エントロピー合金としての一般的性質として、高い耐熱性、高温強度、耐摩耗性、耐腐食性を有している。また、後記するように、積層造形によって形成される特有の凝固組織を有しており、元素組成及び機械的強度の分布の均一性が高い特徴を有している。 The alloy structure according to the present embodiment is mainly composed of iron (Fe) and at least four other elements (hereinafter sometimes referred to as non-Fe main component elements) that form a solid solution with Fe. It is a metal shaped object which is made of an entropy alloy and formed into a desired shape and dimension by additive manufacturing. This alloy structure contains the non-Fe main component element and the element of Fe at an atomic concentration in the range of 5 at% or more and 30 at% or less for each individual element, and at least four of these elements are It has an elemental composition with substantially equal atomic proportions. The non-Fe main component element and the atoms of Fe form a solid solution phase in which these plural types of elements are solidly dissolved. Therefore, this alloy structure has high heat resistance, high temperature strength, wear resistance, and corrosion resistance as general properties as a high entropy alloy. In addition, as described later, it has a unique solidified structure formed by additive manufacturing, and has a feature of high uniformity of distribution of elemental composition and mechanical strength.
 本実施形態に係る合金構造体は、常温且つ常圧下において、主晶が実質的には柱状晶の集合からなる。柱状晶の存在割合は、凝固組織の任意断面における占有面積率で、少なくとも50%以上となっており、後記する製造方法における凝固組織の形成条件によって、90%以上としたり、95%以上とすることも可能である。また、柱状晶の平均結晶粒径は、100μm以下であり、さらに10μm以下にまで微細化させることも可能である。なお、平均結晶粒径は、JIS G 0551(2013)に規定される方法に準じて求めることができる。 In the alloy structure according to the present embodiment, the main crystals substantially consist of a collection of columnar crystals at normal temperature and normal pressure. The presence ratio of columnar crystals is at least 50% or more in an occupied area ratio in any cross section of the solidified structure, and is 90% or more or 95% or more according to the formation condition of the solidified structure in the manufacturing method described later It is also possible. In addition, the average crystal grain size of the columnar crystals is 100 μm or less, and it is also possible to further refine it to 10 μm or less. The average grain size can be determined according to the method defined in JIS G 0551 (2013).
 合金材構造体の主晶は、常温且つ常圧下において、面心立方格子又は体心立方格子の結晶構造を有している。組成を選択設計することによって、面心立方格子の結晶構造の存在割合を、凝固組織の任意断面における占有面積率で、90%以上としたり、95%以上とすることも可能である。また、体心立方格子の結晶構造の存在割合を、凝固組織の任意断面における占有面積率で、90%以上としたり、95%以上とすることも可能である。 The main crystals of the alloy material structure have a crystal structure of face-centered cubic lattice or body-centered cubic lattice at normal temperature and normal pressure. By selectively designing the composition, it is possible to make the existing ratio of the crystal structure of the face-centered cubic lattice 90% or more or 95% or more in the occupied area ratio in any cross section of the solidified structure. In addition, the proportion of the crystal structure of the body-centered cubic lattice can be 90% or more or 95% or more in an occupied area ratio in an arbitrary cross section of the solidified structure.
 非Fe主成分元素としては、元素周期表の第3族から第16族(第3A族から第6B族)までに含まれる原子番号13から原子番号79の元素であって、Fe原子に対する原子半径の比率が0.83以上1.17以下であるFe以外の元素から少なくとも4種以上の元素が選択される。このような非Fe主成分元素としては、具体的には、Al、Si、P、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Sn、Sb、Te、Ta、W、Re、Os、Ir、Pt、Auが挙げられる。合金構造体をこのような元素組成とすることによって、原子容積効果が奏され、高エントロピー合金としての作用を示す安定した固溶相を形成させることができる。 A non-Fe main component element is an element having an atomic number 13 to an atomic number 79 included in Groups 3 to 16 (Group 3A to Group 6B) of the periodic table of elements, and an atomic radius with respect to a Fe atom At least four or more elements are selected from elements other than Fe having a ratio of 0.83 or more and 1.17 or less. As such non-Fe main component elements, specifically, Al, Si, P, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sn, Sb, Te, Ta, W, Re, Os, Ir, Pt, Au can be mentioned. By setting the alloy structure to such an elemental composition, an atomic volume effect is exhibited, and a stable solid solution phase exhibiting an action as a high entropy alloy can be formed.
 非Fe主成分元素としては、Fe原子に対する原子半径の比率が0.92以上1.08以下である元素を含有することがより好ましく、こうした元素のみをFeと共に含有することがさらに好ましい。Feと共に主成分元素となる非Fe主成分元素としては、具体的には、Si、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Mo、Tc、Ru、Rh、Re、Os、Irが挙げられる。これらの中でさらに好ましい非Fe主成分元素は、V、Cr、Mn、Co、Ni、Cu、Ge、Moであり、Co、Cr及びNiを含有することが特に好ましい。 As the non-Fe main component element, it is more preferable to contain an element having a ratio of atomic radius to Fe atom of 0.92 or more and 1.08 or less, and it is more preferable to contain only such an element together with Fe. Specific examples of non-Fe main component elements that become main component elements with Fe include Si, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Tc, Ru, Rh, Re, Os, Ir are mentioned. Among these, the more preferable non-Fe main component is V, Cr, Mn, Co, Ni, Cu, Ge, Mo, and it is particularly preferable to contain Co, Cr and Ni.
 合金構造体の元素組成としては、具体的には、CoCrFeNiAl、CoCrFeNiCu、CoCrFeNiCuAl、CoCrFeNiCuAlSi、MnCrFeNiCuAl、CoCrFeNiMnGe、CoCrFeNiMn、CoCrFeNiMnCu、TiCoCrFeNiCuAlV、TiCoCrFeNiAl、AlTiCoCrFeNiCuVMn、TiCrFeNiCuAl、TiCoCrFeNiCuAl、CoCrFeNiCuAlV、TiCoCrFeNiAl、TiCoCrFeNiCuAl、CoCrFeNiCuAl、CoFeNiCuV、CoCrFeNiCuAl、MnCrFeNiAl、MoCrFeNiCu、TiCoCrFeNi、TiCoCrFeNiMo、CoCrFeNiCuAlV、MnCrFeNiCu、TiCoCrFeNi、TiCoCrFeNiAl、CoCrFeNiMo、CoCrFeNiAlMo、TiCoCrFeNiCu、CoCrFeNiCuAlMn、TiCoCrFeNiMo、CoCrFeNiCuAlV、TiCoCrFeNiCuVMn、AlTiCoCrFeNiCuVMn、CoCrFeNiCuAlMn、CoCrFeNiAlMo、CoCrFeNiCuAlMo、TiCoCrFeNiCu等を例示することができる。なお、これらの元素組成において、各元素の原子濃度(原子のモル比)は、5at%以上30at%以下の範囲の原子濃度と、少なくとも4種の元素が実質的に等原子比率となる元素組成とが満たされる限りにおいて種々の値をとることができる。但し、成分元素としてTiを含有する場合は、Tiが成分元素中で最大原子濃度を持つ成分とならないようにし、好ましくは合金構造体あたりの原子濃度を5at%以上10at%未満とする。 The elements of the alloy of the members are used as the alloy of the members of the members of the alloy and the members. CoCrFeNiCuAl, MnCrFeNiAl, MoCrFeNiCu, TiCoCrFeNi, TiCoCrFeNiMo, CoCrFeNiCuAl It can be exemplified MnCrFeNiCu, TiCoCrFeNi, TiCoCrFeNiAl, CoCrFeNiMo, CoCrFeNiAlMo, TiCoCrFeNiCu, CoCrFeNiCuAlMn, TiCoCrFeNiMo, CoCrFeNiCuAlV, TiCoCrFeNiCuVMn, AlTiCoCrFeNiCuVMn, CoCrFeNiCuAlMn, CoCrFeNiAlMo, CoCrFeNiCuAlMo, the TiCoCrFeNiCu like. In these elemental compositions, the atomic composition (molar ratio of atoms) of each element is an atomic composition in which the atomic concentration is in the range of 5 at% to 30 at%, and at least four elements have substantially equal atomic proportions. Various values can be taken as long as However, when Ti is contained as a component element, Ti should not be a component having the maximum atomic concentration among the component elements, and preferably the atomic concentration per alloy structure is 5 at% or more and less than 10 at%.
 合金構造体は、非Fe主成分元素及びFeのほか、他の不可避的不純物の元素を含有することが許容される。不可避的不純物の元素としては、例えば、P、Si、S、Sn、Sb、As、Mn、O、N等が挙げられる。但し、Pについては、好ましくは0.005wt%以下、より好ましくは0.002wt%以下に、Siについては、好ましくは0.040wt%以下、より好ましくは0.010wt%以下に、Sについては、好ましくは0.002wt%以下、より好ましくは0.001wt%以下に、Snについては、好ましくは0.005wt%以下、より好ましくは0.002wt%以下に、Sbについては、好ましくは0.002wt%以下、より好ましくは0.001wt%以下に、Asについては、好ましくは0.005wt%以下、より好ましくは0.001wt%以下に、Mnについては、好ましくは0.050wt%以下、より好ましくは0.020wt%以下に制限する。また、Oについては、好ましくは0.001wt%以下(10ppm以下)、より好ましくは0.0003wt%以下(3ppm以下)に、Nについては、好ましくは0.002wt%以下(20ppm以下)、より好ましくは0.001wt%以下(10ppm以下)に制限する。このように合金構造体に含まれる不可避的不純物の濃度を制限することによって、構造体の形状寸法に関わらず、元素組成及び機械的強度の分布の均一性をより高くすることができる。なお、P、Si、Sn、Sb、As又はMnの元素を非Fe主成分元素として合金構造体に含有させる場合には、元素の濃度をこのように制限する必要はない。 The alloy structure is allowed to contain elements of non-Fe main component element and Fe, as well as other unavoidable impurities. As an element of unavoidable impurities, P, Si, S, Sn, Sb, As, Mn, O, N etc. are mentioned, for example. However, P is preferably 0.005 wt% or less, more preferably 0.002 wt% or less, Si is preferably 0.040 wt% or less, more preferably 0.010 wt% or less, and S is Preferably, the content is 0.002 wt% or less, more preferably 0.001 wt% or less, for Sn preferably 0.005 wt% or less, more preferably 0.002 wt% or less, for Sb preferably 0.002 wt% Or less, more preferably 0.001 wt% or less, As 0.005, preferably 0.005 wt% or less, more preferably 0.001 wt% or less, Mn, preferably 0.050 wt% or less, more preferably 0 Limit to .020 wt% or less. In addition, O is preferably 0.001 wt% or less (10 ppm or less), more preferably 0.0003 wt% or less (3 ppm or less), and N is preferably 0.002 wt% or less (20 ppm or less), more preferably Is limited to 0.001 wt% or less (10 ppm or less). Thus, by limiting the concentration of unavoidable impurities contained in the alloy structure, the uniformity of the distribution of the elemental composition and the mechanical strength can be further enhanced regardless of the shape and size of the structure. In the case where an element of P, Si, Sn, Sb, As or Mn is contained in the alloy structure as a non-Fe main element, the concentration of the element need not be limited in this manner.
 合金構造体は、非Fe主成分元素及びFeのうちの少なくとも4種の元素を、5at%以上23.75at%以下の原子濃度の範囲で実質的に等原子比率で含有する。このとき、他の元素を、5at%以上30at%以下の原子濃度の範囲で含有し、残部が不可避的不純物によって組成される。このように少なくとも4種の元素を等原子比率で含有すると、自由エネルギの混合エントロピー項が増大するため、固溶相が安定化されるようになる。なお、本明細書においては、実質的に等原子比率であるとは、原子濃度の差が3at%未満の範囲にあることを意味するものとする。 The alloy structure contains a non-Fe main component element and at least four elements of Fe in a substantially equiatomic ratio in the atomic concentration range of 5 at% or more and 23.75 at% or less. At this time, other elements are contained in an atomic concentration range of 5 at% or more and 30 at% or less, and the balance is composed of unavoidable impurities. As described above, when at least four elements are contained in an equiatomic ratio, the mixed entropy term of the free energy is increased, so that the solid solution phase is stabilized. In the present specification, substantially equal atomic ratio means that the difference in atomic concentration is in the range of less than 3 at%.
 合金構造体を組成する元素種類及び原子比率は、例えば、生成エンタルピー、エントロピーないしギブスエネルギーを熱力学的計算で求めることによって、組成を選択設計することができる。例えば、等原子比率で含まれる少なくとも4種の元素と、他の元素との原子濃度の比率は、前記の原子濃度の範囲で適宜変えることができる。これら主成分元素の原子濃度の比率を変えることによって、合金構造体の結晶構造を変えることができ、機械的強度、展延性、硬度、密度等を調節することが可能である。熱力学的計算としては、第一原理計算法、Calphad(Calculation of phase diagrams)法、分子動力学法、Phase-Field法、有限要素法等を適宜組み合わせて用いることができる。 The element type and atomic ratio that constitute the alloy structure can be selected and designed by, for example, determining the enthalpy of formation, the entropy or the Gibbs energy by thermodynamic calculation. For example, the ratio of the atomic concentration of at least four elements contained in equal atomic proportions to the other elements can be appropriately changed within the aforementioned atomic concentration range. The crystal structure of the alloy structure can be changed by changing the ratio of the atomic concentrations of these main component elements, and the mechanical strength, the spreadability, the hardness, the density, and the like can be adjusted. As thermodynamic calculation, a first principle calculation method, a Calphad (Calculation of phase diagrams) method, a molecular dynamics method, a phase-field method, a finite element method or the like can be used in combination as appropriate.
 合金構造体は、例えば、Alを5at%以上30at%以下の原子濃度の範囲で含有すると共に、Co、Cr、Fe及びNiを15at%以上23.75at%以下の原子濃度の範囲で実質的に等原子比率で含有する元素組成とすることができる。合金構造体に含まれるAlの原子濃度を5at%以上30at%以下の範囲において低下させると、合金構造体の主相が面心立方格子の結晶構造で構成されるようにすることができる。その一方で、Alの原子濃度を5at%以上30at%以下の範囲において増大させると、合金構造体の主相が体心立方格子の結晶構造で構成されるようにすることができる。また、合金構造体に含まれるAlの原子濃度が5at%以上であると、合金構造体の機械的強度が過度に低下する恐れが低く、他方、合金構造体に含まれるAlの原子濃度が30at%以下であると、合金構造体の主相がAl系の金属間化合物になり難くなるため、合金材の延性が過度に低下する恐れが低い。 The alloy structure contains, for example, Al in an atomic concentration range of 5 at% or more and 30 at% or less, and substantially in an atomic concentration range of 15 at% or more and 23.75 at% or less of Co, Cr, Fe and Ni. It can be set as the elemental composition contained by an equiatomic ratio. When the atomic concentration of Al contained in the alloy structure is reduced in the range of 5 at% or more and 30 at% or less, the main phase of the alloy structure can be made to have a crystal structure of face-centered cubic lattice. On the other hand, when the atomic concentration of Al is increased in the range of 5 at% or more and 30 at% or less, the main phase of the alloy structure can be made to have a crystal structure of a body-centered cubic lattice. Further, when the atomic concentration of Al contained in the alloy structure is 5 at% or more, there is a low possibility that the mechanical strength of the alloy structure is excessively reduced, and on the other hand, the atomic concentration of Al contained in the alloy structure is 30 at. If the content is less than 10%, the main phase of the alloy structure does not easily become an Al-based intermetallic compound, and therefore, the possibility of the ductility of the alloy material being excessively reduced is low.
 同様にして、Coを5at%以上30at%以下、Al、Cr、Fe及びNiを15at%以上23.75at%以下の原子濃度の範囲で実質的に等原子比率で含有させたり、Crを5at%以上30at%以下、Al、Co、Fe及びNiを15at%以上23.75at%以下の原子濃度の範囲で実質的に等原子比率で含有させたり、Feを5at%以上30at%以下、Al、Co、Cr及びNiを15at%以上23.75at%以下の原子濃度の範囲で実質的に等原子比率で含有させたり、Niを5at%以上30at%以下、Al、Co、Cr及びFeを15at%以上23.75at%以下の原子濃度の範囲で実質的に等原子比率で含有させたりすることも可能である。 Similarly, Co is contained substantially at an atomic ratio of 5 at% to 30 at%, and Al, Cr, Fe and Ni at an atomic concentration range of 15 at% to 23.75 at%, or Cr at 5 at% More than 30 at% or less, Al, Co, Fe and Ni are contained in an equiatomic ratio substantially in an atomic concentration range of 15 at% or more and 23.75 at% or less, or 5 at% or more and 30 at% or less of Fe, Al, Co , Cr and Ni in an atomic ratio range of 15 at% or more and 23.75 at% or less substantially, or at least 5 at% or more and 30 at% or less of Ni, and 15 at% or more of Al, Co, Cr, and Fe It is also possible to contain substantially equiatomic proportions in the atomic concentration range of 23.75 at% or less.
 次に、本実施形態に係る合金構造体の製造方法について説明する。 Next, a method of manufacturing the alloy structure according to the present embodiment will be described.
 本実施形態に係る合金構造体は、合金粉末を用いた粉末積層造形によって製造することができる。合金粉末を溶融させた後に凝固させて凝固組織を形成し、多数の凝固組織を周囲と一体化させながら配列させることによって、所望の形状寸法の立体造形物として合金構造体を製造する方法である。本実施形態に係る合金構造体の製造方法は、積層造形に用いる合金粉末を調製する粉末調製工程と、調製された合金粉末を用いて合金構造体を造形する積層造形工程とを含んでなる。 The alloy structure according to the present embodiment can be manufactured by powder laminate molding using an alloy powder. A method of manufacturing an alloy structure as a three-dimensional shaped object of a desired shape and size by melting and solidifying the alloy powder to form a solidified structure and arranging a large number of solidified structures integrally with the surroundings. . The method for producing an alloy structure according to the present embodiment includes a powder preparation step of preparing an alloy powder used for layered formation, and a lamination forming step of shaping an alloy structure using the prepared alloy powder.
 粉末調製工程では、製造しようとする合金構造体と同じ主成分元素と添加元素とを含有し、主成分元素が実質的に等原子比率となる元素組成を有する合金粉末を調製する。合金粉末は、各粉末粒子が、製造しようとする合金構造体と略同じ元素組成となるような粒子集合とすることが好ましい。なお、凝固層造形工程において合金粉末を加熱する際に合金成分の一部が揮発して失われる場合があるため、こうした揮発による組成変化を考慮して原子濃度の範囲を高い範囲に設定してもよい。 In the powder preparation step, an alloy powder is prepared which contains the same main component and additive elements as the alloy structure to be produced, and has an elemental composition in which the main components are substantially equiatomic. The alloy powder is preferably in the form of a particle assembly in which each powder particle has substantially the same elemental composition as the alloy structure to be produced. In addition, when heating the alloy powder in the solidified layer forming step, a part of the alloy components may be volatilized and lost, so the range of the atomic concentration is set to a high range in consideration of the composition change due to such volatilization. It is also good.
 合金粉末の調製方法としては、従来から一般的に利用されている金属粉末の製造方法を用いることができる。例えば、合金の溶湯に流体を吹き付けて飛散させて凝固させるアトマイズ法、合金の溶湯を凝固させた後に機械的に粉砕する粉砕法、金属粉末を混合し圧接及び粉砕を繰り返して合金化させるメカニカルアロイング法、合金の溶湯を回転しているロール上に流下させて凝固させるメルトスピニング法等の適宜の方法を利用することができる。 As a method of preparing the alloy powder, a method of producing a metal powder which is conventionally and generally used can be used. For example, an atomizing method in which a molten metal alloy is sprayed with a fluid to be scattered and solidified, a crushing method in which a molten metal alloy is solidified and then mechanically crushed, a metal alloy is mixed, and pressure welding and crushing are repeated to form an alloy An appropriate method such as an ingot method, a melt spinning method in which a molten alloy of alloy is caused to flow down on a rotating roll to solidify can be used.
 合金粉末の調製方法としては、アトマイズ法が好適であり、より好ましくはガスアトマイズ法、さらに好ましくは流体として不活性ガスを使用して不活性ガス雰囲気で行うガスアトマイズ法が用いられる。このような調製方法によると、真球度が高く、不純物の混入が少ない合金粉末を調製することが可能である。そして、合金粉末の真球度が高められると、積層造形において合金粉末を展延する際の抵抗が抑えられるため、合金粉末のむらを低減することができる。また、不活性ガスを使用することによって、酸化物不純物等の混入が抑制されるため、製造される合金材の金属組織をより均一なものとすることができる。 As a method of preparing the alloy powder, the atomizing method is suitable, and the gas atomizing method is more preferably used, and the gas atomizing method performed in an inert gas atmosphere using an inert gas as a fluid is more preferably used. According to such a preparation method, it is possible to prepare an alloy powder having high sphericity and less contamination with impurities. And, when the sphericity of the alloy powder is increased, the resistance at the time of spreading the alloy powder in lamination molding can be suppressed, so that unevenness of the alloy powder can be reduced. Further, by using an inert gas, the mixing of oxide impurities and the like is suppressed, so that the metal structure of the manufactured alloy material can be made more uniform.
 合金粉末は、積層造形において合金粉末を展延させる方式や、合金粉末を溶融させる熱源の出力等の溶融条件に応じて適宜の粒子径とすることができる。但し、通常は合金粉末の粒子径分布は、1μm以上500μm以下の範囲とすることが好ましい。合金粉末の粒子径が1μm以上であれば、合金粉末の巻き上がりや浮遊が抑制されたり、金属の酸化反応性が抑えられたりして、粉塵爆発等の恐れが低くなるためである。一方で、合金粉末の粒子径が500μm以下であれば、積層造形において形成される凝固層の表面が平滑になり易い点で有利である。また、合金粉末を溶融させるための加熱手段の出力を抑えることが可能になり、合金粉末の溶融速度や合金粉末を局所加熱する際の被加熱領域の範囲の制御が容易になるため、合金構造体の造形精度や凝固組織の均一性を確保し易くすることができる。 The alloy powder can have an appropriate particle diameter according to the melting conditions such as the method of spreading the alloy powder in lamination molding and the output of a heat source for melting the alloy powder. However, in general, the particle size distribution of the alloy powder is preferably in the range of 1 μm to 500 μm. If the particle size of the alloy powder is 1 μm or more, rolling up and floating of the alloy powder are suppressed, or the oxidation reactivity of the metal is suppressed, thereby reducing the possibility of dust explosion and the like. On the other hand, if the particle diameter of the alloy powder is 500 μm or less, it is advantageous in that the surface of the solidified layer formed in lamination molding tends to be smooth. Moreover, it becomes possible to suppress the output of the heating means for melting the alloy powder, and it becomes easy to control the melting speed of the alloy powder and the range of the heated region when locally heating the alloy powder. The shaping accuracy of the body and the uniformity of the solidified tissue can be easily secured.
 図1は、本実施形態に係る合金構造体の製造方法の工程の一例を示す概念図である。 FIG. 1: is a conceptual diagram which shows an example of the process of the manufacturing method of the alloy structure which concerns on this embodiment.
 本実施形態に係る合金構造体の製造方法では、図1(a)から(g)に順に示す積層造形工程を繰り返し行って合金構造体の立体造形を行う。積層造形工程は、従来から一般的に利用されている金属用の粉末積層造形装置を用いて行うことが可能であり、粉末調製工程で調製された合金粉末は、このような積層造形工程の原料粉末として用いられる。積層造形装置に備えられる加熱手段としては、例えば、電子線加熱、レーザー加熱、マイクロ波加熱、プラズマ加熱、集光加熱、高周波加熱等の適宜の加熱原理によるものが用いられる。これらの中では電子線加熱又はレーザー加熱による積層造形装置が特に好適である。電子線加熱又はレーザー加熱によると、熱源の出力や、合金粉末の被加熱領域の微小化や、合金構造体の造形精度等の制御を比較的容易に行えるためである。 In the method of manufacturing an alloy structure according to the present embodiment, the layered manufacturing process shown in order from FIG. 1 (a) to (g) is repeatedly performed to perform three-dimensional formation of the alloy structure. The lamination molding process can be carried out using a powder lamination molding apparatus for metal generally used conventionally, and the alloy powder prepared in the powder preparation process is a raw material of such lamination molding process. It is used as a powder. As a heating means provided in the layered modeling apparatus, for example, one based on an appropriate heating principle such as electron beam heating, laser heating, microwave heating, plasma heating, condensing heating, high frequency heating and the like is used. Among these, a lamination molding apparatus by electron beam heating or laser heating is particularly preferable. Electron beam heating or laser heating is relatively easy to control the output of the heat source, the miniaturization of the heated region of the alloy powder, the shaping accuracy of the alloy structure, and the like.
 積層造形工程は、詳細には、粉末展延工程、凝固層造形工程を含んでなる。積層造形工程では、図1(a)から(g)に順に示されるような工程を経て、層状の凝固組織(凝固層)を形成し、層状の凝固組織(凝固層)の形成を繰り返すことで、凝固組織の集合からなる合金構造体を造形する。 Specifically, the layer forming process includes a powder spreading process and a solidified layer forming process. In the layered manufacturing process, a layered solidified structure (coagulated layer) is formed through steps shown in FIG. 1A to FIG. 1G sequentially, and formation of the layered solidified structure (coagulated layer) is repeated. , Forming an alloy structure consisting of a set of solidified structures.
 積層造形装置には、図1(a)に示すように、上端に基材載置台21を有する昇降可能なピストンが備えられている。この基材載置台21の周囲には、ピストンに連動しない加工テーブル22が備えられており、加工テーブル22上に原料粉末10を供給する不図示の粉末フィーダ、供給された原料粉末10を展延するリコータ23、原料粉末10を加熱する加熱手段24、加工テーブル22上の原料粉末10を除去する不図示のエアブラスト、不図示の調温器等が備えられている。加工テーブル22やこれらの機器類は、チャンバに収容されており、チャンバ内の雰囲気は、加熱手段24の種類に応じて真空雰囲気又はアルゴンガス等の不活性ガス雰囲気とされ、雰囲気圧力や温度が管理されるようになっている。積層造形を行うに際しては、基材載置台21にあらかじめ基材15が載置され、基材15の被造形面(上面)と加工テーブル22の上面とが面一となるように位置合わせされる。 As shown in FIG. 1A, the layered manufacturing apparatus is provided with a vertically movable piston having a base mounting table 21 at its upper end. A processing table 22 which is not interlocked with the piston is provided around the substrate mounting table 21, and a powder feeder (not shown) for supplying the raw material powder 10 onto the processing table 22 spreads the supplied raw material powder 10. The recoater 23, the heating means 24 for heating the raw material powder 10, an air blast (not shown) for removing the raw material powder 10 on the processing table 22, a temperature controller (not shown) and the like are provided. The processing table 22 and these devices are accommodated in a chamber, and the atmosphere in the chamber is a vacuum atmosphere or an inert gas atmosphere such as argon gas according to the type of the heating means 24 and the atmosphere pressure and temperature are It is supposed to be managed. When performing layered manufacturing, the base material 15 is previously mounted on the base material mounting table 21 and aligned so that the surface to be molded (upper surface) of the base material 15 and the upper surface of the processing table 22 are flush with each other .
 基材15としては、加熱手段24による加熱に対する耐熱性を備えていれば適宜の材料を用いることができる。この合金構造体の製造方法においては、基材15の被造形面上に対して合金構造体の積層造形が行われることで、基材15と合金構造体とが一体化した状態の造形物が得られることになる。そのため、基材15としては、切断加工等により合金構造体から分離することを想定して、平板状等の適宜の形状の基材15を用いることができる。或いは、基材15と合金構造体とを一体化した状態で機能させることを想定して、被造形面を有する任意形状の構造部材、機構部材等を基材15として用いることもできる。 Any appropriate material can be used as the base material 15 as long as it has heat resistance to the heating by the heating means 24. In the method of manufacturing the alloy structure, the layered structure of the alloy structure is performed on the surface to be formed of the base material 15 to form a shaped object in a state in which the base material 15 and the alloy structure are integrated. It will be obtained. Therefore, as the base material 15, the base material 15 having a suitable shape such as a flat plate can be used on the assumption that it is separated from the alloy structure by a cutting process or the like. Alternatively, it is also possible to use a structural member of any shape having a surface to be shaped, a mechanical member or the like as the base material 15 on the assumption that the base material 15 and the alloy structure function in an integrated state.
 粉末展延工程では、調製された合金粉末10を被造形面上に展延する。すなわち、積層造形における初回の粉末展延工程では、積層造形装置に載置された基材15に合金粉末10を展延する。合金粉末10の展延は、図1(b)に示すように、不図示の粉末フィーダによって加工テーブル22上に供給された合金粉末10(図1(a)参照)を、リコータ23を被造形面(基材15)上を通過するように掃引して、合金粉末10を薄層状に敷き詰めることによって行うことができる。展延されて形成される合金粉末10の薄層の厚さは、合金粉末10を溶融させる加熱手段の出力や、合金粉末10の平均粒子径等に応じて適宜調節することができるが、好ましくは10μm以上1000μm以下程度の範囲とする。 In the powder spreading step, the prepared alloy powder 10 is spread on the surface to be shaped. That is, the alloy powder 10 is spread on the base material 15 placed on the layered modeling apparatus in the first powder spreading process in the layered modeling. The spreading of the alloy powder 10 is, as shown in FIG. 1 (b), the alloy powder 10 (see FIG. 1 (a)) supplied on the processing table 22 by a powder feeder (not shown). It can carry out by sweeping so that it may pass on the surface (base material 15), and laying the alloy powder 10 in thin layers. The thickness of the thin layer of the alloy powder 10 formed by spreading can be appropriately adjusted according to the output of the heating means for melting the alloy powder 10, the average particle diameter of the alloy powder 10, etc. Is in the range of about 10 μm to 1000 μm.
 凝固層造形工程では、展延された合金粉末10を局所加熱して溶融させた後に凝固させ、局所加熱による被加熱領域を合金粉末10が展延された平面に対して走査することによって凝固層40を造形する。後記の凝固層40(図1(e)参照)の造形は、製造しようとする合金構造体の立体形状を表す3次元形状情報(3D-CADデータ等)から得られる2次元形状情報にしたがって、加熱手段24による被加熱領域を走査することで行われる。2次元形状情報は、製造しようとする合金構造体の3次元形状を、仮想上、所定厚さ間隔でスライスして、複数の薄層の集合に分割した場合の各薄層の形状を特定する情報である。このような2次元形状情報にしたがって、所定の2次元形状と厚さとを有する凝固層40が形成される。 In the solidified layer forming step, the expanded alloy powder 10 is locally heated and melted and then solidified, and the solidified layer is obtained by scanning the heated region by the local heating with respect to the plane on which the alloy powder 10 is expanded. Shape 40 According to two-dimensional shape information obtained from three-dimensional shape information (such as 3D-CAD data) representing the three-dimensional shape of the alloy structure to be manufactured, the formation of the solidified layer 40 (see FIG. It is carried out by scanning the heated region by the heating means 24. The two-dimensional shape information virtually divides the three-dimensional shape of the alloy structure to be manufactured by a predetermined thickness interval and virtually specifies the shape of each thin layer when divided into a plurality of thin layer groups. It is information. According to such two-dimensional shape information, a solidified layer 40 having a predetermined two-dimensional shape and thickness is formed.
 合金粉末10の局所加熱は、図1(c)に示すように、加熱手段24によって、展延された合金粉末10上の被加熱領域を限定して行い、展延された合金粉末10の一部を微小な溶融池(溶融部20)が形成されるように選択的に溶融させることにより行う。合金粉末10を溶融させて形成する溶融部20の大きさは、好ましくは直径1mm以下とする。溶融部20をこのような微小な大きさに制限することで、合金構造体の造形精度や、凝固組織における元素組成の均一性が高められるようになる。 The local heating of the alloy powder 10 is carried out by limiting the heated region on the spread alloy powder 10 by the heating means 24 as shown in FIG. This is performed by selectively melting the part so that a minute molten pool (melting part 20) is formed. The size of the molten portion 20 formed by melting the alloy powder 10 is preferably 1 mm or less in diameter. By limiting the melting portion 20 to such a minute size, the shaping accuracy of the alloy structure and the uniformity of the elemental composition in the solidified structure can be enhanced.
 合金粉末10の局所加熱による被加熱領域は、図1(d)に示すように、被造形面に平行に移動するように走査させる。被加熱領域の走査は、加熱手段24の本体の走査のほか、ガルバノミラー等による熱源の照射スポットの走査により行うことも可能であり、ラスター走査のような適宜の方式で実施する。このとき、複数の線源によるオーバーラップ走査を行い、照射されるエネルギ密度を平坦化させてもよい。そして、被加熱領域の走査によって、合金粉末10が未だ溶融していない領域の局所加熱を新たに行うと共に、合金粉末10が既に溶融して溶融部20が形成された領域の加熱を止めて、溶融部20を雰囲気温度の下で冷却して凝固させる。溶融部20が凝固することで形成される凝固部30は、基材や既に形成されている凝固部30と一体化しつつ凝固部30の緻密な集合を形成することになる。 The region to be heated by the local heating of the alloy powder 10 is scanned so as to move parallel to the surface to be shaped, as shown in FIG. 1 (d). The scanning of the heated region can be performed by scanning the irradiation spot of the heat source with a galvano mirror or the like in addition to scanning of the main body of the heating means 24, and it is performed by an appropriate method such as raster scanning. At this time, overlap scanning with a plurality of radiation sources may be performed to flatten the irradiated energy density. Then, local heating of the region where the alloy powder 10 is not yet melted is newly performed by scanning the heated region, and heating of the region where the alloy powder 10 is already melted to form the molten portion 20 is stopped, The molten portion 20 is cooled and solidified under the ambient temperature. The solidified portion 30 formed by the solidification of the molten portion 20 forms a dense aggregate of the solidified portion 30 while being integrated with the base material and the solidified portion 30 already formed.
 加熱手段24の走査速度、出力、エネルギ密度、走査幅は、合金粉末10の元素組成、粒度分布、基材15の材質、溶融部20と凝固部30との位置関係、チャンバ温度等から推定される熱伝導や熱放射に基いて適宜調整すればよい。また、溶融部20を冷却する冷却温度は、合金構造体の元素組成に応じて寸法変化、熱歪等を考慮して設定すればよい。溶融部20の大きさや、溶融速度や、冷却速度や、溶融及び冷却の時間間隔等を所定の範囲に維持して走査を行うことによって、造形される合金構造体の強度分布を均一化したり、残留応力や表面粗さを低減させたりすることが可能である。 The scanning speed, output, energy density and scanning width of the heating means 24 are estimated from the elemental composition of the alloy powder 10, the particle size distribution, the material of the base 15, the positional relationship between the melting portion 20 and the solidification portion 30, chamber temperature etc. It may be adjusted appropriately based on heat conduction and heat radiation. Further, the cooling temperature for cooling the molten portion 20 may be set in consideration of dimensional change, thermal strain and the like according to the elemental composition of the alloy structure. By performing scanning while maintaining the size of the melting portion 20, the melting rate, the cooling rate, the time interval of melting and cooling, etc. in a predetermined range, the strength distribution of the shaped alloy structure is made uniform, It is possible to reduce residual stress and surface roughness.
 図1(c)から(e)に示すように、基材載置台21に載置された基材15上で、合金粉末10の溶融と凝固とを繰り返し凝固部30の集合を形成することで、所定の2次元形状と厚さとを有する凝固層40が形成される。形成された凝固層40の周囲や上面に残存している未溶融の合金粉末10をエアーブラストによって除去した後、図1(f)に示すように、基材載置台21を、形成された凝固層40の厚さに相当する高さ下降させて、凝固層40の上面の新たな被造形面と加工テーブル22の上面とが面一となるように位置合わせする。 As shown in FIGS. 1 (c) to 1 (e), melting and solidification of the alloy powder 10 are repeated on the base material 15 placed on the base material placement table 21 to form a set of solidification parts 30. A solidified layer 40 having a predetermined two-dimensional shape and thickness is formed. After the unmelted alloy powder 10 remaining on the periphery and the upper surface of the formed solidified layer 40 is removed by air blasting, as shown in FIG. 1 (f), the base material mounting table 21 is solidified The height is lowered corresponding to the thickness of the layer 40 so that the new surface to be shaped of the upper surface of the solidified layer 40 is flush with the upper surface of the processing table 22.
 位置合わせを行った後、図1(a)から(b)と同様にして粉末展延工程を行い、図1(g)に示すように、既に形成されている凝固層40の上面に新たに供給された合金粉末10を展延する。その後、図1(c)から(e)と同様にして凝固層造形工程を行い、次層の凝固層40の積層を行う。積層される凝固部30は下層の凝固層40の一部と一体化して緻密に焼結することになる。以降、同様にして、形成された凝固層40の上面を被造形面とした粉末展延工程及び凝固層造形工程を繰り返すことで、所望の形状寸法の合金構造体を積層造形することができる。 After alignment, the powder spreading process is performed in the same manner as in FIGS. 1 (a) to 1 (b), and as shown in FIG. 1 (g), a new surface is formed on the upper surface of the solidified layer 40 already formed. The supplied alloy powder 10 is spread. Thereafter, in the same manner as in FIGS. 1 (c) to 1 (e), the solidified layer shaping step is performed, and the solidified layer 40 of the next layer is laminated. The solidified portion 30 to be laminated is integrated with a part of the lower solidified layer 40 to be densely sintered. Thereafter, similarly, the powder spreading process and the solidified layer forming process with the upper surface of the formed solidified layer 40 as a surface to be shaped can be repeated to laminate and model the alloy structure having a desired shape and size.
 凝固層造形工程においては、合金粉末10が溶融した後、凝固部30が形成されるまでの高温の状態において、凝固部30乃至凝固層40の形状成形加工処理や表面加工処理を行うことができる。このような加工処理は、溶融部30乃至凝固部40の表面温度が500℃程度以上の状態、好ましくは合金の融点(Tm)の50%から75%の温度域で、例えば、金属製若しくは合金製の工具、又は、ダイヤモンド粉末、金属間化合物粉末、タングステンカーバイド等の圧粉体等による無機製若しくは無機複合材料製の工具を用いた加工を施すことによって行うことができる。このような加工処理によって、難加工性である合金構造体を、より高精度な形状寸法に成形したり、装飾したりすることが可能である。 In the solidified layer forming step, shape forming processing and surface processing of the solidified portion 30 to the solidified layer 40 can be performed in a high temperature state until the solidified portion 30 is formed after the alloy powder 10 is melted. . Such processing is performed, for example, in a metal or an alloy in a state where the surface temperature of the molten portion 30 to the solidified portion 40 is about 500 ° C. or higher, preferably 50% to 75% of the melting point (Tm) of the alloy. It can be carried out by processing using a tool made of an inorganic or inorganic composite material such as a diamond powder, an intermetallic compound powder, or a powder compact of tungsten carbide or the like. By such processing, it is possible to form or decorate an alloy structure that is difficult to work into a shape with higher precision.
 粉末展延工程及び凝固層造形工程を繰り返すことで積層造形された合金構造体には、熱間等方圧加圧(Hot Isostatic Pressing;HIP)処理を別途実施してもよい。合金構造体を熱間等方圧加圧処理することによって、合金構造体の凝固組織をより緻密にしたり、凝固組織の欠陥を除去することができる場合があるためである。 A hot isostatic pressing (HIP) treatment may be separately performed on the alloy structure layered and shaped by repeating the powder spreading step and the solidified layer shaping step. By subjecting the alloy structure to hot isostatic pressing, the solidified structure of the alloy structure may be made more compact or defects of the solidified structure may be removed in some cases.
 このような積層造形工程を繰り返し行って立体造形を行う合金構造体の製造方法によれば、柱状晶を主晶とする合金構造体を微小な凝固組織の集合によって所望の形状寸法で製造することができる。また、微小な凝固組織(凝固部30)のそれぞれの元素組成は、用いた合金粉末の元素組成を良好に反映しているため、元素組成分布の均一性及び機械的強度の分布の均一性が高い固溶相を形成することができる。さらには、一方向からの加熱によって凝固組織(凝固部30)を形成し、結晶成長方向が略一方向に配向した凝固組織(凝固層40)を積層することができるため、異方性が高い合金構造体を形成することができる。 According to the manufacturing method of the alloy structure which performs such a lamination molding process repeatedly, and performs three-dimensional modeling, it manufactures an alloy structure which makes a columnar crystal a main crystal by a collection of minute solidification structure with desired shape size. Can. In addition, each elemental composition of the minute solidified structure (solidified portion 30) well reflects the elemental composition of the used alloy powder, so uniformity of elemental composition distribution and uniformity of mechanical strength distribution A high solid solution phase can be formed. Furthermore, since the solidified structure (solidified portion 30) is formed by heating from one direction, and the solidified structure (solidified layer 40) in which the crystal growth direction is oriented in substantially one direction can be stacked, the anisotropy is high. An alloy structure can be formed.
 次に、積層造形によって形成される合金構造体の金属組織について説明する。 Next, the metallographic structure of the alloy structure formed by additive manufacturing will be described.
 図2は、合金構造体が有する金属組織の概略を示した断面図である。(a)は、本実施形態に係る合金構造体の断面図、(b)は、(a)におけるA部の拡大断面図、(c)は、比較例に係る合金材が有する金属組織の概略を示した断面図である。 FIG. 2 is a cross-sectional view schematically showing the metal structure of the alloy structure. (A) is a cross-sectional view of the alloy structure according to the present embodiment, (b) is an enlarged cross-sectional view of part A in (a), (c) is a schematic view of the metal structure of the alloy material according to the comparative example. It is sectional drawing which showed.
 図2(a)に示すように、本実施形態に係る合金構造体1は、前記の積層造形による製造方法に由来する金属組織を有し溶融した合金が凝固して形成される凝固組織(凝固部30)の集合からなる。なお、図2(a)では、積層造形によって製造された合金構造体の一部分を抜き出して断面を示している。個々の凝固組織(凝固部30)は、局所加熱による溶融池(溶融部20)の輪郭形状に由来する略半球状の原形を有しており、周囲にある他の凝固部30と一体化して緻密な金属組織を形成する。また、各凝固部30は、円弧側を同じ方向に向けて2次元状に配列し、凝固部30の集合からなる層状の凝固層40を形成するようになる。そして、このようにして形成された凝固層40が多数積層されることで、凝固部30が3次元状に配列した金属組織が形成される。但し、積層造形における走査速度、走査幅等の造形条件によっては、凝固層40を形成する凝固部30が、同じ層の周囲の他の凝固部30と一体化したり、各凝固部30の弦側が、積層された他の凝固層40と一体化したりすることもあるため、凝固部の略半球状の原形や凝固部30同士の間の溶融境界100は、凝固組織中では観察されない場合があり得る。 As shown in FIG. 2 (a), the alloy structure 1 according to the present embodiment has a metal structure derived from the above-described manufacturing method by lamination molding, and a solidified structure (solidified structure formed by solidification of a melted alloy) It consists of a set of parts 30). In addition, in FIG. 2 (a), a part of the alloy structure manufactured by lamination molding is extracted, and the cross section is shown. Each solidified structure (solidified portion 30) has a substantially hemispherical original shape derived from the contour shape of the molten pool (melted portion 20) by local heating, and is integrated with other solidified portions 30 in the periphery. It forms a fine metal structure. In addition, the solidified portions 30 are arranged in a two-dimensional manner, with the arc side facing in the same direction, so that a layered solidified layer 40 formed of a set of solidified portions 30 is formed. Then, by laminating a large number of solidified layers 40 formed in this manner, a metal structure in which solidified portions 30 are three-dimensionally arranged is formed. However, depending on forming conditions such as scanning speed and scanning width in additive manufacturing, the solidified portion 30 forming the solidified layer 40 may be integrated with other solidified portions 30 around the same layer, or the chord side of each solidified portion 30 Because it may be integrated with the other solidified layer 40 laminated, the substantially hemispherical original shape of the solidified portion or the melting boundary 100 between the solidified portions 30 may not be observed in the solidified structure. .
 合金構造体1は、図2(b)に示すように、非Fe主成分元素及びFeが固溶した柱状晶を主晶としている。なお、図2(b)では、合金構造体の金属組織の断面を数百μmから数mmの視野角に拡大して示している。合金構造体の金属組織中に含まれる各結晶粒50は、結晶方位が凝固層40の積層方向に略沿うようにしてエピタキシャルに成長し、粒界110(大傾角粒界)が積層方向に向けて配向しながら、凝固部30同士の間の溶融境界100を超えて延びる構造が生じる。 As shown in FIG. 2 (b), the alloy structure 1 uses as main crystals columnar crystals in which non-Fe main component elements and Fe are solid-solved. In FIG. 2B, the cross section of the metallographic structure of the alloy structure is shown enlarged to a viewing angle of several hundred μm to several mm. Each crystal grain 50 contained in the metal structure of the alloy structure grows epitaxially with the crystal orientation substantially along the stacking direction of the solidified layer 40, and the grain boundary 110 (high angle grain boundary) is oriented in the stacking direction A structure is produced which extends beyond the melting boundary 100 between the solidified portions 30 while being oriented.
 また、各結晶粒50は、平均結晶粒径が10μm以下にまで微細化していることがある。微細化した結晶粒50同士は結晶方位を維持しており、大傾角粒界110に区画される内側に小傾角粒界120が認められることがある。なお、小傾角粒界120は、傾角15°以下の粒界、大傾角粒界110は、傾角15°を超える粒界として定義される。微細化した結晶粒50は、傾角と共にねじれ角も小さい結晶粒の集合となる傾向がある。 Each crystal grain 50 may be refined to an average crystal grain size of 10 μm or less. The refined crystal grains 50 maintain the crystal orientation, and the low angle grain boundary 120 may be observed inside the area divided into the high angle grain boundaries 110. The low angle grain boundary 120 is defined as a grain boundary with a tilt angle of 15 ° or less, and the high angle grain boundary 110 is defined as a grain boundary with a tilt angle of 15 ° or more. The refined crystal grains 50 tend to be an aggregation of crystal grains having a small twist angle as well as a tilt angle.
 これに対して、従来の高エントロピー合金材(比較例に係る合金材)は、鋳造による製造方法に由来する金属組織を有している。比較例に係る合金材では、図2(c)に示すように、等方的に延びる粒界110が認められ、平均結晶粒径が100μmを超える粗大な等軸晶の結晶粒が形成される傾向がある。なお、図2(c)では、合金材の金属組織の断面を数百μmから数mmの視野角に拡大して示している。比較例に係る合金材では、核成長に伴い偏析を生じ易く、組成分布の均一性は低くなったり、結晶粒が粗大であるために応力が分散され難く、劈開やすべりを生じる面が長尺となるため、機械的強度が十分なものとはならない。特に、固溶相が良好に成長することができないため、寸法が小さく複雑形状を形成することもできないという難がある。 On the other hand, the conventional high entropy alloy material (the alloy material according to the comparative example) has a metal structure derived from the manufacturing method by casting. In the alloy material according to the comparative example, as shown in FIG. 2C, isotropically extending grain boundaries 110 are recognized, and coarse equiaxed crystal grains having an average crystal grain size exceeding 100 μm are formed. Tend. In FIG. 2C, the cross section of the metallographic structure of the alloy material is enlarged and shown at a viewing angle of several hundred μm to several mm. In the alloy material according to the comparative example, segregation is likely to occur as the nuclei grow, the uniformity of the composition distribution is lowered, or the crystal grains are coarse, so that the stress is difficult to be dispersed, and the surface causing cleavage or slip is long As a result, the mechanical strength is not sufficient. In particular, since the solid solution phase can not grow well, there is a problem that the size is small and a complicated shape can not be formed.
 これに対して、本実施形態に係る合金構造体は、結晶方位が比較的揃った結晶がエピタキシャルに成長し、同等の環境で良好に成長した結晶粒50の集合からなるため、合金粉末について調整された元素組成が合金構造体の形状寸法に依らず維持され易く、組成分布の均一性が高くなる。また、結晶粒50が微細化され、応力による歪が局所的に集中し難く、機械的強度の均一性が高くなる利点がある。また、劈開やすべりを生じる面が短尺となるため、機械的強度が向上する点で有利である。さらには、結晶の成長方向が配向して、異方性が高くなるため、方向強度や磁気特性を利用する場合にも有効である。 On the other hand, in the alloy structure according to the present embodiment, since crystals having relatively uniform crystal orientation are epitaxially grown, and consist of aggregates of crystal grains 50 grown favorably in the same environment, the alloy powder is adjusted The elemental composition thus obtained is easily maintained regardless of the shape and size of the alloy structure, and the uniformity of the composition distribution is enhanced. In addition, there is an advantage that the crystal grains 50 are miniaturized, strain due to stress is not easily concentrated locally, and the uniformity of mechanical strength is enhanced. Moreover, since the surface which produces cleavage and slip becomes short, it is advantageous at the point which mechanical strength improves. Furthermore, since the crystal growth direction is oriented and anisotropy is increased, it is also effective in using direction strength and magnetic characteristics.
 次に、本実施形態に係る合金構造体原料として用いられる合金粉末の製造方法の一例について説明する。 Next, an example of the manufacturing method of the alloy powder used as an alloy structure raw material concerning this embodiment is demonstrated.
 図3は、合金構造体の原料として用いられる合金粉末の製造方法の一例を示す概略流れ図である。 FIG. 3 is a schematic flow chart showing an example of a method of producing an alloy powder used as a raw material of an alloy structure.
 前記のとおり本実施形態に係る合金構造体の諸特性は、積層造形において用いる合金粉末の元素組成の影響が反映され易い。したがって、原料として用いる合金粉末は、不可避的不純物の濃度が低減された元素組成とすることが好ましく、合金粉末の製造方法としては、清浄度が高い合金を製造することが可能な真空炭素脱酸法を利用した複合精錬による製造方法を利用するのが好適な形態となる。図3に示す合金粉末の製造方法は、取鍋を使用して炉外精錬を行い、粗金属を原料の地金として、真空炭素脱酸法を利用した複合製錬を行うことで清浄度が高い合金を精錬し、その合金を用いて合金粉末の調製を行う方法となっており、前記の合金粉末の調製工程として適用することができる方法となっている。 As described above, the various properties of the alloy structure according to the present embodiment are likely to reflect the influence of the elemental composition of the alloy powder used in additive manufacturing. Therefore, it is preferable to make the alloy powder used as a raw material into an elemental composition in which the concentration of unavoidable impurities is reduced, and as a method of manufacturing the alloy powder, vacuum carbon deoxidation capable of manufacturing an alloy with high cleanliness. It is a preferable form to use a manufacturing method by complex refining using a method. The manufacturing method of the alloy powder shown in FIG. 3 is that the degree of cleanliness is improved by performing out-of-core refining using a ladle and using the crude metal as the raw metal for the composite smelting using a vacuum carbon deoxidation method. It is a method of refining a high alloy and preparing an alloy powder using the alloy, which is a method which can be applied as a process of preparing the above-mentioned alloy powder.
 この製造方法では、図3(a)に示すように、はじめに、電気炉301によって、合金粉末の原料となる粗金属の金属塊302を溶融させる溶融処理を行う。なお、図3では、電気炉301が、炉内でアーク放電を発生させる炭素電極等の電極304と、炉内に酸素ガスを吹き込む酸素バーナ305とを備えた三相交流アーク炉とされているが、同等の構成を有する直流アーク炉や転炉等を使用することも可能である。 In this manufacturing method, as shown in FIG. 3A, first, the electric furnace 301 performs a melting process to melt the metal lump 302 of the rough metal which is a raw material of the alloy powder. In FIG. 3, the electric furnace 301 is a three-phase AC arc furnace including an electrode 304 such as a carbon electrode for generating arc discharge in the furnace and an oxygen burner 305 for blowing oxygen gas into the furnace. However, it is also possible to use a direct current arc furnace, a converter or the like having the same configuration.
 金属塊302としては、金属スクラップ、鉄屑等を利用することができる。金属塊302の種類は、製造しようとする合金粉末に適合する元素組成となるように配合し、あらかじめ不純物元素が少ない種類を選定することが好ましい。非Fe主成分元素として含有させない場合には、Snについては0.005wt%以下、Sbについては0.002wt%以下、Asについては0.005wt%以下の範囲となるような種類を選定することが好ましい。 As the metal mass 302, metal scraps, scrap metal, etc. can be used. It is preferable that the type of the metal mass 302 be blended so as to have an elemental composition compatible with the alloy powder to be manufactured, and that a type with few impurity elements be selected in advance. If it is not contained as a non-Fe main component, the kind should be selected so that the range is 0.005 wt% or less for Sn, 0.002 wt% or less for Sb, and 0.005 wt% or less for As. preferable.
 溶融処理では、図3(a)に示すように、金属塊302を電気炉301の炉内に投入し、電極304と金属塊302との間でアーク放電303を発生させることによって、金属塊302を溶融させ、溶湯310とする。そして、図3(b)に示すように、溶湯310に、酸素バーナ305によって酸素ガス306を吹き込むことで、スラグを形成させる過酸化処理を行う。このように溶湯310に酸素を吹き込む過酸化処理を行うことによって、溶湯310に含まれているSi、Mn、P等の不純物元素を酸化物としてスラグ中に移行させることができる。また、酸素による燃焼熱で溶湯310を加熱するための電力量を削減することができるという利点もある。 In the melting process, as shown in FIG. 3A, the metal block 302 is placed in the furnace of the electric furnace 301, and an arc discharge 303 is generated between the electrode 304 and the metal block 302, thereby forming the metal block 302. Is melted and made into molten metal 310. Then, as shown in FIG. 3B, the oxygen gas 306 is blown into the molten metal 310 by the oxygen burner 305 to perform a peroxidation treatment to form a slag. By performing the peroxidation treatment by blowing oxygen into the molten metal 310 in this manner, impurity elements such as Si, Mn, and P contained in the molten metal 310 can be transferred as oxides into the slag. In addition, there is also an advantage that the amount of power for heating the molten metal 310 by the heat of combustion due to oxygen can be reduced.
 溶湯310にスラグを形成させた後、図3(c)に示すように、溶湯310を電気炉301の出湯口308から出湯して取鍋309に移す。このとき、溶湯310の液面に浮上した不純物元素を多量に含むスラグが、取鍋309に移行しないようにして溶湯310とスラグとを分離し、Si、Mn、P等の不純物元素の濃度が低下した溶湯310を得る。 After the slag is formed in the molten metal 310, the molten metal 310 is discharged from the outlet port 308 of the electric furnace 301 and transferred to the ladle 309 as shown in FIG. 3 (c). At this time, the slag containing a large amount of impurity elements floated on the liquid surface of the molten metal 310 separates the molten metal 310 and the slag so as not to transfer to the ladle 309, and the concentration of impurity elements such as Si, Mn, P etc. A reduced melt 310 is obtained.
 続いて、図3(d)に示すように、溶湯310を取鍋309の底部から出湯して取鍋精錬炉311に移す。取鍋精錬炉311は、底部にポーラスプラグ313を備えており、アルゴンガス314が不図示のガス供給器からポーラスプラグ313を通じて炉内に送気されることでアルゴンバブリングが行われるようになっている。アルゴンバブリングが行われることによって、取鍋精錬炉311に移された溶湯310は、撹拌により均一化されると共に、O、N等の不純物元素が脱気されることになる。 Subsequently, as shown in FIG. 3D, the molten metal 310 is tapped from the bottom of the ladle 309 and transferred to the ladle refining furnace 311. The ladle smelting furnace 311 has a porous plug 313 at the bottom, and argon bubbling is performed by supplying argon gas 314 from the gas supply unit (not shown) into the furnace through the porous plug 313. There is. By performing argon bubbling, the molten metal 310 transferred to the ladle smelting furnace 311 is homogenized by stirring, and impurity elements such as O and N are degassed.
 取鍋精錬炉311では、図3(e)に示すように、はじめに、溶湯310の1次加熱処理を行う。取鍋精錬炉311に移された溶湯310を、電極304でアーク放電を発生させることによって加熱すると共に、ポーラスプラグ313を通じた底吹のアルゴンバブリングを継続して行うことで、元素成分や温度を均一化させることができる。 In the ladle refining furnace 311, as shown in FIG. 3 (e), first, the primary heat treatment of the molten metal 310 is performed. The molten metal 310 transferred to the ladle smelting furnace 311 is heated by generating an arc discharge with the electrode 304 and continuously performing bottom bubbling argon bubbling through the porous plug 313, thereby the elemental component and the temperature are reduced. It can be made uniform.
 続いて、図3(f)に示すように、溶湯310を真空脱ガス装置316を使用して脱ガス処理する。真空脱ガス装置316は、不図示の真空ポンプが接続された排気孔317を介して装置内が減圧され、取鍋精錬炉311に対して上下に相対運動することで溶湯310を吸上して、溶湯310に含まれるガスを脱ガス処理する装置となっている。なお、図3においては、真空脱ガス装置316として、1本の浸漬管を有するDH真空脱ガス炉(Dortmund Hoerde式)を模式的に示しているが、浸漬管を備えないシュラウドで取鍋製錬炉311を覆う形態としてもよいし、RH真空脱ガス炉(Ruhrstahl Heraeus式)や、RHインジェクション炉の形態とすることも可能である。 Subsequently, as shown in FIG. 3 (f), the molten metal 310 is degassed using a vacuum degassing apparatus 316. The inside of the vacuum degassing apparatus 316 is depressurized through an exhaust hole 317 to which a vacuum pump (not shown) is connected, and the molten metal 310 is sucked by moving relative to the ladle refining furnace 311 up and down. , And the apparatus for degassing the gas contained in the molten metal 310. Although FIG. 3 schematically shows a DH vacuum degassing furnace (Dortmund Hoerde type) having one immersion pipe as the vacuum degassing apparatus 316, the shroud without the immersion pipe is made of a ladle It may be in the form of covering the furnace 311, or it may be in the form of RH vacuum degassing furnace (Ruhrstahl Heraeus type) or RH injection furnace.
 脱ガス処理では、真空脱ガス装置316によって装置内の気相雰囲気が減圧された状態で、アルゴンバブリングを行うことによって、溶湯310から脱気された不純物元素のガスを効率的に排気させることができる。脱ガス処理の間には、溶湯310を不図示のヒータで加熱して温度の低下を防止し、溶湯310には、適宜脱硫用粉体を注入する。溶湯310をこのような脱ガス処理に供することによって、S、O、H等の不純物元素の濃度が低下した溶湯310が得られる。 In the degassing process, the gas of the impurity element degassed from the molten metal 310 can be efficiently exhausted by performing argon bubbling while reducing the gas phase atmosphere in the apparatus by the vacuum degassing apparatus 316. it can. During the degassing process, the molten metal 310 is heated by a heater (not shown) to prevent a decrease in temperature, and a powder for desulfurization is appropriately injected into the molten metal 310. By subjecting the molten metal 310 to such a degassing treatment, the molten metal 310 in which the concentration of impurity elements such as S, O, H and the like is reduced can be obtained.
 続いて、取鍋精錬炉311では、図3(g)に示すように、溶湯310の2次加熱処理を行う。2次加熱処理では、溶湯310の元素組成と温度とを最終調整する。 Subsequently, in the ladle refining furnace 311, as shown in FIG. 3 (g), the secondary heat treatment of the molten metal 310 is performed. In the secondary heat treatment, the elemental composition and temperature of the molten metal 310 are finally adjusted.
 続いて、図3(h)に示すように、取鍋精錬炉311の溶湯310を鋳込み処理する。溶湯310は、取鍋精錬炉311の底部から出湯してタンディッシュ318に移し、タンディッシュ318において不純物元素をスラグとして分離させる。そして、溶湯310をタンディッシュ318の底部から出湯し、真空容器319内に設置された鋳型321に注湯する。真空容器319には、排気孔320を介して不図示の真空ポンプが接続され、鋳型321が設置された容器内部が減圧雰囲気とされるようになっている。このようにして、鋳型321に注湯された溶湯310が冷却されると、任意の形状の合金塊322が鋳造される。溶湯310を減圧雰囲気で鋳込み処理することによって、N、O、H等の不純物元素の濃度が低下した合金が得られる。 Subsequently, as shown in FIG. 3 (h), the molten metal 310 of the ladle refining furnace 311 is subjected to a casting process. The molten metal 310 is discharged from the bottom of the ladle refining furnace 311 and transferred to the tundish 318, and the impurity element is separated as slag in the tundish 318. Then, the molten metal 310 is poured from the bottom of the tundish 318 and poured into a mold 321 installed in the vacuum vessel 319. A vacuum pump (not shown) is connected to the vacuum vessel 319 via the exhaust hole 320 so that the inside of the vessel in which the mold 321 is installed is made into a reduced pressure atmosphere. Thus, when the molten metal 310 poured into the mold 321 is cooled, an alloy block 322 having an arbitrary shape is cast. By casting the molten metal 310 in a reduced pressure atmosphere, an alloy in which the concentration of impurity elements such as N, O and H is reduced can be obtained.
 以上のような方法によって精錬された合金は、粉末調製工程において用いられる合金粉末を調製するための地金として用いることができる。真空炭素脱酸法を利用した複合製錬によって、不純物元素の濃度が低下した清浄度が高い合金となっているため、元素組成分布の均一性が高い粒子で構成され、粒子間の元素組成の均一性も高い合金粉末を調製するのに好適である。このようにして精錬された合金の清浄度を維持させる観点からは、合金粉末を調製するにあたって、真空炭素脱酸法を利用した粉末化処理を行うのが好ましい形態となる。 The alloy refined by the above method can be used as a metal for preparing an alloy powder used in a powder preparation process. The composite smelting using vacuum carbon deoxidation method results in an alloy with high purity in which the concentration of impurity elements is reduced, so that it is composed of particles with high uniformity of the elemental composition distribution, and the elemental composition between particles is The uniformity is also suitable for preparing an alloy powder with high uniformity. From the viewpoint of maintaining the cleanliness of the alloy refined in this manner, it is preferable to perform powdering treatment using a vacuum carbon deoxidation method when preparing the alloy powder.
 真空炭素脱酸法を利用した粉末化処理は、図3(i)に示すようにガスアトマイザが直結した真空炉324を利用して行うことができる。真空炉324は、炉内でアーク放電を発生させる電極304と、炉内にアルゴンガスを吹き込む不図示のガス注入ランスと、真空ポンプが接続される不図示の排気孔とを備えた電気炉とされる。真空炉324の底部には、ノズル328が設けられており、ノズル328の下方には、アトマイズチャンバ330がノズル328の出口を気密に覆うようにして備えられている。また、ノズル328の出口脇には、ノズル328から流下する溶湯326にアルゴンガス等の不活性ガスを吹き付けるガス噴射孔329が設けられている。 The powderization process using a vacuum carbon deoxidation method can be performed using a vacuum furnace 324 to which a gas atomizer is directly connected as shown in FIG. 3 (i). The vacuum furnace 324 is an electric furnace provided with an electrode 304 for generating arc discharge in the furnace, a gas injection lance (not shown) for blowing argon gas into the furnace, and an exhaust hole (not shown) to which a vacuum pump is connected. Be done. At the bottom of the vacuum furnace 324, a nozzle 328 is provided, and below the nozzle 328, an atomizing chamber 330 is provided so as to airtightly cover the outlet of the nozzle 328. Further, at the outlet side of the nozzle 328, a gas injection hole 329 for blowing an inert gas such as argon gas to the molten metal 326 flowing down from the nozzle 328 is provided.
 真空炉324では、炉内に前記の複合精錬によって得られた合金が投入され、電極304と合金との間でアーク放電を発生させることによって、合金の溶湯326が形成される。なお、加熱される溶湯326の温度は、1600℃を超え2500℃以下の温度範囲である。溶湯326は、不図示の排気孔に接続される真空ポンプによって減圧雰囲気の下で、アルゴンバブリングが行われながら脱ガス処理されて、N、O、H等の不純物元素の濃度がさらに低減される。そして、脱ガス処理されて清浄度が維持された状態の溶湯326が、ノズル328から流下する。その後、流下した溶湯328は、ガス噴射孔329から噴射される不活性ガスが吹き付けられることによって微粒子化し、アトマイズチャンバ330内で凝固して粉末331となって底部に集積する。 In the vacuum furnace 324, the alloy obtained by the complex refining described above is introduced into the furnace, and an arc discharge is generated between the electrode 304 and the alloy to form a molten metal 326 of the alloy. In addition, the temperature of the molten metal 326 heated is a temperature range which exceeds 1600 degreeC and is 2500 degrees C or less. The molten metal 326 is degassed while performing argon bubbling under a reduced pressure atmosphere by a vacuum pump connected to an exhaust hole (not shown), and the concentration of impurity elements such as N, O and H is further reduced. . Then, the molten metal 326 in a degassed state and in which the cleanliness is maintained flows downward from the nozzle 328. Thereafter, the molten metal 328 which has flowed down is atomized by spraying an inert gas jetted from the gas injection holes 329 and solidified in the atomizing chamber 330 to be a powder 331 and accumulated at the bottom.
 真空炉324は、融点が比較的高い高エントロピー合金の溶融を行えるように耐熱且つ耐火性の加熱炉とすればよく、炉壁を水冷式等としてもよい。真空炉324の炉壁としては、例えば、黒鉛(グラファイト)、石英(SiO2)、アルミナ(Al23)、マグネシア(MgO)、Al23・SiO2・Fe23・Na2O等の混合焼結体からなるアルミナ質セラミックス、Al23・SiO2・Fe23・TiO2等の混合焼結体からなるムライト質セラミックス、Al23・MgO・SiO2・CaO・Fe23等の混合焼結体からなるマグネシア質セラミックス、Al23・MgO・ZrO2・SiO2・CaO・Fe23・TiO2等の混合焼結体からなるジルコニア質セラミックス、Al23・MgO・SiO2・CaO・Fe23等の混合焼結体からなるスピネル質セラミックス、Al23・MgO・SiO2・CaO・Fe23等の混合焼結体からなるカルシア質セラミックス、Al23・SiO2・Fe23・TiO2等の混合焼結体からなるシリカ質セラミックス等を適用することが好ましい。特に1000℃程度以上の超高温域の溶融を行う場合には、TiC、ZrC、HfC、NbC、TaC等の炭化物によるコーティングを行うことが好ましい。 The vacuum furnace 324 may be a heat-resistant and refractory heating furnace so as to melt a high entropy alloy having a relatively high melting point, and the furnace wall may be a water-cooled type or the like. As a furnace wall of the vacuum furnace 324, for example, graphite (graphite), quartz (SiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), Al 2 O 3 · SiO 2 · Fe 2 O 3 · Na 2 Alumina-based ceramics consisting of mixed sintered bodies such as O, mullite-based ceramics consisting of mixed sintered bodies such as Al 2 O 3 · SiO 2 · Fe 2 O 3 · TiO 2 etc. Al 2 O 3 · MgO · SiO 2 ··· magnesia ceramics consisting of a mixture sintered body such as CaO · Fe 2 O 3, Al 2 O 3 · MgO · ZrO 2 · SiO 2 · CaO · Fe 2 O 3 · TiO 2 zirconia comprising a mixed sintered body such as Ceramics, spinel-like ceramics composed of mixed sintered bodies of Al 2 O 3 · MgO · SiO 2 · CaO · Fe 2 O 3 etc. Mixed sintered bodies of Al 2 O 3 · MgO · SiO 2 · CaO · Fe 2 O 3 etc. Calculus consisting of a body It is preferred to apply the quality ceramics, siliceous ceramics consisting of Al 2 O 3 · SiO 2 · Fe 2 O 3 · TiO 2 mixed sintered body such as. In particular, in the case of melting at a high temperature of about 1000 ° C. or more, it is preferable to perform coating with carbides such as TiC, ZrC, HfC, NbC, TaC and the like.
 図4は、真空炭素脱酸法を利用して調製された合金粉末における不純物元素の濃度変化の経過の一例を示した図である。 FIG. 4 is a diagram showing an example of the change in concentration of impurity elements in an alloy powder prepared using a vacuum carbon deoxidation method.
 図4では、前記の真空炭素脱酸法を利用して合金を精錬し、その合金を粉末化処理して合金粉末を調製する過程において、合金粉末の地金に含まれる不純物元素の濃度変化を経時的に測定して示している。なお、経過時間1.5h~2.8hに相当するA期間は、電気炉301における過酸化処理(図3(b)参照)に相当し、経過時間2.8h~6hに相当するB1期間は、取鍋精錬炉311における1次加熱処理(図3(e)参照)に相当し、経過時間6h~6.5hに相当するB2期間は、取鍋精錬炉311における脱ガス処理(図3(f)参照)に相当し、経過時間6.5h~8.2hに相当するB3期間は、取鍋精錬炉311における2次加熱処理(図3(g)参照)に相当し、経過時間8.2h以降に相当するC期間は、真空炉324における脱ガス処理(図3(i)参照)に相当している。 In FIG. 4, in the process of refining the alloy using the above-mentioned vacuum carbon deoxidation method and pulverizing the alloy to prepare an alloy powder, the concentration change of the impurity element contained in the base metal of the alloy powder is Measured over time and shown. Period A corresponding to the elapsed time 1.5 h to 2.8 h corresponds to the peroxidation treatment (see FIG. 3B) in the electric furnace 301, and period B1 corresponding to the elapsed time 2.8 h to 6 h Degassing treatment in the ladle smelting furnace 311 (FIG. 3 (B), which corresponds to primary heat treatment in the ladle smelting furnace 311 (see FIG. 3 (e)) and corresponds to elapsed time 6 h to 6.5 h. The period B3 corresponding to f) and corresponding to the elapsed time 6.5 h to 8.2 h corresponds to the secondary heat treatment (see FIG. 3 (g)) in the ladle smelting furnace 311, and the elapsed time 8. The C period corresponding to 2 h or later corresponds to the degassing process (see FIG. 3I) in the vacuum furnace 324.
 図4に示すように、真空炭素脱酸法を利用することによって、取鍋精錬炉311において2次加熱処理まで実施すると、Cについては、0.18wt%、Siについては0.01wt%、Mnについては0.019wt%、Pについては0.001wt%、Sについては0.001wt%まで濃度が低下し、真空炉324において脱ガス処理まで実施すると、Oについては0.0003wt%(3ppm)、Nについては0.001wt%(10ppm)まで濃度が低下し得ることが分かる。このように、真空炭素脱酸法を利用して合金粉末を調製する過程で、スラグ分離の回数、脱ガス処理の時間等を適宜調整することで、P、Si、S、Sn、Sb、As、Mn、O、N等の不純物元素の濃度を所望の範囲に制限することが可能である。なお、P、Si、Sn、Sb、As又はMnの元素を非Fe主成分元素として合金構造体に含有させる場合には、精錬の過程での濃度低下を見越して地金を選定したり、スラグ分離の回数等を適宜調整したりすればよい。 As shown in FIG. 4, when the secondary heat treatment is carried out in the ladle smelting furnace 311 by using a vacuum carbon deoxidation method, 0.18 wt% for C, 0.01 wt% for Si, and Mn for The concentration decreases to 0.019 wt% for P, 0.001 wt% for P, and 0.001 wt% for S, and when it is carried out to the degassing treatment in the vacuum furnace 324, 0.0003 wt% (3 ppm) for O, It can be seen that the concentration of N can be reduced to 0.001 wt% (10 ppm). As described above, P, Si, S, Sn, Sb, As, and the like can be appropriately adjusted by appropriately adjusting the number of times of slag separation, the time of degassing treatment, and the like in the process of preparing the alloy powder using the vacuum carbon deoxidation method. It is possible to limit the concentration of impurity elements such as Mn, O and N to a desired range. In addition, when the element of P, Si, Sn, Sb, As or Mn is contained in the alloy structure as a non-Fe main element, the metal is selected in anticipation of the concentration decrease in the refining process, or slag The number of separations may be adjusted as appropriate.
 以上の本実施形態に係る合金構造体は、構造部材、機構部材等として適用することができる。積層造形可能な範囲で、任意の形状とすることができ、長さ寸法が70mmを超え、体積が5495mm3を超える任意の寸法とすることができる。常環境における用途の他、高温環境、高放射線量環境、高腐食性環境等の過酷環境における用途に用いることが可能である。また、高温下における原子拡散の速度が遅く、物性を安定して維持できることから、高温環境に長期間おかれる用途にも好適に用いることができる。より具体的には、例えば、ケーシング、配管、バルブ等を含めたプラント用構造材、発電機用構造材、原子炉用構造材、航空宇宙用構造材、油圧機器用部材、タービンブレード等を含むタービン用部材、ボイラ用部材、エンジン用部材、ノズル用部材、軸受やピストン等の各種機器の機構部材等の用途に利用することが可能である。また、本実施形態に係る合金構造体は、金属製又は合金製の構造部材、機構部材等の構造体の表面を被覆するように適用することによって、耐熱コーティング、耐腐食コーティング、耐摩耗コーティング、原子拡散の障壁となる拡散バリア層等として利用することも可能である。また、摩擦撹拌溶接(Friction Stir Welding;FSW)用加工具等の工具類にも適用することができ、高い高温強度や耐摩耗性が要求される鉄系材料の摩擦撹拌溶接を含む広い用途について好適に利用することができる。 The alloy structure according to the present embodiment described above can be applied as a structural member, a mechanical member, and the like. The shape can be any shape within the layer-formable range, and the length dimension can exceed 70 mm and the volume can exceed 5495 mm 3 . It can be used for applications in severe environments such as high temperature environments, high radiation dose environments, and highly corrosive environments as well as applications in ordinary environments. In addition, since the rate of atomic diffusion at high temperatures is low and physical properties can be stably maintained, the invention can be suitably used for applications which are left in a high temperature environment for a long time. More specifically, it includes, for example, structural materials for plants including casings, pipes, valves, etc., structural materials for generators, structural materials for nuclear reactors, structural materials for aerospace, members for hydraulic equipment, turbine blades, etc. The present invention can be used for applications such as members for turbines, members for boilers, members for engines, members for nozzles, mechanical members for bearings, pistons, and the like. In addition, the alloy structure according to the present embodiment is applied so as to cover the surface of a structure made of metal or alloy, such as a structural member or a mechanical member, whereby a heat resistant coating, a corrosion resistant coating, a wear resistant coating, It can also be used as a diffusion barrier layer or the like that serves as a barrier to atomic diffusion. Moreover, it is applicable also to tools, such as a processing tool for friction stir welding (Friction Stir welding; FSW), and the wide use including friction stir welding of ferrous material which high high temperature strength and abrasion resistance are required for. It can be suitably used.
 以下、本発明の実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples of the present invention, but the technical scope of the present invention is not limited thereto.
 本発明の実施例として、実施例1-1~実施例1-4及び実施例2-1~実施例2-3に係る合金構造体を製造し、凝固組織の観察、元素組成分布、機械的特性の評価を行った。また、実施例の対照として、比較例1-1~比較例1-4及び比較例2-1~比較例2-4に係る合金構造体を製造し、併せて評価を行った。 As an example of the present invention, alloy structures according to Examples 1-1 to 1-4 and Examples 2-1 to 2-3 are manufactured, and observation of solidified structure, distribution of elemental composition, mechanical The characteristics were evaluated. In addition, as a control of the example, alloy structures according to Comparative Examples 1-1 to 1-4 and Comparative Examples 2-1 to 2-4 were manufactured and evaluated together.
[実施例1-1]
 実施例1-1として、元素組成がAl0.3CoCrFeNiで表わされる合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%である。
Example 1-1
As Example 1-1, an alloy structure having an elemental composition represented by Al 0.3 CoCrFeNi was manufactured by lamination molding. The atomic concentration ratio is about 7 at% of Al and about 23.3 at% of Co, Cr, Fe, and Ni.
 はじめに、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%である合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を50μm以上100μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al of about 7 at% and an atomic concentration of Co, Cr, Fe, and Ni of about 23.3 at% as a base metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to the range of 50 μm to 100 μm, and the volume-based average particle size was about 70 μm.
 続いて、積層造形装置を使用して、基材上に合金構造体を造形した。基材としては、100mm×100mm×10mmの板状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源を電子ビームとした電子ビーム溶融積層造形装置「A2X」(Arcam社製)を使用した。積層造形装置では、真空雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって、直径10mm、高さ50mmの円柱形状の合金構造体を製造した。このとき、合金粉末の溶融は、合金の融点(Tm)の50%から80%の温度の予備加熱を事前に行いながら実施し、展延された合金粉末の飛散を抑制した。その後、合金構造体を基材から切り離した。 Subsequently, the layered structure forming apparatus was used to form an alloy structure on the substrate. A 100 mm × 100 mm × 10 mm plate-like carbon steel for machine structure “S45C” was used as a substrate. Moreover, as a lamination | stacking modeling apparatus, the electron beam fusion lamination molding apparatus "A2X" (made by Arcam) which made the heat source the electron beam was used. In the layered manufacturing apparatus, a cylindrical alloy structure having a diameter of 10 mm and a height of 50 mm was manufactured by repeatedly performing a powder spreading process and a solidified layer forming process on a base material in a vacuum atmosphere. At this time, melting of the alloy powder was performed while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy in advance to suppress scattering of the spread alloy powder. The alloy structure was then separated from the substrate.
[実施例1-2]
 実施例1-2として、元素組成がAlCoCrFeNiで表わされる合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。
Embodiment 1-2
As Example 1-2, an alloy structure having an elemental composition represented by AlCoCrFeNi was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
 実施例1-2に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例1-1と同様にして製造した。 The alloy structure according to Example 1-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used to prepare the alloy powder was changed.
[比較例1-1]
 比較例1-1として、元素組成がAl0.3CoCrFeNiで表わされる合金構造体を鋳造により製造した。原子濃度比率は、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%である。
Comparative Example 1-1
As Comparative Example 1-1, an alloy structure having an elemental composition represented by Al 0.3 CoCrFeNi was manufactured by casting. The atomic concentration ratio is about 7 at% of Al and about 23.3 at% of Co, Cr, Fe, and Ni.
 はじめに、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%である合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を50μm以上100μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al of about 7 at% and an atomic concentration of Co, Cr, Fe, and Ni of about 23.3 at% as a base metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to the range of 50 μm to 100 μm, and the volume-based average particle size was about 70 μm.
 続いて、得られた合金粉末を、アルミナ製の坩堝に投入し、真空雰囲気下において、高周波誘導加熱によって溶解させた後、銅製の水冷鋳型に注湯し、冷却して凝固させることによって、直径10mm、高さ50mmの円柱形状の合金構造体を製造した。 Subsequently, the obtained alloy powder is put into an alumina crucible, melted by high frequency induction heating in a vacuum atmosphere, poured into a water-cooled mold made of copper, cooled and solidified to obtain a diameter. A cylinder-shaped alloy structure of 10 mm and 50 mm in height was manufactured.
[比較例1-2]
 比較例1-2として、元素組成がAl0.2CoCrFeNiで表わされる合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約4.8at%、Co、Cr、Fe及びNiの原子濃度が約23.8at%である。
Comparative Example 1-2
As Comparative Example 1-2, an alloy structure having an elemental composition represented by Al 0.2 CoCrFeNi was manufactured by lamination molding. The atomic concentration ratio is about 4.8 at% for Al and about 23.8 at% for Co, Cr, Fe and Ni.
 比較例1-2に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例1-1と同様にして製造した。 The alloy structure according to Comparative Example 1-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used to prepare the alloy powder was changed.
[実施例1-3]
 実施例1-3として、元素組成がAl1.5CoCrFeNiで表わされる合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約27.2at%、Co、Cr、Fe及びNiの原子濃度が約18.2at%である。
Embodiment 1-3
As Example 1-3, an alloy structure having an elemental composition represented by Al 1.5 CoCrFeNi was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentration of Al is about 27.2 at%, and the atomic concentrations of Co, Cr, Fe and Ni are about 18.2 at%.
 はじめに、Alの原子濃度が約27.2at%、Co、Cr、Fe及びNiの原子濃度が約18.2at%である合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を20μm以上50μm以下の範囲に限定すると共に、体積基準の平均粒子径が約30μmとなるようにした。 First, an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al of about 27.2 at% and an atomic concentration of Co, Cr, Fe, and Ni of about 18.2 at% as a base metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 20 μm to 50 μm, and the volume-based average particle size was about 30 μm.
 続いて、積層造形装置を使用して、基材上に合金材を造形した。基材としては、直径10mm、高さ50mmの円柱形状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源をレーザー光としたレーザー溶融積層造形装置「EOSINT M270」(EOS社製)を使用した。積層造形装置では、窒素雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって、200μmの多層膜状の合金材を製造した。 Subsequently, the laminate molding apparatus was used to model the alloy material on the base material. As a base material, carbon steel "S45C" for cylinder-like machine structure for diameter 10 mm and height 50 mm was used. Moreover, as a lamination | stacking modeling apparatus, the laser fusion lamination molding apparatus "EOSINT M270" (made by EOS company) which made the heat source the laser beam was used. In the lamination molding apparatus, a 200 μm multilayer film-like alloy material was manufactured by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a nitrogen atmosphere.
[比較例1-3]
 比較例1-3として、元素組成がAlCoCrFeNiで表わされる合金構造体を溶射により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。
Comparative Example 1-3
As Comparative Example 1-3, an alloy structure having an elemental composition represented by AlCoCrFeNi was produced by thermal spraying. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
 はじめに、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%となるように、Al、Co、Cr、Fe及びNiの各金属粉を混合した。なお、各金属粉は分級し、粒子径分布を50μm以上150μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, each metal powder of Al, Co, Cr, Fe and Ni was mixed such that the atomic concentration of Al, Co, Cr, Fe and Ni was about 20.0 at%. In addition, each metal powder was classified, and while limiting particle diameter distribution to the range of 50 micrometers or more and 150 micrometers or less, it was made for the average particle diameter on a volume basis to be about 70 micrometers.
 続いて、混合した金属粉末を、窒素雰囲気下において、基材上に、プラズマ溶射法によって溶射することによって、200μmの膜状の合金構造体を製造した。基材としては、直径100mm、高さ10mmの円柱形状の機械構造用炭素鋼「S45C」を用いた。 Subsequently, the mixed metal powder was sprayed onto the base material by plasma spraying under a nitrogen atmosphere to produce a 200 μm film-like alloy structure. As a base material, carbon steel "S45C" for machine-structure-use cylindrical shape with a diameter of 100 mm and a height of 10 mm was used.
[比較例1-4]
 比較例1-4として、元素組成がAl2.0CoCrFeNiで表わされる合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約33.3at%、Co、Cr、Fe及びNiの原子濃度が約16.7at%である。
Comparative Example 1-4
As Comparative Example 1-4, an alloy structure having an elemental composition represented by Al 2.0 CoCrFeNi was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentration of Al is about 33.3 at%, and the atomic concentrations of Co, Cr, Fe, and Ni are about 16.7 at%.
 比較例1-4に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例1-2と同様にして製造した。 The alloy structure according to Comparative Example 1-4 was manufactured in the same manner as Example 1-2 except that the composition of the base metal used for preparation of the alloy powder was changed.
[実施例1-4]
 実施例1-4として、元素組成がAlCoCrFeNiMo0.5で表わされる合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約18.2at%、Moの原子濃度が約9.1at%である。
Embodiment 1-4
As Example 1-4, an alloy structure whose elemental composition is represented by AlCoCrFeNiMo 0.5 was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 18.2 at% and the atomic concentration of Mo is about 9.1 at%.
 はじめに、Al、Co、Cr、Fe及びNiの原子濃度が約18.2at%、Moの原子濃度が約9.1at%である合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を50μm以上100μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, an alloy powder was prepared by gas atomization using an alloy having an atomic concentration of Al, Co, Cr, Fe and Ni of about 18.2 at% and an atomic concentration of Mo of about 9.1 at% as a base metal. . Then, the obtained alloy powder was classified, and the particle size distribution was limited to the range of 50 μm to 100 μm, and the volume-based average particle size was about 70 μm.
 続いて、積層造形装置を使用して、基材上に合金構造体を造形した。基材としては、直径300mm、高さ10mmの円柱形状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源を電子ビームとした電子ビーム溶融積層造形装置「A2X」(Arcam社製)を使用した。積層造形装置では、真空雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって、直径300mm、高さ100mmの略円柱の羽根車形状の合金構造体を製造した。このとき、合金粉末の溶融は、合金の融点(Tm)の50%から80%の温度の予備加熱を事前に行いながら実施し、展延された合金粉末の飛散を抑制した。その後、羽根車形状の合金構造体を基材から切り離した。 Subsequently, the layered structure forming apparatus was used to form an alloy structure on the substrate. As a base material, a cylindrical carbon steel for machine structure "S45C" with a diameter of 300 mm and a height of 10 mm was used. Moreover, as a lamination | stacking modeling apparatus, the electron beam fusion lamination molding apparatus "A2X" (made by Arcam) which made the heat source the electron beam was used. The layered molding apparatus manufactured a substantially cylindrical impeller-shaped alloy structure having a diameter of 300 mm and a height of 100 mm by repeatedly performing a powder spreading process and a solidified layer forming process on a base material in a vacuum atmosphere. . At this time, melting of the alloy powder was performed while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy in advance to suppress scattering of the spread alloy powder. Thereafter, the impeller-shaped alloy structure was separated from the substrate.
[実施例2-1]
 実施例2-1として、元素組成がAl0.3CoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Example 2-1
As Example 2-1, an alloy structure represented by Al 0.3 CoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by lamination molding. The atomic concentration ratio is about 7 at% of Al and about 23.3 at% of Co, Cr, Fe, and Ni. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 実施例2-1に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例1-1と同様にして製造した。 The alloy structure according to Example 2-1 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
[実施例2-2]
 実施例2-2として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Embodiment 2-2
As Example 2-2, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 実施例2-2に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例1-1と同様にして製造した。 The alloy structure according to Example 2-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
[比較例2-1]
 比較例2-1として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を鋳造により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Comparative Example 2-1
As Comparative Example 2-1, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by casting. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 比較例2-1に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、比較例1-1と同様にして製造した。 The alloy structure according to Comparative Example 2-1 was manufactured in the same manner as Comparative Example 1-1 except that the composition of the base metal used for preparing the alloy powder was changed.
[比較例2-2]
 比較例2-2として、元素組成がAl0.2CoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を鋳造により製造した。原子濃度比率は、Alの原子濃度が約4.8at%、Co、Cr、Fe及びNiの原子濃度が約23.8at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Comparative Example 2-2
As Comparative Example 2-2, an alloy structure having an elemental composition represented by Al 0.2 CoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by casting. The atomic concentration ratio is about 4.8 at% for Al and about 23.8 at% for Co, Cr, Fe and Ni. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 比較例2-2に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例1-1と同様にして製造した。 The alloy structure according to Comparative Example 2-2 was manufactured in the same manner as Example 1-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
[実施例2-3]
 実施例2-3として、元素組成がAl1.5CoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約27.2at%、Co、Cr、Fe及びNiの原子濃度が約18.2at%である。また、Pの濃度を0.005wt%以下、Siの濃度を0.040wt%以下、Sの濃度を0.002wt%以下、Snの濃度を0.005wt%以下、Sbの濃度を0.002wt%以下、Asの濃度を0.005wt%以下、Mnの濃度を0.050wt%以下、Oの濃度を0.001wt%以下、Nの濃度を0.002wt%以下に制限した。
Example 2-3
As Example 2-3, an alloy structure represented by Al 1.5 CoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentration of Al is about 27.2 at%, and the atomic concentrations of Co, Cr, Fe and Ni are about 18.2 at%. In addition, the concentration of P is 0.005 wt% or less, the concentration of Si is 0.040 wt% or less, the concentration of S is 0.002 wt% or less, the concentration of Sn is 0.005 wt% or less, the concentration of Sb is 0.002 wt% Hereinafter, the concentration of As was limited to 0.005 wt% or less, the concentration of Mn to 0.050 wt% or less, the concentration of O to 0.001 wt% or less, and the concentration of N to 0.002 wt% or less.
 はじめに、Alの原子濃度が約27.2at%、Co、Cr、Fe及びNiの原子濃度が約18.2at%であり、Pの濃度を0.005wt%以下、Siの濃度を0.040wt%以下、Sの濃度を0.002wt%以下、Snの濃度を0.005wt%以下、Sbの濃度を0.002wt%以下、Asの濃度を0.005wt%以下、Mnの濃度を0.050wt%以下、Oの濃度を0.001wt%以下、Nの濃度を0.002wt%以下に制限した合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を20μm以上50μm以下の範囲に限定すると共に、体積基準の平均粒子径が約30μmとなるようにした。 First, the atomic concentration of Al is about 27.2 at%, the atomic concentrations of Co, Cr, Fe and Ni are about 18.2 at%, the concentration of P is 0.005 wt% or less, the concentration of Si is 0.040 wt% Hereinafter, the concentration of S is 0.002 wt% or less, the concentration of Sn is 0.005 wt% or less, the concentration of Sb is 0.002 wt% or less, the concentration of As is 0.005 wt% or less, the concentration of Mn is 0.050 wt% Hereinafter, an alloy powder was prepared by gas atomization using an alloy in which the concentration of O was limited to 0.001 wt% or less and the concentration of N to 0.002 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 20 μm to 50 μm, and the volume-based average particle size was about 30 μm.
 続いて、積層造形装置を使用して、基材上に合金材を造形した。基材としては、直径100mm、高さ10mmの円柱形状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源をレーザー光としたレーザー溶融積層造形装置「EOSINT M270」(EOS社製)を使用した。積層造形装置では、窒素雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって、200μmの多層膜状の合金材を製造した。 Subsequently, the laminate molding apparatus was used to model the alloy material on the base material. As a base material, carbon steel "S45C" for machine-structure-use cylindrical shape with a diameter of 100 mm and a height of 10 mm was used. Moreover, as a lamination | stacking modeling apparatus, the laser fusion lamination molding apparatus "EOSINT M270" (made by EOS company) which made the heat source the laser beam was used. In the lamination molding apparatus, a 200 μm multilayer film-like alloy material was manufactured by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a nitrogen atmosphere.
[比較例2-3]
 比較例2-3として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を溶射により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Comparative Example 2-3
As Comparative Example 2-3, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by thermal spraying. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 はじめに、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%となり、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した、Al、Co、Cr、Fe及びNiの各金属粉を混合した。なお、各金属粉は分級し、粒子径分布を50μm以上150μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, the atomic concentration of Al, Co, Cr, Fe and Ni is about 20.0 at%, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% Hereinafter, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% or less, the concentration of As is 0.001 wt% or less, the concentration of Mn is 0.020 wt% or less, the concentration of O is 0.0003 wt% Hereinafter, metal powders of Al, Co, Cr, Fe and Ni in which the concentration of N is limited to 0.001 wt% or less were mixed. In addition, each metal powder was classified, and while limiting particle diameter distribution to the range of 50 micrometers or more and 150 micrometers or less, it was made for the average particle diameter on a volume basis to be about 70 micrometers.
 続いて、混合した金属粉末を、窒素雰囲気下において、基材上に、プラズマ溶射法によって溶射することによって、200μmの膜状の合金構造体を製造した。基材としては、直径100mm、高さ10mmの円柱形状の機械構造用炭素鋼「S45C」を用いた。 Subsequently, the mixed metal powder was sprayed onto the base material by plasma spraying under a nitrogen atmosphere to produce a 200 μm film-like alloy structure. As a base material, carbon steel "S45C" for machine-structure-use cylindrical shape with a diameter of 100 mm and a height of 10 mm was used.
[比較例2-4]
 比較例2-4として、元素組成がAl2.0CoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を積層造形により製造した。原子濃度比率は、Alの原子濃度が約33.3at%、Co、Cr、Fe及びNiの原子濃度が約16.7at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Comparative Example 2-4
As Comparative Example 2-4, an alloy structure in which the elemental composition was expressed as Al 2.0 CoCrFeNi and in which the concentration of unavoidable impurities was limited was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentration of Al is about 33.3 at%, and the atomic concentrations of Co, Cr, Fe, and Ni are about 16.7 at%. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 比較例2-4に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例2-2と同様にして製造した。 The alloy structure according to Comparative Example 2-4 was manufactured in the same manner as Example 2-2 except that the composition of the base metal used for preparation of the alloy powder was changed.
 次に、製造した実施例1-1~実施例1-4及び実施例2-1~実施例2-3に係る合金構造体、及び、比較例1-1~比較例1-4及び比較例2-1~比較例2-4に係る合金構造体について、凝固組織の観察、ニッケル濃度分布の解析、硬度測定を行った。なお、凝固組織の観察は、高分解能の透過型電子顕微鏡によって、結晶構造と平均結晶粒径を確認することによって行った。また、ニッケル濃度分布の解析は、走査型電子顕微鏡-エネルギー分散型X線分光(Scanning Electron Microscope - Energy Dispersive X-ray Detector;SEM-EDX)によって、任意に抽出した10箇所の領域についてニッケル濃度を計測することによって行った。また、硬度測定は、合金材の任意に抽出した10点についてビッカース硬度(Hv)を計測することによって行った。試験荷重は100gfとし、保持時間は10秒とした。 Next, alloy structures according to Examples 1-1 to 1-4 and Examples 2-1 to 2-3 manufactured, and Comparative Examples 1-1 to 1-4 and Comparative Examples With respect to the alloy structures according to 2-1 to Comparative Example 2-4, observation of a solidified structure, analysis of a nickel concentration distribution, and hardness measurement were performed. The observation of the solidified structure was performed by confirming the crystal structure and the average crystal grain size with a high resolution transmission electron microscope. In addition, analysis of the nickel concentration distribution is carried out by using a scanning electron microscope-energy dispersive X-ray spectroscopy (energy dispersive X-ray detector; SEM-EDX) to measure the nickel concentration in 10 arbitrarily extracted regions. It did by measuring. The hardness was measured by measuring the Vickers hardness (Hv) of 10 arbitrarily extracted alloy materials. The test load was 100 gf and the holding time was 10 seconds.
 凝固組織の観察、ニッケル濃度分布の解析、硬度測定の結果を表1に示す。表1において元素組成の欄は、主成分元素と添加元素の原子濃度比を示している。また、不純物の欄は、「±」が不可避的不純物を制限していない例、「-」が不可避的不純物をやや制限した例、「--」が不可避的不純物をより制限した例を示している。また、「結晶構造」の欄は、主晶の結晶構造を示している。「硬度」の欄における「*」は、割れが生じたことを示している。 The results of the observation of the solidified structure, the analysis of the nickel concentration distribution, and the hardness measurement are shown in Table 1. The column of element composition in Table 1 indicates the atomic concentration ratio of the main component element to the additive element. Also, in the column of impurities, “±” indicates an example in which the unavoidable impurities are not limited, an example in which “-” slightly restricts the inevitable impurities, and “-” indicates an example in which the inevitable impurities are more restricted. There is. The column of "Crystal structure" indicates the crystal structure of the main crystal. “*” In the “hardness” column indicates that a crack has occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1-1~実施例1-4及び実施例2-1~実施例2-3に係る合金構造体は、面心立方格子の結晶構造又は体心立方格子の結晶構造のいずれかを有していることが確認された。また、ニッケル濃度分布及び硬度の値からは、標準偏差が小さく、元素組成及び機械的強度の分布の均一性が高いことが分かる。また、凝固組織の観察からは、図2(a)及び(b)に示されるような凝固組織と結晶構造とが確認された。羽根車形状とした実施例1-4に係る合金構造体については、塩水(人工海水)腐食試験時における腐食減肉量が、オーステナイト系ステンレス鋼(SUS304)よりも抑制されることが別途確認され、耐腐食用構造部材、耐腐食用機構部材等として好適であることも確認された。 As shown in Table 1, the alloy structures according to Examples 1-1 to 1-4 and Examples 2-1 to 2-3 have the crystal structure or body-centered cubic lattice of the face-centered cubic lattice. It was confirmed to have any of the crystal structures of Further, it is understood from the values of the nickel concentration distribution and the hardness that the standard deviation is small and the uniformity of the distribution of the elemental composition and the mechanical strength is high. Further, from the observation of the solidified structure, a solidified structure and a crystal structure as shown in FIGS. 2 (a) and 2 (b) were confirmed. With respect to the alloy structure according to Example 1-4 having the impeller shape, it is separately confirmed that the amount of corrosion reduction at the time of a salt water (artificial seawater) corrosion test is suppressed more than that of austenitic stainless steel (SUS 304) It has also been confirmed that it is suitable as a corrosion resistant structural member, a corrosion resistant mechanical member and the like.
 これに対して、比較例1-1~比較例1-4及び比較例2-1~比較例2-4に係る合金構造体は、ニッケル濃度分布及び硬度の値は、標準偏差が大きく、元素組成及び機械的強度の分布の均一性は低いことが分かる。また、結晶構造は、元素組成の均一性の低さが反映されて、複相組織が形成されていることが認められた。特に、Alの原子濃度を低下させると、硬度が軟鋼よりも低い値に留まり、構造部材、機構部材等として不適であることが判明した。また、Alの原子濃度を増大させると、B2型金属間化合物が生じ、試験時において割れが生じてしまい、構造部材、機構部材等として不適であることが判明した。 On the other hand, in the alloy structures according to Comparative Examples 1-1 to 1-4 and Comparative Examples 2-1 to 2-4, the values of the nickel concentration distribution and the hardness have a large standard deviation, and the elements It can be seen that the uniformity of the composition and the distribution of mechanical strength is low. In addition, it was recognized that the crystal structure reflects the low uniformity of the elemental composition, and a multiphase structure is formed. In particular, when the atomic concentration of Al is lowered, the hardness remains lower than that of mild steel, and it has been found that it is unsuitable as a structural member, a mechanical member or the like. In addition, when the atomic concentration of Al was increased, a B2 type intermetallic compound was formed, and a crack was generated at the time of the test, which proved to be unsuitable as a structural member, a mechanical member or the like.
 一般に、構造部材、機構部材等においては、熱劣化、摩耗、腐食等が、耐性が低い領域を起点として進展するため、圧延等を考慮すると構造部材、機構部材等においては硬度と延性を両立することが望まれるといえる。また、これらの性質の偏差も極小化されることが求められるといえる。このような観点からは、実施例1-1~実施例1-4及び実施例2-1~実施例2-3に係る合金構造体と比較例1-1~比較例1-4及び比較例2-1~比較例2-4に係る合金構造体との結果から、本発明が有する元素組成及び機械的強度の分布の均一性が、構造部材、機構部材等の特性を向上させる場合において極めて有利に働くことが確認できたといえる。 Generally, in structural members, mechanical members, etc., thermal deterioration, wear, corrosion, etc. progress starting from the region with low resistance, so considering rolling etc., hardness and ductility are compatible in structural members, mechanical members, etc. Can be said to be desirable. Moreover, it can be said that the deviation of these properties is also required to be minimized. From such a viewpoint, the alloy structures according to Example 1-1 to Example 1-4 and Example 2-1 to Example 2-3 and Comparative Example 1-1 to Comparative Example 1-4 and Comparative Example From the results with the alloy structures according to 2-1 to Comparative Example 2-4, the uniformity of the distribution of the elemental composition and the mechanical strength according to the present invention significantly improves the characteristics of the structural member, the mechanical member, etc. It can be said that it has been confirmed that it works in an advantageous manner.
 次に、本発明の実施例として、実施例3-1及び実施例3-2に係る合金構造体を製造し、応力-歪特性の評価を行った。 Next, as an example of the present invention, alloy structures according to Example 3-1 and Example 3-2 were manufactured, and stress-strain characteristics were evaluated.
 図5は、実施例3に係る合金構造体の形状寸法を示す図である。 FIG. 5 is a view showing the shape and dimensions of the alloy structure according to the third embodiment.
[実施例3-1]
 実施例3-1として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限した図5に示す合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Example 3-1
As Example 3-1, an alloy structure shown in FIG. 5 in which the elemental composition is expressed as AlCoCrFeNi and the concentration of unavoidable impurities is limited was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 はじめに、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%であり、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を45μm以上105μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, the atomic concentration of Al is about 7 at%, the atomic concentrations of Co, Cr, Fe and Ni are about 23.3 at%, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, The concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% or less, the concentration of As is 0.001 wt% or less, the concentration of Mn is 0.020 wt% or less, An alloy powder was prepared by gas atomization using an alloy in which the concentration of O was limited to 0.0003 wt% or less and the concentration of N to 0.001 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 45 μm to 105 μm, and the volume-based average particle size was about 70 μm.
 続いて、積層造形装置を使用して、基材上に合金材を造形した。基材としては、200mm×200mm×10mmの板状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源を電子ビームとした電子ビーム溶融積層造形装置「A2X」(Arcam社製)を使用した。積層造形装置では、真空雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって、図5に示すように、150mm×150mm×30mmの板状造形物(板状部)を形成し、その上に28mm×28mm×20mmの直方体造形物(直方体部)を縦横6mmの間隔を空けて計16個造形した。このとき、合金粉末の溶融は、合金粉末の融点(Tm)の50%から80%の温度の予備加熱を事前に行いながら実施し、展延された合金粉末の飛散を抑制した。なお、造形物全体の体積は、925880mm3であった。 Subsequently, the laminate molding apparatus was used to model the alloy material on the base material. As a base material, a plate-like carbon steel for machine structure "S45C" of 200 mm × 200 mm × 10 mm was used. Moreover, as a lamination | stacking modeling apparatus, the electron beam fusion lamination molding apparatus "A2X" (made by Arcam) which made the heat source the electron beam was used. In the layered molding apparatus, a plate-shaped object of 150 mm × 150 mm × 30 mm (a plate-like structure (plate shape) as shown in FIG. 5 by repeatedly performing a powder spreading step and a solidified layer forming step on a substrate under a vacuum atmosphere. Part) were formed, and a total of 16 28 mm × 28 mm × 20 mm rectangular parallelepiped shaped objects (rectangular parallelepiped parts) were formed at intervals of 6 mm in length and width. At this time, melting of the alloy powder was carried out while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy powder in advance to suppress scattering of the spread alloy powder. In addition, the volume of the whole modeling thing was 925880 mm 3 .
[実施例3-2]
 実施例3-2として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限していない図5に示す合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。
Example 3-2
As Example 3-2, an alloy structure shown in FIG. 5 in which the elemental composition is represented by AlCoCrFeNi and the concentration of unavoidable impurities is not limited was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
 実施例3-2に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例3-1と同様にして製造した。なお、合金粉末における不可避的不純物の濃度は、Pの濃度が0.008wt%、Siの濃度が0.040wt%、Sの濃度が0.012wt%、Snの濃度が0.006wt%、Sbの濃度が0.002wt%、Asの濃度が0.006wt%、Mnの濃度が0.300wt%、Oの濃度が0.002wt%、Nの濃度が0.003wt%であった。 The alloy structure according to Example 3-2 was manufactured in the same manner as Example 3-1 except that the composition of the base metal used to prepare the alloy powder was changed. The concentration of unavoidable impurities in the alloy powder is 0.008 wt% of P, 0.040 wt% of Si, 0.012 wt% of S, and 0.006 wt% of Sn. The concentration was 0.002 wt%, the concentration of As was 0.006 wt%, the concentration of Mn was 0.300 wt%, the concentration of O was 0.002 wt%, and the concentration of N was 0.003 wt%.
 次に、製造した実施例3-1及び実施例3-2に係る合金構造体について、ニッケル濃度分布の解析を行った。ニッケル濃度分布の解析は、計16個の各直方体部について、走査型電子顕微鏡-エネルギー分散型X線分光(Scanning Electron Microscope - Energy Dispersive X-ray Detector;SEM-EDX)によって、任意に抽出した10箇所の領域についてニッケル濃度を計測することによって行った。計16個の各直方体部についての、Ni濃度分布の平均値と標準偏差の結果を表2に示す。 Next, with respect to the manufactured alloy structures according to Example 3-1 and Example 3-2, analysis of nickel concentration distribution was performed. The analysis of nickel concentration distribution was arbitrarily extracted by a scanning electron microscope-energy dispersive X-ray detector (SEM-EDX) 10 for each of a total of 16 rectangular parallelepiped parts. It carried out by measuring nickel concentration about the field of a part. Table 2 shows the results of the average value and standard deviation of the Ni concentration distribution for a total of 16 rectangular parallelepiped parts.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、不可避的不純物をより制限した実施例3-1に係る合金構造体では、各直方体部についてのニッケル濃度分布の偏差が、実施例3-2に係る合金構造体よりも小さい傾向が現れており、合金粉末の不可避的不純物をより制限することで、合金構造体の元素組成分布の均一性が高められていることが分かる。 As shown in Table 2, in the alloy structure according to Example 3-1 in which unavoidable impurities are further restricted, the deviation of the nickel concentration distribution for each rectangular parallelepiped portion is higher than the alloy structure according to Example 3-2. A smaller tendency appears, and it can be seen that the uniformity of the elemental composition distribution of the alloy structure is enhanced by further limiting the unavoidable impurities of the alloy powder.
 次に、図5に示す合金構造体の計16個の各直方体部について積層方向に沿って試験片を採取し、単軸圧縮試験を行った。試験片は、合金構造体における積層方向を長軸とするダンベル状試験片を各直方体部から板状部にかけて切り出したものとし、平行部の寸法は、直径4mm×高さ30mmとしたものを用いた。室温における圧縮真応力―圧縮真歪線図の測定結果を、計16個の各直方体部についての平均として図6に示す。 Next, a test piece was extract | collected along the lamination direction about a total of 16 rectangular parallelepiped parts of the alloy structure shown in FIG. 5, and the uniaxial compression test was done. The test piece is a dumbbell-shaped test piece whose major axis is the stacking direction in the alloy structure, which is cut out from each rectangular parallelepiped portion to the plate-like portion, and the size of the parallel portion is 4 mm in diameter × 30 mm in height. It was. The measurement results of the compression true stress-compression true strain diagram at room temperature are shown in FIG. 6 as an average for a total of 16 rectangular portions.
 図6は、実施例3に係る合金構造体における圧縮真応力―圧縮真歪線図である。 FIG. 6 is a compression true stress-compression true strain diagram in the alloy structure according to the third embodiment.
 図6に示すように真応力―真歪線図のばらつきは、実施例3-1及び実施例3-2のいずれにおいてもほとんど認められず、図6に示す線幅の線図を描くことができた。すなわち、非特許文献2に示される合金材よりも約160倍以上大きな体積の合金構造体において、造形物の全域に亘り、機械的特性の均一性が高められることが確認できた。特に、実施例3-2では、引張強度は約2800MPa、全伸びは約38%であるのに対し、実施例3-1では、引張強度は約3850MPa、全伸びは約43%であり、引張強度が約1.37倍、全伸びが約1.1倍増加していることが分かる。よって、不可避的不純物の濃度を低減することにより、より機械的特性を向上させることが可能であることが認められる。 As shown in FIG. 6, the variation of the true stress-true strain diagram is hardly recognized in any of Example 3-1 and Example 3-2, and the line width diagram shown in FIG. 6 is drawn. did it. That is, in the alloy structure having a volume about 160 times or more larger than that of the alloy material shown in Non-Patent Document 2, it has been confirmed that the uniformity of the mechanical characteristics is enhanced over the entire region of the shaped object. In particular, while the tensile strength is about 2800 MPa and the total elongation is about 38% in Example 3-2, the tensile strength is about 3850 MPa and the total elongation is about 43% in Example 3-1. It can be seen that the strength is about 1.37 times and the total elongation is about 1.1 times. Therefore, it is recognized that mechanical properties can be further improved by reducing the concentration of unavoidable impurities.
 次に、本発明の実施例として、実施例4-1~実施例4-3に係る合金構造体を製造し、引張特性の評価を行った。 Next, as the examples of the present invention, the alloy structures according to Examples 4-1 to 4-3 were manufactured, and the tensile properties were evaluated.
[実施例4-1]
 実施例4-1として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。また、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した。
Example 4-1
As Example 4-1, an alloy structure represented by AlCoCrFeNi and having a limited concentration of unavoidable impurities was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%. In addition, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, the concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% Hereinafter, the concentration of As was limited to 0.001 wt% or less, the concentration of Mn to 0.020 wt% or less, the concentration of O to 0.0003 wt% or less, and the concentration of N to 0.001 wt% or less.
 はじめに、Alの原子濃度が約7at%、Co、Cr、Fe及びNiの原子濃度が約23.3at%であり、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を45μm以上105μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, the atomic concentration of Al is about 7 at%, the atomic concentrations of Co, Cr, Fe and Ni are about 23.3 at%, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less, The concentration of S is 0.001 wt% or less, the concentration of Sn is 0.002 wt% or less, the concentration of Sb is 0.001 wt% or less, the concentration of As is 0.001 wt% or less, the concentration of Mn is 0.020 wt% or less, An alloy powder was prepared by gas atomization using an alloy in which the concentration of O was limited to 0.0003 wt% or less and the concentration of N to 0.001 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 45 μm to 105 μm, and the volume-based average particle size was about 70 μm.
 続いて、積層造形装置を使用して、基材上に合金構造体を造形した。基材としては、200mm×200mm×10mmの板状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源を電子ビームとした電子ビーム溶融積層造形装置「A2X」(Arcam社製)を使用した。積層造形装置では、真空雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって、凝固層の積層方向を水平軸とするダンベル状試験片を合金構造体として造形した。このとき、合金粉末の溶融は、合金粉末の融点(Tm)の50%から80%の温度の予備加熱を事前に行いながら実施し、展延された合金粉末の飛散を抑制した。なお、ダンベル状試験片は、試験片本体を支持する支持部材と共に基材上に横置きの状態で造形し、平行部の寸法を直径4mm×高さ30mmとした。 Subsequently, the layered structure forming apparatus was used to form an alloy structure on the substrate. As a base material, a plate-like carbon steel for machine structure "S45C" of 200 mm × 200 mm × 10 mm was used. Moreover, as a lamination | stacking modeling apparatus, the electron beam fusion lamination molding apparatus "A2X" (made by Arcam) which made the heat source the electron beam was used. In the layered forming apparatus, by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a vacuum atmosphere, the dumbbell-shaped test piece whose horizontal axis is the stacking direction of the solidified layer is formed as an alloy structure did. At this time, melting of the alloy powder was carried out while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy powder in advance to suppress scattering of the spread alloy powder. The dumbbell-shaped test piece was shaped in a state of being placed horizontally on the base together with the support member for supporting the test piece main body, and the parallel portion was made to have a diameter of 4 mm × height 30 mm.
[実施例4-2]
 実施例4-2として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限した合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。また、Pの濃度を0.002wt%~0.005wt%、Siの濃度を0.010wt%~0.040wt%、Sの濃度を0.001wt%~0.002wt%、Snの濃度を0.002wt%~0.005wt%、Sbの濃度を0.001wt%~0.002wt%、Asの濃度を0.001wt%~0.005wt%、Mnの濃度を0.020wt%~0.050wt%、Oの濃度を0.0003wt%~0.001wt%、Nの濃度を0.001wt%~0.002wt%とした。
Embodiment 4-2
As Example 4-2, an alloy structure having an elemental composition represented by AlCoCrFeNi and a limited concentration of unavoidable impurities was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%. In addition, the concentration of P is 0.002 wt% to 0.005 wt%, the concentration of Si 0.010 wt% to 0.040 wt%, the concentration of S 0.001 wt% to 0.002 wt%, the concentration of Sn 0.. 002 wt% to 0.005 wt%, Sb concentration 0.001 wt% to 0.002 wt%, As concentration 0.001 wt% to 0.005 wt%, Mn concentration 0.020 wt% to 0.050 wt% The concentration of O was 0.0003 wt% to 0.001 wt%, and the concentration of N was 0.001 wt% to 0.002 wt%.
 実施例4-2に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例4-1と同様にして製造した。 The alloy structure according to Example 4-2 was manufactured in the same manner as Example 4-1 except that the composition of the base metal used for preparation of the alloy powder was changed.
[実施例4-3]
 実施例4-3として、元素組成がAlCoCrFeNiで表わされ、不可避的不純物の濃度を制限していない合金構造体を積層造形により製造した。原子濃度比率は、Al、Co、Cr、Fe及びNiの原子濃度が約20.0at%である。
Example 4-3
As Example 4-3, an alloy structure represented by AlCoCrFeNi and not limiting the concentration of unavoidable impurities was manufactured by lamination molding. The atomic concentration ratio is such that the atomic concentrations of Al, Co, Cr, Fe and Ni are about 20.0 at%.
 実施例4-3に係る合金構造体は、合金粉末の調製に用いる地金の組成を変えた点を除いて、実施例4-1と同様にして製造した。なお、合金粉末における不可避的不純物の濃度は、Pの濃度が0.008wt%、Siの濃度が0.040wt%、Sの濃度が0.012wt%、Snの濃度が0.006wt%、Sbの濃度が0.002wt%、Asの濃度が0.006wt%、Mnの濃度が0.300wt%、Oの濃度が0.002wt%、Nの濃度が0.003wt%であった。 The alloy structure according to Example 4-3 was manufactured in the same manner as Example 4-1 except that the composition of the base metal used for preparation of the alloy powder was changed. The concentration of unavoidable impurities in the alloy powder is 0.008 wt% of P, 0.040 wt% of Si, 0.012 wt% of S, and 0.006 wt% of Sn. The concentration was 0.002 wt%, the concentration of As was 0.006 wt%, the concentration of Mn was 0.300 wt%, the concentration of O was 0.002 wt%, and the concentration of N was 0.003 wt%.
 次に、製造した実施例4-1~実施例4-3に係る合金構造体について、引張試験を行った。引張試験は、0℃から900℃の温度にかけて行い、引張強度を計測した。引張試験の測定結果を図7に示す。 Next, a tensile test was conducted on the manufactured alloy structures according to Examples 4-1 to 4-3. The tensile test was conducted at a temperature of 0 ° C. to 900 ° C., and the tensile strength was measured. The measurement results of the tensile test are shown in FIG.
 図7は、実施例4に係る合金構造体における引張強度の試験温度依存性を示す図である。 FIG. 7 is a view showing test temperature dependency of tensile strength in the alloy structure according to Example 4.
 図7に示すように、不可避的不純物を制限した実施例4-1~実施例4-2に係る合金構造体では、不可避的不純物を制限していない実施例4-3に係る合金構造体に対して、引張強度が向上していることが判る。また、不可避的不純物をより制限した実施例4-1に係る合金構造体では、広い温度域で引張強度が向上していることが判る。よって、不可避的不純物の濃度を低減することにより、さらに機械的特性を向上させることが有効であることが確認された。 As shown in FIG. 7, in the alloy structures according to Examples 4-1 to 4-2 in which the unavoidable impurities are limited, the alloy structures according to Example 4-3 in which the unavoidable impurities are not limited. On the other hand, it can be seen that the tensile strength is improved. Further, it is understood that in the alloy structure according to Example 4-1 in which unavoidable impurities are further restricted, the tensile strength is improved in a wide temperature range. Therefore, it has been confirmed that it is effective to further improve the mechanical characteristics by reducing the concentration of unavoidable impurities.
 次に、本発明の実施例として、主成分元素の元素種類を変えて実施例5、実施例6、実施例7及び実施例8に係る合金構造体を製造し、その評価を行った。 Next, as an example of the present invention, the alloy structure according to Example 5, Example 6, Example 7, and Example 8 was manufactured by changing the kind of the main component element, and the evaluation was performed.
 はじめに、鉄(Fe)とその他の複数元素とを主成分として、高エントロピー合金の固溶相を形成することが可能か否かを熱力学的計算によって推定した。なお、熱力学的計算は、Feを含めて5種類以上の元素を等原子比率となる元素組成で含有する場合を仮定して第一原理計算法を使用して行い、そのような元素組成において常温且つ常圧下で固溶相が形成され得るか否かを確認した。主成分の元素は、Feのほか、元素周期律表の第3族から第16族までに含まれる原子番号3から原子番号83の元素群から複数種づつ選択した。 First, it was estimated by thermodynamic calculation whether or not it is possible to form a solid phase of a high entropy alloy with iron (Fe) and other plural elements as main components. In addition, thermodynamic calculation is performed using the first principle calculation method on the assumption that the case of containing five or more kinds of elements including Fe in an elemental composition that is an equiatomic ratio, and in such an elemental composition It was confirmed whether a solid solution phase could be formed at normal temperature and normal pressure. A plurality of elements of the main component were selected from the element group of atomic number 3 to atomic number 83 contained in Groups 3 to 16 of the periodic table of elements in addition to Fe.
 図8は、合金構造体において固溶相を形成することができる主成分元素の範囲を示す図である。 FIG. 8 is a diagram showing the range of main component elements capable of forming a solid solution phase in the alloy structure.
 図8において、縦軸は、元素の原子番号、横軸は、Fe原子に対する原子半径の比率(各元素の原子半径/Feの原子半径)を示している。また、各プロットの形状は、常温且つ常圧下での結晶構造を示している。二重四角は面心立方格子、二重丸は体心立方格子、六角は六方細密充填、四角はその他の結晶格子である。 In FIG. 8, the vertical axis indicates the atomic number of the element, and the horizontal axis indicates the ratio of atomic radius to Fe atom (atomic radius of each element / atomic radius of Fe). Moreover, the shape of each plot has shown the crystal structure in normal temperature and a normal pressure. Double squares are face-centered cubic lattices, double circles are body-centered cubic lattices, hexagons are hexagonal close-packed, and squares are other crystal lattices.
 主成分の元素の種々の組合せについて熱力学的計算を行ったところ、図8において鎖線で囲まれた領域の元素を等原子比率で含有する元素組成について、固溶相を形成することが可能であることが判明した。具体的には、Feと共に固溶化が可能であることが認められた元素(非Fe主成分元素)は、原子番号13のAlから原子番号79のAuまでのうち、Fe原子に対する原子半径の比率が0.83以上1.17以下である元素、すなわち、Al、Si、P、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Sn、Sb、Te、Ta、W、Re、Os、Ir、Pt、Auである。また、その組合せによる成分組成としては、CoCrFeNiAl、CoCrFeNiCu、CoCrFeNiCuAl、CoCrFeNiCuAlSi、MnCrFeNiCuAl、CoCrFeNiMnGe、CoCrFeNiMn、CoCrFeNiMnCu、TiCoCrFeNiCuAlV、TiCoCrFeNiAl、AlTiCoCrFeNiCuVMn、TiCrFeNiCuAl、TiCoCrFeNiCuAl、CoCrFeNiCuAlV、TiCoCrFeNiAl、TiCoCrFeNiCuAl、CoCrFeNiCuAl、CoFeNiCuV、CoCrFeNiCuAl、MnCrFeNiAl、MoCrFeNiCu、TiCoCrFeNi、TiCoCrFeNiMo、CoCrFeNiCuAlV、MnCrFeNiCu、TiCoCrFeNi、TiCoCrFeNiAl、CoCrFeNiMo、CoCrFeNiAlMo、TiCoCrFeNiCu、CoCrFeNiCuAlMn、TiCoCrFeNiMo、CoCrFeNiCuAlV、TiCoCrFeNiCuVMn、AlTiCoCrFeNiCuVMn、CoCrFeNiCuAlMn、CoCrFeNiAlMo、CoCrFeNiCuAlMo、TiCoCrFeNiCu等が確認された。これらのうち、AlTiCoCrFeNiCuVMnの9元高エントロピー合金を、実施例5、実施例6、実施例7及び実施例8に係る合金構造体の造形に応用した。 When thermodynamic calculation is performed for various combinations of elements of the main component, it is possible to form a solid solution phase for an element composition containing the elements in the region surrounded by a dashed line in FIG. It turned out to be. Specifically, an element (non-Fe main component element) which is recognized to be able to form a solution together with Fe has a ratio of atomic radius to Fe atom from Al of atomic number 13 to Au of atomic number 79. Is an element of 0.83 or more and 1.17 or less, that is, Al, Si, P, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Nb, Mo, Tc , Ru, Rh, Pd, Ag, Sn, Sb, Te, Ta, W, Re, Os, Ir, Pt, Au. As the component composition according to the combination, CoCrFeNiAl, CoCrFeNiCu, CoCrFeNiCuAl, CoCrFeNiCuAlSi, MnCrFeNiCuAl, CoCrFeNiMnGe, CoCrFeNiMn, CoCrFeNiMnCu, TiCoCrFeNiCuAlV, TiCoCrFeNiAl, AlTiCoCrFeNiCuVMn, TiCrFeNiCuAl, TiCoCrFeNiCuAl, CoCrFeNiCuAlV, TiCoCrFeNiAl, TiCoCrFeNiCuAl, CoCrFeNiCuAl, CoFeNiCuV, CoCrFeNiCuAl, MnCrFeNiAl, MoCrFeNiCu, TiCoCrFeNi, TiCoCrFeNiMo, CoCrFeNiCuAlV, nCrFeNiCu, TiCoCrFeNi, TiCoCrFeNiAl, CoCrFeNiMo, CoCrFeNiAlMo, TiCoCrFeNiCu, CoCrFeNiCuAlMn, TiCoCrFeNiMo, CoCrFeNiCuAlV, TiCoCrFeNiCuVMn, AlTiCoCrFeNiCuVMn, CoCrFeNiCuAlMn, CoCrFeNiAlMo, CoCrFeNiCuAlMo, TiCoCrFeNiCu, etc. was confirmed. Among these, a nine-element high-entropy alloy of AlTiCoCrFeNiCuVMn was applied to shaping of the alloy structure according to Example 5, Example 6, Example 7, and Example 8.
[実施例5]
 実施例5として、元素組成をAlTiCoCrFeNiCuVMnとし、不可避的不純物の濃度を制限した図5に示す合金構造体を積層造形により製造した。原子濃度比率は、Al、Ti、Co、Cr、Fe、Ni、Cu、V及びMnの原子濃度については、原子濃度の差を±3%以内の範囲に揃えて略等原子比率とした。また、Pの濃度を0.005wt%~0.002wt%、Siの濃度を0.040wt%~0.010wt%、Sの濃度を0.002wt%~0.001wt%、Snの濃度を0.005wt%~0.002wt%、Sbの濃度を0.002wt%~0.001wt%、Asの濃度を0.005wt%~0.001wt%、Mnの濃度を0.050wt%~0.020wt%、Oの濃度を0.001wt%~0.0003wt%、Nの濃度を0.002wt%~0.001wt%の範囲に制限した。
[Example 5]
As Example 5, an alloy structure shown in FIG. 5 in which the elemental composition was AlTiCoCrFeNiCuVMn and the concentration of unavoidable impurities was limited was manufactured by lamination molding. The atomic concentration ratio was made to be a substantially equiatomic ratio by arranging the atomic concentration difference within ± 3% for atomic concentrations of Al, Ti, Co, Cr, Fe, Ni, Cu, V and Mn. In addition, the concentration of P is 0.005 wt% to 0.002 wt%, the concentration of Si is 0.040 wt% to 0.010 wt%, the concentration of S is 0.002 wt% to 0.001 wt%, and the concentration of Sn is 0.1. 005 wt% to 0.002 wt%, Sb concentration 0.002 wt% to 0.001 wt%, As concentration 0.005 wt% to 0.001 wt%, Mn concentration 0.050 wt% to 0.020 wt%, The concentration of O was limited to 0.001 wt% to 0.0003 wt%, and the concentration of N was limited to 0.002 wt% to 0.001 wt%.
 はじめに、Al、Ti、Co、Cr、Fe、Ni、Cu、V及びMnの原子濃度が、略等原子比率であり、Pの濃度を0.002wt%以下、Siの濃度を0.010wt%以下、Sの濃度を0.001wt%以下、Snの濃度を0.002wt%以下、Sbの濃度を0.001wt%以下、Asの濃度を0.001wt%以下、Mnの濃度を0.020wt%以下、Oの濃度を0.0003wt%以下、Nの濃度を0.001wt%以下に制限した合金を地金として用いて、ガスアトマイズ法によって、合金粉末を調製した。そして、得られた合金粉末を分級し、粒子径分布を45μm以上105μm以下の範囲に限定すると共に、体積基準の平均粒子径が約70μmとなるようにした。 First, the atomic concentrations of Al, Ti, Co, Cr, Fe, Ni, Cu, V and Mn are approximately equiatomic ratio, the concentration of P is 0.002 wt% or less, the concentration of Si is 0.010 wt% or less , S concentration of 0.001 wt% or less, Sn concentration of 0.002 wt% or less, Sb concentration of 0.001 wt% or less, As concentration of 0.001 wt% or less, Mn concentration of 0.020 wt% or less An alloy powder was prepared by gas atomization using an alloy in which the concentration of O is limited to 0.0003 wt% or less and the concentration of N to 0.001 wt% or less as a metal. Then, the obtained alloy powder was classified, and the particle size distribution was limited to a range of 45 μm to 105 μm, and the volume-based average particle size was about 70 μm.
 続いて、積層造形装置を使用して、基材上に合金材を造形した。基材としては、200mm×200mm×10mmの板状の機械構造用炭素鋼「S45C」を用いた。また、積層造形装置としては、熱源を電子ビームとした電子ビーム溶融積層造形装置「A2X」(Arcam社製)を使用した。積層造形装置では、真空雰囲気下において、基材上に、粉末展延工程及び凝固層造形工程を繰り返し行うことによって造形した。このとき、合金粉末の溶融は、合金粉末の融点(Tm)の50%から80%の温度の予備加熱を事前に行いながら実施し、展延された合金粉末の飛散を抑制した。製造された実施例5に係る合金構造体は、図5に示す合金構造体と略同形状を有し、造形物全体の体積は、856700mm3であった。 Subsequently, the laminate molding apparatus was used to model the alloy material on the base material. As a base material, a plate-like carbon steel for machine structure "S45C" of 200 mm × 200 mm × 10 mm was used. Moreover, as a lamination | stacking modeling apparatus, the electron beam fusion lamination molding apparatus "A2X" (made by Arcam) which made the heat source the electron beam was used. In the layer-forming apparatus, it was shaped by repeatedly performing the powder spreading process and the solidified layer forming process on the base material in a vacuum atmosphere. At this time, melting of the alloy powder was carried out while performing preliminary heating at a temperature of 50% to 80% of the melting point (Tm) of the alloy powder in advance to suppress scattering of the spread alloy powder. The manufactured alloy structure according to Example 5 had substantially the same shape as the alloy structure shown in FIG. 5, and the volume of the entire three- dimensional object was 856,700 mm 3 .
 次に、実施例5に係る合金構造体の計16個の各直方体部について積層方向に沿って試験片を採取し、単軸圧縮試験を行った。試験片は、合金構造体における積層方向を長軸とするダンベル状試験片を各直方体部から板状部にかけて切り出したものとし、平行部の寸法は、直径8mm×高さ12mmとしたものを用いた。また、製造された実施例5に係る合金構造体について、Fe濃度分布の解析を行った。Fe濃度分布の解析は、計16個の各直方体部について、走査型電子顕微鏡-エネルギー分散型X線分光によって、任意に抽出した10箇所の領域について鉄濃度を計測することによって行った。 Next, a test piece was extract | collected along the lamination direction about a total of 16 rectangular parallelepiped parts of the alloy structure which concerns on Example 5, and the uniaxial compression test was done. The test piece is a dumbbell-shaped test piece whose major axis is the stacking direction in the alloy structure, which is cut out from each rectangular parallelepiped portion to the plate-like portion, and the size of the parallel portion is 8 mm in diameter × 12 mm in height. It was. Further, with respect to the manufactured alloy structure according to Example 5, analysis of the Fe concentration distribution was performed. The analysis of the Fe concentration distribution was performed by measuring the iron concentration in 10 arbitrarily extracted regions by scanning electron microscopy-energy dispersive X-ray spectroscopy for a total of 16 rectangular parallelepiped portions.
 その結果、各直方体部についての平均では、真応力―真歪線図のばらつきと、Fe濃度分布とが、いずれも1~3%以内の差の範囲内にあることが確認された。また、標準偏差は、1.20%以下という結果が得られ、元素組成の分布の均一性が高められることが確認できた。また、実施例5に係る合金構造体の元素組成は、用いた合金粉末の元素組成と略同一で、成分濃度の誤差が凡そ±3%以内に収まっており、元素組成分布、溶融速度、冷却速度等に起因するむらが解消されると共に、元素組成及び機械的強度の分布の均一性も確保できることが確認された。 As a result, it was confirmed that in the average for each rectangular parallelepiped part, the variation of the true stress-true strain diagram and the Fe concentration distribution were both within the range of a difference of 1 to 3% or less. In addition, it was confirmed that the standard deviation was 1.20% or less, and the uniformity of the distribution of the elemental composition was enhanced. Further, the elemental composition of the alloy structure according to Example 5 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ± 3%, and the elemental composition distribution, melting rate, cooling It was confirmed that the unevenness due to the speed and the like is eliminated and the uniformity of the distribution of the elemental composition and the mechanical strength can be secured.
[実施例6]
 実施例6として、元素組成をAlTiCoCrFeNiCuVMnとし、不可避的不純物の濃度を制限した円弧状の形状を有する合金構造体(図9参照)を積層造形により製造した。
[Example 6]
In Example 6, an alloy structure (see FIG. 9) having an arc-like shape in which the elemental composition was AlTiCoCrFeNiCuVMn and the concentration of unavoidable impurities was limited was manufactured by lamination molding.
 図9は、実施例6に係る合金構造体の形状寸法を示す図である。 FIG. 9 is a view showing the shape and dimensions of the alloy structure according to the sixth embodiment.
 図9に示すように、実施例6に係る合金構造体1Aは、横断面が円弧状の形状を有する柱状体であり、タービンブレード等に適用できる形状となっている。このような形状の合金構造体1Aを、積層造形される立体形状を変えた点を除いて、実施例5と同様にして製造し、幅(W)149mm×奥行き(D)110mm×高さ(H)153mmの円弧状造形物として造形した。製造された実施例6に係る合金構造体は、造形物全体の体積が、184480mm3、表面積が、60470mm2であり、非特許文献2に示される合金材の約33倍の体積で形成することができた。 As shown in FIG. 9, the alloy structural body 1A according to the sixth embodiment is a columnar body having a circular arc-shaped cross section, and has a shape that can be applied to a turbine blade or the like. The alloy structure 1A having such a shape is manufactured in the same manner as in Example 5 except that the three-dimensional shape to be laminated and formed is changed, and the width (W) 149 mm x depth (D) 110 mm x height (height) H) It modeled as a 153 mm arc-shaped object. The manufactured alloy structure according to Example 6 has a volume of 184480 mm 3 and a surface area of 60470 mm 2 , and has a volume of about 33 times the volume of the alloy material shown in Non-Patent Document 2 and having a volume of 184480 mm 3 . It was possible.
 次に、実施例6に係る合金構造体について、Fe濃度分布の解析を行った。Fe濃度分布の解析は、走査型電子顕微鏡-エネルギー分散型X線分光によって、任意に抽出した10箇所の領域について鉄濃度を計測することによって行った。 Next, with respect to the alloy structure according to Example 6, analysis of the Fe concentration distribution was performed. The analysis of the Fe concentration distribution was performed by measuring the iron concentration in 10 arbitrarily extracted regions by scanning electron microscopy-energy dispersive X-ray spectroscopy.
 その結果、実施例6に係る合金構造体の元素組成は、用いた合金粉末の元素組成と略同一で、成分濃度の誤差が凡そ±3%以内に収まっており、元素組成分布、溶融速度、冷却速度等に起因するむらが解消されると共に、元素組成及び機械的強度の分布の均一性も確保できることが確認された。 As a result, the elemental composition of the alloy structure according to Example 6 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ± 3%, the elemental composition distribution, the melting rate, It has been confirmed that the unevenness due to the cooling rate etc. is eliminated and also the uniformity of the distribution of the elemental composition and the mechanical strength can be secured.
[実施例7]
 実施例7として、元素組成をAlTiCoCrFeNiCuVMnとし、不可避的不純物の濃度を制限したダンベル状の形状を有する合金構造体を積層造形により製造した。
[Example 7]
As Example 7, an alloy structure having an elemental composition of AlTiCoCrFeNiCuVMn and a dumbbell-like shape in which the concentration of unavoidable impurities is limited was manufactured by lamination molding.
 実施例7に係る合金構造体は、合金粉末の調製に用いる地金の組成と、積層造形される立体形状とを変えた点を除いて、実施例4-1と同様にして製造し、凝固層の積層方向を水平軸とするダンベル状の造形物とした。 The alloy structure according to Example 7 is manufactured and solidified in the same manner as in Example 4-1 except that the composition of the base metal used for preparation of the alloy powder and the three-dimensional shape to be layered are changed. It was set as the dumbbell-shaped shaped article which makes the lamination direction of a layer a horizontal axis.
 その結果、実施例7に係る合金構造体の元素組成は、用いた合金粉末の元素組成と略同一で、成分濃度の誤差が凡そ±3%以内に収まっており、元素組成分布、溶融速度、冷却速度等に起因するむらが解消されると共に、元素組成及び機械的強度の分布の均一性も確保できることが確認された。また、実施例4-1に係る合金構造体と比較して、表面が平滑になり、金属光沢が強く発現することが確認され、合金構造体の元素組成を多元化することによって、表面性状を改質する効果が得られることが分かった。 As a result, the elemental composition of the alloy structure according to Example 7 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ± 3%, the elemental composition distribution, the melting rate, It has been confirmed that the unevenness due to the cooling rate etc. is eliminated and also the uniformity of the distribution of the elemental composition and the mechanical strength can be secured. In addition, compared to the alloy structure according to Example 4-1, it is confirmed that the surface is smooth and the metallic gloss is strongly developed, and the surface characteristics are improved by dividing the element composition of the alloy structure. It was found that the effect of reforming was obtained.
[実施例8]
 実施例8として、元素組成をAlTiCoCrFeNiCuVMnとし、不可避的不純物の濃度を制限したロッド状の形状を有する合金構造体を積層造形により製造した。
[Example 8]
As Example 8, an alloy structure having an elemental composition of AlTiCoCrFeNiCuVMn and a rod-like shape in which the concentration of unavoidable impurities is limited was manufactured by lamination molding.
 実施例8に係る合金構造体は、合金粉末の調製に用いる地金の組成と、積層造形される立体形状とを変えた点を除いて、実施例4-1と同様にして造形した。 The alloy structure according to Example 8 was shaped in the same manner as Example 4-1 except that the composition of the base metal used for preparation of the alloy powder and the three-dimensional shape to be layered and formed were changed.
 その結果、実施例8に係る合金構造体の元素組成は、用いた合金粉末の元素組成と略同一で、成分濃度の誤差が凡そ±3%以内に収まっており、元素組成分布、溶融速度、冷却速度等に起因するむらが解消されると共に、元素組成及び機械的強度の分布の均一性も確保できることが確認された。製造された実施例8に係る合金構造体を摩擦撹拌用ツールとして使用して、厚さ10mm以下の軟鉄製の板材について摩擦撹拌接合による接合を行った。その結果、接合部に欠陥を生じることなく接合することができ、反りがほとんど見られない良好な接合を行うことができた。すなわち、多元化された実施例8に係る合金構造体は、高温強度や耐摩耗性が要求され、従来困難であったFeを主体とした材料の摩擦撹拌接合に適用可能であることが確認された。また、凝固層造形工程で、凝固部が形成されるまでの高温の状態において、凝固部乃至凝固層の形状成形加工や表面加工を行うことによって、適切に加工が施された造形物を得ることができることも確認された。 As a result, the elemental composition of the alloy structure according to Example 8 is substantially the same as the elemental composition of the used alloy powder, and the error of the component concentration is within about ± 3%, the elemental composition distribution, the melting rate, It has been confirmed that the unevenness due to the cooling rate etc. is eliminated and also the uniformity of the distribution of the elemental composition and the mechanical strength can be secured. Using the manufactured alloy structure according to Example 8 as a friction stir tool, friction stir welding was performed on a soft iron plate having a thickness of 10 mm or less. As a result, it was possible to join without causing a defect in the joining portion, and it was possible to perform good joining with almost no warping. That is, it is confirmed that the alloy structure according to the example 8 which is diversified is applicable to the friction stir welding of a material mainly composed of Fe, which is required to have high temperature strength and wear resistance, and which was conventionally difficult. The In addition, in the solidified layer forming step, a shaped object appropriately processed is obtained by performing shape forming processing and surface processing of the solidified portion or the solidified layer in a high temperature state until the solidified portion is formed. It was also confirmed that it was possible.
1 合金構造体
10 合金粉末
15 基材
20 溶融部
21 基材載置台
22 加工テーブル
23 リコータ
24 加熱手段
30 凝固部
40 凝固層
50 結晶粒
100 溶融境界
110 粒界(大傾角粒界)
120 小傾角粒界
301 電気炉
302 金属塊
303 アーク放電
304 電極
305 酸素バーナ
306 酸素ガス
309 取鍋
310 溶湯
311 取鍋製錬炉
313 ポーラスプラグ
314 アルゴンガス
316 真空装置
317 排気孔
318 タンディッシュ
319 真空容器
320 排気孔
324 電気炉
326 合金溶湯
330 チャンバ
DESCRIPTION OF SYMBOLS 1 alloy structure 10 alloy powder 15 base material 20 melting part 21 base material mounting table 22 processing table 23 recoater 24 heating means 30 solidification part 40 solidification layer 50 crystal grain 100 melting boundary 110 grain boundary (high angle angle grain boundary)
120 small angle grain boundary 301 electric furnace 302 metal lump 303 arc discharge 304 electrode 305 oxygen burner 306 oxygen gas 309 ladle 310 molten metal 311 ladle smelting furnace 313 porous plug 314 argon gas 316 vacuum device 317 exhaust hole 318 tundish 319 vacuum Container 320 Exhaust hole 324 Electric furnace 326 Molten metal 330 chamber

Claims (12)

  1.  原料金属塊を溶融し溶湯を生成する溶融工程と、
     前記溶湯に酸素ガスを吹き込んでスラグを形成する過酸化工程と、
     前記溶湯の液面に浮上した前記スラグと前記溶湯とを分離する分離工程と、
     前記スラグと分離された前記溶湯にアルゴンガスを吹き込んで前記溶湯中のガス成分を脱気する脱気工程と、
     脱気された前記溶湯を鋳造して鋳込み合金を形成する鋳込み工程と、を備えた鋳込み合金の製造方法において、
     前記鋳込み合金は、
      前記鋳込み合金を真空中で溶融して溶融合金とする工程と、
      前記溶融合金を流下させ、流下する前記溶融合金に不活性ガスを吹き付けて合金粉末を形成する粉末化工程と、
      前記合金粉末を層状に展延する粉末展延工程と、
      展延された前記合金粉末を局所加熱して溶融させた後に凝固させて凝固組織を形成し、前記局所加熱による被加熱領域を前記合金粉末が展延された面に対して平行に移動させて凝固層を形成する凝固層造形工程と、
      前記粉末展延工程と前記凝固層造形工程とを交互に繰り返すことで複数の層状の凝固層を形成する一連の工程に用いられ、
     前記鋳込み合金は、Al、Co、Cr、Fe及びNiの5種の元素を含有し、
     不可避的不純物として、Pを0.005wt%以下、Siを0.040wt%以下、Sを0.002wt%以下、Snを0.005wt%以下、Sbを0.002wt%以下、Asを0.005wt%以下、Mnを0.050wt%以下、Oを0.001wt%以下、Nを0.002wt%以下の原子濃度の範囲で含有することを特徴とする鋳込み合金の製造方法。
    A melting step of melting a raw metal block to form a molten metal;
    A peroxidation step of blowing oxygen gas into the molten metal to form a slag;
    A separation step of separating the molten metal and the slag raised to the liquid surface of the molten metal;
    A degassing step of degassing gas components in the molten metal by blowing argon gas into the molten metal separated from the slag;
    A casting step of casting the deaerated molten metal to form a cast alloy,
    The cast alloy is
    Melting the cast alloy in vacuum to form a molten alloy;
    Pulverizing the molten alloy by flowing down the molten alloy and blowing an inert gas onto the flowing molten alloy to form an alloy powder;
    A powder spreading step of spreading the alloy powder in layers;
    The spread alloy powder is locally heated and melted and then solidified to form a solidified structure, and the heated region by the local heating is moved parallel to the surface on which the alloy powder is spread A solidified layer forming step of forming a solidified layer;
    It is used in a series of steps of forming a plurality of layer solidified layers by alternately repeating the powder spreading step and the solidified layer forming step,
    The cast alloy contains five elements of Al, Co, Cr, Fe and Ni,
    As inevitable impurities, P is not more than 0.005 wt%, Si is not more than 0.040 wt%, S is not more than 0.002 wt%, Sn is not more than 0.005 wt%, Sb is not more than 0.002 wt%, As is not more than 0.005 wt% % Or less, Mn at 0.050 wt% or less, O at 0.001 wt% or less, and N at an atomic concentration range of 0.002 wt% or less.
  2.  前記不可避的不純物として、Pを0.002wt%以上0.005wt%以下、Siを0.010wt%以上0.040wt%以下、Sを0.001wt%以上0.002wt%以下、Snを0.002wt%以上0.005wt%以下、Sbを0.001wt%以上0.002wt%以下、Asを0.001wt%以上0.005wt%以下、Mnを0.020wt%以上0.050wt%以下、Oを0.0003wt%以上0.001wt%以下、Nを0.001wt%以上0.002wt%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の鋳込み合金の製造方法。 As the unavoidable impurities, P is 0.002 wt% or more and 0.005 wt% or less, Si is 0.010 wt% or more and 0.040 wt% or less, S is 0.001 wt% or more and 0.002 wt% or less, and Sn is 0.002 wt% % To 0.005 wt%, Sb 0.001 wt% to 0.002 wt%, As As 0.001 wt% to 0.005 wt%, Mn 0.020 wt% to 0.050 wt%, O 0 The method for producing a cast alloy according to claim 1, wherein the alloy contains 0003 wt% or more and 0.001 wt% or less and N in an atomic concentration range of 0.001 wt% or more and 0.002 wt% or less.
  3.  前記不可避的不純物として、Pを0.002wt%以下、Siを0.005wt%以下、Sを0.001wt%以下、Snを0.002wt%以下、Sbを0.001wt%以下、Asを0.001wt%以下、Mnを0.005wt%以下、Oを0.0003wt%以下、Nを0.001wt%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の鋳込み合金の製造方法。 As the unavoidable impurities, P is not more than 0.002 wt%, Si is not more than 0.005 wt%, S is not more than 0.001 wt%, Sn is not more than 0.002 wt%, Sb is not more than 0.001 wt%, As is 0. The cast alloy according to claim 1, which contains 001 wt% or less, Mn at 0.005 wt% or less, O at 0.0003 wt% or less, and N at an atomic concentration of 0.001 wt% or less. Method.
  4.  前記合金は、前記5種の元素をそれぞれ5at%以上30at%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の鋳込み合金の製造方法。 The method for producing a cast alloy according to claim 1, wherein the alloy contains each of the five elements in an atomic concentration range of 5 at% to 30 at%.
  5.  前記合金は、前記5種の元素のうち少なくとも4種の元素の原子濃度の差が3at%未満の範囲にあることを特徴とする請求項4に記載の合金構造体の製造方法。 The method for producing an alloy structure according to claim 4, wherein the alloy has a difference in atomic concentration of at least four of the five elements within a range of less than 3 at%.
  6.  前記合金は、Al、Co、Cr、Fe及びNiのうちの少なくとも4種の元素を、15at%以上23.75at%以下の原子濃度の範囲で含有し、他の1種の元素を、5at%以上30at%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の鋳込み合金の製造方法。 The alloy contains at least four elements of Al, Co, Cr, Fe, and Ni in an atomic concentration range of 15 at% or more and 23.75 at% or less, and 5 at% of one other element. The method for producing a cast alloy according to claim 1, wherein the alloy is contained in an atomic concentration range of 30 at% or less.
  7.  原料金属塊を溶融し溶湯を生成する溶融工程と、
     前記溶湯に酸素ガスを吹き込んでスラグを形成する過酸化工程と、
     前記溶湯の液面に浮上した前記スラグと前記溶湯とを分離する分離工程と、
     前記スラグと分離された前記溶湯にアルゴンガスを吹き込んで前記溶湯中のガス成分を脱気する脱気工程と、
     脱気された前記溶湯を鋳造して鋳込み合金を形成する鋳込み工程と、を備えた鋳込み合金の製造方法において、
     前記鋳込み合金は、
      前記鋳込み合金を真空中で溶融して溶融合金とする工程と、
      前記溶融合金を流下させ、流下する前記溶融合金に不活性ガスを吹き付けて合金粉末を形成する粉末化工程と、
      前記合金粉末を層状に展延する粉末展延工程と、
      展延された前記合金粉末を局所加熱して溶融させた後に凝固させて凝固組織を形成し、前記局所加熱による被加熱領域を前記合金粉末が展延された面に対して平行に移動させて凝固層を形成する凝固層造形工程と、
      前記粉末展延工程と前記凝固層造形工程とを交互に繰り返すことで複数の層状の凝固層を形成する一連の工程に用いられ、
     前記鋳込み合金は、元素周期表の第3族から第16族までに含まれる原子番号13から原子番号79の元素群から選択され、Fe原子に対する原子半径の比率が0.83以上1.17以下である少なくとも4種の元素と、Feとの5種の元素を含有し、
     不可避的不純物として、Pを0.005wt%以下、Siを0.040wt%以下、Sを0.002wt%以下、Snを0.005wt%以下、Sbを0.002wt%以下、Asを0.005wt%以下、Mnを0.050wt%以下、Oを0.001wt%以下、Nを0.002wt%以下の原子濃度の範囲で含有することを特徴とする鋳込み合金の製造方法。
    A melting step of melting a raw metal block to form a molten metal;
    A peroxidation step of blowing oxygen gas into the molten metal to form a slag;
    A separation step of separating the molten metal and the slag raised to the liquid surface of the molten metal;
    A degassing step of degassing gas components in the molten metal by blowing argon gas into the molten metal separated from the slag;
    A casting step of casting the deaerated molten metal to form a cast alloy,
    The cast alloy is
    Melting the cast alloy in vacuum to form a molten alloy;
    Pulverizing the molten alloy by flowing down the molten alloy and blowing an inert gas onto the flowing molten alloy to form an alloy powder;
    A powder spreading step of spreading the alloy powder in layers;
    The spread alloy powder is locally heated and melted and then solidified to form a solidified structure, and the heated region by the local heating is moved parallel to the surface on which the alloy powder is spread A solidified layer forming step of forming a solidified layer;
    It is used in a series of steps of forming a plurality of layer solidified layers by alternately repeating the powder spreading step and the solidified layer forming step,
    The cast alloy is selected from the element group of atomic number 13 to atomic number 79 contained in Groups 3 to 16 of the periodic table of elements, and the ratio of atomic radius to Fe atom is 0.83 to 1.17. Containing at least four elements that are
    As inevitable impurities, P is not more than 0.005 wt%, Si is not more than 0.040 wt%, S is not more than 0.002 wt%, Sn is not more than 0.005 wt%, Sb is not more than 0.002 wt%, As is not more than 0.005 wt% % Or less, Mn at 0.050 wt% or less, O at 0.001 wt% or less, and N at an atomic concentration range of 0.002 wt% or less.
  8.  前記不可避的不純物として、Pを0.002wt%以上0.005wt%以下、Siを0.010wt%以上0.040wt%以下、Sを0.001wt%以上0.002wt%以下、Snを0.002wt%以上0.005wt%以下、Sbを0.001wt%以上0.002wt%以下、Asを0.001wt%以上0.005wt%以下、Mnを0.020wt%以上0.050wt%以下、Oを0.0003wt%以上0.001wt%以下、Nを0.001wt%以上0.002wt%以下の原子濃度の範囲で含有することを特徴とする請求項7に記載の鋳込み合金の製造方法。 As the unavoidable impurities, P is 0.002 wt% or more and 0.005 wt% or less, Si is 0.010 wt% or more and 0.040 wt% or less, S is 0.001 wt% or more and 0.002 wt% or less, and Sn is 0.002 wt% % To 0.005 wt%, Sb 0.001 wt% to 0.002 wt%, As As 0.001 wt% to 0.005 wt%, Mn 0.020 wt% to 0.050 wt%, O 0 The method for producing a cast alloy according to claim 7, characterized in that it contains .0003 wt% or more and 0.001 wt% or less and N in an atomic concentration range of 0.001 wt% or more and 0.002 wt% or less.
  9.  前記不可避的不純物として、Pを0.002wt%以下、Siを0.005wt%以下、Sを0.001wt%以下、Snを0.002wt%以下、Sbを0.001wt%以下、Asを0.001wt%以下、Mnを0.005wt%以下、Oを0.0003wt%以下、Nを0.001wt%以下の原子濃度の範囲で含有することを特徴とする請求項7に記載の鋳込み合金の製造方法。 As the unavoidable impurities, P is not more than 0.002 wt%, Si is not more than 0.005 wt%, S is not more than 0.001 wt%, Sn is not more than 0.002 wt%, Sb is not more than 0.001 wt%, As is 0. The cast alloy according to claim 7, which contains 001 wt% or less, Mn at 0.005 wt% or less, O at 0.0003 wt% or less, and N at an atomic concentration of 0.001 wt% or less. Method.
  10.  前記少なくとも4種の元素が、Al、Si、P、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Sn、Sb、Te、Ta、W、Re、Os、Ir、Pt、Auからなる群より選択されることを特徴とする請求項7に記載の鋳込み合金の製造方法。 The at least four elements are Al, Si, P, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Nb, Mo, Tc, Ru, Rh, Pd, The method for producing a cast alloy according to claim 7, characterized in that it is selected from the group consisting of Ag, Sn, Sb, Te, Ta, W, Re, Os, Ir, Pt and Au.
  11.  前記合金は、前記5種の元素をそれぞれ5at%以上30at%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の鋳込み合金の製造方法。 The method for producing a cast alloy according to claim 1, wherein the alloy contains each of the five elements in an atomic concentration range of 5 at% to 30 at%.
  12.  前記合金は、前記5種の元素のうち少なくとも4種の元素の原子濃度の差が3at%未満の範囲にあることを特徴とする請求項11に記載の合金構造体の製造方法。 The method according to claim 11, wherein in the alloy, the difference in atomic concentration of at least four of the five elements is less than 3 at%.
PCT/JP2015/070466 2014-07-23 2015-07-17 Production method of casting alloy WO2016013493A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-150027 2014-07-23
JP2014150027A JP6388381B2 (en) 2014-07-23 2014-07-23 Alloy structure
JP2014-151340 2014-07-25
JP2014151340A JP6393884B2 (en) 2014-07-25 2014-07-25 Method for producing alloy powder

Publications (1)

Publication Number Publication Date
WO2016013493A1 true WO2016013493A1 (en) 2016-01-28

Family

ID=55163019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070466 WO2016013493A1 (en) 2014-07-23 2015-07-17 Production method of casting alloy

Country Status (1)

Country Link
WO (1) WO2016013493A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340820A (en) * 2019-09-20 2022-04-12 日立金属株式会社 Method for producing alloy member, and alloy member
CN114855050A (en) * 2022-05-06 2022-08-05 华中科技大学 High-strength light-weight refractory high-entropy alloy and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204549A (en) * 1997-01-23 1998-08-04 Akechi Ceramics Kk Apparatus for degassing/cleaning non-ferrous metal
JP2001192709A (en) * 2000-01-05 2001-07-17 Sony Corp Recycle alloy powder and its manufacturing method
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
JP2003293024A (en) * 2002-04-02 2003-10-15 Jfe Steel Kk Method for operating electric furnace
JP2004124201A (en) * 2002-10-04 2004-04-22 Japan Science & Technology Corp Method of laser beam lithography using metal powder
CN102220026A (en) * 2011-04-11 2011-10-19 黄元盛 High-entropy alloy powder conductive polymer composite material and manufacturing method thereof
CN103056352A (en) * 2012-12-04 2013-04-24 中国人民解放军装甲兵工程学院 High-entropy alloy powder material for supersonic spraying and manufacturing method thereof
US20130323116A1 (en) * 2012-05-31 2013-12-05 Swe-Kai Chen Alloy material with constant electrical resistivity, applications and method for producing the same
JP2014105373A (en) * 2012-11-29 2014-06-09 Canon Inc Metal powder for metal photofabrication, method of manufacturing molding die for injection molding, and molded article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204549A (en) * 1997-01-23 1998-08-04 Akechi Ceramics Kk Apparatus for degassing/cleaning non-ferrous metal
JP2001192709A (en) * 2000-01-05 2001-07-17 Sony Corp Recycle alloy powder and its manufacturing method
JP2002173732A (en) * 2000-11-29 2002-06-21 Univ Qinghua High entropy multicomponent alloy
JP2003293024A (en) * 2002-04-02 2003-10-15 Jfe Steel Kk Method for operating electric furnace
JP2004124201A (en) * 2002-10-04 2004-04-22 Japan Science & Technology Corp Method of laser beam lithography using metal powder
CN102220026A (en) * 2011-04-11 2011-10-19 黄元盛 High-entropy alloy powder conductive polymer composite material and manufacturing method thereof
US20130323116A1 (en) * 2012-05-31 2013-12-05 Swe-Kai Chen Alloy material with constant electrical resistivity, applications and method for producing the same
JP2014105373A (en) * 2012-11-29 2014-06-09 Canon Inc Metal powder for metal photofabrication, method of manufacturing molding die for injection molding, and molded article
CN103056352A (en) * 2012-12-04 2013-04-24 中国人民解放军装甲兵工程学院 High-entropy alloy powder material for supersonic spraying and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. J. WANG ET AL.: "Cooling Rate and Size Effect on the Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy", JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY, vol. 131, no. 3, July 2009 (2009-07-01), pages 034501.1 - 034501.3 *
YEVGENI BRIF ET AL.: "The use of high-entropy alloys in additive manufacturing", SCRIPTA MATERIALIA, vol. 99, pages 93 - 96 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340820A (en) * 2019-09-20 2022-04-12 日立金属株式会社 Method for producing alloy member, and alloy member
CN114855050A (en) * 2022-05-06 2022-08-05 华中科技大学 High-strength light-weight refractory high-entropy alloy and preparation method thereof
CN114855050B (en) * 2022-05-06 2023-04-07 华中科技大学 High-strength light-weight refractory high-entropy alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2016013497A1 (en) Alloy structure and method for producing alloy structure
WO2016013498A1 (en) Alloy structure and method for manufacturing alloy structure
JP6388381B2 (en) Alloy structure
JP6393885B2 (en) Method for producing alloy powder
JP6459272B2 (en) Alloy structure
WO2016013495A1 (en) Alloy structure and manufacturing method of alloy structure
JP6455701B2 (en) Alloy structure
JP6388277B2 (en) Method for manufacturing alloy structure
JP6455699B2 (en) Method for manufacturing alloy structure
Alshataif et al. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review
Guo et al. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties
JP6455700B2 (en) Method for manufacturing alloy structure
WO2016013492A1 (en) Alloy powder used in fused deposition modeling
WO2016013494A1 (en) Alloy powder used in fused deposition modeling, and production method of said alloy powder
WO2016013496A1 (en) Relating to alloy structure and method for producing alloy structure.
JP7116495B2 (en) High carbon cobalt alloy
JPWO2019088157A1 (en) Alloy material, product using the alloy material, and fluid machine having the product
JP6536927B2 (en) Alloy structure
JP6432822B2 (en) Alloy powder used for melt lamination molding
WO2016013493A1 (en) Production method of casting alloy
JP6393884B2 (en) Method for producing alloy powder
JP6388278B2 (en) Alloy powder used for melt lamination molding
JP6443721B2 (en) Method for manufacturing alloy structure
JP7103548B2 (en) Ni—Cr—Mo alloy member, Ni—Cr—Mo alloy powder, and composite member
Guo et al. International Journal of Refractory Metals & Hard Materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825215

Country of ref document: EP

Kind code of ref document: A1