JP2008121032A - Die steel superior in spheroidizing annealing property and hardenability - Google Patents

Die steel superior in spheroidizing annealing property and hardenability Download PDF

Info

Publication number
JP2008121032A
JP2008121032A JP2006303150A JP2006303150A JP2008121032A JP 2008121032 A JP2008121032 A JP 2008121032A JP 2006303150 A JP2006303150 A JP 2006303150A JP 2006303150 A JP2006303150 A JP 2006303150A JP 2008121032 A JP2008121032 A JP 2008121032A
Authority
JP
Japan
Prior art keywords
steel
hardenability
spheroidizing annealing
mass
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303150A
Other languages
Japanese (ja)
Inventor
Masamichi Kono
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006303150A priority Critical patent/JP2008121032A/en
Publication of JP2008121032A publication Critical patent/JP2008121032A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die steel which has excellent hardenability, shows a required impact value, can extend the life of the die, has an excellent spheroidizing annealing property, is easily machined, and is applied to a die with a large size of 500 kg or more by mass. <P>SOLUTION: The die steel has a composition comprising, by mass%, 0.2 to 0.6% C, 0.01 to 1.5% Si, 0.1 to 2.0% Mn, 0.01 to 2.0% Cu, 0.01 to 2.0% Ni, 0.1 to 8.0% Cr, 0.01 to 5.0% Mo, one or more elements of V, W, Nb and Ta in a total amount of 0.01 to 2.0%, 0.002 to 0.04% Al, 0.002 to 0.04% N, and the balance Fe with unavoidable impurities; and has such a hardness HV after having been spheroidizing-annealed under a fixed condition and a ratio R of CH<SB>2 mmU</SB><SP>1</SP>to CH<SB>2 mmU</SB><SP>10</SP>, which are Charpy impact values after having been quenched and tempered under two types of quenching conditions as to satisfy the following expressions: (1) HV≤200, (2) 0.6≤R, and (3) R=(CH<SB>2 mmU</SB><SP>1</SP>/CH<SB>2 mmU</SB><SP>10</SP>). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、プラスチックやゴムの射出成形金型,ダイカスト金型,熱間鍛造金型等に用いられる金型用鋼に関し、特に質量が500kg以上の大型の金型に適用される球状化焼鈍性及び焼入れ性に優れた金型用鋼に関する。   TECHNICAL FIELD The present invention relates to a mold steel used for plastic or rubber injection molds, die casting molds, hot forging molds, and the like, and in particular, spheroidizing annealing applied to large molds having a mass of 500 kg or more. And a mold steel excellent in hardenability.

近年、プラスチックやゴムの射出成形金型やダイカスト金型,熱間鍛造金型等によって成形される個々の部品が大型化してきており、これに伴って成形用の金型も大型化してきている。
このような金型の大型化に伴って金型用鋼の焼入れ性及び球状化焼鈍性が大きな問題となる。
In recent years, individual parts molded by plastic and rubber injection molding dies, die casting dies, hot forging dies, etc. have become larger, and the molding dies have also become larger. .
With such an increase in size of the mold, the hardenability and spheroidizing annealing of the mold steel become a big problem.

金型用鋼の焼入れ性と金型寿命とは密接に関係しており、焼入れ性が低いと焼入れ処理したときに十分に焼きが入らず、金型の衝撃値が低くなる。而して衝撃値が低くなると金型の割れや欠損が生じ易くなり、また例えばダイカスト金型では繰り返し加わる加熱と冷却とによる熱疲労によってヒートチェックが発生し易くなり、その結果として金型寿命が短くなってしまう。   The hardenability of the mold steel and the mold life are closely related. If the hardenability is low, the mold will not be sufficiently hardened during the quenching process, and the impact value of the mold will be low. Thus, when the impact value is low, cracking and chipping of the mold are likely to occur, and for example, in a die-cast mold, heat check is likely to occur due to thermal fatigue due to repeated heating and cooling, and as a result, mold life is shortened It will be shorter.

金型寿命が短くなれば、金型を頻繁に交換する必要に迫られ、その結果金型1個あたりの成形可能な個数が少なくなって、製品1個あたりのコストが必然的に高くなってしまう。
また金型用鋼には希少元素を多量に使用することから、金型の作製数が増加すれば省資源にも逆行することになるとともに、金型の作製数が増えることによって、金型の製造に到るまでの鋼の溶解工程や熱処理工程が増加し、環境への負荷も増大する。
If the mold life is shortened, it will be necessary to replace the mold frequently. As a result, the number of molds that can be molded per mold will decrease, and the cost per product will inevitably increase. End up.
In addition, since a large amount of rare elements are used in mold steel, if the number of molds produced increases, it will go back to resource conservation, and the number of molds produced will increase. The steel melting process and heat treatment process up to the production increase, and the environmental load also increases.

金型用鋼における焼入れ性の問題は、質量が500kg以上の大型の金型のための金型用鋼で特に大きな問題となる。
このような大型の金型の場合、焼入れ処理したときに表面部は冷却速度が速いために焼きが入り易いが、芯部については冷却速度が遅くなるために焼きが入り難く、焼入れが不十分となり易い。焼入れが不十分であれば衝撃値が低くなって、必然的に金型寿命が低下してしまう。
The problem of hardenability in mold steel is a particularly serious problem in mold steel for large molds having a mass of 500 kg or more.
In the case of such a large mold, when the quenching process is performed, the surface portion is easy to be quenched because the cooling rate is fast, but the core portion is difficult to be quenched because the cooling rate is slow, and quenching is insufficient. It is easy to become. If quenching is insufficient, the impact value will be low and the mold life will inevitably decrease.

焼入れ性が不十分な金型用鋼の焼入れ性を高める手法として、従来一般に用いられている手法は焼入れ性向上元素を積極的に添加する方法である。焼入れ性向上元素の添加によって変態点(マルテンサイト変態点)が低下して焼入れ性が向上し、そして焼入れ後の組織が微細化して衝撃値は高くなる。
一方、焼入れ性向上元素を積極的に多く添加した場合、その反射的な効果として球状化焼鈍性が悪化する。
As a technique for improving the hardenability of mold steel having insufficient hardenability, a conventionally used technique is a method of positively adding a hardenability improving element. Addition of the hardenability improving element lowers the transformation point (martensitic transformation point) and improves the hardenability, and the microstructure after quenching is refined to increase the impact value.
On the other hand, when many hardenability improving elements are positively added, the spheroidizing annealing property deteriorates as a reflective effect.

金型の製作においては、削ったり孔を開けたりといった切削加工が必要となる。そのため被切削材(金型の素材である金型用鋼)は、切削加工に先立って球状化焼鈍処理を行い、素材を軟化させた状態とした上で、切削加工メーカーにて所要の切削加工を行う。
その場合、球状化焼鈍性の悪い素材は軟化処理後も硬いために被削性が非常に悪く、切削加工のための所要時間が長くなる等、切削に要するコストが増大する問題をもたらす。
従って金型の素材となる金型用鋼には、焼入れ性と併せて球状化焼鈍性も強く求められる。
ここで球状化焼鈍とは、焼鈍時に鋼の中の炭化物(FeC)を微細な球状とする組織調整のための処理である。
In the manufacture of the mold, it is necessary to perform cutting work such as cutting or drilling holes. Therefore, the material to be cut (mold steel, which is the material of the mold) is subjected to spheroidizing annealing prior to the cutting process to soften the material, and then the required cutting process is performed by the cutting manufacturer. I do.
In that case, since the material with poor spheroidizing annealing property is hard even after the softening treatment, the machinability is very bad, and the time required for cutting becomes long.
Therefore, die steel used as a die material is strongly required to have spheroidizing annealing properties in addition to hardenability.
Here, the spheroidizing annealing is a process for adjusting the structure in which the carbide (Fe 3 C) in the steel is finely spherical at the time of annealing.

ところが金型用鋼における焼入れ性と球状化焼鈍性とは互いに相反する関係にあり、焼入れ性を高めれば球状化焼鈍性は悪化し、また一方球状化焼鈍性を高めれば焼入れ性が悪化するといった関係にある。   However, the hardenability and spheroidizing annealability in mold steel are in a mutually contradictory relationship, and if the hardenability is increased, the spheroidizing annealing property is deteriorated, and if the spheroidizing annealing property is increased, the hardenability is deteriorated. There is a relationship.

従来、質量500kg未満の小型の金型にあっては辛うじてその両者を充足することが可能であったが、質量500kg以上の大型の金型のための金型用鋼の場合、金型焼入時における表面部分と芯部との冷却速度の差が、小型の金型に比べて非常に大きくなるため、芯部までを含めた全体の金型の焼入れ性と球状化焼鈍性とを共に充足するといったことが困難であった。   Conventionally, a small mold with a mass of less than 500 kg could barely satisfy both, but in the case of mold steel for a large mold with a mass of 500 kg or more, mold quenching The difference in cooling rate between the surface and the core at that time is much larger than that of a small mold, so both the hardenability and spheroidizing annealing of the entire mold including the core are satisfied. It was difficult to do.

例えばダイカスト金型に用いられる鋼の一般的な球状化焼鈍条件は、800〜950℃の温度域で2〜5時間加熱した後、15℃/時間の冷却速度で冷却する、というものである。球状化焼鈍炉の操業条件や生産性はこれを基準とすることが多い。
従ってダイカスト金型に用いられる鋼では、このような一般的な条件によって容易に切削できる硬さまで軟化できることが必須の条件である。
For example, a general spheroidizing annealing condition for steel used in a die casting mold is to heat at a temperature range of 800 to 950 ° C. for 2 to 5 hours and then cool at a cooling rate of 15 ° C./hour. The operating conditions and productivity of a spheroidizing annealing furnace are often based on this.
Therefore, it is an essential condition that the steel used for the die casting mold can be softened to such a hardness that it can be easily cut by such general conditions.

しかるに質量500kg以上の大型の金型に用いられる金型用鋼の場合、十分な焼入れ性を確保しつつ上記条件で十分に軟化させることのできる球状化焼鈍性を付与することが従来困難であった。
このような状況はダイカスト金型だけでなく、プラスチックやゴムの射出成形金型,熱間鍛造金型に用いられる鋼についても基本的に同様の状況にある。
However, in the case of mold steel used for a large mold having a mass of 500 kg or more, it has been difficult to provide spheroidizing annealing that can be sufficiently softened under the above conditions while ensuring sufficient hardenability. It was.
This situation is basically the same for not only die-casting dies but also steel used for plastic and rubber injection dies and hot forging dies.

尚、本発明に対する先行技術として下記特許文献1,特許文献2,特許文献3に開示されたものがある。
しかしながらこれらの特許文献には本願発明の特徴的な構成については開示されていない。
In addition, there exist some which were disclosed by the following patent document 1, patent document 2, and patent document 3 as prior art with respect to this invention.
However, these patent documents do not disclose the characteristic configuration of the present invention.

特開平7−173572号公報Japanese Patent Laid-Open No. 7-173572 特開2003−313635号公報JP 2003-313635 A 特開平6−256897号公報JP-A-6-256897

ここにおいて本発明は以上のような事情を背景とし、焼入れ性が良好で所要の衝撃値が得られ、金型寿命を高寿命化し得るとともに、球状化焼鈍性も良好で切削加工が容易な質量500kg以上の大型の金型に適用される金型用鋼を提供することを目的としてなされたものである。   In this case, the present invention is based on the above circumstances, the hardenability is good, the required impact value is obtained, the mold life can be increased, the spheroidizing annealing property is also good, and the mass is easy to cut. It was made for the purpose of providing the steel for metal mold | die applied to a large mold 500 kg or more.

而して請求項1のものは、質量%で、C:0.2〜0.6%,Si:0.01〜1.5%,Mn:0.1〜2.0%,Cu:0.01〜2.0%,Ni:0.01〜2.0%,Cr:0.1〜8.0%,Mo:0.01〜5.0%,VとWとNbとTaのうち1種若しくは2種以上の合計:0.01〜2.0%,Al:0.002〜0.04%,N:0.002〜0.04%残部Fe及び不可避的不純物の組成を有する、質量が500kg以上の大型の金型に適用される金型用鋼であって、該鋼にて作製した球状化焼鈍用の11mm×11mm×60mmの角棒を、以下の焼鈍条件で球状化焼鈍処理したのちのHVが以下の式(1)を満たし、また前記鋼にて作製し、前記焼鈍条件で球状化焼鈍処理した後の衝撃試験用の11mm×11mm×60mmの角棒を、下記の焼入れ条件で焼入れした後、更に550℃〜600℃の条件で焼き戻してロックウェルCスケール硬さを45±0.5に硬さ調整した後に、該角棒から作製したJIS 3号の衝撃試験片(2mmのUノッチ)を用いたシャルピー衝撃試験による下記のR,CH2mmU ,CH2mmU 10が下記式(2),(3)を満たすことを特徴とする。
HV≦200・・・式(1)
0.6≦R・・・式(2)
R=(CH2mmU /CH2mmU 10)・・・式(3)
但し、
(イ)焼鈍条件:室温から4時間かけて860℃まで加熱した後、860℃に4時間保持し、その後室温までの冷却に際し、550℃までを15℃/時間の冷却速度で冷却。
(ロ)HV:室温において測定したビッカース硬さで、300gの負荷を10秒間与えた場合に計測される値。
(ハ)焼入れ条件:室温から4時間かけて1030℃まで加熱した後、1030℃に1時間保持し、その後550℃までを30℃/分の冷却速度で冷却した後、室温までを10℃/分と1℃/分の各冷却速度で冷却。
(ニ)CH2mmU :焼入れ時に500℃以下の温度での冷却を1℃/分で冷却した試験片の室温におけるシャルピー衝撃試験での衝撃値[J/cm]
(ホ)CH2mmU 10:焼入れ時に500℃以下の温度での冷却を10℃/分で冷却した試験片の室温におけるシャルピー衝撃試験での衝撃値[J/cm]
(但し各衝撃値は前記シャルピー衝撃試験によって得られた吸収エネルギー[J]を断面積で割った値で、試験片を採取する鋼材の部位と試験片の切り出し方向及びノッチ作製の方向は同じ)
Thus, the content of claim 1 is in mass%, C: 0.2-0.6%, Si: 0.01-1.5%, Mn: 0.1-2.0%, Cu: 0.01-2.0%, Ni: 0.01-2.0%, Cr : 0.1-8.0%, Mo: 0.01-5.0%, Total of one or more of V, W, Nb and Ta: 0.01-2.0%, Al: 0.002-0.04%, N: 0.002-0.04% balance 11 mm × 11 mm × 60 mm square bar for spheroidizing annealing, which is applied to a large mold having a composition of Fe and inevitable impurities and having a mass of 500 kg or more. HV after spheroidizing annealing treatment under the following annealing conditions satisfies the following formula (1), and is made of the steel, and 11 mm × for impact test after spheroidizing annealing treatment under the annealing conditions. An 11 mm × 60 mm square bar was quenched under the following quenching conditions and then tempered at 550 ° C. to 600 ° C. to give a Rockwell C scale hardness of 45 ± 0. After adjusting hardness, the impact test piece JIS 3 No. prepared from the angular rod below by Charpy impact test using (2 mm U notch) R, CH 2mmU 1, CH 2mmU 10 is represented by the following formula (2) , (3) is satisfied.
HV ≦ 200 (1)
0.6 ≦ R (2)
R = (CH 2 mmU 1 / CH 2 mmU 10 ) (3)
However,
(A) Annealing conditions: After heating from room temperature to 860 ° C. over 4 hours, hold at 860 ° C. for 4 hours, and then cool to 550 ° C. at a cooling rate of 15 ° C./hour.
(B) HV: Vickers hardness measured at room temperature, measured when a load of 300 g is applied for 10 seconds.
(C) Quenching conditions: After heating from room temperature to 1030 ° C. over 4 hours, hold at 1030 ° C. for 1 hour, then cool to 550 ° C. at a cooling rate of 30 ° C./minute, and then to room temperature to 10 ° C. / Cool at each cooling rate of 1 minute / minute.
(D) CH 2 mmU 1 : Impact value [J / cm 2 ] in a Charpy impact test at room temperature of a test piece cooled at a temperature of 500 ° C. or less at a temperature of 500 ° C. or less during quenching.
(E) CH 2 mmU 10 : Impact value [J / cm 2 ] in a Charpy impact test at room temperature of a test piece cooled at a temperature of 500 ° C. or less during quenching at a temperature of 10 ° C./min.
(However, each impact value is a value obtained by dividing the absorbed energy [J] obtained by the Charpy impact test by the cross-sectional area, and the steel material part from which the test piece is taken, the cutting direction of the test piece, and the direction of notch production are the same)

請求項2のものは、請求項1において、質量%で、Co:0.01〜2.0%を更に含有していることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the composition further comprises Co: 0.01 to 2.0% by mass%.

請求項3のものは、請求項1,2の何れかにおいて、質量%で、Ti:0.005〜0.5%,Zr:0.005〜0.5%の1種又は2種を更に含有することを特徴とする。   A third aspect of the present invention is characterized in that, in any one of the first and second aspects, one or two of Ti: 0.005 to 0.5% and Zr: 0.005 to 0.5% are further contained in mass%.

請求項4のものは、請求項1〜3の何れかにおいて、質量%で、B:0.0002〜0.02%を更に含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the composition further contains B: 0.0002 to 0.02% by mass%.

請求項5のものは、請求項1〜4の何れかにおいて、質量%で、S:0.005〜0.5%,Ca:0.0005〜0.5%,Se:0.005〜0.5%,Te:0.005〜0.5%,Bi:0.005〜0.5%,Pb:0.005〜0.5%のうちの1種又は2種以上を更に含有することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the mass% is S: 0.005-0.5%, Ca: 0.0005-0.5%, Se: 0.005-0.5%, Te: 0.005-0.5%, Bi : 0.005 to 0.5%, Pb: One or more of 0.005 to 0.5% are further contained.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、鋼に添加する元素を上記のように調整した上で、球状化焼鈍性の指標としての所定の熱処理後のHVを200以上、焼入れ性を表す衝撃値の比率Rを0.6以上となしたもので、本発明によれば、500kg以上の大型の金型に求められる所要の焼入れ性と球状化焼鈍性とを共に付与することができ、金型の製造コストを安価に抑えつつ金型寿命を高寿命化し得て、1個当りの金型に要するコストを低減し、従ってまた金型を用いて成形される部品のコストを低減することができる。   As described above, the present invention adjusts the elements to be added to the steel as described above, and has an HV after a predetermined heat treatment as an index of spheroidizing annealability of 200 or more, and a ratio R of impact values representing hardenability. According to the present invention, both the required hardenability and spheroidizing annealing required for a large mold of 500 kg or more can be provided, and the mold manufacturing cost It is possible to increase the life of the mold while keeping the cost low, reducing the cost required for each mold, and thus reducing the cost of parts molded using the mold.

尚、本発明において11mm×11mm×60mmの角棒を用いて球状化焼鈍性を調べ、また焼入れ性の指標としての衝撃値の比率を規定している理由は、このサイズの角棒を用いることで焼入れ速度が制御し易いとともに、外面が曲面の円柱よりも平面の角柱の方が硬さが測定し易く、更に衝撃試験片とほぼ同じサイズであることによる。
また衝撃試験のための熱処理においてロックウェルCスケール硬さを45±0.5に調整しているのは、この硬さが金型として使われる硬さ(HRC38〜52)の代表値であることによる。
The reason why the spheroidizing annealing property is examined using a square bar of 11 mm × 11 mm × 60 mm in the present invention and the ratio of the impact value as an index of hardenability is specified is that a square bar of this size is used. This is because the quenching speed is easy to control, and the hardness of a square prism with a flat outer surface is easier to measure than that of a circular cylinder with a curved outer surface.
Moreover, the reason why the Rockwell C scale hardness is adjusted to 45 ± 0.5 in the heat treatment for the impact test is that this hardness is a representative value of the hardness (HRC 38 to 52) used as a mold. by.

また焼入れ性の指標として、550℃以下の温度での冷却を10℃/分と1℃/分の各冷却速度で冷却したときの衝撃値CH2mmU 10とCH2mmU との比率をとっているのは、実生産での焼入れ速度が、500kg以上の大型の金型の場合1℃/分程度、小さい金型で10℃/分程度の速度となることによる。つまりは大型の金型における表面部の焼入れ速度と芯部の焼入れ速度がほぼこの程度の焼入れ速度となることによる。 Further, as an index of hardenability, the ratio of impact value CH 2 mmU 10 and CH 2 mmU 1 when cooling at a temperature of 550 ° C. or less is cooled at each cooling rate of 10 ° C./min and 1 ° C./min is taken. This is because the quenching speed in actual production is about 1 ° C./min for a large mold of 500 kg or more, and about 10 ° C./min for a small mold. In other words, the quenching speed of the surface portion and the quenching speed of the core portion in a large-sized mold are almost equal to this quenching speed.

またこれら異なった冷却速度で焼入れしたときの衝撃値の比率をもって焼入れ性の評価をしているのは、表面部と芯部との焼入れ性の相違で全体の焼入れ性の評価を行うためであり、またその比率であるRを0.6以上としているのは、焼入れ性の悪い鋼種ではRが0.6以下になることが多いことによる。理想なのはR=1となることであるが、そうした鋼種は実際上存在しないし、仮に存在したとしてもそのときには球状化焼鈍性が著しく悪化する。
尚、上記焼入れ処理後の550℃〜650℃での焼戻し処理は、通常その焼戻し温度に1〜30時間保持することによって行う。
The reason why the hardenability is evaluated by the ratio of the impact values when quenched at different cooling rates is to evaluate the overall hardenability by the difference in the hardenability between the surface portion and the core portion. The reason why the ratio R is 0.6 or more is that R is often 0.6 or less in a steel type having poor hardenability. It is ideal that R = 1, but such a steel type does not actually exist, and even if it exists, the spheroidizing annealing property deteriorates remarkably at that time.
In addition, the tempering process at 550 ° C. to 650 ° C. after the quenching process is usually performed by maintaining the tempering temperature for 1 to 30 hours.

次に本発明における各化学成分の限定理由を以下に詳述する。
Cは鋼の強度調整に必須の元素である。プラスチックやゴムの射出成形,ダイカスト,鍛造などに用いられる金型としての必要強度を確保するため、本発明においては質量で0.2%〜0.6%添加する。添加量は金型に要求される強度に応じて決定するが、多くの場合0.25%〜0.5%が適当である。
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
C is an element essential for adjusting the strength of steel. In the present invention, 0.2% to 0.6% is added in order to secure the necessary strength as a mold used for injection molding, die casting, forging, etc. of plastic and rubber. The amount of addition is determined according to the strength required for the mold, but in many cases 0.25% to 0.5% is appropriate.

Siは地鉄中に固溶し、炭化物の生成挙動を介して衝撃値に影響を及ぼす。高衝撃値化のためには低Siが良いが、過度の低減は生産コストを増すばかりでなく特性向上の実益にも乏しい。一方被削性を向上させるには高Si化が有効である。衝撃値・製造コスト・被削性のバランスから、本発明においては質量で0.01%〜1.5%とする。好ましい範囲は0.05%〜1.5%である。   Si dissolves in the ground iron and affects the impact value through the formation behavior of carbides. Low Si is good for increasing the impact value, but excessive reduction not only increases production costs, but it also has poor profitability. On the other hand, high Si is effective for improving machinability. In the present invention, the mass is set to 0.01% to 1.5% from the balance of impact value, manufacturing cost, and machinability. A preferred range is from 0.05% to 1.5%.

Mnは焼入れ性の向上元素として必須である。ただし、過度の添加はAc1変態点を下げるだけでなく、球状化焼鈍性を著しく阻害し、被削性に優れた軟質な状態を創製しにくくする。焼入れ性の向上効果・変態点・焼鈍性などのバランスから、本発明においては質量で0.1%〜2.0%とする。好ましい範囲は0.40%〜1.6%である。   Mn is essential as an element for improving hardenability. However, excessive addition not only lowers the Ac1 transformation point, but also significantly inhibits spheroidizing annealing and makes it difficult to create a soft state with excellent machinability. In the present invention, the content is set to 0.1% to 2.0% from the balance of the effect of improving hardenability, the transformation point, and the annealing property. A preferred range is 0.40% to 1.6%.

Cuは地鉄中に単独析出して、鋼の高強度化に寄与する。ただし、過度の添加は熱間加工性を劣化させるため避けるべきである。強度と熱間加工性のバランスから、本発明においては質量で0.01%〜2.0%とする。好ましい範囲は0.04%〜1.2%である。   Cu precipitates alone in the steel and contributes to increasing the strength of the steel. However, excessive addition should be avoided because it degrades hot workability. From the balance between strength and hot workability, in the present invention, the mass is 0.01% to 2.0%. A preferred range is 0.04% to 1.2%.

Niは焼入れ性を向上する元素として有用である。ただし、過度の添加はAc1変態点を下げるだけでなく、球状化焼鈍性を著しく阻害し、被削性に優れた軟質な状態を創製しにくくする。焼入れ性の向上効果・変態点・焼鈍性などのバランスから、本発明においては質量で0.01%〜2.0%とする。好ましい範囲は0.04%〜1.2%である。   Ni is useful as an element that improves hardenability. However, excessive addition not only lowers the Ac1 transformation point, but also significantly inhibits spheroidizing annealing and makes it difficult to create a soft state with excellent machinability. In the present invention, the content is set to 0.01% to 2.0% from the balance of the effect of improving hardenability, the transformation point, and the annealing property. A preferred range is 0.04% to 1.2%.

Crは焼入れ性を向上するだけでなく、炭化物を形成して鋼を高強度化する元素として有用である。ただし、過度の添加は軟化抵抗を下げ、高温での使用中にヘタリやすくなる(疲労強度の低下)。強度と軟化抵抗のバランスから、本発明においては質量で0.1%〜8.0%とする。好ましい範囲は0.4%〜6.0%である。   Cr not only improves hardenability, but is also useful as an element for forming carbides and increasing the strength of steel. However, excessive addition lowers the softening resistance, and it becomes easy to get loose during use at high temperatures (decrease in fatigue strength). From the balance between strength and softening resistance, in the present invention, the mass is 0.1% to 8.0%. A preferred range is 0.4% to 6.0%.

Moは焼入れ性を向上するだけでなく、炭化物を形成して鋼を高強度化する元素として有用である。特に、軟化抵抗を高める効果が大きい。ただし、過度の添加は球状化焼鈍性を劣化させる。軟化抵抗と球状化焼鈍性のバランスから、本発明においては質量で0.01%〜5.0%とする。好ましい範囲は0.20%〜3.5%である。   Mo is useful not only for improving hardenability, but also as an element for forming a carbide and increasing the strength of steel. In particular, the effect of increasing the softening resistance is great. However, excessive addition deteriorates spheroidizing annealing. In the present invention, from the balance between softening resistance and spheroidizing annealing, the content is set to 0.01% to 5.0%. A preferred range is 0.20% to 3.5%.

VとWとNbとTaは、炭化物を形成して鋼を高強度化する元素として有用である。ただし、過度の添加は球状化焼鈍性の低下を招くだけでなく、凝固時の晶出炭化物を増すことになり、本鋼が工具や金型となった場合の衝撃値を大きく低下させる。鋼に対するこれらの元素の作用はほぼ同じであるため、強度と球状化焼鈍性のバランスから、本発明においてはこれらの元素のうち1種若しくは2種以上の合計が質量で0.01%〜2.0%となるようにする。好ましい範囲は0.10%〜1.2%である。   V, W, Nb and Ta are useful as elements for forming carbides and increasing the strength of steel. However, excessive addition not only causes a decrease in spheroidizing annealing property, but also increases the amount of crystallized carbides during solidification, greatly reducing the impact value when the steel becomes a tool or a mold. Since the effects of these elements on steel are almost the same, from the balance between strength and spheroidizing annealing property, in the present invention, the total of one or more of these elements is 0.01% to 2.0% by mass. To be. A preferred range is from 0.10% to 1.2%.

Alは窒化物を形成して、焼入れにおける結晶粒の粗大化を防止する元素である。ただし、過度の添加は特性の飽和と製造コストの増大を招くだけでなく、介在物であるアルミナを増すことになり、本鋼が工具や金型となった場合の衝撃値を大きく低下させる。結晶粒の粗大化を防止する効果と衝撃値のバランスから、本発明においては質量で0.002%〜0.04%とする。好ましい範囲は0.007%〜0.03%である。   Al is an element that forms nitrides and prevents coarsening of crystal grains during quenching. However, excessive addition not only leads to saturation of characteristics and an increase in manufacturing cost, but also increases alumina as an inclusion, and greatly reduces the impact value when the steel becomes a tool or a mold. In the present invention, the mass is set to 0.002% to 0.04% from the balance between the effect of preventing the coarsening of crystal grains and the impact value. A preferred range is 0.007% to 0.03%.

NはAlNを形成して、焼入れにおける結晶粒の粗大化を防止する元素である。ただし、過度の添加は特性の飽和と製造コストの増大を招くのみである。結晶粒の粗大化を防止する効果と製造コストのバランスから、本発明においては質量で0.002%〜0.04%とする。好ましい範囲は0.007%〜0.03%である。   N is an element that forms AlN and prevents coarsening of crystal grains during quenching. However, excessive addition only causes saturation of characteristics and an increase in manufacturing cost. In the present invention, the content is set to 0.002% to 0.04% from the balance between the effect of preventing the coarsening of crystal grains and the manufacturing cost. A preferred range is 0.007% to 0.03%.

選択添加元素としてのCoは地鉄中に固溶し、炭化物の生成挙動を介して衝撃値に影響を及ぼす。高衝撃値化のためには低Coが良いが、過度の低減は高温での強度を低下させる。一方、過度の添加では高温強度の飽和と生産コストの増大を招くのみである。衝撃値・高温強度・製造コストのバランスから、本発明においては質量で0.01%〜2.0%とする。   Co as a selective additive element dissolves in the ground iron and affects the impact value through the formation behavior of carbides. Low Co is good for increasing the impact value, but excessive reduction reduces the strength at high temperatures. On the other hand, excessive addition only causes saturation of high temperature strength and an increase in production cost. In the present invention, the mass is set to 0.01% to 2.0% from the balance of impact value, high temperature strength, and manufacturing cost.

選択添加元素としてのTiは、TiNやTiCを形成して焼入れにおける結晶粒の粗大化を防止する元素である。ただし、過度の添加は特性の飽和と製造コストの増大を招く。また、比較的に粗大に析出するTiNやTiCは、本鋼が金型となった場合の衝撃値を大きく低下させる。結晶粒の粗大化を防止する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005%〜0.5%とする。   Ti as a selective additive element is an element that forms TiN or TiC and prevents coarsening of crystal grains during quenching. However, excessive addition causes saturation of characteristics and an increase in manufacturing cost. Moreover, TiN and TiC which precipitate relatively coarsely greatly reduce the impact value when the steel becomes a mold. In the present invention, the mass is set to 0.005% to 0.5% from the balance of the effect of preventing the coarsening of crystal grains, the manufacturing cost, the material, and the like.

選択添加元素としてのZrは、ZrNやZrCを形成して焼入れにおける結晶粒の粗大化を防止する元素である。ただし、過度の添加は特性の飽和と製造コストの増大を招く。また、比較的に粗大に析出するZrNやZrCは、本鋼が金型となった場合の衝撃値を大きく低下させる。結晶粒の粗大化を防止する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005%〜0.5%とする。   Zr as a selective additive element is an element that forms ZrN or ZrC to prevent coarsening of crystal grains during quenching. However, excessive addition causes saturation of characteristics and an increase in manufacturing cost. Moreover, ZrN and ZrC that precipitate relatively coarsely greatly reduce the impact value when the steel becomes a mold. In the present invention, the mass is set to 0.005% to 0.5% from the balance of the effect of preventing the coarsening of crystal grains, the manufacturing cost, the material, and the like.

選択添加元素としてのBは、オーステナイト結晶粒界に偏析してフェライト相の析出を抑制する元素であり、鋼の焼入れ性を著しく高める。ただし、過度の添加は特性の飽和と製造コストの増大を招き、実益に乏しい。焼入れ性を向上する効果と製造コストのバランスから、本発明においては質量で0.0002%〜0.02%とする。   B as a selective additive element is an element that segregates at the austenite grain boundaries and suppresses precipitation of the ferrite phase, and remarkably increases the hardenability of the steel. However, excessive addition leads to saturation of characteristics and an increase in manufacturing cost, and is not profitable. In the present invention, the mass is set to 0.0002% to 0.02% from the balance between the effect of improving hardenability and the manufacturing cost.

選択添加元素としてのSは、MnSを形成して、鋼の被削性を向上する元素である。ただし、過度の添加は特性の飽和と製造コストの増大を招く。また、比較的に粗大に晶出するMnSは、本鋼が工具や金型となった場合の衝撃値を大きく低下させる。被削性を向上する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005〜0.5%とする。   S as a selective additive element is an element that forms MnS and improves the machinability of steel. However, excessive addition causes saturation of characteristics and an increase in manufacturing cost. Further, MnS crystallized relatively coarsely greatly reduces the impact value when the steel becomes a tool or a mold. In the present invention, the mass is set to 0.005 to 0.5% from the balance of the effect of improving machinability, the manufacturing cost, the material, and the like.

選択添加元素としてのCaは被削性を向上する元素である。また、鋼中の非金属介在物の形態を変化させて鋼の熱間加工性を向上させる元素でもある。ただし、過度の添加は特性の飽和と製造コストの増大を招く。被削性や熱間加工性を向上する効果・製造コスト・材質などのバランスから、本発明においては質量で0.0005%〜0.50%とする。   Ca as a selective additive element is an element that improves machinability. It is also an element that improves the hot workability of steel by changing the form of non-metallic inclusions in the steel. However, excessive addition causes saturation of characteristics and an increase in manufacturing cost. In the present invention, the mass is set to 0.0005% to 0.50% from the balance of the effect of improving the machinability and hot workability, the manufacturing cost, and the material.

選択添加元素としてのSeは被削性を向上する元素である。ただし、過度の添加は多量のSe化合物を生じさせることになり、鋼の熱間加工性や衝撃値を低下させる。被削性を向上する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005%〜0.50%とする。   Se as a selective additive element is an element that improves machinability. However, excessive addition results in a large amount of Se compound, which decreases the hot workability and impact value of steel. In the present invention, the mass is set to 0.005% to 0.50% from the balance of the effect of improving machinability, manufacturing cost, material, and the like.

選択添加元素としてのTeは被削性を向上する元素である。ただし、過度の添加は多量のTe化合物を生じさせることになり、鋼の熱間加工性や衝撃値を低下させる。被削性を向上する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005%〜0.50%とする。   Te as a selective additive element is an element that improves machinability. However, excessive addition results in a large amount of Te compound, which reduces the hot workability and impact value of the steel. In the present invention, the mass is set to 0.005% to 0.50% from the balance of the effect of improving machinability, manufacturing cost, material, and the like.

選択添加元素としてのBiは被削性を向上する元素である。ただし、過度の添加は鋼中に分散するBi粒子を増すことになり、鋼の熱間加工性や衝撃値を低下させる。被削性を向上する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005%〜0.50%とする。   Bi as a selective additive element is an element that improves machinability. However, excessive addition increases the number of Bi particles dispersed in the steel, reducing the hot workability and impact value of the steel. In the present invention, the mass is set to 0.005% to 0.50% from the balance of the effect of improving machinability, manufacturing cost, material, and the like.

選択添加元素としてのPbは被削性を向上する元素である。ただし、過度の添加は鋼中に分散するPb粒子を増すことになり、鋼の熱間加工性や衝撃値を低下させる。被削性を向上する効果・製造コスト・材質などのバランスから、本発明においては質量で0.005%〜0.50%とする。   Pb as a selective additive element is an element that improves machinability. However, excessive addition increases the amount of Pb particles dispersed in the steel, reducing the hot workability and impact value of the steel. In the present invention, the mass is set to 0.005% to 0.50% from the balance of the effect of improving machinability, manufacturing cost, material, and the like.

次に本発明の実施形態を以下に詳述する。
表1に示す化学成分の鋼を溶製して310mm×650mm×4500mmのブロック状素材を得、そしてこの素材の中心付近から、素材の高さ方向に11mm×11mm×60mmの角棒を試験片として切り出した。尚試験片には、後のシャルピー衝撃試験時の亀裂が素材の長手方向に進展するようにノッチを設けた。
Next, embodiments of the present invention will be described in detail below.
Steel of chemical composition shown in Table 1 is melted to obtain a block-shaped material of 310 mm × 650 mm × 4500 mm, and a square bar of 11 mm × 11 mm × 60 mm is taken from the vicinity of the center of the material in the height direction of the material. Cut out as The test piece was provided with a notch so that cracks during the subsequent Charpy impact test propagated in the longitudinal direction of the material.

そして図1(イ)に示しているように室温から860℃まで4時間かけて加熱し、その後860℃に4時間保持した後に室温まで冷却し、その際550℃の温度までを15℃/時間の冷却速度で冷却する球状化焼鈍処理を行い、その焼鈍処理後の試験片のビッカース硬さを測定して、これを球状化焼鈍性の指標とした。   Then, as shown in FIG. 1 (a), heating is carried out from room temperature to 860 ° C. over 4 hours, then kept at 860 ° C. for 4 hours and then cooled to room temperature, at which time the temperature reaches 550 ° C. at 15 ° C./hour. A spheroidizing annealing treatment was performed at a cooling rate of V, and the Vickers hardness of the test piece after the annealing treatment was measured, and this was used as an index of spheroidizing annealing property.

また衝撃試験に供する試験片については、更に図1(ロ)に示す焼入れ条件で焼入れ処理した。即ち、室温から4時間かけて1030℃まで加熱し、その後1030℃に1時間保持した後に、550℃の温度まで30℃/分の冷却速度で冷却し、更に550℃以下の温度においては10℃/分と1℃/分の2種類の冷却速度でそれぞれ室温まで冷却した。   In addition, the test piece subjected to the impact test was further quenched under the quenching conditions shown in FIG. That is, it is heated from room temperature to 1030 ° C. over 4 hours, then held at 1030 ° C. for 1 hour, then cooled to a temperature of 550 ° C. at a cooling rate of 30 ° C./min, and further 10 ° C. at a temperature of 550 ° C. or lower. Each was cooled to room temperature at two cooling rates of 1 / min and 1 ° C./min.

そして引き続いて各試験片を550℃〜650℃の範囲内の加熱温度まで加熱し且つ所定時間保持する焼戻しを行って、ロックウェルCスケール硬さを45±0.5に硬さ調整し、そしてそれら試験片を最終的にJIS 3号のシャルピー衝撃試験片(2mmのUノッチ)に加工してシャルピー衝撃試験を行い、10℃/分と1℃/分とで各冷却した試験片についてのそれぞれのシャルピー衝撃値CH2mmU 10,CH2mmU とを求め、そしてそれら衝撃値の値の比率Rを求めた。 Subsequently, each test piece is heated to a heating temperature within the range of 550 ° C. to 650 ° C. and tempered for a predetermined time to adjust the Rockwell C scale hardness to 45 ± 0.5, and The test pieces were finally processed into Charpy impact test pieces (2 mm U-notch) of JIS No. 3 and Charpy impact tests were performed. Each of the test pieces cooled at 10 ° C./min and 1 ° C./min. Charpy impact values CH 2 mmU 10 and CH 2 mmU 1 were determined, and the ratio R of the values of the impact values was determined.

これらの結果が表1に併せて示してある。
表1中、球状化焼鈍性については、球状化焼鈍処理後のビッカース硬さが200を超えている鋼は被削性に問題を生じるものであり、球状化焼鈍性の評価を「×」として表している。
These results are also shown in Table 1.
In Table 1, with regard to spheroidizing annealing, steel having a Vickers hardness of more than 200 after spheroidizing annealing causes a problem in machinability, and the evaluation of spheroidizing annealing is “x”. Represents.

Figure 2008121032
Figure 2008121032
Figure 2008121032
Figure 2008121032
Figure 2008121032
Figure 2008121032

表1の結果において、比較例1では合金成分については本発明の条件を満たしているものの、Rの値が本発明の下限値である0.6よりも小さく、焼入れ性の点で不十分である。
また比較例2は、焼入れ性については十分であるが球状化焼鈍性が悪く、本発明の条件を満たさないものである。
In the results of Table 1, in Comparative Example 1, although the alloy components satisfy the conditions of the present invention, the value of R is smaller than 0.6 which is the lower limit value of the present invention, which is insufficient in terms of hardenability. is there.
In Comparative Example 2, the hardenability is sufficient, but the spheroidizing annealing property is poor, and does not satisfy the conditions of the present invention.

更に比較例3〜7では、Rが0.6未満であるか、或いは0.6以上である場合には球状化焼鈍性に問題のあるものである。つまりこの比較例3〜7を見て分るように、球状化焼鈍性を確保しているものは焼入れ性が不十分であり、また一方焼入れ性を満たすものについては球状化焼鈍性が不十分となっている。   Furthermore, in Comparative Examples 3 to 7, when R is less than 0.6 or 0.6 or more, there is a problem in spheroidizing annealing. In other words, as can be seen from Comparative Examples 3 to 7, those that ensure spheroidizing annealing have insufficient hardenability, while those that satisfy quenching have insufficient spheroidizing annealing. It has become.

これに対して各実施例ではRが何れも0.6以上であり、尚且つ球状化焼鈍性も十分で、合金成分の最適化によって球状化焼鈍性と焼入れ性を高いレベルでバランスさせ得ている。   On the other hand, in each example, R is 0.6 or more, spheroidizing annealing is sufficient, and spheroidizing annealing and hardenability can be balanced at a high level by optimization of alloy components. Yes.

次に、表1に示した鋼のうち0.6≦Rとなったものを対象として、質量が約100kg(小型)と約500kg(大型)のダイカスト金型を作製し、金型寿命を評価した。
ここでは焼鈍状態にある鋼材から粗加工されたダイカスト金型を1030℃に加熱し、60分保持した後に衝風焼入(冷却)を行った。風速は20mm/秒である。
Next, for steels shown in Table 1 with 0.6 ≦ R, masses of about 100 kg (small) and about 500 kg (large) are produced, and the die life is evaluated. did.
Here, a die-casting die roughly processed from an annealed steel material was heated to 1030 ° C., held for 60 minutes, and then subjected to blast quenching (cooling). The wind speed is 20 mm / second.

引き続き金型に対して575〜605℃の範囲内の温度に加熱して、その加熱温度に2時間保持する焼戻しを2回繰返し行ってHRC45±0.5に硬さ調整した後、ダイカスト金型に仕上げ精加工した。   Subsequently, the mold was heated to a temperature in the range of 575 to 605 ° C., and tempering was held for 2 hours at that heating temperature twice to adjust the hardness to HRC45 ± 0.5, and then the die-cast mold Finished and finely processed.

これらの金型を型締力2400tのダイカストマシーンに入子として組み付け、鋳造試験を行った。湯材はADC12で湯温(溶解保持炉内)は680℃である。1サイクル72秒の鋳造を実施し、発生したヒートチェックの鋳造品表面への転写が顕著となった時点(ショット数)を金型寿命と判定した。結果が表2に示してある。尚、寿命判定は以下の基準で行った。
×:6000以下(ショット数。以下同じ)
▲:6000以上,かつ10000未満
○:10000以上,かつ15000未満
◎:15000でも問題なし
These molds were assembled as inserts in a die casting machine having a clamping force of 2400 t, and a casting test was performed. The hot water material is ADC12 and the hot water temperature (in the melting and holding furnace) is 680 ° C. Casting was performed for 72 seconds per cycle, and the time (number of shots) at which transfer of the generated heat check to the cast product surface became significant was determined as the mold life. The results are shown in Table 2. In addition, the lifetime judgment was performed on the following criteria.
×: 6000 or less (number of shots; the same applies hereinafter)
▲: 6000 or more and less than 10000 ○: 10,000 or more and less than 15000 ◎: No problem even at 15000

Figure 2008121032
Figure 2008121032

表2の結果から、Rが大きいほど金型寿命は良好となる傾向が認められ、0.6≦Rであった各実施例においては10000ショット以上でもヒートチェックは問題となっていない。「◎」の金型は更に使用が可能である。焼入時に芯部の冷却速度が小さくなる500kgの大型の金型においても良好な結果が得られている。   From the results shown in Table 2, it is recognized that as R is larger, the mold life tends to be better. In each example where 0.6 ≦ R, heat check is not a problem even with 10,000 shots or more. “◎” molds can be further used. Good results have been obtained even in a 500 kg large mold in which the cooling rate of the core becomes small during quenching.

一方Rが0.6未満の比較例は、金型が100kgと小さい(焼入時の冷却速度が大きい)場合には、比較的良い結果も得られているが、焼入時に芯部の冷却速度が小さくなる500kgの大型の金型においてはヒートチェックが早期に発生し、金型寿命は短くなっている。
このように本実施例のものは、球状化焼鈍性と焼入れ性とが高いレベルでバランスしていることが確認された。
On the other hand, the comparative example in which R is less than 0.6 has a relatively good result when the mold is as small as 100 kg (the cooling rate at the time of quenching is large), but the core is cooled at the time of quenching. In a large mold of 500 kg where the speed is reduced, the heat check occurs early, and the mold life is shortened.
Thus, the thing of a present Example confirmed that spheroidizing annealing property and hardenability were balancing on the high level.

(イ)球状化焼鈍処理の際の処理条件を示す図である。(ロ)焼入れ処理の際の処理条件を示す図である。(A) It is a figure which shows the process conditions in the case of a spheroidizing annealing process. (B) It is a figure which shows the process conditions in the case of a quenching process.

Claims (5)

質量%で、
C:0.2〜0.6%
Si:0.01〜1.5%
Mn:0.1〜2.0%
Cu:0.01〜2.0%
Ni:0.01〜2.0%
Cr:0.1〜8.0%
Mo:0.01〜5.0%
VとWとNbとTaのうち1種若しくは2種以上の合計:0.01〜2.0%
Al:0.002〜0.04%
N:0.002〜0.04%
残部Fe及び不可避的不純物の組成を有する、質量が500kg以上の大型の金型に適用される金型用鋼であって、該鋼にて作製した球状化焼鈍用の11mm×11mm×60mmの角棒を、以下の焼鈍条件で球状化焼鈍処理したのちのHVが以下の式(1)を満たし、
また前記鋼にて作製し、前記焼鈍条件で球状化焼鈍処理した後の衝撃試験用の11mm×11mm×60mmの角棒を、下記の焼入れ条件で焼入れした後、更に550℃〜600℃の条件で焼き戻してロックウェルCスケール硬さを45±0.5に硬さ調整した後に、該角棒から作製したJIS 3号の衝撃試験片(2mmのUノッチ)を用いたシャルピー衝撃試験による下記のR,CH2mmU ,CH2mmU 10が下記式(2),(3)を満たすことを特徴とする球状化焼鈍性及び焼入れ性に優れた金型用鋼。
HV≦200・・・式(1)
0.6≦R・・・式(2)
R=(CH2mmU /CH2mmU 10)・・・式(3)
但し
(イ)焼鈍条件:室温から4時間かけて860℃まで加熱した後、860℃に4時間保持し、その後室温までの冷却に際し550℃までを15℃/時間の冷却速度で冷却。
(ロ)HV:室温において測定したビッカース硬さで、300gの負荷を10秒間与えた場合に計測される値。
(ハ)焼入れ条件:室温から4時間かけて1030℃まで加熱した後、1030℃に1時間保持し、その後550℃までを30℃/分の冷却速度で冷却した後、室温までを10℃/分と1℃/分の各冷却速度で冷却。
(ニ)CH2mmU :焼入れ時に500℃以下の温度での冷却を1℃/分で冷却した試験片の室温におけるシャルピー衝撃試験での衝撃値[J/cm]
(ホ)CH2mmU 10:焼入れ時に500℃以下の温度での冷却を10℃/分で冷却した試験片の室温におけるシャルピー衝撃試験での衝撃値[J/cm]
(但し各衝撃値は前記シャルピー衝撃試験によって得られた吸収エネルギー[J]を断面積で割った値で、試験片を採取する鋼材の部位と試験片の切り出し方向及びノッチ作製の方向は同じ)
% By mass
C: 0.2-0.6%
Si: 0.01-1.5%
Mn: 0.1-2.0%
Cu: 0.01-2.0%
Ni: 0.01-2.0%
Cr: 0.1-8.0%
Mo: 0.01-5.0%
Total of one or more of V, W, Nb and Ta: 0.01-2.0%
Al: 0.002 to 0.04%
N: 0.002 to 0.04%
11 mm × 11 mm × 60 mm corner for spheroidizing annealing, which is applied to a large mold having a composition of the balance Fe and inevitable impurities and having a mass of 500 kg or more. HV after spheroidizing annealing treatment of the rod under the following annealing conditions satisfies the following formula (1),
Moreover, after the 11 mm x 11 mm x 60 mm square bar for impact tests after producing with the said steel and carrying out the spheroidizing annealing process on the said annealing conditions, after quenching on the following quenching conditions, the conditions of 550-600 degreeC are further included. After adjusting the hardness of the Rockwell C scale to 45 ± 0.5 by tempering with a Charpy impact test using a JIS No. 3 impact test piece (2 mm U-notch) made from the square bar, the following R, CH 2mmU 1 and CH 2mmU 10 satisfy the following formulas (2) and (3), and are excellent in spheroidizing annealing and hardenability.
HV ≦ 200 (1)
0.6 ≦ R (2)
R = (CH 2 mmU 1 / CH 2 mmU 10 ) (3)
However,
(A) Annealing conditions: After heating from room temperature to 860 ° C. over 4 hours, hold at 860 ° C. for 4 hours, and then cool down to 550 ° C. at a cooling rate of 15 ° C./hour.
(B) HV: Vickers hardness measured at room temperature, measured when a load of 300 g is applied for 10 seconds.
(C) Quenching conditions: After heating from room temperature to 1030 ° C. over 4 hours, hold at 1030 ° C. for 1 hour, then cool to 550 ° C. at a cooling rate of 30 ° C./minute, and then to room temperature to 10 ° C. / Cool at each cooling rate of 1 minute / minute.
(D) CH 2 mmU 1 : Impact value [J / cm 2 ] in a Charpy impact test at room temperature of a test piece cooled at a temperature of 500 ° C. or less at a temperature of 500 ° C. or less during quenching.
(E) CH 2 mmU 10 : Impact value [J / cm 2 ] in a Charpy impact test at room temperature of a test piece cooled at a temperature of 500 ° C. or less during quenching at a temperature of 10 ° C./min.
(However, each impact value is a value obtained by dividing the absorbed energy [J] obtained by the Charpy impact test by the cross-sectional area, and the steel material part from which the test piece is taken, the cutting direction of the test piece, and the direction of notch production are the same)
請求項1において、質量%で
Co:0.01〜2.0%
を更に含有していることを特徴とする球状化焼鈍性及び焼入れ性に優れた金型用鋼。
In Claim 1, in mass%
Co: 0.01-2.0%
Further, the steel for metal mold | die excellent in the spheroidizing annealing property and hardenability characterized by containing further.
請求項1,2の何れかにおいて、質量%で
Ti:0.005〜0.5%
Zr:0.005〜0.5%
の1種又は2種を更に含有することを特徴とする球状化焼鈍性及び焼入れ性に優れた金型用鋼。
In any one of Claims 1 and 2,
Ti: 0.005-0.5%
Zr: 0.005-0.5%
A steel for molds excellent in spheroidizing annealing and hardenability characterized by further containing one or two of the above.
請求項1〜3の何れかにおいて、質量%で
B:0.0002〜0.02%
を更に含有することを特徴とする球状化焼鈍性及び焼入れ性に優れた金型用鋼。
In any one of Claims 1-3, In mass%
B: 0.0002 to 0.02%
A steel for molds excellent in spheroidizing annealing and hardenability, further comprising:
請求項1〜4の何れかにおいて、質量%で
S:0.005〜0.5%
Ca:0.0005〜0.5%
Se:0.005〜0.5%
Te:0.005〜0.5%
Bi:0.005〜0.5%
Pb:0.005〜0.5%
のうちの1種又は2種以上を更に含有することを特徴とする球状化焼鈍性及び焼入れ性に優れた金型用鋼。
In any one of Claims 1-4, In mass%
S: 0.005-0.5%
Ca: 0.0005 to 0.5%
Se: 0.005-0.5%
Te: 0.005-0.5%
Bi: 0.005-0.5%
Pb: 0.005-0.5%
A steel for molds excellent in spheroidizing annealing and hardenability, further comprising one or more of them.
JP2006303150A 2006-11-08 2006-11-08 Die steel superior in spheroidizing annealing property and hardenability Pending JP2008121032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303150A JP2008121032A (en) 2006-11-08 2006-11-08 Die steel superior in spheroidizing annealing property and hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303150A JP2008121032A (en) 2006-11-08 2006-11-08 Die steel superior in spheroidizing annealing property and hardenability

Publications (1)

Publication Number Publication Date
JP2008121032A true JP2008121032A (en) 2008-05-29

Family

ID=39506114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303150A Pending JP2008121032A (en) 2006-11-08 2006-11-08 Die steel superior in spheroidizing annealing property and hardenability

Country Status (1)

Country Link
JP (1) JP2008121032A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308745A (en) * 2007-06-15 2008-12-25 Daido Steel Co Ltd Hot forging mold and manufacturing method therefor
JP2010024510A (en) * 2008-07-22 2010-02-04 Daido Steel Co Ltd Steel for plastic molding die having excellent temperature controllability
JP2010174319A (en) * 2009-01-29 2010-08-12 Daido Steel Co Ltd Steel for plastic molding mold, and plastic molding mold
EP2270245A1 (en) 2009-06-16 2011-01-05 Daido Tokushuko Kabushiki Kaisha Hot work tool steel and steel product using the same
EP2270246A1 (en) 2009-06-16 2011-01-05 Daido Tokushuko Kabushiki Kaisha Hot work tool steel and steel product using the same
JP2011094168A (en) * 2009-10-27 2011-05-12 Daido Steel Co Ltd Steel for die
CN103358097A (en) * 2013-07-08 2013-10-23 芜湖市明远轴承锻造有限公司 Process of utilizing waste bearing steel to manufacture die steel by quenching
WO2014132868A1 (en) * 2013-02-28 2014-09-04 日立金属株式会社 Die steel and method for producing same
EP2939763A2 (en) 2014-04-30 2015-11-04 Daido Steel Co.,Ltd. Steel for mold, and mold
KR20180034656A (en) 2015-09-11 2018-04-04 다이도 토쿠슈코 카부시키가이샤 Steel for molds and molding tool
CN107937698A (en) * 2017-12-25 2018-04-20 合肥南方汽车零部件有限公司 A kind of heat treatment process of 45 steel molds of metal casting
US20180142317A1 (en) * 2016-11-21 2018-05-24 Doosan Heavy Industries Construction Co., Ltd. Hot mold steel for long life cycle die casting having high thermal conductivity and method for preparing the same
CN108220562A (en) * 2018-01-08 2018-06-29 东南大学 A kind of mould steel phase transformation heat treatment method
CN108396247A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of high strength and low cost toughness cold working die steel plate and its production method
CN109811251A (en) * 2018-10-26 2019-05-28 如皋市宏茂重型锻压有限公司 A kind of high polishing pre-hardening mould steel and its preparation process
KR102017553B1 (en) * 2018-03-28 2019-09-03 두산중공업 주식회사 Mold steel for long life cycle die casting having high hardenability and superior nitriding property
CN112011740A (en) * 2020-08-31 2020-12-01 天津钢研海德科技有限公司 High-toughness and high-hardness die steel and preparation method thereof
CN116377330A (en) * 2023-04-08 2023-07-04 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308745A (en) * 2007-06-15 2008-12-25 Daido Steel Co Ltd Hot forging mold and manufacturing method therefor
JP2010024510A (en) * 2008-07-22 2010-02-04 Daido Steel Co Ltd Steel for plastic molding die having excellent temperature controllability
JP2010174319A (en) * 2009-01-29 2010-08-12 Daido Steel Co Ltd Steel for plastic molding mold, and plastic molding mold
EP2270245A1 (en) 2009-06-16 2011-01-05 Daido Tokushuko Kabushiki Kaisha Hot work tool steel and steel product using the same
EP2270246A1 (en) 2009-06-16 2011-01-05 Daido Tokushuko Kabushiki Kaisha Hot work tool steel and steel product using the same
JP2011094168A (en) * 2009-10-27 2011-05-12 Daido Steel Co Ltd Steel for die
US10196719B2 (en) 2013-02-28 2019-02-05 Hitachi Metals, Ltd. Die steel and method for producing same
WO2014132868A1 (en) * 2013-02-28 2014-09-04 日立金属株式会社 Die steel and method for producing same
JP5648947B1 (en) * 2013-02-28 2015-01-07 日立金属株式会社 Steel for mold and manufacturing method thereof
CN103358097A (en) * 2013-07-08 2013-10-23 芜湖市明远轴承锻造有限公司 Process of utilizing waste bearing steel to manufacture die steel by quenching
EP2939763A2 (en) 2014-04-30 2015-11-04 Daido Steel Co.,Ltd. Steel for mold, and mold
US10173258B2 (en) 2014-04-30 2019-01-08 Daido Steel Co., Ltd. Steel for mold, and mold
KR20180034656A (en) 2015-09-11 2018-04-04 다이도 토쿠슈코 카부시키가이샤 Steel for molds and molding tool
US11141778B2 (en) 2015-09-11 2021-10-12 Daido Steel Co., Ltd. Steel for molds and molding tool
JP2018083980A (en) * 2016-11-21 2018-05-31 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Hot die steel used for die casting having an excellent thermal conductivity at high temperature and a long life, and manufacturing method thereof
CN108085587A (en) * 2016-11-21 2018-05-29 斗山重工业建设有限公司 The outstanding long-life die casting hot die steel of high-temperature heat-conductive and its manufacturing method
US20180142317A1 (en) * 2016-11-21 2018-05-24 Doosan Heavy Industries Construction Co., Ltd. Hot mold steel for long life cycle die casting having high thermal conductivity and method for preparing the same
CN108396247A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of high strength and low cost toughness cold working die steel plate and its production method
CN107937698B (en) * 2017-12-25 2019-02-01 合肥南方汽车零部件有限公司 A kind of heat treatment process of 45 steel molds of metal casting
CN107937698A (en) * 2017-12-25 2018-04-20 合肥南方汽车零部件有限公司 A kind of heat treatment process of 45 steel molds of metal casting
CN108220562A (en) * 2018-01-08 2018-06-29 东南大学 A kind of mould steel phase transformation heat treatment method
KR102017553B1 (en) * 2018-03-28 2019-09-03 두산중공업 주식회사 Mold steel for long life cycle die casting having high hardenability and superior nitriding property
US10563277B2 (en) 2018-03-28 2020-02-18 DOOSAN Heavy Industries Construction Co., LTD Hot-work mold steel for die casting and method of manufacturing the same
US10907229B2 (en) 2018-03-28 2021-02-02 DOOSAN Heavy Industries Construction Co., LTD Hot-work mold steel for die casting and method of manufacturing the same
CN109811251A (en) * 2018-10-26 2019-05-28 如皋市宏茂重型锻压有限公司 A kind of high polishing pre-hardening mould steel and its preparation process
CN112011740A (en) * 2020-08-31 2020-12-01 天津钢研海德科技有限公司 High-toughness and high-hardness die steel and preparation method thereof
CN116377330A (en) * 2023-04-08 2023-07-04 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof
CN116377330B (en) * 2023-04-08 2024-02-09 浙江通特重型锻造有限公司 Hot work die steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008121032A (en) Die steel superior in spheroidizing annealing property and hardenability
JP4992344B2 (en) Mold steel with excellent thermal fatigue properties
JP5412851B2 (en) Steel for plastic molds and plastic molds
EP3135777B1 (en) Steel for mold and mold
JP5076683B2 (en) High toughness high speed tool steel
JP2009242820A (en) Steel, steel for die and die using the same
JP2016017200A (en) Die steel and warm/hot-working die
KR100836699B1 (en) Die steel
US20080264526A1 (en) Hot working die steel for die-casting
EP3550051B1 (en) Steel for mold, mold, use of a steel for manufacturing a mold, and a process of manufacturing a mold
JP2009242819A (en) Steel, steel for die and die using the same
JP6459539B2 (en) Mold steel and mold
US20040037731A1 (en) Cast steel and casting mold
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
JP2005336553A (en) Hot tool steel
KR101243129B1 (en) Precipitation hardening typed die steel with excellent hardness and toughness, and manufacturing method thereof
KR101007417B1 (en) Hot working die steel for die-casting
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same
JP2019019374A (en) Hot tool steel excellent in hardening property and toughness
CN114438401A (en) High-strength and high-toughness non-quenched and tempered steel for die carrier and production method thereof
KR101379058B1 (en) Precipitation hardening type die steel with excellent hardness and toughness and the method of manufacturing the same
JPH08164465A (en) Steel for die of die casting in small quantity production
JP5776959B2 (en) Die steel with excellent hot workability
KR101243212B1 (en) Method for manufacturing die steel with excellent hardness and toughness free from age hardening heat treatment