JP2008169411A - Steel for die materials - Google Patents

Steel for die materials Download PDF

Info

Publication number
JP2008169411A
JP2008169411A JP2007001932A JP2007001932A JP2008169411A JP 2008169411 A JP2008169411 A JP 2008169411A JP 2007001932 A JP2007001932 A JP 2007001932A JP 2007001932 A JP2007001932 A JP 2007001932A JP 2008169411 A JP2008169411 A JP 2008169411A
Authority
JP
Japan
Prior art keywords
steel
mass
content
lmp
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007001932A
Other languages
Japanese (ja)
Inventor
Masamichi Kono
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007001932A priority Critical patent/JP2008169411A/en
Publication of JP2008169411A publication Critical patent/JP2008169411A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for die materials which has high softening resistance and excellent wear resistance. <P>SOLUTION: The steel for die materials has a composition consisting of, by mass, 0.15 to 0.55% C, 0.01 to 2.0% Si, 0.01 to 2.5% Mn, 0.01 to 2.0% Cu, 0.01 to 2.0% Ni, 0.01 to 2.5% Cr, 0.01 to 3.0% Mo, 0.01 to 1.0%, in total, of at least either of V and W and the balance Fe with inevitable impurities. In this steel, LMP (LMPmax) giving the maximum value of HRC hardness at room temperature after prescribed heat treatment is ≥17.66, wherein LMP is represented by equation LMP=(TH+273)×(20+log(t))×0.001. In the equation, TH means a holding temperature (°C) at heating at 550 to 700°C and (t) means a holding time (Hr) at heating at 550 to 700°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐摩耗性が要求される金型や工具に用いて好適な軟化抵抗に優れた型材用鋼に関し、更に詳しくは、金型製品や工具製品の寿命延長を可能とし、製造原価に占める金型費・工具費の割合を抑えることが可能な軟化抵抗に優れた型材用鋼に関する。   The present invention relates to a steel for mold material excellent in softening resistance suitable for use in molds and tools that require wear resistance. More specifically, the present invention can extend the life of mold products and tool products, thereby reducing the production cost. The present invention relates to a steel for a mold material having excellent softening resistance capable of suppressing the ratio of die cost and tool cost.

樹脂やガラスの射出成形・ダイカスト・鍛造等においては、金型や工具といった成型用部材(以下、単に「型材」ともいう)が用いられる。型材の寿命は、生産効率や製品コストに大きな影響を与えるため、いずれの産業分野においても型材の長寿命化が求められる。型材の寿命が短いと、型材交換の頻発による生産効率が悪化し、型材費が嵩み、製品コストに占める割合が上昇するからである。   In resin or glass injection molding, die casting, forging, or the like, a molding member such as a die or a tool (hereinafter also simply referred to as “mold material”) is used. Since the life of the mold material greatly affects the production efficiency and the product cost, it is required to extend the life of the mold material in any industrial field. This is because if the life of the mold material is short, the production efficiency due to frequent replacement of the mold material deteriorates, the mold material cost increases, and the proportion of the product cost increases.

従来から、型材の長寿命化を図る場合には、高温でも硬く、長時間の使用でも軟化しにくい、Cr,Mo,V,W,Co等の希少金属を多量に含有する鋼、すなわち、「軟化抵抗が高い鋼」が用いられてきた。軟化抵抗が高い鋼は、高温でも高い硬度を維持し、摩耗等の不具合が少ないからである。
具体的には、
(1)合金工具鋼(JIS SKD61、JIS SKD62、JIS SKD8)、耐熱鋼(JIS SUH1)、高速度工具鋼(JIS SKH51、JIS SKH55)、
(2)Cr,Mo,V,W等の希少金属を含む炭化物が大量に存在する熱間鍛造用の熱間工具鋼や耐熱鋼、
(3)Cr,Mo,V,W,Co等の希少金属を多量に含有する種々の開発鋼(例えば、特許文献1に記載の鋼もその一種)等、
が「軟化抵抗が高い鋼」として用いられてきた。
Conventionally, when prolonging the life of a mold material, steel containing a large amount of rare metals such as Cr, Mo, V, W, and Co, which is hard at high temperatures and difficult to soften even after long use, that is, “ Steel with high softening resistance has been used. This is because steel with high softening resistance maintains high hardness even at high temperatures and has less defects such as wear.
In particular,
(1) Alloy tool steel (JIS SKD61, JIS SKD62, JIS SKD8), heat resistant steel (JIS SUH1), high speed tool steel (JIS SKH51, JIS SKH55),
(2) Hot tool steel and heat-resistant steel for hot forging in which a large amount of carbides containing rare metals such as Cr, Mo, V, and W exist,
(3) Various developed steels containing a large amount of rare metals such as Cr, Mo, V, W, and Co (for example, the steel described in Patent Document 1 is also a kind),
Has been used as “steel with high softening resistance”.

しかしながら、Cr,Mo,V,W,Co等の希少金属は、高価である上に近年の価格高騰を背景として更に高価になり、製品の製造コストを高める原因になっている。従って、軟化抵抗の高い鋼を用いて寿命延長を図っても、製造コストの削減が困難であるという問題が生じている。   However, rare metals such as Cr, Mo, V, W, and Co are expensive and further expensive due to the recent increase in price, which increases the manufacturing cost of products. Therefore, there is a problem that it is difficult to reduce the manufacturing cost even if the life is extended by using steel having high softening resistance.

更に、Cr,Mo,V,W,Co等の希少金属は、その存在が稀又はその抽出が困難であるため、これを多量に使用すること自体が省資源化に逆行するという問題がある。更に、これらの希少金属を含む鋼の製造工程(溶解・精錬・塑性加工・熱処理)は、複雑化するため、多量の電気や化石燃料を使用することになり、温室効果ガスや産業廃棄物の増加の原因になり、環境負荷低減に逆行するという問題も指摘されている。また、上記希少金属を含む鋼の製造工程の複雑さは、該鋼のリサイクルが困難であるという問題をも呈する。   Furthermore, since rare metals such as Cr, Mo, V, W, and Co are rare or difficult to extract, there is a problem that the use of a large amount of them reverses resource saving. In addition, the manufacturing process (melting, refining, plastic working, heat treatment) of steels containing these rare metals is complicated, so a large amount of electricity and fossil fuels are used, and greenhouse gases and industrial waste are generated. It has also been pointed out that it causes an increase and goes against environmental burden reduction. Moreover, the complexity of the manufacturing process of the steel containing the rare metal also presents a problem that it is difficult to recycle the steel.

これらの問題を解決するには、「Cr,Mo,V,W,Co等の希少元素の含有量が少ない鋼」を用いればよい。「希少元素の含有量が少ない鋼」は、その含有量が少ない分、安価であり、また、省資源化に寄与するとともに、その製造工程がそれほど複雑ではないため、環境負荷低減に寄与するからである。更に、「希少元素の含有量が少ない鋼」は、リサイクルもしやすいという利点がある。   In order to solve these problems, "steel with a low content of rare elements such as Cr, Mo, V, W, Co" may be used. “Steel with a low content of rare elements” is less expensive because of its low content, and contributes to resource saving and the manufacturing process is not so complicated, which contributes to reducing environmental impact. It is. Furthermore, “steel with a low content of rare elements” has the advantage of being easy to recycle.

特許第3397250号公報(段落番号「0021」)Japanese Patent No. 3397250 (paragraph number “0021”)

しかしながら、「希少元素の含有量が少ない鋼」は、Cr,Mo,V,W,Co等の希少元素の含有量が少ないため、分散強化(地鉄中に析出した粒子の存在が硬さの源になること)や固溶硬化(鉄原子とサイズの異なる合金元素が地鉄中に溶け込むことによって、地鉄の結晶構造に歪を生じさせ、それが硬さの源になること)も小さく、よって、軟化抵抗が低く、これを用いた型材の寿命は短い。このため、「希少元素の含有量が少ない鋼」を型材を用いた場合には、型材の交換が頻発するという問題がある。そして、その型材自体は安価であっても、その型材の製作数が増加すれば、生産効率が悪くなり、製造コストが高くなる。従って、従来では、「希少元素の含有量が少ない鋼」を型材に使用して製造コスト削減を図っても、軟化抵抗が低いため、型材交換が頻発し、生産効率を上げることができず、結局、製品製造コストを削減することができなかった。すなわち、「希少元素の含有量が少ない鋼」であるにも拘わらず、軟化抵抗が高い鋼は、これまで報告された例がない。   However, “steel with a low content of rare elements” has a low content of rare elements such as Cr, Mo, V, W, Co and the like. And solid solution hardening (alloy elements with different sizes from iron atoms dissolve in the ground iron, causing distortion in the crystal structure of the ground iron, which becomes the source of hardness) Therefore, the softening resistance is low, and the life of the mold material using the softening resistance is short. For this reason, when the mold material is “steel with a small content of rare elements”, there is a problem that the mold material is frequently replaced. Even if the mold material itself is inexpensive, if the number of the mold materials manufactured increases, the production efficiency deteriorates and the manufacturing cost increases. Therefore, in the past, “steel with a low content of rare elements” was used as a mold material, and even though the manufacturing cost was reduced, the softening resistance was low, so the mold material was frequently replaced, and the production efficiency could not be increased. Eventually, product manufacturing costs could not be reduced. That is, despite the fact that it is “steel with a low content of rare elements”, there has been no report of a steel with high softening resistance.

本発明は、上記事情に鑑みてなされたものであり、その第一の目的は、軟化抵抗が高く、熱疲労特性や耐摩耗性に優れた型材用鋼を提供することにあり、特に、希少元素の含有量が低いにも拘わらず、熱疲労特性や耐摩耗性に優れた型材用鋼を提供することにある。本発明は、これにより、型材の長寿命化及び製造コスト削減を図ろうとするものである。
本発明の第二の目的は、省資源化及び環境負荷軽減に貢献しうる型材用鋼を提供することにある。
The present invention has been made in view of the above circumstances, and a first object of the invention is to provide a steel for a mold material having high softening resistance and excellent thermal fatigue characteristics and wear resistance. An object of the present invention is to provide a steel for a mold material which is excellent in thermal fatigue characteristics and wear resistance despite its low element content. Accordingly, the present invention intends to extend the life of the mold material and reduce the manufacturing cost.
A second object of the present invention is to provide a steel for a mold material that can contribute to resource saving and environmental load reduction.

上記課題を解決するために、本発明に係る型材用鋼は、
C:0.15〜0.55質量%、Si:0.01〜2.0質量%、Mn:0.01〜2.5質量%、Cu:0.01〜2.0質量%、Ni:0.01〜2.0質量%、Cr:0.01〜2.5質量%、Mo:0.01〜3.0質量%、及び、V及びWからなる群から選ばれる少なくとも1種の総量:0.01〜1.0質量%を含有し、残部がFe及び不可避的不純物からなる型材用鋼であって、
1010℃〜1050℃で均熱した後、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上の冷却速度で150℃以下まで冷却し、次いで、550℃〜700℃の温度域で加熱した後の、室温におけるHRC硬さの最大値を与えるLMP(LMPmax)が17.66以上であることを要旨とするものである。但し、
LMP=(TH+273)×(20+log(t))×0.001…(1)
THは、550℃〜700℃における加熱の保持温度[℃]、
tは、550℃〜700℃における加熱の保持時間[Hr]である。
In order to solve the above problems, the steel for mold material according to the present invention is:
C: 0.15-0.55 mass%, Si: 0.01-2.0 mass%, Mn: 0.01-2.5 mass%, Cu: 0.01-2.0 mass%, Ni: 0.01-2.0% by mass, Cr: 0.01-2.5% by mass, Mo: 0.01-3.0% by mass, and at least one total amount selected from the group consisting of V and W : 0.01 to 1.0% by mass, and the balance is steel for mold material composed of Fe and inevitable impurities,
After soaking at 1010 ° C. to 1050 ° C., it is cooled to 500 ° C. to 550 ° C. at a cooling rate of 200 ° C./min or more, subsequently cooled to 150 ° C. or less at a cooling rate of 100 ° C./min or more, and then 550 The gist is that LMP (LMPmax) that gives the maximum value of HRC hardness at room temperature after heating in a temperature range of from C to 700C is 17.66 or more. However,
LMP = (TH + 273) × (20 + log (t)) × 0.001 (1)
TH is the heating holding temperature [° C.] at 550 ° C. to 700 ° C.,
t is the holding time [Hr] of heating at 550 ° C to 700 ° C.

本発明に係る型材用鋼は、更に、Al:0.002〜0.5質量%を含有してもよい。本発明に係る型材用鋼は、更に、Co:0.01〜2.0質量%を含有してもよい。本発明に係る型材用鋼は、更に、Nb:0.005〜0.5質量%、Ta:0.005〜0.5質量%、Ti:0.005〜0.5質量%、及び、Zr:0.005〜0.5質量%からなる群から選ばれる少なくとも1種を含有してもよい。本発明に係る型材用鋼は、更に、B:0.0002〜0.02質量%を含有してもよい。本発明に係る型材用鋼は、更に、S:0.01〜2.0質量%、Ca:0.0005〜0.5質量%、Se:0.005〜0.5質量%、Te:0.005〜0.5質量%、Bi:0.005〜0.5質量%、及び、Pb:0.005〜0.5質量%からなる群から選ばれる少なくとも1種を含有してもよい。   The steel for mold material according to the present invention may further contain Al: 0.002 to 0.5% by mass. The steel for mold material according to the present invention may further contain Co: 0.01 to 2.0% by mass. The steel for mold materials according to the present invention further includes Nb: 0.005 to 0.5 mass%, Ta: 0.005 to 0.5 mass%, Ti: 0.005 to 0.5 mass%, and Zr. : You may contain at least 1 sort (s) chosen from the group which consists of 0.005-0.5 mass%. The steel for mold material according to the present invention may further contain B: 0.0002 to 0.02% by mass. The steel for mold materials according to the present invention further includes S: 0.01 to 2.0 mass%, Ca: 0.0005 to 0.5 mass%, Se: 0.005 to 0.5 mass%, Te: 0. 0.005 to 0.5 mass%, Bi: 0.005 to 0.5 mass%, and Pb: at least one selected from the group consisting of 0.005 to 0.5 mass% may be included.

本発明に係る型材用鋼は、Cr,Mo,V,W及びCoの総量が6質量%以下であることが望ましい。   In the steel for mold material according to the present invention, the total amount of Cr, Mo, V, W and Co is preferably 6% by mass or less.

本発明に係る型材用鋼は、1010℃〜1050℃で均熱した後、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上の冷却速度で150℃以下まで冷却し、次いで、550℃〜700℃の温度域で加熱した場合において、LMP=17であるときの室温におけるHRC硬さと、LMP=19であるときの室温におけるHRC硬さとの差が6以下であることが望ましい。   The steel for a mold material according to the present invention is soaked at 1010 ° C. to 1050 ° C., then cooled to 500 ° C. to 550 ° C. at a cooling rate of 200 ° C./min or more, and subsequently 150 at a cooling rate of 100 ° C./min or more. When it is cooled to below ℃ and then heated in the temperature range of 550 ℃ to 700 ℃, the difference between the HRC hardness at room temperature when LMP = 17 and the HRC hardness at room temperature when LMP = 19 is It is desirable that it is 6 or less.

本発明に係る型材用鋼は、上記成分組成を有し、上記条件で熱処理を行った後の室温におけるHRC硬さの最大値を与えるLMP(LMPmax)が17.66以上であるから、軟化抵抗が高い。
本発明に係る型材用鋼は、軟化抵抗が高いため、熱疲労特性や耐摩耗性に優れる。従って、本発明に係る型材用鋼は、型材の長寿命化を図ることができる。
また、本発明に係る型材用鋼は、上記成分組成を有するため分散強化や固溶硬化の影響が弱まらない。これもまた、本発明に係る型材用鋼の軟化抵抗が高い理由である。
本発明に係る型材用鋼は、Cr,Mo,V,W及びCoの総量が6質量%以下、すなわち、希少元素の含有量が少ないため安価であり、製造コスト削減を図ることができる。
本発明に係る型材用鋼は、希少元素の含有量が少ないため省資源化及び環境負荷軽減に貢献しうる。
Since the steel for mold material according to the present invention has the above component composition and LMP (LMPmax) giving the maximum value of HRC hardness at room temperature after heat treatment under the above conditions is 17.66 or more, softening resistance Is expensive.
Since the steel for mold materials according to the present invention has a high softening resistance, it is excellent in thermal fatigue characteristics and wear resistance. Therefore, the steel for mold material according to the present invention can extend the life of the mold material.
Moreover, since the steel for mold materials according to the present invention has the above component composition, the effects of dispersion strengthening and solid solution hardening are not weakened. This is also the reason why the softening resistance of the steel for mold material according to the present invention is high.
The steel for mold material according to the present invention has a total amount of Cr, Mo, V, W, and Co of 6% by mass or less, that is, is inexpensive because the content of rare elements is small, and the manufacturing cost can be reduced.
Since the steel for mold materials according to the present invention has a small content of rare elements, it can contribute to resource saving and environmental load reduction.

以下に、本発明の一実施形態に係る型材用鋼について図面を参照して詳細に説明する。尚、ここでいう「型材」とは、金型や工具等の成形に用いられる部材のことを意味している。   Below, the steel for mold materials which concerns on one Embodiment of this invention is demonstrated in detail with reference to drawings. Here, the “mold material” means a member used for molding a mold or a tool.

(型材用鋼の含有成分)
本実施形態に係る型材用鋼は、必須元素として、C、Si、Mn、Cu、Ni、Cr及びMo、「V及びWからなる群から選ばれる少なくとも1種」を含有する。本実施形態に係る型材用鋼は、任意的に、Al、Co、「Nb,Ta,Ti及びZrからなる群から選ばれる少なくとも1種」、B、「S,Ca,Se,Te,Bi,Pbからなる群から選ばれる少なくとも1種」を含有してもよい。本実施形態に係る型材用鋼は、その残部がFe及び不可避的不純物(N、O、P及びMg等)からなる。
(Contained components of steel for mold materials)
The steel for mold material according to the present embodiment contains C, Si, Mn, Cu, Ni, Cr, and Mo, and “at least one selected from the group consisting of V and W” as essential elements. The steel for mold material according to the present embodiment is optionally made of Al, Co, “at least one selected from the group consisting of Nb, Ta, Ti and Zr”, B, “S, Ca, Se, Te, Bi, You may contain "at least 1 sort (s) chosen from the group which consists of Pb." The remainder of the steel for mold material according to the present embodiment is made of Fe and inevitable impurities (N, O, P, Mg, etc.).

(含有成分の限定理由)
(1)C:0.15〜0.55質量%、
Cは、鋼の強度調整に必須の元素である。Cの含有量が過少であると、射出成形・ダイカスト・鍛造に用いられる型材に必要な強度が得られない。Cの含有量が過多であると、鋳造の凝固時に粗大な炭化物を生じやすくなり、それが破壊の起点となるため、鋼が型材になった場合の疲労強度や衝撃値を低下させる。そこで、Cの含有量は、0.15〜0.55質量%とした。より好ましいCの含有量は、HRC硬さで40〜50が得られ、かつ粗大な炭化物が形成されにくい0.2〜0.5質量%である。
(Reason for limiting ingredients)
(1) C: 0.15 to 0.55 mass%,
C is an element essential for adjusting the strength of steel. If the C content is too small, the strength required for the mold material used for injection molding, die casting and forging cannot be obtained. If the C content is excessive, coarse carbides are likely to be generated during solidification of the casting, which becomes a starting point of fracture, so that the fatigue strength and impact value when steel becomes a mold material are reduced. Therefore, the content of C is set to 0.15 to 0.55% by mass. The more preferable content of C is 0.2 to 0.5% by mass with which the HRC hardness is 40 to 50 and coarse carbides are not easily formed.

(2)Si:0.01〜2.0質量%
Siは、地鉄中に固溶し、固溶硬化に寄与する。また、Siは、炭化物の形態(サイズや形状や面積率等)を介して分散強化にも影響を及ぼす。本実施形態に係る型材用鋼の場合、分散する粒子は主にSiの炭化物であり、硬くて小さな炭化物が多量に分散するほど、鋼は硬くなる。上記のように、Siは、固溶硬化と分散強化に影響を及ぼす。
Siの含有量が過少であると、充分な軟化抵抗が得られない。従って、軟化抵抗を確保するには、高Si材が良いが、Siの含有量が過多であると、素材製造時の熱間塑性加工での割れを生じやすくする。そこで、軟化抵抗と加工性のバランスから、Siの含有量は、0.01〜2.0質量%とした。より好ましいSiの含有量は、0.05〜1.5質量%である。
(2) Si: 0.01 to 2.0 mass%
Si dissolves in the ground iron and contributes to solid solution hardening. Si also affects dispersion strengthening through the form of carbide (size, shape, area ratio, etc.). In the case of the steel for a mold material according to the present embodiment, the dispersed particles are mainly Si carbides, and the harder and smaller carbides are dispersed, the harder the steel. As described above, Si affects solid solution hardening and dispersion strengthening.
If the Si content is too small, sufficient softening resistance cannot be obtained. Therefore, in order to ensure softening resistance, a high Si material is preferable. However, if the Si content is excessive, cracking during hot plastic working during material production is likely to occur. Therefore, the Si content is set to 0.01 to 2.0 mass% from the balance between softening resistance and workability. A more preferable Si content is 0.05 to 1.5 mass%.

(3)Mn:0.01〜2.5質量%
Mnは、焼入れ性の向上元素として必須である。ただし、Mnの含有量が過多であると、Ac1変態点が下がり、当該鋼からなる型材を高温域(約650℃)へ適用することが困難になる。また、Mnを含有させると、焼鈍における炭化物の球状化を著しく阻害し、被削性に優れた軟質な状態を創製しにくくする(焼鈍性の劣化)。そこで、焼入れ性の向上効果・Ac1変態点・焼鈍性等のバランスから、Mn含有量は、0.01〜2.5質量%とした。
(3) Mn: 0.01 to 2.5% by mass
Mn is essential as an element for improving hardenability. However, if the content of Mn is excessive, the Ac1 transformation point is lowered, and it becomes difficult to apply the mold made of the steel to a high temperature range (about 650 ° C.). Further, when Mn is contained, spheroidization of carbides during annealing is remarkably inhibited, and it becomes difficult to create a soft state excellent in machinability (annealing deterioration). Then, Mn content was made into 0.01-2.5 mass% from balance, such as the improvement effect of hardenability, Ac1 transformation point, and annealability.

(4)Cu:0.01〜2.0質量%
Cuは、焼入れ性を向上させる元素として有用である。また、Cuは、地鉄中に単独析出して、鋼の高強度化にも寄与する。ただし、Cuの含有量が過多であると、素材製造時の熱間塑性加工での割れを生じやすくする。そこで、Cuの含有量は、焼入れ性の向上効果と熱間加工性のバランスから、0.01〜2.0質量%とした。
(4) Cu: 0.01 to 2.0% by mass
Cu is useful as an element that improves hardenability. Cu also precipitates alone in the ground iron and contributes to increasing the strength of the steel. However, if the Cu content is excessive, cracks are easily generated during hot plastic working during material production. Therefore, the Cu content is set to 0.01 to 2.0% by mass from the balance between the effect of improving hardenability and hot workability.

(5)Ni:0.01〜2.0質量%
Niは、焼入れ性を向上させる元素として有用である。ただし、Niの含有量が過多であると、Mnの含有量が過多になった場合と同様の弊害を招く。そこで、Mnと同様の理由で、Niの含有量は、0.01〜2.0質量%とした。
(5) Ni: 0.01 to 2.0 mass%
Ni is useful as an element that improves hardenability. However, if the Ni content is excessive, the same harmful effects as in the case where the Mn content is excessive are caused. Therefore, for the same reason as Mn, the content of Ni is set to 0.01 to 2.0% by mass.

(6)Cr:0.01〜2.5質量%
Crは、焼入れ性を向上させるだけでなく、炭化物を形成して鋼を高強度化する元素として有用である。ただし、Crの含有量が過多であると、軟化抵抗を大きく下げる。そこで、Crの含有量は、焼入れ性の向上効果と軟化抵抗のバランスから、0.01〜2.5質量%とした。本実施形態におけるCrの含有量は、その上限値が従来の型材用鋼や耐熱鋼(例えば、JIS SKD61,SKD62,SKH51,SKH55,SUH1等)と比較して低い。より好ましいCrの含有量は、0.1〜2.0質量%である。
(6) Cr: 0.01 to 2.5% by mass
Cr not only improves hardenability, but is also useful as an element that forms carbides and increases the strength of steel. However, if the Cr content is excessive, the softening resistance is greatly reduced. Therefore, the content of Cr is set to 0.01 to 2.5% by mass from the balance between the hardenability improvement effect and the softening resistance. The upper limit of the Cr content in the present embodiment is lower than that of conventional steel for mold materials or heat resistant steel (for example, JIS SKD61, SKD62, SKH51, SKH55, SUH1, etc.). A more preferable content of Cr is 0.1 to 2.0% by mass.

(7)Mo:0.01〜3.0質量%
Moは、焼入れ性を向上させるだけでなく、炭化物を形成して鋼を高強度化する元素として有用である。特に、Moは、鋼の軟化抵抗を高める効果が大きい。ただし、Moの含有量が過多であると、特性(軟化抵抗等)の飽和と製造コストの増大を招く。Moの含有量は、焼入れ性の向上効果・軟化抵抗・製造コストのバランスから、0.01〜3.0質量%とした。Moの含有量は、その上限値が従来の型材用鋼や耐熱鋼(例えばJIS SKH51,SKH55等)と比較して低い。より好ましいMoの含有量は、0.5〜2.5質量%である。
(7) Mo: 0.01-3.0 mass%
Mo is useful as an element that not only improves hardenability but also forms carbides to increase the strength of steel. In particular, Mo has a large effect of increasing the softening resistance of steel. However, if the content of Mo is excessive, saturation of characteristics (softening resistance and the like) and an increase in manufacturing cost are caused. The content of Mo was set to 0.01 to 3.0% by mass from the balance of the effect of improving hardenability, softening resistance, and manufacturing cost. The upper limit of the Mo content is lower than that of conventional steel for mold materials or heat-resistant steel (for example, JIS SKH51, SKH55, etc.). A more preferable Mo content is 0.5 to 2.5% by mass.

(8)V及びWからなる群から選ばれる少なくとも1種の総量:0.01〜1.0質量%
VとWは、焼入れ性を向上させるだけでなく、炭化物を形成して鋼を高強度化する元素として有用である。VとWは、特に、軟化抵抗を高める効果が大きい。ただし、VとWのうち少なくとも1種の含有量が過多であると、特性(焼入れ性、高強度化、軟化抵抗等)の飽和と製造コストの増大を招くだけでなく、鋳造の凝固時に粗大な炭化物を生じさせやすくなり、それが破壊の起点となるため、鋼が型材になった場合の疲労強度や衝撃値を低下させる。鋼に対するV及びWの作用は、ほぼ同じである。そこで、焼入れ性の向上効果・軟化抵抗・製造コスト等のバランスから、V及びWからなる群から選ばれる少なくとも1種の含有量は総量で、0.01〜1.0質量%とした。これらの含有量の総量は、その上限値が従来の型材用鋼や耐熱鋼(例えば、JIS SKD8,SKH51,SKH55等)と比較して低い。より好ましいV及びWの含有量の総量は、0.2〜0.8質量%である。
(8) Total amount of at least one selected from the group consisting of V and W: 0.01 to 1.0% by mass
V and W not only improve hardenability, but are useful as elements for forming carbides and increasing the strength of steel. V and W are particularly effective in increasing the softening resistance. However, if the content of at least one of V and W is excessive, not only saturation of characteristics (hardenability, high strength, softening resistance, etc.) and an increase in production cost will be caused, but also coarseness during solidification of casting. Since it becomes easy to produce a carbide | carbonized_material and it becomes a starting point of destruction, the fatigue strength and impact value at the time of steel becoming a mold material are reduced. The effects of V and W on steel are almost the same. Therefore, the content of at least one selected from the group consisting of V and W is 0.01 to 1.0% by mass in total from the balance of the effect of improving hardenability, softening resistance, manufacturing cost, and the like. The total amount of these contents is lower than the upper limit of conventional steel for mold materials and heat-resistant steel (for example, JIS SKD8, SKH51, SKH55, etc.). A more preferable total amount of V and W content is 0.2 to 0.8% by mass.

(9)Al:0.002〜0.5質量%
Alは、任意的に鋼に添加することができる選択添加元素(以下単に、「選択添加元素」という)である。Alは、AlNを形成して、焼入れにおける結晶粒の粗大化を防止する元素である。Alは、金属間化合物を形成して析出し、分散強化にも寄与する。ただし、Alの含有量が過多であると、特性(結晶粒粗大化防止、分散強化等)の飽和と製造コストの増大を招くだけでなく、介在物であるアルミナを増加させることになり、それが破壊の起点となるため、鋼が型材になった場合の疲労強度や衝撃値を低下させる。そこで、Alの含有量は、結晶粒の粗大化を防止する効果と特性のバランスから、0.002〜0.5質量%とした。
(9) Al: 0.002 to 0.5 mass%
Al is a selective additive element (hereinafter simply referred to as “selective additive element”) that can be optionally added to steel. Al is an element that forms AlN and prevents coarsening of crystal grains during quenching. Al precipitates by forming an intermetallic compound and contributes to dispersion strengthening. However, if the Al content is excessive, not only saturation of characteristics (crystal grain coarsening prevention, dispersion strengthening, etc.) and an increase in production cost will be caused, but the inclusion alumina will be increased. Since this is the starting point of fracture, it reduces the fatigue strength and impact value when steel becomes a mold material. Therefore, the content of Al is set to 0.002 to 0.5 mass% from the balance between the effect of preventing the coarsening of crystal grains and the characteristics.

(10)Co:0.01〜2.0質量%
Coは、選択任意元素であり、Siの場合と同様の作用によって、固溶硬化と分散強化に寄与する。更に、Coは、鋼の耐酸化性を高める効果を有する。Coの含有量が過少であると、充分な軟化抵抗が得られない。従って、軟化抵抗を確保するには、高Co材が良いが、Coの含有量が過多であると、製造コストを増加させるばかりでなく特性(耐酸化性、軟化抵抗等)の飽和を招き、実益に乏しい。
そこで、Coの含有量は、特性と製造コストのバランスから、0.01〜2.0質量%とした。Coの含有量は、その上限値が従来の型材用鋼や耐熱鋼(例えば、JIS SKD8,SKH55等)と比較して低い。より好ましいCoの含有量は、0.1〜1.8質量%である。
(10) Co: 0.01 to 2.0 mass%
Co is an optional element and contributes to solid solution hardening and dispersion strengthening by the same action as in the case of Si. Furthermore, Co has the effect of increasing the oxidation resistance of steel. If the Co content is too small, sufficient softening resistance cannot be obtained. Therefore, in order to ensure softening resistance, a high Co material is preferable. However, if the Co content is excessive, not only the manufacturing cost is increased, but also characteristics (oxidation resistance, softening resistance, etc.) are saturated, Lack of profit.
Therefore, the content of Co is set to 0.01 to 2.0% by mass from the balance between characteristics and manufacturing cost. The upper limit of the Co content is lower than that of conventional steel for mold materials and heat-resistant steel (for example, JIS SKD8, SKH55, etc.). A more preferable Co content is 0.1 to 1.8% by mass.

(11)Nb:0.005〜0.5質量%
Nbは、選択添加元素であり、NbCやNbN等を形成して、焼入れにおける結晶粒の粗大化を防止する元素である。ただし、Nbの含有量が過多であると、特性(結晶粒粗大化防止等)の飽和と製造コストの増大を招く。また、比較的、粗大に晶出したNbCやNbNは、鋼が型材となった場合の疲労強度や衝撃値を低下させる。そこで、Nbの含有量は、結晶粒の粗大化を防止する効果・製造コスト・材質等のバランスから、0.005〜0.5質量%とした。
(11) Nb: 0.005 to 0.5 mass%
Nb is a selective additive element, and is an element that forms NbC, NbN, or the like and prevents coarsening of crystal grains during quenching. However, if the Nb content is excessive, saturation of characteristics (such as prevention of coarsening of crystal grains) and an increase in production cost are caused. Moreover, NbC and NbN crystallized relatively coarsely reduce the fatigue strength and impact value when steel becomes a mold material. Therefore, the content of Nb is set to 0.005 to 0.5 mass% from the balance of the effect of preventing the coarsening of crystal grains, the manufacturing cost, the material, and the like.

(12)Ta:0.005〜0.5質量%
Taは、選択添加元素であり、Nbと同様の効果を有する元素である。Taの含有量は、Nbの場合と同様に、0.005〜0.5質量%とした。
(12) Ta: 0.005 to 0.5 mass%
Ta is a selective additive element and is an element having the same effect as Nb. The content of Ta was set to 0.005 to 0.5% by mass as in the case of Nb.

(13)Ti:0.005〜0.5質量%
Tiは、選択添加元素であり、Nbと同様の効果を有する元素である。Tiの含有量は、Nbの場合と同様に、0.005〜0.5質量%とした。
(13) Ti: 0.005 to 0.5 mass%
Ti is a selective additive element and is an element having the same effect as Nb. The Ti content was set to 0.005 to 0.5% by mass, as in the case of Nb.

(14)Zr:0.005〜0.5質量%
Zrは、選択添加元素であり、Nbと同様の効果を有する元素である。Zrの含有量は、Nbの場合と同様に、0.005〜0.5質量%とした。
(14) Zr: 0.005 to 0.5 mass%
Zr is a selective additive element and is an element having the same effect as Nb. The content of Zr was set to 0.005 to 0.5% by mass as in the case of Nb.

(15)B:0.0002〜0.02質量%
Bは、選択添加元素であり、オーステナイト結晶粒界に偏析してフェライト相の析出を抑制する元素であり、鋼の焼入れ性を著しく高める。ただし、Bの含有量が過多であると、特性(フェライト相の析出抑制、焼き入れ性等)の飽和と製造コストの増大を招き、実益に乏しい。Bの含有量は、焼入れ性を向上する効果と製造コストのバランスから、0.0002〜0.02質量%とした。
(15) B: 0.0002 to 0.02 mass%
B is a selective additive element, an element that segregates at the austenite grain boundaries and suppresses the precipitation of the ferrite phase, and remarkably increases the hardenability of the steel. However, if the content of B is excessive, saturation of characteristics (ferrite phase precipitation suppression, hardenability, etc.) and an increase in production cost are caused, resulting in poor profit. The content of B is set to 0.0002 to 0.02 mass% from the balance between the effect of improving the hardenability and the manufacturing cost.

(16)S:0.01〜2.0質量%
Sは、選択添加元素であり、MnSを形成して鋼の被削性を向上させる元素である。ただし、Sの含有量が過多であると、特性(被削性向上等)の飽和と製造コストの増大を招く。また、比較的に粗大に晶出するMnSは、鋼が型材となった場合の疲労強度や衝撃値を低下させる。そこで、Sの含有量は、被削性を向上する効果・製造コスト・材質等のバランスから、0.01〜0.2質量%とした。尚、鋼を被削性が問題とならない形状の型材(工具や金型)に使用する場合は、S量は低いほうが望ましい。
(16) S: 0.01 to 2.0% by mass
S is a selective additive element, and is an element that forms MnS and improves the machinability of steel. However, if the S content is excessive, saturation of characteristics (such as improvement of machinability) and an increase in manufacturing cost are caused. Further, MnS crystallized relatively coarsely reduces the fatigue strength and impact value when steel becomes a mold material. Therefore, the content of S is set to 0.01 to 0.2% by mass from the balance of the effect of improving machinability, the manufacturing cost, the material, and the like. In addition, when using steel for the shape | mold material (tool or metal mold | die) of a shape where machinability does not become a problem, the one where S content is low is desirable.

(17)Ca:0.0005〜0.5質量%
Caは、選択添加元素であり、鋼の被削性を向上させる元素である。また、Caは、鋼中の介在物の形態を変化させて鋼の熱間加工性を改善する元素でもある。ただし、Caの含有量が過多であると、特性(被削性向上、熱間加工性改善等)の飽和と製造コストの増大を招く。そこで、Caの含有量は、被削性を向上する効果や製造コスト等のバランスから、0.0005〜0.5質量%とした。
(17) Ca: 0.0005 to 0.5 mass%
Ca is a selective additive element and is an element that improves the machinability of steel. Ca is also an element that improves the hot workability of steel by changing the form of inclusions in the steel. However, when the content of Ca is excessive, saturation of characteristics (improvement of machinability, improvement of hot workability, etc.) and an increase in manufacturing cost are caused. Therefore, the content of Ca is set to 0.0005 to 0.5 mass% from the balance of the effect of improving the machinability and the manufacturing cost.

(18)Se:0.005〜0.5質量%
Seは、選択添加元素であり、鋼の被削性を向上させる元素である。ただし、Seの含有量が過多であると、多量のSe化合物を生じさせることになり、鋼が型材となった場合の疲労強度や衝撃値を低下させる。そこで、Seの含有量は、被削性を向上させる効果や特性(疲労強度、衝撃値等)等のバランスから、0.005〜0.5質量%とした。
(18) Se: 0.005 to 0.5 mass%
Se is a selective additive element and is an element that improves the machinability of steel. However, if the Se content is excessive, a large amount of Se compound is produced, and the fatigue strength and impact value when steel becomes a mold material are reduced. Therefore, the content of Se is set to 0.005 to 0.5 mass% from the balance of the effect of improving machinability and characteristics (fatigue strength, impact value, etc.).

(19)Te:0.005〜0.5質量%
Teは、選択添加元素であり、鋼の被削性を向上させる元素である。ただし、Teの含有量が過多であると、多量のTe化合物を生じさせることになり、鋼が型材となった場合の疲労強度や衝撃値を低下させる。そこで、Teの含有量は、被削性を向上する効果や特性(疲労強度、衝撃値等)等のバランスから、0.005〜0.5質量%とした。
(19) Te: 0.005 to 0.5 mass%
Te is a selective additive element and is an element that improves the machinability of steel. However, if the Te content is excessive, a large amount of Te compound is produced, and the fatigue strength and impact value when steel becomes a mold material are reduced. Therefore, the content of Te is set to 0.005 to 0.5 mass% from the balance of the effect of improving machinability and properties (fatigue strength, impact value, etc.).

(20)Bi:0.005〜0.5質量%
Biは、選択添加元素であり、鋼の被削性を向上させる元素である。ただし、Biの含有量が過多であると、鋼中に分散するBi粒子を増加させることになり、熱間加工性を大きく低下させる。そこで、Biの含有量は、被削性を向上させる効果と熱間加工性のバランスから、0.005〜0.5質量%とした。
(20) Bi: 0.005 to 0.5 mass%
Bi is a selective additive element and is an element that improves the machinability of steel. However, if the Bi content is excessive, Bi particles dispersed in the steel are increased, and hot workability is greatly reduced. Therefore, the Bi content is set to 0.005 to 0.5 mass% from the balance between the effect of improving machinability and hot workability.

(21)Pb:0.005〜0.5質量%
Pbは、選択添加元素であり、鋼の被削性を向上させる元素である。ただし、Pbの含有量が過多であると、鋼中に分散するPb粒子を増加させることになり、熱間加工性を大きく低下させる。そこで、Pbの含有量は、被削性を向上させる効果と熱間加工性のバランスから、0.005〜0.5質量%とした。
(21) Pb: 0.005 to 0.5 mass%
Pb is a selective additive element that improves the machinability of steel. However, if the Pb content is excessive, the amount of Pb particles dispersed in the steel is increased, and hot workability is greatly reduced. Therefore, the content of Pb is set to 0.005 to 0.5 mass% from the balance between the effect of improving machinability and hot workability.

(22)Cr,Mo,V,W及びCoからなる群から選ばれる少なくとも1種の総量:6質量%以下
希少元素(Cr,Mo,V,W,Co)の含有量をこのように制限したのは、製造コストを削減できるとともに、省資源化及び環境負荷軽減に貢献しうるからである。確かに、Cr,Mo,V,W,Coの含有量を6質量%以下とすると、固溶硬化と分散強化の影響が現れにくくなるため、耐摩耗性等の点では不利な方向へ働く。しかしながら、本実施形態に係る型材用鋼は、上記成分組成とし、室温におけるHRC硬さの最大値を与えるLMP(LMPmax)が17.66以上であるから、高い軟化抵抗が得られ、従来鋼と同等の熱疲労特性や耐摩耗性が得られる。そこで、希少元素の含有量は、6質量%以下とした。
(22) Total amount of at least one selected from the group consisting of Cr, Mo, V, W, and Co: 6% by mass or less The content of rare elements (Cr, Mo, V, W, Co) is thus limited. This is because the manufacturing cost can be reduced, and it can contribute to resource saving and environmental load reduction. Certainly, if the content of Cr, Mo, V, W, and Co is 6% by mass or less, the effects of solid solution hardening and dispersion strengthening are less likely to appear, and this works in a disadvantageous manner in terms of wear resistance and the like. However, since the steel for mold material according to the present embodiment has the above component composition and LMP (LMPmax) giving the maximum value of HRC hardness at room temperature is 17.66 or more, high softening resistance is obtained, and the conventional steel and Equivalent thermal fatigue characteristics and wear resistance can be obtained. Therefore, the content of the rare element is set to 6% by mass or less.

(LMP、LMPmax及びその限定理由)
次に、上記成分組成を備えた本実施形態に係る型材用鋼のLMP、LMPmax及びその限定理由について説明する。
(LMP, LMPmax and reasons for limitation)
Next, LMP, LMPmax of the steel for mold materials according to the present embodiment having the above component composition and the reason for limitation thereof will be described.

(23)室温におけるHRC硬さの最大値を与えるLMP(LMPmax)≧17.66
LMPは、鋼材の焼戻しによる硬さの変化を評価する際、広く用いられるパラメータであり、「焼戻しパラメータ」とも称される。LMPは、次式(1)により定義され、鋼材に所望のHRC硬さを与えるための焼戻しの条件(温度TH及び時間t)を規定するために用いられる。LMPのうち、LMPmaxは、室温におけるHRC硬さの最大値(HRCmax)を与える焼戻しの条件(温度TH及び時間t)を規定する値である。
LMP=(TH+273)×(20+log(t))×0.001 …(1)
ここで、THは焼戻しの保持温度[℃]、tは焼戻しの保持時間[Hr]である。
LMPmaxを17.66以上としたのは、鋼がこの条件を満たせば、その鋼は、軟化抵抗が高いといえ、これを材料として製作された型材は、射出成型品やダイカスト品の製造に使用されても軟化しにくいため、摩耗等の不具合を起こしにくいからである(図1参照)。尚、本実施形態に係る型材用鋼は、1010℃〜1050℃で均熱した後、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上の冷却速度で150℃以下まで冷却し、次いで、550℃〜700℃の温度域で加熱した場合において、LMP=17であるときの室温におけるHRC硬さと、LMP=19であるときの室温におけるHRC硬さとの差が6以下である。これにより、充分な軟化抵抗が得られると考えられるからである。詳細は後述する。
(23) LMP (LMPmax) ≧ 17.66 giving maximum value of HRC hardness at room temperature
LMP is a parameter that is widely used when evaluating a change in hardness due to tempering of a steel material, and is also referred to as a “tempering parameter”. LMP is defined by the following equation (1), and is used to define tempering conditions (temperature TH and time t) for giving a desired HRC hardness to the steel material. Among LMPs, LMPmax is a value that defines tempering conditions (temperature TH and time t) that give the maximum value of HRC hardness (HRCmax) at room temperature.
LMP = (TH + 273) × (20 + log (t)) × 0.001 (1)
Here, TH is a tempering holding temperature [° C.], and t is a tempering holding time [Hr].
LMPmax was set to 17.66 or more if the steel satisfies this condition, it can be said that the steel has a high softening resistance, and the mold material manufactured using this steel is used for the production of injection molded products and die cast products. This is because even if it is applied, it is difficult to soften, so that it is difficult to cause problems such as wear (see FIG. 1). In addition, the steel for mold materials according to the present embodiment is soaked at 1010 ° C. to 1050 ° C., then cooled to 500 ° C. to 550 ° C. at a cooling rate of 200 ° C./min or more, and subsequently cooled at 100 ° C./min or more. HRC hardness at room temperature when LMP = 17 and HRC hardness at room temperature when LMP = 19 when cooled at a rate of 150 ° C. or lower and then heated in a temperature range of 550 ° C. to 700 ° C. The difference is 6 or less. This is because sufficient softening resistance is considered to be obtained. Details will be described later.

(LMPmaxを求める手順)
ここで、LMPmaxを求める手順を説明する。
(a)上記成分組成の範囲にある任意成分の鋼から作製した複数本の角棒(11mm×11mm×60mm)を1010℃〜1050℃の温度域で30分の均熱後に、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上で150℃以下まで冷却し(焼入れ)、次いで、550℃〜700℃の温度域(角棒毎に適当な温度間隔で振り分ける)で任意時間(角棒毎に適当な温度間隔で振り分ける)の再加熱(焼戻し)を行い(各角棒毎のLMPは、式(1)にこのときの焼戻し温度TH[℃]と焼戻し時間t[Hr]とを当てはめて求める)、この後、室温において、各角棒についてHRC硬さを測定する。尚、焼入れ速度を100℃/分以上とする理由は、当該鋼を型材として使用する場合の「マルテンサイトが主体となった組織」を得るためである。また、550℃〜700℃としたのは、この温度域が、当該鋼が型材となった場合の実生産、例えば、熱間鍛造において到達しうる温度域であり、当該鋼の実生産における軟化抵抗の評価に好適だからである。
(b)次に、各角棒について、室温で測定したHRC硬さを、式(1)で計算したLMPに対してプロットしたグラフを作成する(図2参照)。グラフは、(i)単調減少、又は、(ii)極大値を有する、のいずれかのパターンを示す。この時、室温におけるHRC硬さの最大値をHRCmaxとする。そして、室温におけるHRC硬さの最大値(HRCmax)を与えるLMPをLMPmaxとする。
以上の手順により、室温におけるHRC硬さの最大値を与えるLMP(LMPmax)が得られる。
(Procedure for obtaining LMPmax)
Here, a procedure for obtaining LMPmax will be described.
(A) After soaking a plurality of square bars (11 mm × 11 mm × 60 mm) made of steel of an arbitrary component within the above component composition in a temperature range of 1010 ° C. to 1050 ° C. for 30 minutes, 200 ° C./min Cool to 500 ° C. to 550 ° C. at the above cooling rate, then cool to 100 ° C./min to 150 ° C. or less (quenching), and then 550 ° C. to 700 ° C. (appropriate temperature for each square bar) Perform reheating (tempering) for an arbitrary time (distributed at an appropriate temperature interval for each square bar) at an interval) (LMP for each square bar is the tempering temperature TH [° C] at this time in equation (1)) And tempering time t [Hr]), and thereafter, the HRC hardness is measured for each square bar at room temperature. The reason for setting the quenching speed to 100 ° C./min or more is to obtain “a structure mainly composed of martensite” when the steel is used as a mold material. Further, the temperature range of 550 ° C. to 700 ° C. is a temperature range that can be reached in actual production when the steel becomes a mold material, for example, hot forging, and softening in actual production of the steel. It is because it is suitable for evaluation of resistance.
(B) Next, for each square bar, a graph is created in which the HRC hardness measured at room temperature is plotted against the LMP calculated by equation (1) (see FIG. 2). The graph shows either a pattern of (i) monotonically decreasing or (ii) having a local maximum. At this time, the maximum value of the HRC hardness at room temperature is defined as HRCmax. And LMP which gives the maximum value (HRCmax) of HRC hardness in room temperature is set to LMPmax.
By the above procedure, LMP (LMPmax) giving the maximum value of HRC hardness at room temperature is obtained.

(LMPmaxの限定理由)
室温におけるHRC硬さの最大値を与えるLMP(LMPmax)を17.66以上とした根拠について、図1を参照して、実機鍛造の結果を用いて説明する。対象は、成分調整によって、LMPmaxを変化させた6種類の鋼(同図において、鋼1〜鋼6)である。これらの鋼から、ベアリングレース(軸受けの軌道輪)の熱間鍛造用金型を作製しHRC53に調質した。被鍛造材はJIS SUJ2であり、1240℃に加熱して鍛造を実施した。
鍛造は1分間に100ショットの速度で実施し、50000ショット後の型の磨耗量を比較した。
(Reason for limiting LMPmax)
The basis for setting the LMP (LMPmax) that gives the maximum value of the HRC hardness at room temperature to 17.66 or more will be described with reference to FIG. The target is six types of steel (in the figure, steel 1 to steel 6) in which LMPmax is changed by component adjustment. From these steels, hot forging dies for bearing races (bearing races) were prepared and tempered to HRC53. The material to be forged was JIS SUJ2, and was forged by heating to 1240 ° C.
Forging was performed at a rate of 100 shots per minute, and the amount of die wear after 50000 shots was compared.

図1は、その鍛造の結果を示す。同図において、横軸のLMPmaxは、鋼1〜鋼6のそれぞれについて上記手法によって求めた。同図によれば、鋼の磨耗量は、LMPmaxが増加すると減少することがわかる。また、同図によれば、LMPmax=17.7付近に変極点を有し、LMPmaxがこれを超えた値になると、鋼の摩耗量が急激に低下している。これは、初期硬さ(鍛造に使用前の硬さ)が共通であっても、軟化抵抗に対する性質が異なれば、耐磨耗性も異なることを意味する。初期硬さを変化させた場合についても、LMPmax=17.7付近に変極点を有し、LMPmaxがこれを超えた値になると、鋼の摩耗量が急激に低下した。   FIG. 1 shows the result of the forging. In the figure, LMPmax on the horizontal axis was determined for each of Steel 1 to Steel 6 by the above method. According to the figure, it can be seen that the amount of wear of steel decreases as LMPmax increases. Further, according to the figure, there is an inflection point in the vicinity of LMPmax = 17.7, and when the LMPmax exceeds this value, the amount of wear of the steel rapidly decreases. This means that even if the initial hardness (hardness before use for forging) is common, if the property against softening resistance is different, the wear resistance is also different. Even when the initial hardness was changed, the inflection point was in the vicinity of LMPmax = 17.7, and when the LMPmax exceeded this value, the amount of wear of the steel rapidly decreased.

一般に、焼戻し時間が1Hr程度の場合、焼戻し温度が610℃以上になると、鋼の硬さが急激に低下することが知られている。この条件を式(1)に当てはめるとLMPが17.66以上となる。従って、LMPが17.66を超えても、鋼の硬さ低下が小さい鋼であれば、充分に軟化抵抗が高いと言え、摩耗量を少なくすることができるのである。
以上より、室温におけるHRC硬さの最大値を与えるLMP(LMPmax)≧17.66とした。
In general, when the tempering time is about 1 Hr, it is known that when the tempering temperature is 610 ° C. or higher, the hardness of the steel rapidly decreases. When this condition is applied to the formula (1), the LMP becomes 17.66 or more. Therefore, even if the LMP exceeds 17.66, if the steel has a small decrease in hardness, it can be said that the softening resistance is sufficiently high, and the amount of wear can be reduced.
From the above, LMP (LMPmax) ≧ 17.66 giving the maximum value of HRC hardness at room temperature was set.

(作用)
本実施形態に係る型材用鋼は、上記成分組成を備えたものであるから、固溶硬化及び分散強化により、型材用鋼として必要な硬さを有する。また、本実施形態に係る型材用鋼は、上記成分組成を備えたものであるから、加熱されても炭化物の粗大化(軟化抵抗が悪くなる原因)が起こりにくいため、分散強化の影響が弱まらない。
本実施形態に係る型材用鋼は、上記成分組成を備え、室温におけるHRC硬さの最大値を与えるLMP(LMPmax)が17.66以上であるから、軟化抵抗が高い。従って、本実施形態に係る型材用鋼は、希少元素の含有量が少ないにも拘わらず、従来鋼以上の軟化抵抗を発現し、熱疲労特性や耐摩耗性に優れる。
(Function)
Since the steel for mold materials according to the present embodiment has the above component composition, it has the necessary hardness as steel for mold materials by solid solution hardening and dispersion strengthening. In addition, since the steel for mold material according to the present embodiment has the above-described component composition, the influence of dispersion strengthening is weak because carbides are not coarsened (cause of poor softening resistance) even when heated. I wo n’t.
The steel for mold material according to the present embodiment has the above component composition and has a high softening resistance because LMP (LMPmax) giving the maximum value of HRC hardness at room temperature is 17.66 or more. Therefore, although the steel for mold material according to the present embodiment has a low content of rare elements, it exhibits softening resistance higher than that of conventional steel and is excellent in thermal fatigue characteristics and wear resistance.

(実施例A)
(試験片の作製)
表1に示す成分の試験片(発明鋼1〜32,比較鋼1〜5)を準備した。同表の空欄は、その元素を積極的に添加していないことを意味し、含有量は不純物レベルである。また、表中には記載していないが、発明鋼及び比較鋼には、N、O、P、Mg等も不純物レベルで含有されている。
(Example A)
(Preparation of test piece)
Test pieces (invention steels 1 to 32, comparative steels 1 to 5) having the components shown in Table 1 were prepared. A blank in the table means that the element is not actively added, and the content is an impurity level. Moreover, although not described in the table, the inventive steel and the comparative steel also contain N, O, P, Mg and the like at the impurity level.

発明鋼1〜32は、Cr+Mo+V+W+Coが6質量%以下と少なく、低合金鋼の範疇に入る安価な鋼である。比較鋼1〜4は、Cr+Mo+V+W+Coが6質量%を越えており、中合金や高合金に分類される高価な鋼である。比較鋼1〜5は、型材用として市販されており、例えば、加熱した素材を鍛造する金型に用いられる。   Inventive steels 1-32 are inexpensive steels that fall within the category of low alloy steels, with Cr + Mo + V + W + Co being as low as 6% by mass or less. Comparative steels 1 to 4 are expensive steels that have Cr + Mo + V + W + Co exceeding 6 mass% and are classified as medium alloys or high alloys. The comparative steels 1 to 5 are commercially available for mold materials, and are used, for example, for dies for forging heated materials.

Figure 2008169411
Figure 2008169411

次に、発明鋼1〜32及び比較鋼1〜5を11mm×11mm×60mmの角棒に加工した。そして、各角棒を1030℃に加熱し、30分の保持後、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、120℃/分の速度で150℃以下まで冷却した。この焼入れによって、型材として使われる場合のマルテンサイトが主体となった組織を得た。尚、高速度工具鋼(比較鋼4)についてのみ、合金元素を充分に固溶させるため、加熱温度を1200℃とした。そして、引き続き、焼戻しを実施した。この焼戻しは、各鋼を550℃〜700℃の温度域に1Hr〜100Hr保持することにより行った。
その後、各鋼の室温におけるHRC硬さを測定した。このときの焼戻し条件を式(1)に当てはめてLMPを求めたところ、これらの焼戻しは、LMP=16.46〜21.41であった。また、575℃での焼戻し時間を調整して、各鋼のLMPmaxとHRCmaxを求めた。表2に、各鋼のCr+Mo+V+W+Coの含有量、HRCmax、LMPmax、575℃での焼戻し時間[Hr]をまとめて示す。
Next, the inventive steels 1 to 32 and the comparative steels 1 to 5 were processed into 11 mm × 11 mm × 60 mm square bars. Each square bar is heated to 1030 ° C., held for 30 minutes, then cooled to 500 ° C. to 550 ° C. at a cooling rate of 200 ° C./min or higher, and then cooled to 150 ° C. or lower at a rate of 120 ° C./min. did. By this quenching, a structure mainly composed of martensite when used as a mold material was obtained. In addition, only high-speed tool steel (Comparative Steel 4) was heated to 1200 ° C. in order to sufficiently dissolve the alloy elements. Subsequently, tempering was performed. This tempering was performed by holding each steel in a temperature range of 550 ° C. to 700 ° C. for 1 Hr to 100 Hr.
Thereafter, the HRC hardness of each steel at room temperature was measured. When LMP was calculated by applying the tempering conditions at this time to the formula (1), the tempering was LMP = 16.46 to 21.41. Further, the tempering time at 575 ° C. was adjusted to obtain LMPmax and HRCmax of each steel. Table 2 summarizes the Cr + Mo + V + W + Co content, HRCmax, LMPmax, and tempering time [575] at 575 ° C. of each steel.

(試験片の評価)
図2(a)〜(d)は、発明鋼1と比較鋼2,4のLMPとHRC硬さとの相関を示す。
焼入れた発明鋼1は、LMP≒17.6(例えば、600℃×1.5Hr)の条件で焼戻されると、HRC43程度となり(図2(b)の破線丸印)、この状態で鍛造に適用されると、使用中の温度上昇はあるが、硬さの低下は非常に起こりにくく(図2(b)の破線矢印)、型の磨耗は比較鋼2より少ないと考えられる。発明鋼1は、比較鋼2よりも、LMPmaxが大きい(軟化抵抗が高い)ため、摩耗しにくいと考えられるからである。
(Evaluation of specimen)
FIGS. 2A to 2D show the correlation between LMP and HRC hardness of Invention Steel 1 and Comparative Steels 2 and 4. FIG.
The hardened invention steel 1 becomes about HRC43 when it is tempered under the condition of LMP≈17.6 (for example, 600 ° C. × 1.5 Hr) (dotted circle in FIG. 2B). When applied, there is an increase in temperature during use, but a decrease in hardness is very unlikely (broken arrow in FIG. 2 (b)), and the wear of the mold is considered to be less than that of the comparative steel 2. This is because the inventive steel 1 is considered to be less likely to be worn because the LMPmax is larger (higher softening resistance) than the comparative steel 2.

比較鋼2は、靭性の問題からHRC43程度に調質して用いられる鍛造型の代表的な鋼材である。焼入れた比較鋼2は、LMP≒18.45(例えば、615℃×6Hr)の条件で焼戻されると、HRC43程度となり(図2(c)の破線丸印)、この状態で鍛造に適用されると、使用中の温度上昇によって硬さが低下し(図2(c)の破線矢印)、型の磨耗が顕著になると考えられる。比較鋼2は、発明鋼1よりも、LMPmaxが小さい(軟化抵抗が低い)ため、摩耗しやすいと考えられるからである。   The comparative steel 2 is a typical steel material of a forging die that is used after being tempered to about HRC43 due to the problem of toughness. When the tempered comparative steel 2 is tempered under the condition of LMP≈18.45 (for example, 615 ° C. × 6 Hr), it becomes about HRC43 (dotted circle in FIG. 2C), and is applied to forging in this state. Then, it is considered that the hardness decreases due to the temperature rise during use (broken line arrow in FIG. 2C), and the wear of the mold becomes remarkable. This is because the comparative steel 2 is considered to be easily worn because the LMPmax is smaller than the inventive steel 1 (low softening resistance).

比較鋼4は、靭性を犠牲にして耐磨耗性を高めたい場合に、HRC60程度に調質して用いられる鍛造型の代表的な鋼材である。焼入れた比較鋼4は、LMP≒17.9(例えば、615℃×1.5Hr)の条件で焼戻されると、HRC60程度となるが(図2(d)の破線丸印)、使用中の温度上昇によって硬さが大きく低下し(図2(d)の破線矢印)、HRC45程度になる。
この硬さは、発明鋼1(HRC43)とほぼ同等であり、使用後も発明鋼1より約2硬く、初期硬さ(鍛造前の硬さ)が発明鋼1より著しく硬いため、最終的な型の磨耗も発明鋼1よりは小さい。しかしながら、摩耗の差は比較的小さく、高価な鋼を使用した割には耐磨耗性の改善効果が小さい。その理由は、比較鋼4は、LMPmaxが小さい(軟化抵抗が低い)ためと考えられる。また、比較鋼4の金型は、靭性を犠牲にした結果、早期に破壊する危険性も懸念される。
The comparative steel 4 is a typical steel material of a forging die that is used after being tempered to about HRC60 when it is desired to increase wear resistance at the expense of toughness. When the tempered comparative steel 4 is tempered under the condition of LMP≈17.9 (for example, 615 ° C. × 1.5 Hr), it becomes about HRC 60 (dotted circle in FIG. 2 (d)). As the temperature rises, the hardness is greatly reduced (broken line arrow in FIG. 2D), and becomes about HRC45.
This hardness is almost the same as that of Invention Steel 1 (HRC43), it is about 2 harder than that of Invention Steel 1 after use, and the initial hardness (hardness before forging) is significantly harder than that of Invention Steel 1. The wear of the mold is also smaller than that of Invention Steel 1. However, the difference in wear is relatively small, and the effect of improving wear resistance is small even though expensive steel is used. The reason is considered that the comparative steel 4 has a small LMPmax (low softening resistance). Moreover, as a result of sacrificing toughness, the mold of the comparative steel 4 has a risk of breaking early.

以上のことから、鍛造用の金型においては、LMPmaxの大きな鋼を型材用鋼として選定すると、軟化抵抗を高めることができると考えられる。この場合に、靭性を重視する場合はHRC硬さの最大値を小さくし、耐摩耗性を重視する場合はHRC硬さの最大値を大きくすればよいと考えられる。   From the above, in the forging die, it is considered that the softening resistance can be increased by selecting a steel having a large LMPmax as the steel for the mold material. In this case, it is considered that the maximum value of HRC hardness may be reduced when importance is attached to toughness, and the maximum value of HRC hardness may be increased when importance is attached to wear resistance.

この知見に基づいて、表2の結果を評価すると、発明鋼1〜32は、LMPmaxがいずれも17.66以上であるため、軟化抵抗が高いと考えられる。そのうち、発明鋼2は、HRCmaxが高いため、特に耐磨耗性に優れ、発明鋼3は、HRCmaxが低いため、特に靭性に優れると考えられる。用途に応じて発明鋼1〜32のいずれかを型材用鋼として用いればよい。
一方、比較鋼1〜5は、LMPmaxが17.66未満だったため、軟化抵抗が低いと考えられる。そのうち、比較鋼1〜3,5は、初期硬さは高いが、高温状態における硬さの低下が大きいと考えられる(図2参照)。尚、比較鋼4は、高価な割には耐摩耗性の改善効果が少ないことは、既述の通りである。
また、比較鋼5は、希少元素の含有量が少ない例であるが、LMPmaxが小さい。従って、希少元素の含有量を少なくしただけでは、LMPmaxを高くすることができないことがわかる。LMPmaxを高めるには、発明鋼のように特定の組成成分を備えることが必要であることが確認できた。
Based on this finding, when the results in Table 2 are evaluated, the inventive steels 1 to 32 are considered to have high softening resistance because all of LMPmax is 17.66 or more. Among them, the inventive steel 2 is considered to be particularly excellent in wear resistance since the HRCmax is high, and the inventive steel 3 is considered to be particularly excellent in toughness since the HRCmax is low. Any one of the inventive steels 1 to 32 may be used as the steel for the mold material depending on the application.
On the other hand, Comparative Steels 1 to 5 are considered to have low softening resistance because LMPmax was less than 17.66. Among them, comparative steels 1 to 3 and 5 have high initial hardness, but are considered to have a large decrease in hardness in a high temperature state (see FIG. 2). Incidentally, as described above, the comparative steel 4 has a small effect of improving the wear resistance although it is expensive.
Moreover, although the comparative steel 5 is an example with little content of a rare element, LMPmax is small. Therefore, it can be seen that LMPmax cannot be increased only by reducing the content of rare elements. In order to raise LMPmax, it has confirmed that it was necessary to provide a specific composition component like invention steel.

Figure 2008169411
Figure 2008169411

次に、図3を参照してLMPmaxを大きくする手法について説明する。
図3は、軟化抵抗に及ぼすCr,Moの影響を説明するための、LMPとHRC硬さとの相関を示したグラフであり、同図(a)がCrの含有量を増減させた場合、同図(b)がMoの含有量を増減させた場合の相関を示す。同図によれば、LMPmaxを大きくするには、(1)Crの含有量を減らす、及び/又は、(2)Moの含有量を増やすとよいことがわかる。図示を省略するが、V,Wの含有量についても、Moの含有量と同様のことがいえる。尚、SiやCoは炭化物を形成しないが、炭化物形態の変化や固溶強化を介して軟化抵抗に影響を及ぼすため、適量含有させてもよい(表1参照)。
Next, a method for increasing LMPmax will be described with reference to FIG.
FIG. 3 is a graph showing the correlation between LMP and HRC hardness for explaining the effects of Cr and Mo on the softening resistance. FIG. 3 (a) shows the same when the Cr content is increased or decreased. The figure (b) shows the correlation when the content of Mo is increased or decreased. According to the figure, it is understood that in order to increase LMPmax, it is preferable to (1) reduce the Cr content and / or (2) increase the Mo content. Although illustration is omitted, the contents of V and W can be said to be the same as the contents of Mo. Si and Co do not form carbides, but may affect the softening resistance through changes in the form of carbides or solid solution strengthening, so that appropriate amounts may be included (see Table 1).

(実施例B)
(試験用パンチの評価試験−その1)
試験片(発明鋼及び比較鋼)を鋼材としてHRC50〜HRC60に調質したパンチを作製し、これを用いて熱間鍛造を行い、その摩耗量を測定した。尚、パンチとは、被加工材に押し込んで孔をあけるのに用いられる金型である。
表3に示すパンチ用鋼を準備し、熱間鍛造用のパンチを作製した。粗加工後のパンチ用鋼を1030℃(比較鋼4の高速度工具鋼のみ合金元素を充分に固溶させるため1200℃)に加熱し、30分の保持後に、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上の冷却速度で150℃以下まで急冷した。引き続き、パンチ用鋼を適当な条件で焼戻し(550℃〜700℃の温度域で加熱した)、硬さHを、HRC50〜HRC60に調整した。
更に、パンチ用鋼に仕上げ加工を行い、図4(a)に示す概略形状をした正規寸法の試験用パンチ(発明鋼パンチ、比較鋼パンチ)を得た。尚、発明鋼パンチとは、発明鋼を用いて作製したパンチであり、比較鋼パンチとは、比較鋼を用いて作製したパンチである。
(Example B)
(Evaluation test of test punch-Part 1)
A test piece (invention steel and comparative steel) was used as a steel material to prepare a punch tempered to HRC50 to HRC60, and hot forging was performed using this to measure the amount of wear. Note that the punch is a mold used to make a hole by pushing into a workpiece.
Punch steels shown in Table 3 were prepared, and hot forging punches were produced. The steel for punching after roughing is heated to 1030 ° C. (only high-speed tool steel of comparative steel 4 is 1200 ° C. in order to sufficiently dissolve the alloy elements), and after holding for 30 minutes, the cooling rate is 200 ° C./min or more. Then, it was cooled to 500 ° C. to 550 ° C. and then rapidly cooled to 150 ° C. or less at a cooling rate of 100 ° C./min or more. Subsequently, the steel for punching was tempered under appropriate conditions (heated in a temperature range of 550 ° C. to 700 ° C.), and the hardness H was adjusted to HRC 50 to HRC 60.
Further, the punching steel was finished to obtain a test punch (invention steel punch, comparative steel punch) having a normal dimension and having a schematic shape shown in FIG. The inventive steel punch is a punch produced using the inventive steel, and the comparative steel punch is a punch produced using the comparative steel.

熱間鍛造は、図4(b)にその状況を示すが、1000℃に加熱された炭素鋼を被加工材として、試験用パンチをダイスに組み込み、潤滑剤(鉱物油に黒鉛粉末を混ぜた液体)を1ショットごとにパンチへ塗布して、60ショット/分の速度で実施した。そして、試験用パンチの先端外周部付近の摩耗量を測定した。   The state of hot forging is shown in FIG. 4 (b). Carbon steel heated to 1000 ° C. is used as a work material, a test punch is incorporated in a die, and a lubricant (mineral oil is mixed with graphite powder). Liquid) was applied to the punch for each shot and performed at a rate of 60 shots / minute. And the amount of wear near the front-end | tip outer peripheral part of the punch for a test was measured.

磨耗量は、試験用パンチ先端の外周部付近(図4(c)の破線丸印)の熱間鍛造前の初期直径寸法と、規定のショット数を鍛造した後の直径寸法の差(次式(2))で定義し、磨耗量が1mm以上の状態を寿命と判定した。
摩耗量[mm]=20.5[mm]−d[mm]…(2)
試験用パンチ先端の外周部付近を摩耗量測定に用いたのは、この外周部付近が当たる被加工材の部分の変形速度が非常に大きい領域に相当するため、試験用パンチが磨耗の損傷を受けやすいからである。また、この外周部付近の過度の磨耗は、被加工材の製品寸法や製品表面性状に大きく影響し、磨耗量が一定値を越えると、そのパンチは寿命となるからである。
The amount of wear is the difference between the initial diameter before hot forging in the vicinity of the outer periphery of the tip of the test punch (dotted circle in FIG. 4C) and the diameter after forging a specified number of shots (the following equation) (2)), the state where the amount of wear was 1 mm or more was determined as the life.
Amount of wear [mm] = 20.5 [mm] -d [mm] (2)
The reason why the vicinity of the outer periphery of the test punch tip was used for the wear amount measurement corresponds to an area where the deformation speed of the part of the workpiece hit by the outer periphery is very high, so that the test punch was damaged by wear. It is easy to receive. Further, the excessive wear near the outer peripheral portion greatly affects the product dimensions and product surface properties of the workpiece, and when the wear amount exceeds a certain value, the punch reaches the end of its life.

表3に、熱間鍛造試験で用いた各パンチのパンチ用鋼材、その基礎特性、その調質条件、及び、その耐摩耗性評価をまとめて示す。パンチの調質条件のうち、硬さHは熱間鍛造前に調質した各パンチの硬さを表し、熱間鍛造の代表値であるHRC50〜HRC53とした(比較鋼パンチ4,5は初期硬さが非常に硬い例であるためHRC60以上とした)。加熱温度及び保持時間は、この硬さHを得るための焼戻しの温度と時間を示す。各パンチの耐摩耗性評価のうち、各ショットの欄に示した数字は式(2)により求めた摩耗量であり、「×」は磨耗量が1mmを越えて寿命となったことを意味する。   Table 3 summarizes the steel materials for punching used in the hot forging test, their basic characteristics, tempering conditions, and their wear resistance evaluation. Among the tempering conditions of the punch, the hardness H represents the hardness of each punch tempered before hot forging, and HRC50 to HRC53, which are representative values of hot forging, are set as the initial values of the comparative steel punches 4 and 5. Since the hardness is an extremely hard example, it was set to HRC60 or higher). The heating temperature and the holding time indicate the temperature and time for tempering to obtain this hardness H. In the wear resistance evaluation of each punch, the number shown in each shot column is the wear amount obtained by the equation (2), and “x” means that the wear amount exceeds 1 mm and the life is reached. .

発明鋼パンチ1,比較鋼パンチ1〜3は、H≒HRC53で鍛造開始時の硬さが共通しているが、発明鋼パンチ1は、比較鋼パンチ1〜3よりも磨耗量が少なかった。更に、H≒HRC50である発明鋼パンチ2〜14は、H≒HRC53の比較鋼パンチ1〜3より初期硬さが約3低いが、磨耗量は比較鋼パンチ1〜3とほぼ同等である。従って、発明鋼パンチ1〜14は、初期硬さが非常に高い比較鋼パンチ4(H=60.1)ほどの硬さはないが、優れた耐磨耗性を有することがわかった。尚、耐磨耗性を最大化させるため極めて高い初期硬さ(H=63.2)を与えた比較鋼パンチ5は、靭性が低いため1000ショット未満で折損し、耐磨耗性の評価ができなかった。このように、耐磨耗性を重視しすぎると早期破壊が起きやすくなり、高価な鋼を使用しても、その意味が全く無いことがわかった。
また、比較鋼パンチ6は、希少元素が少ない点では発明鋼と同じ条件であるが、LMPmaxが低く、摩耗が大きかった。従って、希少元素を少なくしただけでは、LMPmaxを高めることができず、耐摩耗性を高めることもできないことがわかった。
Inventive steel punch 1 and comparative steel punches 1 to 3 have H≈HRC53 and the same hardness at the start of forging. Inventive steel punch 1 has less wear than comparative steel punches 1 to 3. Further, the inventive steel punches 2 to 14 with H≈HRC50 have an initial hardness of about 3 lower than that of the comparative steel punches 1 to 3 with H≈HRC53, but the wear amount is almost equal to that of the comparative steel punches 1 to 3. Therefore, it was found that the inventive steel punches 1 to 14 were not as hard as the comparative steel punch 4 (H = 60.1) having a very high initial hardness, but had excellent wear resistance. In addition, the comparative steel punch 5 given extremely high initial hardness (H = 63.2) in order to maximize the wear resistance is broken to less than 1000 shots because of its low toughness, and the wear resistance is evaluated. could not. Thus, it was found that if too much wear resistance is emphasized, premature fracture is likely to occur, and even if expensive steel is used, there is no meaning at all.
Further, the comparative steel punch 6 was in the same condition as the inventive steel in that there were few rare elements, but the LMPmax was low and the wear was large. Therefore, it was found that LMPmax cannot be increased and the wear resistance cannot be increased only by reducing rare elements.

初期硬さが共通条件下での磨耗量は、軟化抵抗と炭化物量で決まる。発明鋼パンチは、Cr+Mo+V+W+Coが6質量%以下であるため、Cr+Mo+V+W+Coが6質量%を越える比較鋼パンチより炭化物量は少ないが、摩耗量は、ほぼ同等(比較鋼パンチ4〜6を除く)であったため、軟化抵抗が高いことがわかった。このことから、希少元素が少ない安価な鋼でも、発明鋼のように軟化抵抗を高めれば、熱間鍛造用金型の代表的な硬さであるHRC50〜HRC53程度に調質された状態で、「Cr+Mo+V+W+Coが6質量%を越える、多くの炭化物を含有する従来鋼」と同等以上の耐磨耗性が実現できることがわかった。また、上記結果は、図1に示した結果とも良く一致した。発明鋼パンチは、LMPmaxが17.66を越えているが、比較鋼パンチは、LMPmaxがこの値より低いからである。   The amount of wear when the initial hardness is common is determined by the softening resistance and the amount of carbide. Since the invention steel punch has Cr + Mo + V + W + Co of 6 mass% or less, the amount of carbide is smaller than that of the comparative steel punch in which Cr + Mo + V + W + Co exceeds 6 mass%, but the wear amount is almost the same (except for comparative steel punches 4 to 6). Therefore, it was found that the softening resistance was high. From this, even with inexpensive steel with few rare elements, if the softening resistance is increased as in the invention steel, it is tempered to about HRC50 to HRC53, which is a typical hardness of a hot forging die, It was found that the wear resistance equal to or higher than that of “conventional steel containing many carbides with Cr + Mo + V + W + Co exceeding 6 mass%” can be realized. Further, the above results agreed well with the results shown in FIG. The invention steel punch has an LMPmax exceeding 17.66, but the comparative steel punch has an LMPmax lower than this value.

Figure 2008169411
Figure 2008169411

(実施例C)
(試験用パンチの評価試験−その2)
試験片(発明鋼及び比較鋼)を鋼材としてH≒HRC44に調質したパンチを作製し、これを用いて熱間鍛造を行い、その摩耗量を測定した。H≒HRC44としたのは、靭性を重視する金型はHRC44程度で使用されるからである。各パンチは、HRC44程度で頻繁に使用される発明鋼1,比較鋼1(JIS SKD61),比較鋼2(熱間工具鋼A)を鋼材として、表3に示したパンチと同様の手順で作製した。熱間鍛造試験の手順も表3に示したものと同様とした。
(Example C)
(Evaluation test of test punch-Part 2)
A test piece (invention steel and comparative steel) was used as a steel material to prepare a punch that had been tempered to H≈HRC44, and this was used for hot forging to measure the amount of wear. The reason why H≈HRC44 is used is that a mold that places importance on toughness is used at about HRC44. Each punch is manufactured in the same procedure as the punch shown in Table 3, using the inventive steel 1, comparative steel 1 (JIS SKD61), and comparative steel 2 (hot tool steel A), which are frequently used at about HRC44, as steel materials. did. The procedure of the hot forging test was also the same as that shown in Table 3.

表4に、熱間鍛造試験で用いた各パンチのパンチ用鋼材、その基礎特性、その調質条件、及び、その耐摩耗性評価をまとめて示す。
発明鋼パンチ15の磨耗量は、比較鋼パンチ7よりも少なく、Cr+Mo+V+W+Coが9質量%を越えた比較鋼パンチ8と同等であった。発明鋼パンチ15は、HRCmaxが比較鋼パンチ7,8より小さいが、LMPmaxが比較鋼パンチ7,8より大きい。従って、同一の初期硬さで比較すると、軟化しにくい発明鋼パンチ15の方が磨耗が少ないことがわかった。尚、比較鋼パンチ7よりも比較鋼パンチ8の方が磨耗量が少なかったのは、比較鋼パンチ8は、Cr,Mo,V等の含有量が多く、硬質な炭化物粒子が多いためと考えられる。
摩耗量は、軟化抵抗と炭化物量によって決まるが、表4の結果から、炭化物量が少なくても軟化抵抗を高めれば、炭化物量が多い鋼と同等以上の耐磨耗性が実現できることがわかった。従って、希少元素が少ない安価な鋼でも、発明鋼のように軟化抵抗を高めれば、靭性を重視したHRC44程度に調質された状態で、「Cr+Mo+V+W+Coが6質量%を越える、多くの炭化物を含有する従来鋼」と同等以上の耐磨耗性が実現できることがわかった。
Table 4 summarizes the steel materials for punching used in the hot forging test, the basic characteristics thereof, the tempering conditions, and the wear resistance evaluation.
The amount of wear of the inventive steel punch 15 was smaller than that of the comparative steel punch 7 and was equivalent to that of the comparative steel punch 8 in which Cr + Mo + V + W + Co exceeded 9 mass%. The inventive steel punch 15 has an HRCmax smaller than the comparative steel punches 7 and 8, but an LMPmax larger than the comparative steel punches 7 and 8. Therefore, when compared with the same initial hardness, it was found that the inventive steel punch 15 which is harder to soften has less wear. The comparative steel punch 8 was less worn than the comparative steel punch 7 because the comparative steel punch 8 has a large content of Cr, Mo, V, etc. and a large amount of hard carbide particles. It is done.
The amount of wear is determined by the softening resistance and the amount of carbide. From the results in Table 4, it was found that if the softening resistance is increased even if the amount of carbide is small, the wear resistance equivalent to or higher than that of steel with a large amount of carbide can be realized. . Therefore, even with an inexpensive steel with a small amount of rare elements, if the softening resistance is increased as in the case of the invention steel, in the state of being tempered to about HRC44 with an emphasis on toughness, “Cr + Mo + V + W + Co contains more than 6% by mass of carbide. It was found that the wear resistance equivalent to or better than the conventional steel to be achieved can be realized.

Figure 2008169411
Figure 2008169411

(実施例D)
(試験用パンチの評価試験−その3)
試験片(発明鋼及び比較鋼)を鋼材としてH≒HRC40に調質したパンチを作製し、これを用いて熱間鍛造を行い、その摩耗量を測定した。H≒HRC40としたのは、被削性を重視する金型はHRC40程度で使用されるからである。各パンチは、HRC40程度で頻繁に使用される発明鋼3,比較鋼1(JIS SKD61)を鋼材とし、表3及び表4に示したパンチと同様の手順で作製した。熱間鍛造試験の手順も表3及び表4に示したものと同様とした。
(Example D)
(Test Punch Evaluation Test-3)
A test piece (invention steel and comparative steel) was used as a steel material, and a punch tempered to H≈HRC40 was prepared. Using this, hot forging was performed, and the amount of wear was measured. The reason why H≈HRC40 is used is that a mold that places importance on machinability is used at about HRC40. Each punch was manufactured in the same procedure as the punches shown in Tables 3 and 4 using the inventive steel 3 and comparative steel 1 (JIS SKD61) frequently used at about HRC 40 as steel materials. The procedure of the hot forging test was also the same as that shown in Tables 3 and 4.

表5に、熱間鍛造試験で用いた各パンチのパンチ用鋼材、その基礎特性、その調質条件、及び、その耐摩耗性評価をまとめて示す。
発明鋼パンチ16は、Cr+Mo+V+W+Coが2質量%程度であり、硬質な炭化物粒子が少ないにも拘わらず、発明鋼パンチ16の磨耗量は、Cr+Mo+V+W+Coが7質量%を越えている比較鋼パンチ9と同等以上であった。これは、発明鋼パンチ16は、LMPmaxが17.66より大きく、比較鋼パンチ9より大きいため、軟化抵抗が高くなり、耐磨耗性が良くなったためと考えられる。
従って、希少元素が少ない安価な鋼でも、発明鋼のように軟化抵抗を高めれば、被削性を重視したHRC40程度に調質された状態で、「Cr+Mo+V+W+Coが7質量%を越える、多くの炭化物を含有する従来鋼」と同等以上の耐磨耗性が実現できることがわかった。
Table 5 shows the steel materials for punching used in the hot forging test, their basic characteristics, tempering conditions, and their wear resistance evaluation.
The invention steel punch 16 has Cr + Mo + V + W + Co of about 2% by mass, and the amount of wear of the invention steel punch 16 is the same as that of the comparative steel punch 9 in which Cr + Mo + V + W + Co exceeds 7% by mass. That was all. This is presumably because the inventive steel punch 16 has an LMPmax larger than 17.66 and larger than the comparative steel punch 9, so that the softening resistance is increased and the wear resistance is improved.
Therefore, even with an inexpensive steel with a small amount of rare elements, if the softening resistance is increased as in the case of the invented steel, many carbides with a Cr + Mo + V + W + Co content exceeding 7% by mass after being tempered to about HRC40 with emphasis on machinability. It was found that the wear resistance equivalent to or better than that of “conventional steel containing” can be realized.

Figure 2008169411
Figure 2008169411

以上説明した実施例A〜Dにより、Cr,Mo,V,W,Co等の希少金属含有量が従来鋼より少なくとも、発明鋼が従来鋼より高い軟化抵抗を有していれば、従来鋼と同等以上の耐磨耗性を発現できることがわかった。また、実生産における耐磨耗性の優劣を、特定手法の簡単な実験によって求めたLMPmaxに基づいて判断できることもわかった。   According to Examples A to D described above, if the content of rare metals such as Cr, Mo, V, W, and Co is at least higher than that of the conventional steel, the inventive steel has higher softening resistance than that of the conventional steel, It was found that the same or better wear resistance can be achieved. It was also found that the superiority or inferiority of wear resistance in actual production can be judged based on LMPmax obtained by a simple experiment of a specific method.

以上本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上記実施例では本発明を熱間鍛造に適用した例を示したが、樹脂やガラスの射出成形・ダイカスト等の型材へも広く適用が可能である。
また、上記実施例における発明鋼は、軟化抵抗が高く、かつ省合金で環境に優しい鋼であるため、これを、射出成形・ダイカスト・鍛造等に適用すれば、その生産効率向上や製品製造コスト削減、更には省資源化・環境負荷軽減が期待される。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. In the above embodiment, the present invention is applied to hot forging. However, the present invention can be widely applied to mold materials such as injection molding and die casting of resin and glass.
Further, the inventive steels in the above examples are high in softening resistance, alloy-saving and environmentally friendly steels. Therefore, if this is applied to injection molding, die casting, forging, etc., the production efficiency is improved and the product manufacturing cost is increased. Reduction, further resource saving and environmental load reduction are expected.

尚、発明鋼からなる型材の焼入れにおいて、加熱温度は1010℃〜1050℃であるが、加熱時間に関する条件は、特に限定されず、必要量の合金元素が固溶する加熱時間を鋼材成分に応じて選定すればよい。また、型材の焼入れにおいては、フェライト相とパーライト相の析出を回避することが望ましい。大きな型材であれば油冷しても焼入れ速度は小さくなり、小さな型材は放冷しても焼入れ速度が大きくなるが、型材のサイズによらず、焼入れ後の組織がマルテンサイトやベイナイトを主体にした組織が得られればよい。更に、型材の焼入れにおいて、型材の冷却方法は何ら限定されるものではなく、上記の条件を満たす冷却方法を型材のサイズに応じて選定すればよい。また、複数の冷却方法を組み合わせてもよい。   In addition, in the quenching of the mold material made of the inventive steel, the heating temperature is 1010 ° C. to 1050 ° C., but the conditions relating to the heating time are not particularly limited, and the heating time in which the required amount of alloy element is dissolved depends on the steel material components. To be selected. In quenching the mold material, it is desirable to avoid precipitation of ferrite phase and pearlite phase. If the mold is large, the quenching speed will be low even if it is oil-cooled.If the mold is left to cool, the quenching speed will be large, but the structure after quenching is mainly martensite and bainite regardless of the size of the mold. What is necessary is just to obtain the organization. Further, in the quenching of the mold material, the cooling method of the mold material is not limited at all, and a cooling method that satisfies the above-described conditions may be selected according to the size of the mold material. A plurality of cooling methods may be combined.

焼戻し条件は、特に限定されるものではなく、LMPmax・HRCmax・要求硬さ・製造性等を加味して任意に選択することができる。例えば、605℃×2Hrという1回目の焼戻し後に、595℃×3Hrの2回目、575℃×2Hrの3回目、を行って硬さをHRC43としてもよい。1回の焼戻しでH=HRC43に調整した場合と、特性には顕著な差異が生じないからである。   The tempering conditions are not particularly limited, and can be arbitrarily selected in consideration of LMPmax / HRCmax / required hardness / manufacturability. For example, after the first tempering of 605 ° C. × 2 Hr, the second time of 595 ° C. × 3 Hr and the third time of 575 ° C. × 2 Hr may be performed to set the hardness to HRC43. This is because there is no significant difference in characteristics from the case where H = HRC 43 is adjusted by one tempering.

本発明に係る型材用鋼は、軟化抵抗に優れるため、樹脂やガラスの射出成形・ダイカスト・鍛造等の型材に用いて好適である。また、本発明に係る型材用鋼は、安価であるため、型材用鋼の製造メーカーや、樹脂・ガラス製品、ダイカスト製品の製造メーカーにとって産業上極めて有益である。   Since the steel for mold material according to the present invention is excellent in softening resistance, it is suitable for use in mold materials such as injection molding, die casting and forging of resin and glass. Further, since the steel for mold material according to the present invention is inexpensive, it is extremely useful industrially for manufacturers of steel for mold materials, and manufacturers of resin / glass products and die cast products.

磨耗量とLMPmaxとの関係を示したグラフである。It is the graph which showed the relationship between the amount of wear and LMPmax. (a)〜(d)は、発明鋼1、比較鋼2、比較鋼4についてのLMPとHRC硬さとの相関を示したグラフである。(A)-(d) is the graph which showed the correlation with LMP and HRC hardness about invention steel 1, comparative steel 2, and comparative steel 4. FIG. (a)、(b)は、LMPとHRC硬さとの相関を示したグラフであり、それぞれ、軟化抵抗に及ぼすCr,Moの影響を示したグラフである。(A), (b) is the graph which showed the correlation with LMP and HRC hardness, and is the graph which showed the influence of Cr and Mo which respectively have on softening resistance. (a)は試験用金型(パンチ)の概略形状を示す図であり、(b)は熱間鍛造の状況を示す図であり、(c)はパンチ先端付近の磨耗量の定義を説明するための図である。(A) is a figure which shows the schematic shape of a test metal mold | die (punch), (b) is a figure which shows the condition of hot forging, (c) demonstrates the definition of the amount of wear near punch tip. FIG.

Claims (8)

C:0.15〜0.55質量%、
Si:0.01〜2.0質量%、
Mn:0.01〜2.5質量%、
Cu:0.01〜2.0質量%、
Ni:0.01〜2.0質量%、
Cr:0.01〜2.5質量%、
Mo:0.01〜3.0質量%、及び、
V及びWからなる群から選ばれる少なくとも1種の総量:0.01〜1.0質量%を含有し、残部がFe及び不可避的不純物からなる型材用鋼であって、
1010℃〜1050℃で均熱した後、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上の冷却速度で150℃以下まで冷却し、次いで、550℃〜700℃の温度域で加熱した後の、室温におけるHRC硬さの最大値を与えるLMP(LMPmax)が17.66以上であることを特徴とする型材用鋼。
但し、
LMP=(TH+273)×(20+log(t))×0.001…(1)
THは、550℃〜700℃における加熱の保持温度[℃]、
tは、550℃〜700℃における加熱の保持時間[Hr]である。
C: 0.15-0.55 mass%,
Si: 0.01 to 2.0 mass%,
Mn: 0.01 to 2.5% by mass,
Cu: 0.01-2.0 mass%,
Ni: 0.01 to 2.0% by mass,
Cr: 0.01 to 2.5% by mass,
Mo: 0.01-3.0 mass%, and
A total amount of at least one selected from the group consisting of V and W: 0.01 to 1.0% by mass, the balance being steel for mold material composed of Fe and inevitable impurities,
After soaking at 1010 ° C. to 1050 ° C., it is cooled to 500 ° C. to 550 ° C. at a cooling rate of 200 ° C./min or more, subsequently cooled to 150 ° C. or less at a cooling rate of 100 ° C./min or more, and then 550 A steel for a mold material, characterized in that LMP (LMPmax) giving a maximum value of HRC hardness at room temperature after heating in a temperature range of from C to 700C is 17.66 or more.
However,
LMP = (TH + 273) × (20 + log (t)) × 0.001 (1)
TH is the heating holding temperature [° C.] at 550 ° C. to 700 ° C.,
t is the holding time [Hr] of heating at 550 ° C to 700 ° C.
更に、
Al:0.002〜0.5質量%を含有することを特徴とする請求項1に記載の型材用鋼。
Furthermore,
The steel for mold materials according to claim 1, comprising Al: 0.002 to 0.5 mass%.
更に、
Co:0.01〜2.0質量%を含有することを特徴とする請求項1又は2に記載の型材用鋼。
Furthermore,
Co: 0.01-2.0 mass% is contained, The steel for mold materials of Claim 1 or 2 characterized by the above-mentioned.
更に、
Nb:0.005〜0.5質量%、
Ta:0.005〜0.5質量%、
Ti:0.005〜0.5質量%、及び、
Zr:0.005〜0.5質量%からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項1から3のいずれかに記載の型材用鋼。
Furthermore,
Nb: 0.005 to 0.5 mass%,
Ta: 0.005 to 0.5 mass%,
Ti: 0.005 to 0.5 mass%, and
Zr: At least 1 sort (s) chosen from the group which consists of 0.005-0.5 mass% is contained, The steel for mold materials in any one of Claim 1 to 3 characterized by the above-mentioned.
更に、
B:0.0002〜0.02質量%を含有することを特徴とする請求項1から4のいずれかに記載の型材用鋼。
Furthermore,
B: 0.0002-0.02 mass% is contained, The steel for mold materials in any one of Claim 1 to 4 characterized by the above-mentioned.
更に、
S:0.01〜2.0質量%、
Ca:0.0005〜0.5質量%、
Se:0.005〜0.5質量%、
Te:0.005〜0.5質量%、
Bi:0.005〜0.5質量%、及び、
Pb:0.005〜0.5質量%からなる群から選ばれる少なくとも1種を含有することを特徴とする請求項1から5のいずれかに記載の型材用鋼。
Furthermore,
S: 0.01-2.0 mass%,
Ca: 0.0005 to 0.5 mass%,
Se: 0.005 to 0.5 mass%,
Te: 0.005 to 0.5 mass%,
Bi: 0.005 to 0.5 mass%, and
The steel for mold materials according to any one of claims 1 to 5, comprising at least one selected from the group consisting of Pb: 0.005 to 0.5 mass%.
Cr,Mo,V,W及びCoの総量が6質量%以下であることを特徴とする請求項1から6のいずれかに記載の型材用鋼。   The steel for mold materials according to any one of claims 1 to 6, wherein the total amount of Cr, Mo, V, W and Co is 6 mass% or less. 1010℃〜1050℃で均熱した後、200℃/分以上の冷却速度で500℃〜550℃まで冷却し、引き続き、100℃/分以上の冷却速度で150℃以下まで冷却し、次いで、550℃〜700℃の温度域で加熱した場合において、LMP=17であるときの室温におけるHRC硬さと、LMP=19であるときの室温におけるHRC硬さとの差が6以下であることを特徴とする請求項1から7のいずれかに記載の型材用鋼。   After soaking at 1010 ° C. to 1050 ° C., it is cooled to 500 ° C. to 550 ° C. at a cooling rate of 200 ° C./min or more, subsequently cooled to 150 ° C. or less at a cooling rate of 100 ° C./min or more, and then 550 The difference between the HRC hardness at room temperature when LMP = 17 and the HRC hardness at room temperature when LMP = 19 is 6 or less when heated in a temperature range of 750C to 700C. The steel for mold materials according to any one of claims 1 to 7.
JP2007001932A 2007-01-10 2007-01-10 Steel for die materials Pending JP2008169411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001932A JP2008169411A (en) 2007-01-10 2007-01-10 Steel for die materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001932A JP2008169411A (en) 2007-01-10 2007-01-10 Steel for die materials

Publications (1)

Publication Number Publication Date
JP2008169411A true JP2008169411A (en) 2008-07-24

Family

ID=39697787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001932A Pending JP2008169411A (en) 2007-01-10 2007-01-10 Steel for die materials

Country Status (1)

Country Link
JP (1) JP2008169411A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272851A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roller box
CN103272848A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roll shaft
CN105349915A (en) * 2015-12-18 2016-02-24 常熟市恒仕达电器有限公司 Freezer
CN106191692A (en) * 2016-07-11 2016-12-07 吴用镜 One creeps into drilling rod alloy steel material
JP2017043809A (en) * 2015-08-27 2017-03-02 大同特殊鋼株式会社 Steel for die-casting die
WO2017038879A1 (en) * 2015-09-02 2017-03-09 大同特殊鋼株式会社 Steel for molds and molding tool
JP2017053023A (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for mold and molding tool
WO2017043446A1 (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for molds and molding tool
CN108085587A (en) * 2016-11-21 2018-05-29 斗山重工业建设有限公司 The outstanding long-life die casting hot die steel of high-temperature heat-conductive and its manufacturing method
CN108220815A (en) * 2017-12-19 2018-06-29 钢铁研究总院 Hot forging high heat-intensity, high impact toughness hot die steel and preparation method
CN110295332A (en) * 2019-07-05 2019-10-01 天津钢研海德科技有限公司 A kind of pre- hard mold steel of the high mirror surface of high tenacity and its manufacturing process
CN110592491A (en) * 2019-10-12 2019-12-20 东北大学 High-wear-resistance martensite/austenite dual-phase wear-resistant steel plate and manufacturing method thereof
JP2021011618A (en) * 2019-07-08 2021-02-04 山陽特殊製鋼株式会社 Hot work tool steel having excellent thermal conductivity
JP2021017623A (en) * 2019-07-19 2021-02-15 山陽特殊製鋼株式会社 Tool steel for hot work, excellent in thermal conductivity
JP2021073376A (en) * 2012-05-07 2021-05-13 ヴァルス ベジッツ ゲーエムベーハー Low temperature hardenable steels with excellent machinability
KR20240027759A (en) 2021-08-10 2024-03-04 닛폰세이테츠 가부시키가이샤 steel
KR20240075857A (en) 2021-09-24 2024-05-29 닛폰세이테츠 가부시키가이샤 steel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021073376A (en) * 2012-05-07 2021-05-13 ヴァルス ベジッツ ゲーエムベーハー Low temperature hardenable steels with excellent machinability
CN103272848A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roll shaft
CN103272851A (en) * 2013-05-20 2013-09-04 浙江朋诚科技有限公司 High-speed mill roller box
JP2017043809A (en) * 2015-08-27 2017-03-02 大同特殊鋼株式会社 Steel for die-casting die
WO2017038879A1 (en) * 2015-09-02 2017-03-09 大同特殊鋼株式会社 Steel for molds and molding tool
JP2018024931A (en) * 2015-09-02 2018-02-15 大同特殊鋼株式会社 Steel for mold and molding tool
JP2017053023A (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for mold and molding tool
WO2017043446A1 (en) * 2015-09-11 2017-03-16 大同特殊鋼株式会社 Steel for molds and molding tool
KR20180034656A (en) 2015-09-11 2018-04-04 다이도 토쿠슈코 카부시키가이샤 Steel for molds and molding tool
EP3348660A4 (en) * 2015-09-11 2019-03-27 Daido Steel Co.,Ltd. Steel for molds and molding tool
US11141778B2 (en) 2015-09-11 2021-10-12 Daido Steel Co., Ltd. Steel for molds and molding tool
KR102054803B1 (en) * 2015-09-11 2019-12-11 다이도 토쿠슈코 카부시키가이샤 Steel for molds and molding tool
CN105349915A (en) * 2015-12-18 2016-02-24 常熟市恒仕达电器有限公司 Freezer
CN106191692A (en) * 2016-07-11 2016-12-07 吴用镜 One creeps into drilling rod alloy steel material
CN108085587A (en) * 2016-11-21 2018-05-29 斗山重工业建设有限公司 The outstanding long-life die casting hot die steel of high-temperature heat-conductive and its manufacturing method
JP2018083980A (en) * 2016-11-21 2018-05-31 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Hot die steel used for die casting having an excellent thermal conductivity at high temperature and a long life, and manufacturing method thereof
CN108220815A (en) * 2017-12-19 2018-06-29 钢铁研究总院 Hot forging high heat-intensity, high impact toughness hot die steel and preparation method
CN108220815B (en) * 2017-12-19 2020-04-24 钢铁研究总院 Hot work die steel with high heat resistance and high impact toughness for hot forging and preparation method thereof
CN110295332B (en) * 2019-07-05 2020-11-10 天津钢研海德科技有限公司 High-toughness high-mirror-surface pre-hardened die steel and manufacturing process thereof
CN110295332A (en) * 2019-07-05 2019-10-01 天津钢研海德科技有限公司 A kind of pre- hard mold steel of the high mirror surface of high tenacity and its manufacturing process
JP2021011618A (en) * 2019-07-08 2021-02-04 山陽特殊製鋼株式会社 Hot work tool steel having excellent thermal conductivity
JP2021017623A (en) * 2019-07-19 2021-02-15 山陽特殊製鋼株式会社 Tool steel for hot work, excellent in thermal conductivity
CN110592491A (en) * 2019-10-12 2019-12-20 东北大学 High-wear-resistance martensite/austenite dual-phase wear-resistant steel plate and manufacturing method thereof
KR20240027759A (en) 2021-08-10 2024-03-04 닛폰세이테츠 가부시키가이샤 steel
KR20240075857A (en) 2021-09-24 2024-05-29 닛폰세이테츠 가부시키가이샤 steel

Similar Documents

Publication Publication Date Title
JP2008169411A (en) Steel for die materials
JP5515442B2 (en) Hot tool steel and steel products using the same
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
JP2011001572A (en) Tool steel for hot work and steel product using the same
KR102054803B1 (en) Steel for molds and molding tool
JP2013213255A (en) Hot working die steel
JP5076683B2 (en) High toughness high speed tool steel
JP2017043814A (en) Die steel and die
JP2009242820A (en) Steel, steel for die and die using the same
JP6410515B2 (en) Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same
CN102884212A (en) Case hardened steel and method for producing the same
JP2008121032A (en) Die steel superior in spheroidizing annealing property and hardenability
JP2007009321A (en) Steel for plastic molding die
JP5988732B2 (en) Cold work tool steel with high hardness and toughness
JP2005325407A (en) Cold working tool steel
JP2015193867A (en) high toughness hot work tool steel
JP5029942B2 (en) Hot work tool steel with excellent toughness
JP2009242819A (en) Steel, steel for die and die using the same
KR102012950B1 (en) Hot-work tool steel and a process for making a hot-work tool steel
JP2009097047A (en) Steel for plastic molding mold, and plastic molding mold
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JP2014025103A (en) Hot tool steel
KR100368540B1 (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP2005336553A (en) Hot tool steel
JP2008202078A (en) Hot-working die steel