JP6645725B2 - Mold steel and mold - Google Patents

Mold steel and mold Download PDF

Info

Publication number
JP6645725B2
JP6645725B2 JP2014093742A JP2014093742A JP6645725B2 JP 6645725 B2 JP6645725 B2 JP 6645725B2 JP 2014093742 A JP2014093742 A JP 2014093742A JP 2014093742 A JP2014093742 A JP 2014093742A JP 6645725 B2 JP6645725 B2 JP 6645725B2
Authority
JP
Japan
Prior art keywords
mold
steel
die
additive manufacturing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014093742A
Other languages
Japanese (ja)
Other versions
JP2015209588A (en
Inventor
河野 正道
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014093742A priority Critical patent/JP6645725B2/en
Priority to US14/689,583 priority patent/US10173258B2/en
Priority to CA2888695A priority patent/CA2888695A1/en
Priority to EP15164450.7A priority patent/EP2939763A3/en
Priority to CN201510220065.1A priority patent/CN105018851B/en
Priority to KR1020150061105A priority patent/KR20150125608A/en
Publication of JP2015209588A publication Critical patent/JP2015209588A/en
Application granted granted Critical
Publication of JP6645725B2 publication Critical patent/JP6645725B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/007Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Powder Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)

Description

この発明は高温強度と熱伝導性能ともに優れた金型用鋼及び金型に関する。   The present invention relates to a mold steel and a mold excellent in both high-temperature strength and heat conduction performance.

樹脂やゴム等の射出成形金型,ダイカスト金型,ホットプレス(ホットスタンプやダイクエンチとも呼ばれる)金型等は、従来、一般に鋼を溶製してインゴットを造り、その後鍛造や圧延を施してブロックや平角材を造り、それを機械加工で削って金型の形状とし、その後に焼入れ,焼戻し等の熱処理を施して製造している。
これら金型にあっては、内部に冷却回路を設けてそこに冷却水を流通させることで、金型を冷却することが一般に行われている。
Conventionally, injection molding dies such as resin and rubber, die casting dies, hot press dies (also called hot stamping and die quenching), etc., are generally made by melting steel to form an ingot and then forging or rolling to block. And flat bars are machined and machined to form a mold, which is then subjected to heat treatment such as quenching and tempering.
In these dies, cooling is generally performed by providing a cooling circuit inside and circulating cooling water therethrough.

このような金型にあって、冷却水による冷却効率を高めることがサイクルタイムの短縮化、つまりは製品製造(成形)のハイサイクル化によって生産性向上を図ることに繋がる。
冷却効率を高める端的な方法は、冷却回路を金型の成形面(意匠面)に近づけることである。
但しそのようにすると、冷却回路と成形面との間の距離が短くなることにより、また発生する熱応力が大きくなることにより金型が水冷孔割れ(水冷孔から成形面にまで到る貫通した割れ)を生じ易くなり、型寿命が短寿命化する原因となる。
従って冷却回路を成形面に近づけるにしても、そこには自ずと限界がある。
In such a mold, increasing the cooling efficiency by the cooling water leads to shortening of the cycle time, that is, improvement of productivity by increasing the cycle of product manufacturing (molding).
A simple way to increase the cooling efficiency is to bring the cooling circuit closer to the mold surface (design surface) of the mold.
However, in such a case, the mold becomes smaller due to a shorter distance between the cooling circuit and the molding surface, and a larger thermal stress is generated. Cracks) are likely to occur, which causes the mold life to be shortened.
Therefore, even if the cooling circuit is brought closer to the molding surface, there is naturally a limit there.

他の方法として、冷却回路を金型内部で縦横無尽に複雑に曲りくねった形状とし、冷却回路の全体的な形状,レイアウト等により冷却能力を高めるといったことも考えられるが、金型を機械加工により削って製造する方法では、冷却回路をそのような複雑形状に形成することは技術的に実現できない。   As another method, it is conceivable that the cooling circuit is formed in an intricately meandering shape inside and outside the mold and the cooling capacity is increased by the overall shape and layout of the cooling circuit. In the method of manufacturing by cutting, the cooling circuit cannot be technically realized to have such a complicated shape.

このような状況の下で近年、金型を積層造形法(3次元積層造形法)で造形する技術が注目されている。
積層造形法は、3次元モデルデータを材料の付着によって実体化する加工法で、この積層造形法では、先ず3次元CADデータで表現される形状を、予め定められた軸に直交する多数の面でスライスして生じる薄片の断面形状を計算して、その薄片を実際に作製及びこれを積み重ね、貼り合せることで計算機表現された形状を実体化する。
Under these circumstances, in recent years, a technique of forming a mold by a layered manufacturing method (three-dimensional layered manufacturing method) has attracted attention.
The additive manufacturing method is a processing method in which three-dimensional model data is materialized by attaching materials. In the additive manufacturing method, first, a shape represented by three-dimensional CAD data is converted into a plurality of surfaces orthogonal to a predetermined axis. Calculates the cross-sectional shape of a slice generated by slicing, slices are actually produced, stacked and laminated, and the shape expressed by a computer is materialized.

この積層造形法には材料として粉末を用いる場合と、板を用いる場合とがある。
粉末を用いる方法では、粉末を層状(一層の厚みは例えば数十μm)に敷き均し、ある領域に熱エネルギー照射、例えばレーザービームや電子ビーム照射して粉末層を溶融凝固或いは焼結させ、そしてこれを一層一層積み重ねて行くことで全体の形状を造形する。
In the additive manufacturing method, there are a case where a powder is used as a material and a case where a plate is used.
In the method using powder, the powder is spread in layers (the thickness of one layer is, for example, several tens of μm), and a certain area is irradiated with heat energy, for example, a laser beam or an electron beam, so that the powder layer is melt-solidified or sintered. Then, the whole shape is formed by further stacking these.

一方材料として板を用いる積層造形では、3次元形状データをCAD中でスライスして生じた個々のパーツ(板)を実際に機械加工等で製造し、そしてそのパーツを積み上げて拡散接合等することで全体の3次元形状を造形する。
例えばこの種積層造形法にて金型を製造する例が、下記特許文献1,特許文献2に開示されている。
On the other hand, in additive manufacturing using a plate as a material, individual parts (plates) generated by slicing three-dimensional shape data in CAD are actually manufactured by machining, etc., and the parts are stacked and diffusion bonded etc. Forms the entire three-dimensional shape.
For example, Patent Documents 1 and 2 disclose an example of manufacturing a mold by this kind of additive manufacturing method.

詳しくは、下記特許文献1には「粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物」についての発明が示され、そこにおいて析出硬化型金属成分の粉末材料に光ビームを照射して、所定箇所の粉末を焼結又は溶融固化させて固化層を形成するとともに、これにより得られた固化層の上に更に固化層を形成することを繰り返して三次元形状造形物を製造する点が開示されている。   Specifically, Patent Document 1 below discloses an invention relating to “metal powder for powder sintering and lamination, a method for producing a three-dimensionally shaped object using the same, and a three-dimensionally shaped object to be obtained”. Irradiating a light beam to the powder material of the mold metal component to sinter or melt-solidify the powder at a predetermined location to form a solidified layer, and further form a solidified layer on the solidified layer obtained by this; Is repeated to produce a three-dimensionally shaped object.

また下記特許文献2には「金型用入れ子、金型用入れ子の製造方法及び樹脂成形用金型」についての発明が示され、そこにおいて内部にスパイラル状の冷却路を有する入れ子を製造する際、そのスライスデータに基づいて、複数の金属板にそれぞれ冷却路を形成する溝を加工し、溝加工された金属板を所定の順番に積層してこれを拡散接合し、得られた金属ブロックを形状加工する点が開示されている。   Patent Literature 2 below discloses an invention relating to “a mold nest, a method of manufacturing a mold nest, and a resin molding mold”, in which a nest having a spiral cooling path therein is manufactured. On the basis of the slice data, grooves for forming cooling paths are formed in the plurality of metal plates, the grooved metal plates are laminated in a predetermined order, and diffusion-bonded, and the obtained metal block is formed. The point of shaping is disclosed.

以上のような積層造形法は、材料を積み重ねて全体の形状を造形するものであり、切削加工では到底できないような縦横無尽に曲りくねった複雑な冷却回路でも容易に加工形成することができ、冷却回路を敢えて金型の成形面に必要以上に近づけなくても、冷却効率を従来の機械加工による切削によって造られる金型のそれよりも効果的に高めることができる。   The above-mentioned additive manufacturing method is to form the entire shape by stacking the materials, and it is possible to easily process and form even a complicated cooling circuit winding endlessly vertically and horizontally which can not be achieved by cutting work, Even if the cooling circuit is not intentionally brought closer to the molding surface of the mold than necessary, the cooling efficiency can be more effectively improved than that of the mold produced by cutting by conventional machining.

従来、高温強度が求められる金型としては、一般にマルエージング鋼や析出硬化型ステンレス鋼が用いられている。
このことから上記の特許文献1においても、金型用材料としてそれらマルエージング鋼や析出硬化型ステンレス鋼の粉末が用いられている。
これらマルエージング鋼や析出硬化型ステンレス鋼等は金型として充分な高温強度を有するものの、母相中に固溶し易いSiやCrやNiやCoなどの元素が多量に含有されるため、熱伝導性能(熱伝導率)が低い問題がある。
Conventionally, maraging steel or precipitation hardening stainless steel is generally used as a mold requiring high-temperature strength.
For this reason, even in Patent Document 1 described above, powder of such maraging steel or precipitation hardening stainless steel is used as a mold material.
Although these maraging steels and precipitation hardening stainless steels have sufficient high-temperature strength as molds, they contain a large amount of elements such as Si, Cr, Ni, and Co, which are easily dissolved in the matrix, and There is a problem that conduction performance (thermal conductivity) is low.

積層造形法によって造られた金型では、冷却回路を自由自在に複雑形状にすることができ、従って金型材料としてマルエージング鋼や析出硬化型ステンレス鋼を用いたものであっても、積層造形で冷却回路を複雑形状とすることで、その冷却回路の形状効果により冷却の効率を上げることができるが、材料自体の熱伝導率が低いために、冷却効率を十分なレベルまで高めることは難しい。
また当然に、積層造形によらず、従来一般の製造方法で金型を製造した場合には、冷却(熱交換)の効率は更に不十分となる。
In a mold made by additive manufacturing, the cooling circuit can be freely made into a complicated shape.Thus, even if the mold material is made of maraging steel or precipitation hardening stainless steel, it can be made by additive manufacturing. Although the cooling circuit can be made into a complicated shape, the cooling effect can be increased by the shape effect of the cooling circuit, but it is difficult to increase the cooling efficiency to a sufficient level due to the low thermal conductivity of the material itself. .
Also, naturally, when a mold is manufactured by a conventional general manufacturing method without depending on additive manufacturing, the efficiency of cooling (heat exchange) becomes further insufficient.

他方、熱伝導性能の高い(熱伝導率の高い)鋼として、炭素鋼や機械構造用鋼等がある。これらの鋼は、母相中に固溶し易いSiやCrやNiやCoなどの元素の含有量が少なく、低合金鋼であるために高い熱伝導性能を示す。
しかしながらこれらの鋼は高温強度が低く、金型となったときの寿命が短い問題がある。
即ち、積層造形法にて金型を造形する、しないに拘らず、金型となったときに高温強度及び熱伝導性能ともに十分な性能を実現することのできる金型用鋼は従来提供されていなかった。
On the other hand, as steel having high heat conduction performance (high heat conductivity), there are carbon steel and steel for machine structural use. These steels have a low content of elements such as Si, Cr, Ni, and Co, which are easily dissolved in the matrix, and exhibit high thermal conductivity because they are low alloy steels.
However, these steels have a problem that their high-temperature strength is low and their life when formed into a mold is short.
That is, regardless of whether or not a mold is formed by the additive manufacturing method, a mold steel that can realize sufficient high-temperature strength and heat conduction performance when formed into a mold has been conventionally provided. Did not.

本発明に対する他の先行技術として、下記特許文献3には「熱疲労特性に優れた金型用鋼」についての発明が示され、そこにおいて合金元素であるSiとCrの添加量を低く抑え、また他の合金成分のバランスを図って、熱伝導率を高くするとともに軟化抵抗を高めるようになした点が開示されている。   As another prior art to the present invention, Patent Literature 3 listed below discloses an invention relating to “die steel excellent in thermal fatigue properties”, in which the addition amounts of alloying elements Si and Cr are suppressed low, It is also disclosed that the balance between other alloy components is increased to increase the thermal conductivity and increase the softening resistance.

更に他の先行技術として、下記特許文献4には「金型用鋼」についての発明が示され、そこにおいてSi,Mn,Crの添加量を適正にバランスさせることで、鋼の熱伝導率を効果的に所望の値以上確保するとともに、併せて被削性及び衝撃値をも十分に確保するようになした点が開示されている。   As still another prior art, Patent Literature 4 listed below discloses an invention relating to “steel for molds”, in which the amounts of Si, Mn, and Cr are appropriately balanced to reduce the thermal conductivity of steel. It is disclosed that not only a desired value is effectively secured but also the machinability and impact value are sufficiently secured.

更に他の先行技術として、下記特許文献5には「球状化焼鈍性及び焼入れ性に優れた金型用鋼」についての発明が示され、そこにおいて鋼に添加する元素を調整することで、500kg以上の大型の金型に求められる所要の焼入れ性と球状化焼鈍性とを共に付与するようになした点が開示されている。   As still another prior art, Patent Literature 5 listed below discloses an invention relating to “a steel for molds excellent in spheroidizing annealing property and quenching property”. It is disclosed that both the required hardenability and spheroidizing annealing required for the large-sized mold described above are imparted.

しかしながらこれら特許文献3〜5に記載のものは、請求の範囲で規定する化学成分の範囲では本発明の金型用鋼と成分が部分的に重複しているものの、実施例として本発明の請求項を満たすものは存在せず、実質的に本発明とは異なっている。
またこれら特許文献3〜5に記載のものは、積層造形を意図したものではなく、その点についての言及もなされていない。
However, although the components described in Patent Documents 3 to 5 partially overlap the components of the steel for molds of the present invention in the range of the chemical components defined in the claims, the claims of the present invention are given as examples. Nothing satisfies the term, which is substantially different from the present invention.
Further, those described in Patent Documents 3 to 5 are not intended for additive manufacturing, and there is no mention of that point.

国際公開WO2011/149101号公報International Publication WO2011 / 149101 特開2010−194720号公報JP 2010-194720 A 特許第4992344号公報Japanese Patent No. 4992344 特開2011−94168号公報JP 2011-94168 A 特開2008−121032号公報JP 2008-121032 A

本発明は以上のような事情を背景とし、積層造形法を適用して金型を製造するに際して高い高温強度及び熱伝導性能をともに実現可能な金型用鋼、更にはそのような積層造形法によらないで、インゴットを加工して得た材料に対し機械加工による切削にて金型製造した場合においても高い高温強度及び熱伝導性能を実現可能な金型用鋼及び金型を提供することを目的としてなされたものである。   In view of the above circumstances, the present invention provides a mold steel capable of realizing both high-temperature strength and heat conduction performance when manufacturing a mold by applying the additive manufacturing method, and further provides such an additive manufacturing method The present invention provides a mold steel and a mold capable of realizing high high-temperature strength and heat conduction performance even when a mold is manufactured by machining a material obtained by processing an ingot. It was made for the purpose.

而して請求項1は金型用鋼に関するもので、質量%で0.25<C<0.38,0.01<Si<0.30,0.92<Mn<1.80,0.8<Cr≦1.98,0.8<Mo<1.4,0.25<V<0.58,残部がFe及び不可避的不純物の組成を有し、レーザーフラッシュ法によって評価した25℃における熱伝導率が31W/m/K以上であり、型締め力135tonのダイカストマシンを用いて、10000ショット鋳造を行った場合に、スプールコアの摩耗の深さが0.2mm未満である鋼組織を有することを特徴とする。
Claim 1 relates to a mold steel, which is expressed by mass% of 0.25 <C <0.38, 0.01 <Si <0.30, 0.92 <Mn <1.80, 0.8 <Cr ≦ 1.98, 0.8 <Mo <1.4, 0.25 < V <0.58, the balance being Fe and inevitable impurities, the thermal conductivity at 25 ° C. evaluated by the laser flash method is 31 W / m / K or more, and a die-casting machine with a mold clamping force of 135 tons is used. It has a steel structure in which the depth of wear of the spool core is less than 0.2 mm when 10,000 shot casting is performed.

請求項2のものは、請求項1において、質量%で0.1<Al<1.2を更に含有することを特徴とする。   According to a second aspect, in the first aspect, the composition further contains 0.1 <Al <1.2 by mass%.

請求項3のものは、請求項1,2の何れかにおいて、質量%で0.30<Ni≦3.5,0.30<Cu≦1.5の少なくとも1種を更に含有することを特徴とする。   According to a third aspect of the present invention, in any one of the first and second aspects, at least one of 0.30 <Ni ≦ 3.5 and 0.30 <Cu ≦ 1.5 by mass% is further contained.

請求項4のものは、請求項1〜3の何れかにおいて、質量%で0.0001<B≦0.0050を更に含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the composition further contains 0.0001 <B ≦ 0.0050 by mass%.

請求項5のものは、請求項1〜4の何れかにおいて、質量%で0.003<S≦0.250,0.0005<Ca≦0.2000,0.03<Se≦0.50,0.005<Te≦0.100,0.01<Bi≦0.50,0.03<Pb≦0.50の少なくとも1種を更に含有することを特徴とする。   Claim 5 relates to any one of claims 1 to 4, wherein 0.003 <S ≦ 0.250, 0.0005 <Ca ≦ 0.2000, 0.03 <Se ≦ 0.50, 0.005 <Te ≦ 0.100, 0.01 <Bi ≦ 0.50, It is characterized by further containing at least one of 0.03 <Pb ≦ 0.50.

請求項6のものは、請求項1〜5の何れかにおいて、質量%で0.004<Nb≦0.100,0.004<Ta≦0.100,0.004<Ti≦0.100,0.004<Zr≦0.100の少なくとも1種を更に含有することを特徴とする。   Claim 6 further includes at least one of 0.004 <Nb ≦ 0.100, 0.004 <Ta ≦ 0.100, 0.004 <Ti ≦ 0.100, 0.004 <Zr ≦ 0.100 by mass% in any one of claims 1 to 5. It is characterized by doing.

請求項7のものは、請求項1〜6の何れかにおいて、質量%で0.10<W≦4.00,0.10<Co≦3.00の少なくとも1種を更に含有することを特徴とする。   A seventh aspect of the present invention is characterized in that, in any one of the first to sixth aspects, at least one of 0.10 <W ≦ 4.00 and 0.10 <Co ≦ 3.00 by mass% is further contained.

請求項のものは、請求項1〜の何れかにおいて、積層造形法によって金型を造形するための材料として用いられることを特徴とする。 According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the material is used as a material for forming a mold by a layered manufacturing method.

請求項のものは、請求項において、前記材料が粉末若しくは板であることを特徴とする。 According to a ninth aspect, in the eighth aspect , the material is a powder or a plate.

請求項10は金型に関するもので、請求項8,9の何れかに記載の材料を用いた積層造形法により製造して成ることを特徴とする。 A tenth aspect relates to a metal mold, which is manufactured by an additive manufacturing method using the material according to any one of the eighth and ninth aspects.

本発明の金型用鋼は、従来のマルエージング鋼や析出硬化型ステンレス鋼等の高合金鋼に対して、SiやCrやNiやCo等の元素を無添加ないし添加量を少なくして低合金化し熱伝導率を高める一方で、機械構造用鋼に対してMn,Mo,V等の元素の含有量を多くし高温強度を高めたもので、かかる本発明の金型用鋼は高い高温強度と熱伝導率との両特性を併せ有する。
尚且つ全体として合金元素の添加量の少ない低合金鋼であることを維持している。
The steel for molds according to the present invention is characterized by low or no addition of elements such as Si, Cr, Ni and Co to high alloy steels such as conventional maraging steel and precipitation hardening stainless steel. While increasing the thermal conductivity by alloying, the content of elements such as Mn, Mo, V, etc. is increased in the steel for machine structural use to increase the high-temperature strength. It has both properties of strength and thermal conductivity.
In addition, it maintains that it is a low alloy steel with a small amount of alloying elements as a whole.

本発明の金型用鋼にあっては、積層造形法にて金型製造される場合があることを想定して、焼入性向上元素であるCr,Moの含有量が、削り出しによって金型製造される場合に適正な含有量に比べて少な目に抑制されている。その分本発明の金型用鋼は低合金化している。
例えば、JIS SKD61は、5Cr、1.5Moであり、JIS SKD7は3Cr、3Moである。
これに対し、本発明の金型用鋼はCr≦1.98かつMo<1.4である。
さらに、本発明のSi+Mn+Cr+Mo+Vの量の範囲は、6.2未満となっており、JIS SKD61、JIS SKD7のSi+Mn+Cr+Mo+Vの量よりもおよそ3〜4%低くなる。
In the steel for molds of the present invention, the content of Cr and Mo, which are quenchability improving elements, is reduced by machining, assuming that the mold may be manufactured by an additive manufacturing method. In the case of mold production, the content is suppressed to a small extent compared to the appropriate content. The alloy steel of the mold according to the present invention is reduced accordingly.
For example, JIS SKD61 is 5Cr and 1.5Mo, and JIS SKD7 is 3Cr and 3Mo.
In contrast, the mold steel of the present invention has Cr ≦ 1.98 and Mo <1.4.
Further, the range of the amount of Si + Mn + Cr + Mo + V of the present invention is less than 6.2, which is about 3 to 4% lower than the amount of Si + Mn + Cr + Mo + V of JIS SKD61 and JIS SKD7.

積層造形法、特に粉末を用いた積層造形法では粉末を敷き並べた層に熱エネルギーを加えて粉末を固める際に、これを溶融凝固又は焼結させる。
その際に粉末は溶融状態等の高温状態から急速冷却され、焼入れが自動的に行われる。そしてその焼入れは速い冷却速度の下で急速に行われる。即ち焼入れが粉末の積層成形過程で逐次的に同時に行われて行く。
上記のように焼入れは速い冷却速度の下で行われるため、予め鋼の成分として焼入性向上成分の含有量を少なく抑えておいても、積層造形時に焼入れが良好に行われる。
また本発明の金型用鋼は低合金であることによって熱伝導率が高い。
In the additive manufacturing method, particularly the additive manufacturing method using powder, when heat energy is applied to a layer in which the powder is laid to solidify the powder, the powder is melt-solidified or sintered.
At that time, the powder is rapidly cooled from a high temperature state such as a molten state, and quenching is automatically performed. And the quenching is performed rapidly under a high cooling rate. That is, quenching is performed sequentially and simultaneously in the process of laminating and molding the powder.
Since quenching is performed at a high cooling rate as described above, quenching can be performed well during additive manufacturing, even if the content of the hardenability improving component as a steel component is kept low in advance.
Further, the mold steel of the present invention has a high thermal conductivity due to its low alloy.

本発明の金型用鋼は、積層造形用の材料として好適に用い得るものであるが、本発明の金型用鋼はまた、鋼の塊から機械加工による切削にて金型形状を作り出すことで金型製造を行う場合においても使用可能である。このときには含有元素に応じて焼入れ等の熱処理条件を定めれば良い。
而して得られた金型は、鋼の成分組成的な特徴によって高温強度とともに高い熱伝導性能を有する。
Although the mold steel of the present invention can be suitably used as a material for additive manufacturing, the mold steel of the present invention can also be used to create a mold shape by cutting a lump of steel by machining. It can also be used in the case of performing a die production. At this time, heat treatment conditions such as quenching may be determined according to the contained elements.
The mold thus obtained has high-temperature strength and high heat conduction performance due to the characteristics of the composition of the steel.

次に本発明における各化学成分の限定理由を以下に説明する。尚各化学成分の値は何れも質量%である。
1)<請求項1の化学成分について>
0.25<C<0.38
0.25<Cであることによって、インゴットを加工して得た材料に対し機械加工による切削にて製造した金型を熱処理すると、金型に必要な硬さ30〜57HRCが得られる。また、積層造形で製造したままの金型においても30〜57HRCが得られる。さらに、積層造形後の金型を熱処理した場合においても30〜57HRCが得られる。いずれの製法で製造された金型においても、C≦0.25では硬さが不足する。一方0.38≦Cでは熱伝導率が低下する。
Next, the reasons for limiting each chemical component in the present invention will be described below. In addition, the value of each chemical component is mass%.
1) <Chemical component of claim 1>
0.25 <C <0.38
By setting 0.25 <C, when the mold obtained by machining the material obtained by processing the ingot is heat-treated, the hardness 30 to 57 HRC required for the mold is obtained. In addition, 30 to 57 HRC can be obtained even in a mold as manufactured by additive manufacturing. Furthermore, even when the mold after the additive manufacturing is heat-treated, 30 to 57 HRC can be obtained. In any of the molds manufactured by any of the manufacturing methods, the hardness is insufficient when C ≦ 0.25. On the other hand, when 0.38 ≦ C, the thermal conductivity decreases.

0.01<Si<0.30
Si≦0.01では被削性の劣化が著しい。一方0.30≦Siでは熱伝導率の低下が著しい。
0.01 <Si <0.30
When Si ≦ 0.01, the machinability deteriorates significantly. On the other hand, when 0.30 ≦ Si, the thermal conductivity significantly decreases.

0.92<Mn<1.80
Mn≦0.92では、インゴットを加工して得た材料に対し機械加工による切削にて製造した金型を焼入れる場合の、あるいは積層造形によって製造した金型を焼入れる場合の焼入れ性が不足する。一方1.80≦Mnでは熱伝導率が低下する。また、1.80≦MnではPが高い場合に焼戻し脆化する。より好ましい範囲は0.92<Mn<1.50である。
0.92 <Mn <1.80
When Mn ≦ 0.92, the hardenability when quenching a mold manufactured by machining with respect to a material obtained by processing an ingot or when quenching a mold manufactured by additive manufacturing is insufficient. On the other hand, when 1.80 ≦ Mn, the thermal conductivity decreases. When 1.80 ≦ Mn, tempering embrittlement occurs when P is high. A more preferred range is 0.92 <Mn <1.50.

0.8<Cr≦1.98
Cr≦0.8では耐候性が不足する。また、Cr≦0.8では青熱脆性で200〜350℃における延性が低下する。さらに、Cr≦0.8では、インゴットを加工して得た材料に対し機械加工による切削にて製造した金型を焼入れる場合の、あるいは積層造形によって製造した金型を焼入れる場合の焼入れ性が不足する。一方、過度な添加は熱伝導率が低下するため、Crの上限値を1.98とする。
0.8 <Cr ≤1.98
When Cr ≦ 0.8, the weather resistance is insufficient. When Cr ≦ 0.8, the ductility at 200 to 350 ° C. is reduced due to blue embrittlement. Furthermore, when Cr ≤ 0.8, the hardenability is insufficient when quenching a mold manufactured by machining to the material obtained by processing the ingot or when quenching a mold manufactured by additive manufacturing. I do. On the other hand , excessive addition lowers the thermal conductivity, so the upper limit of Cr is set to 1.98.

0.8<Mo<1.4
Mo≦0.8では、インゴットを加工して得た材料に対し機械加工による切削にて製造した金型を焼入れ焼戻した際の、あるいは積層造形によって製造した金型を焼戻した(焼入れはあってもなくても良い)際の2次硬化による硬さ確保が難しく、高温強度も不十分となる。一方1.4≦Moでは破壊靭性値の低下が大きい。
0.8 <Mo <1.4
At Mo ≤ 0.8, the mold produced by machining the ingot was quenched and tempered, or the mold produced by additive manufacturing was tempered (with or without quenching). ), It is difficult to secure hardness by secondary curing, and the high-temperature strength becomes insufficient. On the other hand, when 1.4 ≦ Mo, the decrease in fracture toughness value is large.

0.25<V<0.58
V≦0.25では、インゴットを加工して得た材料に対し機械加工による切削にて製造した金型を焼入れる場合の、あるいは積層造形によって製造した金型を焼入れる場合のオーステナイト結晶粒の粗大化が問題となる。また、V≦0.25では、インゴットを加工して得た材料に対し機械加工による切削にて製造した金型を焼入れ焼戻した際の、あるいは積層造形によって製造した金型を焼戻した(焼入れはあってもなくても良い)際の2次硬化による硬さ確保が難しく、高温強度も不十分となる。一方0.58≦Vでは上記の効果が飽和傾向であるうえ、コスト上昇を招く。
また、0.58≦Vでは、通常の製法(溶解→精錬→鋳造→熱間加工)で金型用素材を製造した場合に、鋳造の凝固時にインゴット中に晶出する粗大なVCが多くなり、それが金型の破壊起点となる恐れが増す。
0.25 <V <0.58
In the case of V ≦ 0.25, coarsening of austenite crystal grains when quenching a mold manufactured by machining to a material obtained by processing an ingot or when quenching a mold manufactured by additive manufacturing Is a problem. In addition, when V ≦ 0.25, a mold obtained by machining a material obtained by processing an ingot was quenched and tempered, or a mold manufactured by additive manufacturing was tempered (there was quenching). ), It is difficult to secure the hardness by the secondary curing, and the high temperature strength becomes insufficient. On the other hand, when 0.58 ≦ V, the above effect tends to be saturated and the cost is increased.
Also, when 0.58 ≦ V, when mold material is manufactured by a normal manufacturing method (melting → refining → casting → hot working), a large amount of coarse VC crystallizes in an ingot at the time of solidification of casting. Is more likely to be the starting point of mold destruction.

尚本発明の鋼において、通常、下記に示す成分が不可避的不純物として下記量で含まれ得る。
N≦0.05
P≦0.05
S≦0.003
Cu≦0.30
Ni≦0.30
Al≦0.10
W≦0.10
O≦0.01
Co≦0.10
Nb≦0.004
Ta≦0.004
Ti≦0.004
Zr≦0.004
B≦0.0001
Ca≦0.0005
Se≦0.03
Te≦0.005
Bi≦0.01
Pb≦0.03
Mg≦0.02
In the steel of the present invention, the following components can be usually contained as inevitable impurities in the following amounts.
N ≦ 0.05
P ≦ 0.05
S ≦ 0.003
Cu ≦ 0.30
Ni ≦ 0.30
Al ≦ 0.10
W ≦ 0.10
O ≦ 0.01
Co ≦ 0.10
Nb ≦ 0.004
Ta ≦ 0.004
Ti ≦ 0.004
Zr ≦ 0.004
B ≦ 0.0001
Ca ≦ 0.0005
Se ≦ 0.03
Te ≦ 0.005
Bi ≦ 0.01
Pb ≦ 0.03
Mg ≦ 0.02

2)<請求項2の化学成分について>
本発明鋼は、積層造形後に焼入れを受ける場合がある。焼入れ時のオーステナイト結晶粒の粗大化を抑制するため
0.1<Al<1.2
を含有させることが出来る。
AlはNと結合してAlNを形成し、オーステナイト結晶粒界の移動(すなわち粒成長)を抑制する効果を有する。
また、Alは鋼中で窒化物を形成して析出強化に寄与するため、窒化処理された鋼材の表面硬さを高くする作用も有する。より高い耐摩耗性を求めて窒化処理をする金型(金型の一部を構成している部品も含む)には、Alを含む鋼材を使う事が有効である。
2) <Chemical component of claim 2>
The steel of the present invention may undergo quenching after additive manufacturing. To suppress coarsening of austenite grains during quenching
0.1 <Al <1.2
Can be contained.
Al combines with N to form AlN, and has an effect of suppressing the movement of austenite crystal grain boundaries (that is, grain growth).
In addition, since Al forms nitrides in steel and contributes to precipitation strengthening, it also has an effect of increasing the surface hardness of the nitrided steel material. It is effective to use a steel material containing Al for a mold (including parts constituting a part of the mold) which is subjected to nitriding treatment for higher wear resistance.

3)<請求項3の化学成分について>
近年、金型部品の大型化や一体化によって、金型のサイズは大きくなる傾向にある。大きな金型は冷却され難い。このため、焼入れ性が低い鋼材の大きな金型を焼入れると、焼入れ中にフェライトやパーライトや粗大ベイナイトが析出して各種特性が劣化する。そのような懸念に対しては、Cu-Niを選択的に添加して焼入れ性を高めて対応すればよい。具体的には、
0.30<Ni≦3.5
0.30<Cu≦1.5
の少なくとも1種を含有させれば良い。
NiにはAlと結合して金属間化合物を析出し、硬度を高める効果もある。Cuには、時効析出で硬度を高める効果もある。好適な範囲は、
0.50≦Ni≦3.0
0.50≦Cu≦1.2
である。いずれの元素も、所定量を越えると偏析が顕著となり,鏡面研磨性の低下を招く。
3) <Chemical component of claim 3>
In recent years, the size of a mold tends to increase due to enlargement and integration of mold parts. Large molds are difficult to cool. For this reason, when quenching a large mold of a steel material having low quenchability, ferrite, pearlite, and coarse bainite precipitate during quenching, and various characteristics deteriorate. Such concerns may be dealt with by increasing the hardenability by selectively adding Cu-Ni. In particular,
0.30 <Ni ≦ 3.5
0.30 <Cu ≦ 1.5
May be contained.
Ni also has an effect of bonding with Al to precipitate an intermetallic compound and increase hardness. Cu also has the effect of increasing hardness by aging precipitation. The preferred range is
0.50 ≦ Ni ≦ 3.0
0.50 ≦ Cu ≦ 1.2
It is. When any of the elements exceeds a predetermined amount, segregation becomes remarkable, resulting in a decrease in mirror polishing property.

4)<請求項4の化学成分について>
焼入れ性の改善策として、Bの添加も有効である。具体的には必要に応じて
0.0001<B≦0.0050
を含有させる。
なお、BはBNを形成すると焼入れ性の向上効果が無くなるため、鋼中にB単独で存在させる必要がある。具体的には、BよりもNとの親和力が強い元素で窒化物を形成させ、BとNを結合させなければ良い。そのような元素の例としては、Nb,Ta,Ti,Zrなどがある。これらの元素は不純物レベルで存在してもNを固定する効果はあるが、N量によっては後述する請求項6の範囲で添加すると良い場合がある。
4) <Chemical component of claim 4>
As a measure for improving the hardenability, the addition of B is also effective. Specifically, if necessary
0.0001 <B ≦ 0.0050
Is contained.
Since B has no effect of improving hardenability when BN is formed, B alone needs to be present in steel. Specifically, it is only necessary to form a nitride with an element having a higher affinity for N than B and not to combine B and N. Examples of such elements include Nb, Ta, Ti, Zr, and the like. Although these elements have the effect of fixing N even if they are present at the impurity level, depending on the amount of N, it may be preferable to add them within the range of claim 6 described later.

5)<請求項5の化学成分について>
本発明鋼はSi量が少ないため、機械加工性がやや悪い。加工性の改善策として、以下のS,Ca,Se,Te,Bi,Pbを選択的に添加すれば良い。具体的には、
0.003<S≦0.250
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.30
0.03<Pb≦0.50
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えた場合は被削性の飽和と熱間加工性の劣化、衝撃値や鏡面研磨性の低下を招く。
5) <Chemical component of claim 5>
Since the steel of the present invention has a small amount of Si, the machinability is slightly poor. As a measure for improving workability, the following S, Ca, Se, Te, Bi, and Pb may be selectively added. In particular,
0.003 <S ≦ 0.250
0.0005 <Ca ≦ 0.2000
0.03 <Se ≦ 0.50
0.005 <Te ≦ 0.100
0.01 <Bi ≦ 0.30
0.03 <Pb ≦ 0.50
May be contained.
If any of the elements exceeds a predetermined amount, it leads to saturation of machinability, deterioration of hot workability, impact value and mirror polishing property.

6)<請求項6の化学成分について>
予期せぬ設備トラブルなどによって、焼入れ加熱温度が高くなったり焼入れ加熱時間が長くなれば、結晶粒の粗大化による各種特性の劣化が懸念される。そのような場合に備え、Nb,Ta,Ti,Zrを選択的に添加し、これらの元素が形成する微細な析出物でオーステナイト結晶粒の粗大化を抑制することが出来る。具体的には、
0.004<Nb≦0.100
0.004<Ta≦0.100
0.004<Ti≦0.100
0.004<Zr≦0.100
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えると炭化物や窒化物や酸化物が過度に生成し、衝撃値や鏡面研磨性の低下を招く。
6) <Chemical component of claim 6>
If the quenching heating temperature is increased or the quenching heating time is prolonged due to unexpected equipment trouble or the like, deterioration of various characteristics due to coarsening of crystal grains is concerned. In preparation for such a case, Nb, Ta, Ti, and Zr are selectively added, and coarsening of austenite crystal grains can be suppressed by fine precipitates formed by these elements. In particular,
0.004 <Nb ≦ 0.100
0.004 <Ta ≦ 0.100
0.004 <Ti ≦ 0.100
0.004 <Zr ≦ 0.100
May be contained.
When any of the elements exceeds a predetermined amount, carbides, nitrides, and oxides are excessively generated, and the impact value and the mirror polishing property are reduced.

7)<請求項7の化学成分について>
高強度化にはC増量が有効であるが、過度のC増量は炭化物の増加による特性(衝撃値や機械疲労特性)の劣化を招く。このような不具合を招くことなく高強度化するには、WやCoを選択的に添加すればよい。
Wは、炭化物の微細析出によって強度を上げる。Coは、母材への固溶によって強度を上げると同時に、炭化物形態の変化を介して析出硬化にも寄与する。具体的には、
0.10<W≦4.00
0.10<Co≦3.00
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えると特性の飽和と著しいコスト増を招く。好適な範囲は、
0.30≦W≦3.00
0.30≦Co≦2.00
である。
7) <Chemical component of claim 7>
An increase in C is effective for increasing the strength. However, an excessive increase in C causes deterioration of characteristics (impact value and mechanical fatigue characteristics) due to an increase in carbide. In order to increase the strength without causing such a problem, W or Co may be selectively added.
W increases the strength by fine precipitation of carbides. Co increases the strength by solid solution in the base material, and also contributes to precipitation hardening through change in carbide morphology. In particular,
0.10 <W ≦ 4.00
0.10 <Co ≦ 3.00
May be contained.
When any of the elements exceeds a predetermined amount, the characteristics are saturated and the cost is significantly increased. The preferred range is
0.30 ≦ W ≦ 3.00
0.30 ≦ Co ≦ 2.00
It is.

本発明によれば、高い高温強度及び熱伝導率をともに実現可能な金型用鋼及び金型を提供することができる。   According to the present invention, it is possible to provide a mold steel and a mold capable of realizing both high-temperature strength and thermal conductivity.

本発明の一実施形態のスプールコアを有するダイカスト金型の断面図である。It is sectional drawing of the die-casting die which has a spool core of one Embodiment of this invention. スプールコアの摩耗状態を示した図である。It is a figure showing a worn state of a spool core.

次に本発明の実施例を以下に詳述する。
表1に示す化学組成の17種の鋼の粉末をガスアトマイズ法にて製造し、この粉末を用いてレーザー照射による3次元積層造形法で図1に示すダイカスト金型10の一部である部分型としてのスプールコア12を製造した。このスプールコア12には冷却回路14が内部に形成されている。ここで冷却回路14は螺旋状の3次元的に複雑な形状をなしている。
Next, examples of the present invention will be described in detail below.
Powders of 17 types of steel having the chemical compositions shown in Table 1 were produced by a gas atomization method, and a three-dimensional additive manufacturing method using a laser irradiation was performed using the powders to form a partial mold that was part of a die casting mold 10 shown in FIG. Was manufactured. The spool core 12 has a cooling circuit 14 formed therein. Here, the cooling circuit 14 has a spiral three-dimensionally complicated shape.

表1中、比較例1は熱間ダイス鋼SKD61,比較例2は18Niマルエージング鋼,比較例3はマルテンサイトステンレス鋼SUS420J2,比較例4は機械構造用鋼SCM435である。
尚、表1中の各発明例には不可避量の不純物成分が含まれることがあるが、表中には記載していない。
In Table 1, Comparative Example 1 is hot die steel SKD61, Comparative Example 2 is 18Ni maraging steel, Comparative Example 3 is martensitic stainless steel SUS420J2, and Comparative Example 4 is mechanical structure steel SCM435.
In addition, although each of the invention examples in Table 1 may contain an unavoidable amount of impurity components, they are not described in the table.

図1において、ダイカスト金型10は固定型16と可動型18とを有している。それらの間に製品の成形空間としてのキャビティ20と湯道22とが設けられ、それらが狭小の湯口24で繋がっている。
上記スプールコア12は、プランジャ26とともに鋳造品の最終凝固位置である円筒状のビスケット部28を挟む位置に配置されている。湯道22は、このビスケット部28から延び出している。
スプールコア12には溝が形成されており、この溝にて湯道22の一部が形成されている。
In FIG. 1, a die casting mold 10 has a fixed mold 16 and a movable mold 18. A cavity 20 as a molding space for the product and a runner 22 are provided between them, and they are connected by a narrow gate 24.
The spool core 12 is arranged at a position sandwiching a cylindrical biscuit portion 28 which is a final solidification position of a casting together with the plunger 26. The runner 22 extends from the biscuit portion 28.
A groove is formed in the spool core 12, and a part of the runner 22 is formed in the groove.

上記の手順で得た金型を350〜650℃の範囲に加熱(焼戻しや時効)して43HRCに調質した。その後、機械加工で最終の金型形状に仕上げた。金型は、135tonダイカストマシンのスプールコア12である。金型構造に占めるスプールコア12の位置が図1に示してある。ここで図1はダイカストの金型構造を横から見た断面図である。   The mold obtained in the above procedure was heated (tempered or aged) to a temperature in the range of 350 to 650 ° C. and tempered to 43 HRC. Then, it was finished to the final mold shape by machining. The die is a spool core 12 of a 135-ton die casting machine. The position of the spool core 12 in the mold structure is shown in FIG. Here, FIG. 1 is a cross-sectional view of a die-casting mold structure viewed from the side.

ダイカストのサイクルは、型締め→射出→ダイタイマー→型開き→製品取出し→エアブロー→離型剤噴霧→エアブロー、の繰り返しである(図1はダイタイマーの過程を表している)。
まず、可動型18が固定型16に接触して型締め状態となる。この時、製品の成形空間としてのキャビティ20が形成される。その状態でスリーブ30にラドルでアルミニウム合金(以下アルミ合金とする)の溶湯を注ぎ、その溶湯を高速で移動するプランジャ26で射出する。
射出された溶湯は湯道22を通って移動し、湯口24から液状・粒状・霧状になってキャビティ20内へ流入する。水鉄砲や霧吹きをイメージすれば理解し易い。やがて、溶湯でキャビティ20が充填される。そして、キャビティ20を満たした溶湯に圧力をかけて固化するまで待つ。
The cycle of die casting is a cycle of mold clamping → injection → die timer → mold opening → product removal → air blow → release agent spray → air blow (Fig. 1 shows the process of the die timer).
First, the movable mold 18 comes into contact with the fixed mold 16 to be in a mold clamped state. At this time, a cavity 20 is formed as a product molding space. In this state, a molten metal of an aluminum alloy (hereinafter, referred to as an aluminum alloy) is poured into the sleeve 30 with a ladle, and the molten metal is injected by the plunger 26 moving at a high speed.
The injected molten metal moves through the runner 22 and flows into the cavity 20 from the gate 24 in a liquid, granular, or mist state. It is easy to understand if you imagine a water gun or spray. Eventually, the cavity 20 is filled with the molten metal. Then, pressure is applied to the molten metal that fills the cavity 20 to wait until it is solidified.

これがダイタイマーと呼ばれる過程で,図1はこの様子を示している。溶湯が固化して製品になると、可動型18を移動させて型を開く。製品を押出しピンやマニプレータを使って取り出す。高温のアルミ合金と接触していた金型は温度が高くなっているため,エアブローと離型剤噴霧で冷却する。これがダイカストの1サイクルである。   This is a process called a di-timer, and FIG. 1 shows this state. When the molten metal is solidified into a product, the movable mold 18 is moved to open the mold. The product is removed using an extrusion pin or manipulator. The mold that has been in contact with the high-temperature aluminum alloy has a high temperature, and is cooled by air blowing and spraying a release agent. This is one cycle of die casting.

上記過程の中で、ダイタイマー(金型内で溶湯を固化させている過程)の短縮を検討した。スプールコア12の冷却能が高いと、ビスケット部28が早く凝固するためダイタイマーを短くでき、したがって全体のサイクルタイムを短縮することができる。サイクルタイムの短縮は、生産性向上の観点から非常に好ましい。   In the above process, shortening of the die timer (the process of solidifying the molten metal in the mold) was studied. If the cooling capacity of the spool core 12 is high, the die timer can be shortened because the biscuit portion 28 solidifies quickly, and therefore the overall cycle time can be shortened. Reducing the cycle time is very preferable from the viewpoint of improving productivity.

テストには型締め力135tonのダイカストマシンを用い、ダイタイマーが充分に長い状態(ビスケット部28が完全に固化した状態)から1秒ずつダイタイマーを短くしてゆき、型開き時にビスケット部28が固化していれば合格、していなければ不合格と判定した。そして、合格となる最短のダイタイマーを評価した。
ビスケット部28の形状はφ50×40mm、スプールコア12の水冷孔14と表面との距離は15mmである。溶湯は730℃のADC12で、鋳造品の重量は660gである。また、10000ショット鋳造後のスプールコア12に顕著な摩耗が認められるかどうかも評価した。高温強度が不足すると、湯流れによる摩耗が顕著となり、金型寿命が確保できない。
For the test, a die casting machine with a mold clamping force of 135 tons was used. From the state where the die timer was sufficiently long (the state where the biscuit part 28 was completely solidified), the die timer was shortened by one second, and the biscuit part 28 was opened when the mold was opened. It was judged as pass if solidified and failed if not. Then, the shortest die timer that passed was evaluated.
The shape of the biscuit portion 28 is φ50 × 40 mm, and the distance between the water cooling hole 14 of the spool core 12 and the surface is 15 mm. The melt is ADC12 at 730 ° C. and the weight of the casting is 660 g. Further, it was also evaluated whether or not remarkable wear was observed on the spool core 12 after the 10,000 shot casting. If the high-temperature strength is insufficient, wear due to the flow of the molten metal becomes remarkable, and the life of the mold cannot be ensured.

テストの結果を表2に示した。目標は、ダイタイマーについては10[秒]以下、摩耗については10000ショット後に深さ0.2mm以上の摩耗が無いことである。
比較例1〜比較例3のダイタイマーは12〜14[秒]と長い。これは、熱伝導率が23[W/m/K]以下と低く、熱交換が行われ難いためである。
Table 2 shows the test results. The goal is that there is no wear with a depth of 0.2 mm or more after 10,000 shots for the die timer and 10 [seconds] or less.
The die timers of Comparative Examples 1 to 3 are as long as 12 to 14 seconds. This is because the heat conductivity is as low as 23 [W / m / K] or less, and heat exchange is difficult to be performed.

その一方で、10000ショット鋳造後のスプールコア12には顕著な摩耗は無かった。これは充分な高温強度を有するためである。
熱伝導率が38[W/m/K]と高い比較例4の場合は、ダイタイマーが8[秒]と短く好ましい結果であるが、高温強度が低いために10000ショット後には顕著な摩耗が観察され、型寿命の確保は難しいと判断された。この様子を図2に示している。湯道22の一部を形成する溝Mのうち、溶湯の流動の方向が急激に変わる角部k付近に、摩耗によってダレた肌が観察される。
On the other hand, there was no remarkable wear on the spool core 12 after the 10,000 shot casting. This is because they have sufficient high-temperature strength.
In the case of Comparative Example 4 in which the thermal conductivity was as high as 38 [W / m / K], the die timer was as short as 8 [seconds], which is a favorable result. It was observed that it was difficult to secure the mold life. This is shown in FIG. In the groove M that forms a part of the runner 22, near the corner k where the direction of the flow of the molten metal changes abruptly, dripping skin is observed due to wear.

13種類の発明例は、ダイタイマーがいずれも9[秒]以下と非常に短い。これは、熱伝導率が31[W/m/K]以上と高く、熱交換が行われ易いためである。また、充分な高温強度を有するため、10000ショット鋳造後のスプールコア12に顕著な摩耗は無かった。なお、比較例にも発明例にも水冷孔からの割れは無かった。   The thirteen examples of the invention have very short die timers of 9 [seconds] or less. This is because the heat conductivity is as high as 31 [W / m / K] or more, and heat exchange is easily performed. In addition, since the spool core 12 had sufficient high-temperature strength, there was no significant wear on the spool core 12 after 10,000 shot casting. There were no cracks from the water cooling holes in both the comparative example and the invention example.

次に、比較例1〜3でもダイタイマーを半減できないか検証した。具体的には、熱交換を促進するため、水冷孔14と表面の距離を7.5mmと小さくしたスプールコア12を作って表2のテストと同条件でテストを行った。結果を表3に示している。ダイタイマーは表2の発明例と同等まで短縮された。水冷孔14を表面に近接させる金型構造は、ダイタイマーの短縮に極めて有効である。   Next, it was verified whether the die timer could be reduced by half even in Comparative Examples 1 to 3. Specifically, in order to promote heat exchange, a spool core 12 in which the distance between the water cooling hole 14 and the surface was reduced to 7.5 mm was produced, and a test was performed under the same conditions as the test in Table 2. The results are shown in Table 3. The die timer was shortened to the same level as the invention example in Table 2. The mold structure in which the water cooling holes 14 are brought close to the surface is extremely effective for shortening the die timer.

その一方で、10000ショット鋳造が完了する前に水冷孔14からの割れが表面に貫通して寿命となった。亀裂の貫通距離が短くなったことに加え、熱応力が増大したためである。ダイタイマーが短縮されても、これではダイカストの生産性向上は難しい(金型交換に長時間を要するため)。なお、10000ショットは未達であるが、表2のテストの場合と同様に、摩耗は顕著ではなかった。   On the other hand, cracks from the water cooling holes 14 penetrated the surface before the 10,000 shot casting was completed, and the life was extended. This is because the thermal stress increased in addition to the shortening of the crack penetration distance. Even if the die timer is shortened, it is difficult to improve the productivity of die casting (since it takes a long time to change the mold). Although 10,000 shots were not achieved, the wear was not remarkable as in the case of the test in Table 2.

以上から分かるように、発明例では、摩耗や水冷孔割れを防止して型寿命を確保しつつダイタイマー短縮が実現される。比較例では、型寿命を確保するとダイタイマーが長くなり、ダイタイマーを短くすると型寿命が確保できない。発明例が型寿命確保とダイタイマー短縮を両立できる理由は、高温強度と熱伝導率が共に高いためである。   As can be seen from the above, in the invention example, the die timer can be shortened while preventing the abrasion and the water-cooling hole cracking and ensuring the mold life. In the comparative example, if the die life is ensured, the die timer becomes longer, and if the die timer is shortened, the die life cannot be ensured. The reason why the invention example can achieve both the securing of the mold life and the shortening of the die timer is that both the high-temperature strength and the thermal conductivity are high.

以上本発明の実施例を詳述したがこれはあくまで一例示である。
熱伝導率と高温強度の高さを両立した本発明鋼は、ダイカストの金型以外にも樹脂の射出成形の金型用としても好適である。また、鋼板のホットプレス(ホットスタンプやダイクエンチとも呼ばれる)の金型等としても高い性能を発揮する。その際、積層造形ではなく、通常の機械加工と熱処理によって本発明鋼を金型製造に適用しても、同様の製法で作られた同一形状の従来鋼の金型より、型寿命確保とサイクル短縮に有効である。
さらに、本発明鋼による金型を表面改質(ショットブラスト,サンドブラスト,窒化,PVD,CVD,メッキ,など)と組合せることも有効である。
また、本発明鋼は、棒材や線材の状態の溶接材として使用することもできる。具体的には、本発明にかかる金型用鋼の溶接材を用い、積層造形法により製造した金型に、あるいはインゴットを加工して得た材料に対し機械加工による切削にて製造した金型に、溶接補修することも可能である。この場合、補修される金型の化学成分は、本発明鋼の範囲とは異なっても良いし、本発明鋼の範囲内であっても良い。いずれにせよ、本発明鋼の溶接材で補修された部分は、本発明鋼の成分で発揮される高い高温強度と高い熱伝導率を有する。
その他本発明は、その趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
The embodiment of the present invention has been described above in detail, but this is merely an example.
The steel of the present invention, which has both high thermal conductivity and high-temperature strength, is suitable not only for a die-casting die but also for a resin injection-molding die. It also exhibits high performance as a mold for hot pressing (also called hot stamping or die quench) of steel sheets. At this time, even if the steel of the present invention is applied to mold manufacturing by ordinary machining and heat treatment instead of additive manufacturing, the mold life is ensured and cycle is improved compared to the conventional steel mold of the same shape made by the same manufacturing method. It is effective for shortening.
Further, it is also effective to combine the metal mold of the present invention with surface modification (shot blast, sand blast, nitriding, PVD, CVD, plating, etc.).
Further, the steel of the present invention can be used as a welding material in a state of a rod or a wire. Specifically, using the welding material for mold steel according to the present invention, a mold manufactured by additive manufacturing, or a mold manufactured by machining a material obtained by processing an ingot by machining. Alternatively, welding repair can be performed. In this case, the chemical composition of the mold to be repaired may be different from the range of the steel of the present invention, or may be within the range of the steel of the present invention. In any case, the part repaired by the welding material of the steel of the present invention has high high-temperature strength and high thermal conductivity exhibited by the components of the steel of the present invention.
In addition, the present invention can be implemented in a form in which various changes are made without departing from the spirit thereof.

10 ダイカスト金型
12 スプールコア
14 冷却回路
10 Die casting mold 12 Spool core 14 Cooling circuit

Claims (10)

質量%で
0.25<C<0.38
0.01<Si<0.30
0.92<Mn<1.80
0.8<Cr≦1.98
0.8<Mo<1.4
0.25<V<0.58
残部がFe及び不可避的不純物の組成を有し、
レーザーフラッシュ法によって評価した25℃における熱伝導率が31W/m/K以上であり、型締め力135tonのダイカストマシンを用いて、10000ショット鋳造を行った場合に、スプールコアの摩耗の深さが0.2mm未満である鋼組織を有することを特徴とする金型用鋼。
By mass%
0.25 <C <0.38
0.01 <Si <0.30
0.92 <Mn <1.80
0.8 <Cr ≦ 1.98
0.8 <Mo <1.4
0.25 <V <0.58
The balance has the composition of Fe and unavoidable impurities,
When the thermal conductivity at 25 ° C. evaluated by a laser flash method is 31 W / m / K or more, and a 10,000-shot casting is performed using a die-casting machine having a mold clamping force of 135 tons, the depth of wear of the spool core is reduced. Having a steel structure of less than 0.2 mm.
質量%で
0.1<Al<1.2
を更に含有することを特徴とする請求項1に記載の金型用鋼。
By mass%
0.1 <Al <1.2
The steel for molds according to claim 1, further comprising:
質量%で
0.30<Ni≦3.5
0.30<Cu≦1.5
の少なくとも1種を更に含有することを特徴とする請求項1,2の何れかに記載の金型用鋼。
By mass%
0.30 <Ni ≦ 3.5
0.30 <Cu ≦ 1.5
The mold steel according to claim 1, further comprising at least one of the following.
質量%で
0.0001<B≦0.0050
を更に含有することを特徴とする請求項1〜3の何れかに記載の金型用鋼。
By mass%
0.0001 <B ≦ 0.0050
The mold steel according to any one of claims 1 to 3, further comprising:
質量%で
0.003<S≦0.250
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
の少なくとも1種を更に含有することを特徴とする請求項1〜4の何れかに記載の金型用鋼。
By mass%
0.003 <S ≦ 0.250
0.0005 <Ca ≦ 0.2000
0.03 <Se ≦ 0.50
0.005 <Te ≦ 0.100
0.01 <Bi ≦ 0.50
0.03 <Pb ≦ 0.50
The mold steel according to any one of claims 1 to 4, further comprising at least one of the following.
質量%で
0.004<Nb≦0.100
0.004<Ta≦0.100
0.004<Ti≦0.100
0.004<Zr≦0.100
の少なくとも1種を更に含有することを特徴とする請求項1〜5の何れかに記載の金型用鋼。
By mass%
0.004 <Nb ≦ 0.100
0.004 <Ta ≦ 0.100
0.004 <Ti ≦ 0.100
0.004 <Zr ≦ 0.100
The mold steel according to any one of claims 1 to 5, further comprising at least one of the following.
質量%で
0.10<W≦4.00
0.10<Co≦3.00
の少なくとも1種を更に含有することを特徴とする請求項1〜6の何れかに記載の金型用鋼。
By mass%
0.10 <W ≦ 4.00
0.10 <Co ≦ 3.00
The mold steel according to any one of claims 1 to 6, further comprising at least one of the following.
積層造形法によって金型を造形するための材料として用いられることを特徴とする請求項1〜7の何れかに記載の金型用鋼。   The mold steel according to any one of claims 1 to 7, which is used as a material for forming a mold by an additive manufacturing method. 前記材料が粉末若しくは板であることを特徴とする請求項8に記載の金型用鋼。   The mold steel according to claim 8, wherein the material is a powder or a plate. 請求項8,9の何れかに記載の材料を用いた積層造形法により製造して成る金型。   A mold manufactured by the additive manufacturing method using the material according to claim 8.
JP2014093742A 2014-04-30 2014-04-30 Mold steel and mold Active JP6645725B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014093742A JP6645725B2 (en) 2014-04-30 2014-04-30 Mold steel and mold
US14/689,583 US10173258B2 (en) 2014-04-30 2015-04-17 Steel for mold, and mold
CA2888695A CA2888695A1 (en) 2014-04-30 2015-04-21 Steel for mold, and mold
EP15164450.7A EP2939763A3 (en) 2014-04-30 2015-04-21 Steel for mold, and mold
CN201510220065.1A CN105018851B (en) 2014-04-30 2015-04-30 Die steel and mold
KR1020150061105A KR20150125608A (en) 2014-04-30 2015-04-30 Steel for mold, and mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093742A JP6645725B2 (en) 2014-04-30 2014-04-30 Mold steel and mold

Publications (2)

Publication Number Publication Date
JP2015209588A JP2015209588A (en) 2015-11-24
JP6645725B2 true JP6645725B2 (en) 2020-02-14

Family

ID=53052674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093742A Active JP6645725B2 (en) 2014-04-30 2014-04-30 Mold steel and mold

Country Status (6)

Country Link
US (1) US10173258B2 (en)
EP (1) EP2939763A3 (en)
JP (1) JP6645725B2 (en)
KR (1) KR20150125608A (en)
CN (1) CN105018851B (en)
CA (1) CA2888695A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038879A1 (en) * 2015-09-02 2017-03-09 大同特殊鋼株式会社 Steel for molds and molding tool
JP6859623B2 (en) * 2015-09-11 2021-04-14 大同特殊鋼株式会社 Mold steel and molding tools
WO2017043446A1 (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for molds and molding tool
EP3463796B8 (en) * 2016-05-27 2023-06-07 Husky Injection Molding Systems Ltd. Mold gate structures
CN105880519B (en) * 2016-06-21 2017-11-10 王仙寿 Die casting for compressor of air conditioner cylinder body
CN105880475B (en) * 2016-06-21 2017-11-10 王仙寿 Engine cylinder cover casting mould
CN106191684A (en) * 2016-07-01 2016-12-07 宜兴市凯诚模具有限公司 A kind of NiTi tungsten alloy glass mold
CN106148837A (en) * 2016-08-12 2016-11-23 安徽祥宇钢业集团有限公司 A kind of stainless steel tube containing nano-titanium and preparation method thereof
EP3284550B2 (en) 2016-08-18 2023-04-26 SMS Concast AG Method for producing a mould for continuous casting of metallic products, and a mould
US11680300B2 (en) * 2016-09-15 2023-06-20 Liebherr-Aerospace Lindenberg Gmbh Tool for realising a press quenching and tempering method
DE102016121530A1 (en) 2016-11-10 2018-05-17 voestalpine Böhler Welding Fontargen GmbH Process for producing a solder preform and solder preform
TWI615486B (en) * 2016-11-15 2018-02-21 財團法人工業技術研究院 A low carbon steel alloy composition, powders and the method forming the objects containing the same.
CN108724620B (en) * 2017-04-14 2022-09-16 芬可乐父子公司 Economical plastic tooling core for mold and die sets
US10889872B2 (en) * 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
CN108380841A (en) * 2017-09-30 2018-08-10 湖北川冶科技有限公司 A kind of die casting proprietary material
JP7069654B2 (en) * 2017-11-14 2022-05-18 大同特殊鋼株式会社 Mold repair welding material
JP2019173049A (en) 2018-03-27 2019-10-10 山陽特殊製鋼株式会社 Powder for metal mold
JP7144717B2 (en) * 2018-04-02 2022-09-30 大同特殊鋼株式会社 Mold steel and mold
JP6564111B1 (en) 2018-07-17 2019-08-21 株式会社ソディック Manufacturing method of three-dimensional structure
EP3753653B1 (en) * 2019-06-18 2022-01-19 Daido Steel Co., Ltd. Powder for additive manufacturing, and die-casting die part
US11535917B2 (en) 2019-12-03 2022-12-27 Daido Steel Co., Ltd. Steel for mold, and mold
JP7144757B2 (en) 2020-05-18 2022-09-30 大同特殊鋼株式会社 metal powder
CN112011740B (en) * 2020-08-31 2021-11-02 天津钢研海德科技有限公司 High-toughness and high-hardness die steel and preparation method thereof
CN114427090B (en) * 2020-10-14 2024-03-26 无锡朗贤轻量化科技股份有限公司 High-strength and high-toughness die steel product for blanking and additive manufacturing process thereof
CN114427091B (en) * 2020-10-14 2024-03-26 无锡朗贤轻量化科技股份有限公司 High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
CN113388788A (en) * 2021-05-10 2021-09-14 东莞材料基因高等理工研究院 MC and Laves phase reinforced high-thermal-conductivity additive manufacturing die steel
CN113462992B (en) * 2021-07-05 2022-05-17 上海交通大学 Iron-based alloy powder for additive manufacturing, application of iron-based alloy powder and ultrahigh-strength steel for additive manufacturing
CN113528980B (en) * 2021-07-19 2022-07-22 江苏省沙钢钢铁研究院有限公司 Die steel plate and production method thereof
CN113600753A (en) * 2021-08-12 2021-11-05 安徽海立精密铸造有限公司 Manufacturing method of sand casting mold
US11970760B2 (en) * 2021-11-10 2024-04-30 Daido Steel Co., Ltd. Metal powder
CN116891978A (en) * 2023-09-11 2023-10-17 宁波众远新材料科技有限公司 Aluminum alloy stamping die steel and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2881869B2 (en) 1989-12-06 1999-04-12 大同特殊鋼株式会社 Steel for plastic molds with excellent weldability
JPH04297550A (en) 1990-12-28 1992-10-21 Sumitomo Metal Ind Ltd Delayed fracture resistant carburizing steel and its manufacture
US20020110649A1 (en) * 2000-05-09 2002-08-15 Skszek Timothy W. Fabrication of alloy variant structures using direct metal deposition
CN1317416A (en) * 2000-04-12 2001-10-17 刘鹏超 Electronic aquatic animal and plant palace
FR2838138B1 (en) 2002-04-03 2005-04-22 Usinor STEEL FOR THE MANUFACTURE OF PLASTIC INJECTION MOLDS OR FOR THE MANUFACTURE OF WORKPIECES FOR METAL WORKING
JP4992344B2 (en) 2006-08-30 2012-08-08 大同特殊鋼株式会社 Mold steel with excellent thermal fatigue properties
JP2008121032A (en) 2006-11-08 2008-05-29 Daido Steel Co Ltd Die steel superior in spheroidizing annealing property and hardenability
JP2010194720A (en) * 2009-02-23 2010-09-09 Sekisou Kanagata Co Ltd Cavity insert for mold, method for manufacturing insert for mold, and resin molding mold
JP5402529B2 (en) * 2009-10-27 2014-01-29 大同特殊鋼株式会社 Steel for mold
CN102905821B (en) 2010-05-25 2015-06-17 松下电器产业株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
JP5584019B2 (en) * 2010-06-09 2014-09-03 パナソニック株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
ITUD20120159A1 (en) 2012-09-14 2014-03-15 F A R Fonderie Acciaierie Roiale S P A PROCEDURE FOR THE MANUFACTURE OF STEEL JETS

Also Published As

Publication number Publication date
US10173258B2 (en) 2019-01-08
CA2888695A1 (en) 2015-10-30
US20150314366A1 (en) 2015-11-05
CN105018851B (en) 2019-09-06
CN105018851A (en) 2015-11-04
KR20150125608A (en) 2015-11-09
JP2015209588A (en) 2015-11-24
EP2939763A3 (en) 2016-01-06
EP2939763A2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP6645725B2 (en) Mold steel and mold
JP6647771B2 (en) Mold steel and mold
US10975460B2 (en) Steel powder and mold using the same
JP2015224363A (en) Steel for metallic mold and metallic mold
JP6601051B2 (en) Steel powder
JP6790610B2 (en) Mold steel and molding tools
US11141778B2 (en) Steel for molds and molding tool
JP2009242820A (en) Steel, steel for die and die using the same
JP2019183187A (en) Steel for mold and mold
WO2017043446A1 (en) Steel for molds and molding tool
JP5641298B2 (en) Manufacturing method of steel for plastic molding dies
JP2010168639A (en) Steel for die-casting mold
TWI728358B (en) Steel for die-casting die and die-casting die
CN112899559B (en) Steel for mold and mold
JP2022072078A (en) Metal powder
JP2022176862A (en) HIGH HARDNESS Co-FREE MARAGING STEEL

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181029

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200109

R150 Certificate of patent or registration of utility model

Ref document number: 6645725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150