JP6410515B2 - Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same - Google Patents
Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same Download PDFInfo
- Publication number
- JP6410515B2 JP6410515B2 JP2014161975A JP2014161975A JP6410515B2 JP 6410515 B2 JP6410515 B2 JP 6410515B2 JP 2014161975 A JP2014161975 A JP 2014161975A JP 2014161975 A JP2014161975 A JP 2014161975A JP 6410515 B2 JP6410515 B2 JP 6410515B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- tool steel
- speed tool
- wear resistance
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 35
- 229910001315 Tool steel Inorganic materials 0.000 title claims description 27
- 150000004767 nitrides Chemical class 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002244 precipitate Substances 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 9
- 238000005496 tempering Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 238000010791 quenching Methods 0.000 claims description 7
- 230000000171 quenching effect Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 16
- 238000005520 cutting process Methods 0.000 description 15
- 150000001247 metal acetylides Chemical class 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910000997 High-speed steel Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 229910052720 vanadium Inorganic materials 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、切削工具や金型等に使用される粉末高速度工具鋼およびその製造方法に関する。 The present invention relates to powder high-speed tool steel used for cutting tools, dies, and the like, and a method for producing the same.
従来、粉末高速度工具鋼は、微細な炭化物が析出するため溶製高速度工具鋼よりも靱性に優れる特長を持つ。また、更にNを添加し、炭窒化物を析出させ、粉末高速度工具鋼の緒性能(耐焼付き性)を更に向上させた、例えば特開昭61−6255号公報(特許文献1)に開示されているように、化学組成が質量%で、C:次式を満足する量(%)、Ceq+0.15≦C+12/14N≦Ceq+0.35、但し、Ceq=0.19+0.017(W+2Mo)+0.22V、上式において、N、W、Mo及びVは夫々鋼中の含有量(%)、Cr:3〜5%、Mo:8〜12%、W:8〜14%、V:4〜6%、Co:5〜15%、N:0.2〜1.2%、残部実質的にFeからなり、かつ(W+2Mo)が27〜32%である高硬度高靱性窒化粉末ハイスが提案されている。 Conventionally, powder high-speed tool steel has a feature that it has better toughness than molten high-speed tool steel because fine carbides precipitate. Further, N is further added to precipitate carbonitride to further improve the performance (seizure resistance) of the powder high-speed tool steel, for example, disclosed in Japanese Patent Application Laid-Open No. 61-6255 (Patent Document 1). As shown, the chemical composition is mass%, C: an amount satisfying the following formula (%), Ceq + 0.15 ≦ C + 12 / 14N ≦ Ceq + 0.35, where Ceq = 0.19 + 0.017 (W + 2Mo) +0 .22V, in the above formula, N, W, Mo and V are the contents (%) in steel, Cr: 3-5%, Mo: 8-12%, W: 8-14%, V: 4- 6%, Co: 5 to 15%, N: 0.2 to 1.2%, the balance being substantially Fe, and (W + 2Mo) of 27 to 32% is proposed. ing.
また、特開2013−60617号公報(特許文献2)に開示されているように、質量%で、C:0.85〜1.20%、Si≦0.5%、Mn:≦0.5%、Cr:3.8〜6.0%、Mo:5.6〜8.0%、W:5.1〜8.0%、V:3.0〜6.0%、N:0.4〜1.5%を含有し、これらはC+N:1.25〜2.50%、Mo+W/2:8.3〜11.0%、および4.7(Mo+W/2)+1.4N−Cr−2.1Mn:≧32.5%を満足し、残部がFeおよび不可避不純物からなる鋼合金で、硬さが65HRC以上であることを特徴とする高靱性であり、耐食性、耐焼付き性に優れた窒化粉末高速度鋼が提案されている。 Further, as disclosed in JP2013-60617A (Patent Document 2), in mass%, C: 0.85 to 1.20%, Si ≦ 0.5%, Mn: ≦ 0.5 %, Cr: 3.8 to 6.0%, Mo: 5.6 to 8.0%, W: 5.1 to 8.0%, V: 3.0 to 6.0%, N: 0.00. 4 to 1.5%, these are C + N: 1.25 to 2.50%, Mo + W / 2: 8.3 to 11.0%, and 4.7 (Mo + W / 2) + 1.4N-Cr -2.1Mn: A steel alloy that satisfies ≧ 32.5%, the balance being Fe and inevitable impurities, and has high toughness characterized by a hardness of 65 HRC or more, and excellent in corrosion resistance and seizure resistance Nitride powder high speed steel has been proposed.
一方で、近年の切削工具に要求されるより高度な特性(例えば高速で切削を行う場合の特性)が求められた場合には、耐摩耗性や靱性が依然として不十分であり、更なる改善が求められている。上記耐摩耗性は一般的に組織中に析出する硬質の炭化物が大きいほど良好であるため、微細炭化物を有する粉末高速度工具鋼は、溶製高速度工具鋼よりも耐摩耗性に劣る場合があり、特にホブ、ブローチなどの高切削速度が要求される工具の適用時に寿命差が顕著となる。 On the other hand, when more advanced characteristics required for cutting tools in recent years (for example, characteristics when cutting at high speed) are required, wear resistance and toughness are still insufficient, and further improvements are possible. It has been demanded. Since the above-mentioned wear resistance is generally better as the hard carbide precipitated in the structure is larger, the powder high-speed tool steel having fine carbide may be inferior in wear resistance to the molten high-speed tool steel. In particular, the difference in the life becomes significant when a tool requiring a high cutting speed such as a hob or broach is applied.
また、窒化粉末高速度工具鋼は炭窒化物析出による耐焼付き性改善効果により、高速切削工具適用時の寿命は粉末高速度工具鋼よりも改善は見られるが、溶製高速度工具鋼よりも依然寿命は劣る。さらに、粉末高速度工具鋼の耐摩耗性改善方法として、電気製鋼、第58巻 第4号 251〜259頁 常陸美朝、松田幸紀著(非特許文献1)に、組織中の炭化物を多量に析出させたり大きくすることが報告されているが、過度に行うと靱性が低下し、耐チッピング性の観点から課題がある。 Nitride powder high-speed tool steel has an effect of improving seizure resistance due to carbonitride precipitation, and the life when applying a high-speed cutting tool is improved compared to powder high-speed tool steel. Still life is inferior. Furthermore, as a method for improving the wear resistance of powder high-speed tool steel, Electric Steel Manufacturing, Vol. 58, No. 4, pages 251 to 259, Hitachi Mina, Matsuda Yuki (non-patent document 1), a large amount of carbide in the structure. It has been reported that it is precipitated or increased, but if it is excessively performed, the toughness is lowered, and there is a problem from the viewpoint of chipping resistance.
上述した、特許文献1は成分(C,N,Cr,Mo,W,V)制御かつ窒素を含有させ炭窒化物を析出させることにより耐焼付き性を改善しているが、炭窒化物は微細のため高速切削適用時の耐摩耗性に劣る。また、特許文献2は成分制御により耐食性、耐焼付き性に優れた高靱性窒化粉末高速度鋼を得ているが、窒化物の平均粒径が1μm以下と微細であるため高速切削工具適用時に耐摩耗性に劣る。また、非特許文献1は粉末高速度鋼の炭化物粗大化による耐摩耗性、靱性の変化を検討している。ところが炭化物粗大化により耐摩耗性が向上するが、しかし靱性は低下すると言う問題がある。 As described above, Patent Document 1 improves the seizure resistance by controlling components (C, N, Cr, Mo, W, V) and containing nitrogen to precipitate carbonitride, but the carbonitride is fine. Therefore, it is inferior in wear resistance when high-speed cutting is applied. Patent Document 2 obtains a high-toughness nitrided powder high-speed steel with excellent corrosion resistance and seizure resistance by controlling the components. However, since the average grain size of the nitride is as fine as 1 μm or less, it is resistant to high-speed cutting tools. Inferior to wear. Non-Patent Document 1 examines changes in wear resistance and toughness due to coarsening of carbide in powder high-speed steel. However, although the wear resistance is improved by the coarsening of the carbide, there is a problem that the toughness is lowered.
上述したような問題を解消するために、鋭意開発を進めた結果、高速切削工具適用時に優れた耐摩耗性、耐焼付き性を示しつつ、チッピングを発生しない靱性を備えた、窒化粉末高速度鋼を提供することである。 As a result of diligent development to solve the above-mentioned problems, nitride powder high-speed steel with toughness that does not cause chipping while exhibiting excellent wear resistance and seizure resistance when applying high-speed cutting tools Is to provide.
その発明の要旨とするところは、
(1)質量%で、C:0.8〜2.5%、Si:0.1〜1.0%、Mn:0.1〜1.0%、Cr:3.0〜5.0%、Mo:2.0〜8.0%、W:3.0〜14.0%、V:2.0〜10.0%、Co:0〜10%、N:0.3〜1.5%を含有し、かつCeq値:0.1〜0.8、残部Feおよび不可避的不純物からなる焼入焼戻しされた状態の窒化粉末高速度工具鋼であって、金属組織中の炭化物は平均粒径が4〜20μmであり、さらに、炭窒化物の平均粒径が2μm以下の範囲にあり、析出物の平均粒子間距離が10μm以下であることを特徴とする耐摩耗性に優れた窒化粉末高速度工具鋼。
但し、Ceq=(C%+N%)−{0.19+0.017(W%+2Mo%)+0.22V%}
The gist of the invention is that
(1) By mass%, C: 0.8 to 2.5%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.0%, Cr: 3.0 to 5.0% , Mo: 2.0 to 8.0%, W: 3.0 to 14.0%, V: 2.0 to 10.0%, Co: 0 to 10%, N: 0.3 to 1.5 %, And a Ceq value: 0.1 to 0.8, a nitrided powder high-speed tool steel in a quenched and tempered state consisting of Fe and unavoidable impurities, wherein the carbide in the metal structure has an average grain size A nitride powder having excellent wear resistance, characterized in that the diameter is 4 to 20 μm, the average particle size of carbonitride is in the range of 2 μm or less, and the average interparticle distance of precipitates is 10 μm or less. High speed tool steel.
However, Ceq = (C% + N%) − {0.19 + 0.017 (W% + 2Mo%) + 0.22V%}
(2)前記(1)に記載の化学成分とCeq値を有する窒化粉末高速度工具鋼用の鋼粉末を、1200〜1300℃の温度域でHIPで固化成形を行った後、熱間で塑性加工をし、その後、焼入、焼戻して金属組織中の炭化物を平均粒径で4〜20μm、さらに、炭窒化物の平均粒径を2μm以下の範囲とし、析出物の平均粒子間距離を10μm以下とすることを特徴とする耐摩耗性に優れた窒化粉末高速度工具鋼の製造方法。 (2) The steel powder for nitrided high-speed tool steel having the chemical composition and Ceq value described in (1 ) above is solidified with HIP in a temperature range of 1200 to 1300 ° C., and then hot plastic After processing, quenching and tempering, the carbide in the metal structure has an average particle size of 4 to 20 μm, the average particle size of carbonitride is 2 μm or less, and the average interparticle distance of the precipitate is 10 μm. A method for producing a nitrided powder high-speed tool steel excellent in wear resistance, characterized by:
(3)前記(1)に記載の化学成分とCeq値を有する窒化粉末高速度工具鋼用の鋼粉末を、1100〜1200℃未満の温度域でHIPで固化成形を行った後、1200〜1300℃の温度域で2〜6時間の高温保持熱処理をした後、熱間で塑性加工をし、その後、焼入、焼戻して金属組織中の炭化物を平均粒径で4〜20μm、さらに、炭窒化物の平均粒径を2μm以下の範囲とし、析出物の平均粒子間距離を10μm以下とすることを特徴とする耐摩耗性に優れた窒化粉末高速度工具鋼の製造方法にある。 (3) After solidifying and forming steel powder for nitride powder high-speed tool steel having the chemical composition and Ceq value described in (1) above in a temperature range of 1100 to 1200 ° C., 1200 to 1300 After high-temperature holding heat treatment for 2 to 6 hours in the temperature range of ° C., plastic processing is performed hot, and then quenching and tempering, the carbide in the metal structure has an average particle size of 4 to 20 μm, and carbonitriding The average particle size of the product is in the range of 2 μm or less, and the average interparticle distance of the precipitate is 10 μm or less.
以上述べたように、本発明によりホブ・ブローチなど高速切削用途時の耐摩耗性および耐焼付き性を示しつつ、チッピングを発生しない靱性を備えた、窒化粉末高速度鋼、およびこうした高速度工具鋼の製造方法を提供することが出来る。 As described above, according to the present invention, a nitrided powder high-speed steel that exhibits wear resistance and seizure resistance at the time of high-speed cutting applications such as hobbing and broaching, and has toughness that does not cause chipping, and such high-speed tool steel. The manufacturing method can be provided.
以下、本発明について詳細に説明する。
耐摩耗性を改善するには、熱処理で高温保持を行い硬質の析出物(窒化粉末高速度工具鋼では、炭化物、炭窒化物が析出)を粗大化させることが有効であるが、熱処理等で析出物を大きくすると析出物が互いに凝集して成長していくため、耐摩耗性は向上するが、析出物の個数が減少し、析出物同士の距離、すなわち、粒子間距離が長くなる。析出物粒子間距離が長くなると、高速切削工具母材として使用時に析出物と相手材よりも、母相と相手材が接触をする機会が多くなり、素地ごと脱落、すなわち、チッピングが発生し、工具寿命が短くなってしまう。また、析出物の粗大化過程で微細析出物が消失すると、2μm以下の微細な析出物は、焼入れ焼戻し時に結晶粒の粗大化をピン止めして抑制する効果があるため、焼入れ焼戻し時に結晶粒が粗大化しやすく靱性の低下が起こると考えた。本発明では、硬質析出物径、析出物粒子間距離を制御した鋼を得ることを図った。
Hereinafter, the present invention will be described in detail.
In order to improve the wear resistance, it is effective to keep high temperature by heat treatment and coarsen hard precipitates (carbide and carbonitride precipitate in nitride powder high-speed tool steel). When the precipitates are enlarged, the precipitates aggregate and grow, so that the wear resistance is improved. However, the number of precipitates decreases, and the distance between the precipitates, that is, the distance between the particles increases. When the distance between the precipitate particles becomes long, the use of the high-speed cutting tool base material as a base material increases the chance of contact between the base phase and the counterpart material, and the base material falls off, that is, chipping occurs. Tool life is shortened. In addition, when fine precipitates disappear during the coarsening process of precipitates, fine precipitates of 2 μm or less have the effect of pinning and suppressing the coarsening of crystal grains during quenching and tempering. Was thought to be coarse and easy to decrease toughness. In the present invention, an attempt was made to obtain steel in which the diameter of the hard precipitate and the distance between the precipitate particles were controlled.
窒化粉末高速度工具鋼は、炭化物、炭窒化物の2種類の析出物が析出するが、通常は炭化物および炭窒化物の平均粒径は共に約2μm以下である。本発明ではそれぞれの析出物サイズの制御を行い、炭化物は4〜20μmと粗大化させる一方で、炭窒化物は2μm以下を微細に保ち、粗大炭化物と微細炭窒化物が混在する組織とすることで、粗大化した炭化物は耐摩耗性向上に寄与し、微細炭窒化物は結晶粒ピン止め効果による靱性向上および析出物粒子間距離を短くし、工具使用時の母相との接触抑制効果により靱性(耐チッピング性)が保たれ、結果として耐摩耗性と靱性(耐チッピング性)に優れた鋼が得られることを見出した。 Nitride powder high-speed tool steel has two types of precipitates, carbide and carbonitride, and the average particle size of carbide and carbonitride is usually about 2 μm or less. In the present invention, the size of each precipitate is controlled, and the carbide is coarsened to 4 to 20 μm, while the carbonitride is kept fine at 2 μm or less, and the coarse carbide and the fine carbonitride are mixed. The coarse carbide contributes to the improvement of wear resistance, and the fine carbonitride improves the toughness by the grain pinning effect and shortens the distance between the precipitate particles, and the effect of suppressing contact with the parent phase when using the tool. It was found that toughness (chipping resistance) was maintained, and as a result, a steel excellent in wear resistance and toughness (chipping resistance) was obtained.
炭化物と炭窒化物サイズをそれぞれ上記範囲に制御する方法としては、HIP成形温度を1200℃〜1300℃、好ましくは1220℃〜1260℃とする(通常の粉末ハイスのHIP成形温度は1100〜1150℃)。もしくはHIP固化成形体に対して1200〜1300℃、好ましくは1220℃〜1260℃、2〜6時間程度の高温保持熱処理(ソーキング)を行う。上記処理で炭化物、炭窒化物が制御できる理由としては、炭化物と炭窒化物では粗大化開始温度の差があり(炭窒化物は炭化物より安定で粗大化開始温度が高い)、1200℃から1300℃の温度域で保持した場合、炭化物は優先して粗大化(成長)、炭窒化物は殆ど粗大化(成長)せず微細なままに保たれる。本発明では本現象を利用して硬質析出物の制御を行った。 As a method for controlling the carbide and carbonitride sizes within the above ranges, the HIP molding temperature is 1200 ° C. to 1300 ° C., preferably 1220 ° C. to 1260 ° C. (the HIP molding temperature of normal powder high speed is 1100 to 1150 ° C. ). Alternatively, high-temperature holding heat treatment (soaking) is performed on the HIP solidified molded body at 1200 to 1300 ° C., preferably 1220 to 1260 ° C. for about 2 to 6 hours. The reason why carbides and carbonitrides can be controlled by the above treatment is that there is a difference in coarsening start temperature between carbides and carbonitrides (carbonitrides are more stable than carbides and have high coarsening start temperatures) from 1200 ° C. to 1300 When kept in the temperature range of ° C., the carbide is preferentially coarsened (grown), and the carbonitride is hardly coarsened (grown) and kept fine. In the present invention, this phenomenon is used to control hard precipitates.
以下、本発明に係る限定理由について説明する。
C:0.8〜2.5%
Cは、硬さ、焼入性を得るために必要な元素で、炭化物の析出に必須である。しかし、0.8%未満ではその効果が十分でない。また、2.5%を超えると、粗大すぎる炭化物を形成し靱性を悪化させることから、その範囲を0.8〜2.5%とした。
Hereinafter, the reason for limitation according to the present invention will be described.
C: 0.8 to 2.5%
C is an element necessary for obtaining hardness and hardenability, and is essential for precipitation of carbides. However, if it is less than 0.8%, the effect is not sufficient. On the other hand, if it exceeds 2.5%, excessively coarse carbides are formed and the toughness is deteriorated, so the range is made 0.8 to 2.5%.
Si:0.1〜1.0%
Siは、脱酸剤であり、基地の硬さを得るために必要な元素である。しかし、0.1%未満では、その効果が十分に得られず、1.0%を超えると靱性と加工性が悪化することから、その範囲を0.1〜1.0%とした。
Si: 0.1 to 1.0%
Si is a deoxidizer and is an element necessary for obtaining the hardness of the matrix. However, if it is less than 0.1%, the effect is not sufficiently obtained, and if it exceeds 1.0%, toughness and workability deteriorate, so the range was made 0.1 to 1.0%.
Mn:0.1〜1.0%
Mnは、脱酸剤であり、焼入性を得るために必要な元素である。しかし、0.1%未満では、その効果が十分に得られず、1.0%を超えるとマトリックスを脆化させ靱性、熱間加工性が悪化することから、その範囲を0.1〜1.0%とした。
Mn: 0.1 to 1.0%
Mn is a deoxidizer and is an element necessary for obtaining hardenability. However, if the content is less than 0.1%, the effect cannot be obtained sufficiently. If the content exceeds 1.0%, the matrix becomes brittle and the toughness and hot workability deteriorate. 0.0%.
Cr:3.0〜5.0%
Crは、耐焼付き性、焼入性を得るために必要な元素である。しかし、3.0%未満ではその効果が十分でない。また、5.0%を超えると靱性、熱間加工性が悪化することから、その範囲を3.0〜5.0%とした。
Cr: 3.0-5.0%
Cr is an element necessary for obtaining seizure resistance and hardenability. However, if it is less than 3.0%, the effect is not sufficient. Moreover, since toughness and hot workability will deteriorate when it exceeds 5.0%, the range was made 3.0 to 5.0%.
Mo:2.0〜8.0%
Moは、炭化物を形成し、焼入性、硬さおよび耐摩耗性を与え、かつ焼戻し軟化抵抗性を得るために必要な元素である。しかし、2.0%未満ではその効果が十分でない。また、8.0%を超えると靱性、熱間加工性が悪化することから、その範囲を2.0〜8.0%とした。
Mo: 2.0-8.0%
Mo is an element necessary for forming carbide, giving hardenability, hardness and wear resistance, and obtaining temper softening resistance. However, if it is less than 2.0%, the effect is not sufficient. Moreover, since toughness and hot workability will deteriorate when it exceeds 8.0%, the range was made 2.0 to 8.0%.
W:3.0〜14.0%
Wは、Moと同様に、炭化物を形成し、焼入性、硬さおよび耐摩耗性を与え、かつ焼戻し軟化抵抗性を得るために必要な元素である。しかし、3.0%未満ではその効果が十分でない。また、14.0%を超えると靱性、熱間加工性が悪化することから、その範囲を3.0〜14.0%とした。
W: 3.0 to 14.0%
W, like Mo, is an element necessary for forming carbide, imparting hardenability, hardness and wear resistance, and obtaining temper softening resistance. However, if it is less than 3.0%, the effect is not sufficient. Further, if it exceeds 14.0%, the toughness and hot workability deteriorate, so the range was made 3.0 to 14.0%.
V:2.0〜10.0%
Vは、硬さ、耐焼付き性および靱性を得るために必要な元素であり、VNもしくはVCNとなり、炭窒化物を析出させ耐摩耗性、耐焼付き性を向上させる。しかし、2.0%未満ではその効果が十分でない。また、10.0%を超えると靱性、被削性が悪化することから、その範囲を2.0〜10.0%とした。
V: 2.0 to 10.0%
V is an element necessary for obtaining hardness, seizure resistance and toughness, and becomes VN or VCN, and precipitates carbonitride to improve wear resistance and seizure resistance. However, if it is less than 2.0%, the effect is not sufficient. Moreover, since toughness and a machinability will deteriorate when it exceeds 10.0%, the range was made into 2.0 to 10.0%.
Co:0〜10.0%
Coは、耐熱性、耐摩耗性、耐焼戻し軟化抵抗性を得るために必要な元素である。本元素を含まなくても本発明の効果は得られるが、高速切削用途の工具鋼では、使用時の温度上昇から耐熱性、耐焼戻し軟化抵抗性が特に重要となるため、含有することが好ましい。しかし、10.0%を超える添加は炭化物の偏析や脱炭を促進することから、その範囲を0〜10.0%とした。
Co: 0 to 10.0%
Co is an element necessary for obtaining heat resistance, wear resistance, and tempering softening resistance. The effect of the present invention can be obtained even if this element is not included, but in tool steel for high-speed cutting applications, heat resistance and resistance to tempering softening are particularly important due to temperature rise during use, so it is preferable to contain it. . However, addition exceeding 10.0% promotes segregation and decarburization of carbides, so the range was made 0 to 10.0%.
N:0.3〜1.5%
Nは、炭窒化物を析出させるために必須の元素である。NはVと結合してバナジウム系窒化物を形成し、硬さ、耐焼付き性を向上させる。しかし、0.3%未満ではその効果が十分でない。また、1.5%を超えると靱性が低下するので、その範囲を0.3〜1.5%とした。好ましくは0.4〜1.0%とする。
N: 0.3 to 1.5%
N is an essential element for precipitating carbonitride. N combines with V to form a vanadium nitride, and improves hardness and seizure resistance. However, if it is less than 0.3%, the effect is not sufficient. Moreover, since toughness will fall when it exceeds 1.5%, the range was made into 0.3 to 1.5%. Preferably it is 0.4 to 1.0%.
Ceq値を0.1〜0.8
ただし、Ceq=(C%+N%)−{0.19+0.017(W%+2Mo%)+0.22V%}
Ceq値は、炭素および窒素量と合金元素添加量のバランスを示す値で、炭化物、炭窒化物を析出させ、硬さ、焼入れ性、耐焼付き性を確保するために制御する必要がある。しかし、0.1未満では効果が十分でなく、0.8を超えると靱性が低下するので、その範囲を0.1〜0.8とした。好ましくは0.2〜0.6とする。
Ceq value of 0.1 to 0.8
However, Ceq = (C% + N%) − {0.19 + 0.017 (W% + 2Mo%) + 0.22V%}
The Ceq value is a value indicating the balance between the amount of carbon and nitrogen and the amount of alloy element added, and needs to be controlled in order to precipitate carbide and carbonitride and ensure hardness, hardenability and seizure resistance. However, if it is less than 0.1, the effect is not sufficient, and if it exceeds 0.8, the toughness decreases, so the range was made 0.1 to 0.8. Preferably it is set to 0.2-0.6.
炭化物の平均粒径:4〜20μm
炭化物の平均粒径は、耐摩耗性を得るために必要な条件である。しかし、4μm未満では効果が十分でなく、20μmを超えると靱性が低下し、チッピングが発生するので、その範囲を4〜20μmとする。好ましくは5〜15μmとする。
Average particle size of carbide: 4 to 20 μm
The average particle size of the carbide is a necessary condition for obtaining wear resistance. However, if it is less than 4 μm, the effect is not sufficient, and if it exceeds 20 μm, the toughness decreases and chipping occurs, so the range is made 4 to 20 μm. Preferably it is 5-15 micrometers.
炭窒化物の平均粒径:2μm以下
炭窒化物の平均粒径は、結晶粒を微細に保ち靱性を確保するために必要な条件である。しかし、2μmを超えると焼入れ焼戻し時に結晶粒が粗大化し靱性が低下する。したがって、2μm以下とした。好ましくは1.5μm以下とする。
Average particle size of carbonitride: 2 μm or less The average particle size of carbonitride is a necessary condition for keeping crystal grains fine and ensuring toughness. However, if it exceeds 2 μm, the crystal grains become coarse during quenching and tempering, and the toughness decreases. Accordingly, the thickness is set to 2 μm or less. Preferably, it is 1.5 μm or less.
析出物の粒子間距離:10μm以下
析出物の粒子間距離は、10μmを超えると析出物同士の距離が長くなることにより工具使用の際に母相に直接接触する機会が多くなり、素地が抉られ易くチッピングが発生することから、その上限を10μmとした。好ましくは5μmとする。
Distance between particles of precipitates: 10 μm or less When the distance between particles of precipitates exceeds 10 μm, the distance between the precipitates becomes longer, so that there is a greater chance of direct contact with the parent phase when using the tool. Since the chipping easily occurs, the upper limit is set to 10 μm. Preferably, it is 5 μm.
以下、本発明について実施例によって具体的に説明する。
表1の窒素以外の成分組成の金属粉末をガスアトマイズ法で作製し、500μm以下の篩目にて分級し、窒素雰囲気中で加熱保持し窒素を含有させる。この合金粉末をHIP条件にて焼結し、その後、大気炉で保持熱処理を行ったものと、HIP成型ままの固化成形体を作製した。それを約1075℃に加熱して30mm径に鍛造加工した後1190℃焼入れてから560℃で3回焼き戻し処理を行った。この焼入れ焼戻しした状態の鋼に対して以下の調査を行った。耐摩耗性、靱性の評価は、上記の熱処理品をホブへ加工し、このホブを使って切削加工を施すことにより評価した。
Hereinafter, the present invention will be specifically described with reference to examples.
A metal powder having a component composition other than nitrogen shown in Table 1 is prepared by a gas atomization method, classified by a sieve having a size of 500 μm or less, and heated and held in a nitrogen atmosphere to contain nitrogen. This alloy powder was sintered under HIP conditions, and thereafter subjected to holding heat treatment in an atmospheric furnace, and a solidified molded body as it was in HIP molding was produced. It was heated to about 1075 ° C. and forged to a diameter of 30 mm, quenched at 1190 ° C., and then tempered three times at 560 ° C. The following investigation was performed on the quenched and tempered steel. The evaluation of wear resistance and toughness was performed by processing the heat-treated product into a hob and performing cutting using the hob.
耐摩耗性、靱性は、被削材としてSCM415を用い、乾式で1分当たりの切削速度が300mの切削速度で1時間切削した時の摩耗量により評価した。汎用窒化粉末高速度工具鋼(表No.10)を1として摩耗量を比較を行い耐摩耗性を評価した。また、その時のチッピングの有無で靱性を評価した。その結果を表1に示す。 The wear resistance and toughness were evaluated based on the amount of wear when SCM415 was used as a work material and the cutting speed per minute was 300 m at a cutting speed of 1 meter per minute. A general-purpose nitride powder high-speed tool steel (Table No. 10) was set to 1, and the wear amount was compared to evaluate the wear resistance. Further, the toughness was evaluated by the presence or absence of chipping at that time. The results are shown in Table 1.
組織中の析出物は、縦20mm、横20mm、長さ10mmの角棒を切出し、湿式研磨、SEM観察を行い、組織を1000倍の組成像写真を基に、100μm2 の範囲内に存在する炭化物、炭窒化物を画像解析ソフトを用いて、それぞれの平均粒径、析出物の粒子間距離を算出した。その結果を表1に示す。 Precipitates in the structure are 20 mm in length, 20 mm in width, 10 mm in length, cut out a square bar, wet-polished, and observed by SEM, and the structure is present in a range of 100 μm 2 based on a 1000 times composition image photograph. The average particle diameter of each carbide and carbonitride was calculated using image analysis software, and the interparticle distance between the precipitates. The results are shown in Table 1.
表1に示すように、比較例No.10は、成分組成が汎用窒化粉末高速度鋼であり、炭化物の平均粒径が小さいために耐摩耗性が劣る。比較例No.11は、成分組成においてC、Cr、V含有量が高いために靱性が低下し、かつ炭化物の平均粒径、および炭窒化物の平均粒径が大きく、析出物の粒子間距離が長いために、チッピングが発生する。比較例No.12は、成分組成においてSi含有量が高く、W、V含有量が低く、Ceq値が大きく、かつ炭化物の平均粒径が小さいために耐摩耗性が劣る。 As shown in Table 1, Comparative Example No. No. 10 is a general-purpose nitrided powder high-speed steel having a component composition that is inferior in wear resistance due to the small average particle size of carbides. Comparative Example No. No. 11 has a high C, Cr, and V content in the component composition, resulting in low toughness, a large average particle size of carbides, and a large average particle size of carbonitrides, and a long interparticle distance between precipitates. Chipping occurs. Comparative Example No. No. 12 has a high Si content, a low W and V content, a large Ceq value, and a small average particle size of carbides, resulting in poor wear resistance.
比較例No.13は、成分組成においてC、Ceq値が低く、Mnが高く、かつ炭化物の平均粒径が小さいために耐摩耗性が劣る。比較例No.14は、成分組成においてC,Mo、W,Co、N含有量が高く、Ceq値が大きく、かつ炭化物の平均粒径が20μm以上と大きいために、靱性が劣り、また炭窒化物の平均粒径が大きく、析出物の粒子間距離が長いためにチッピングが発生した。比較例No.15は、成分組成においてCr、Mo、N含有量が低く、Ceq値が小さく、かつ炭化物の平均粒径が小さいために、耐摩耗性が劣る。 Comparative Example No. No. 13 has a low C and Ceq value in the component composition, a high Mn, and a small average particle size of the carbide, so that the wear resistance is inferior. Comparative Example No. No. 14 has a high C, Mo, W, Co, and N content in the component composition, a large Ceq value, and a large average particle size of carbide of 20 μm or more, resulting in poor toughness, and an average particle size of carbonitride Chipping occurred due to the large diameter and the long interparticle distance of the precipitate. Comparative Example No. No. 15 has a low Cr, Mo, N content, a small Ceq value, and a small average particle size of carbides, and therefore has poor wear resistance.
これに対して、本発明であるNo.1〜9は、いずれも成分組成、炭化物の平均粒径、炭窒化物の平均粒径、析出物の粒子間距離を満足していることから、4μm以上の炭化物が耐摩耗性に寄与し、2μm以下の炭窒化物が焼入れ焼戻し時の結晶粒粗大化抑制(靱性の向上)および析出物の粒子間距離が10μm以下で工具使用時の母相との接触を防ぎ、チッピング性を抑制することが分かる。 On the other hand, No. which is this invention. 1 to 9 all satisfy the component composition, the average particle size of the carbide, the average particle size of the carbonitride, and the interparticle distance of the precipitate, 4 μm or more of the carbide contributes to wear resistance, Carbon nitride of 2 μm or less suppresses grain coarsening during quenching and tempering (improvement of toughness), and the distance between grains of precipitates is 10 μm or less to prevent contact with the parent phase when using a tool and suppress chipping. I understand.
以上述べたように、本発明による高速切削用途の粉末高速度鋼の成分組成と組織中の炭化物を適切に制御することにより、チッピング性と耐摩耗性を兼ね備えた窒化粉末高速度工具鋼を提供することができる極めて優れた効果を奏するものである。
特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, a nitrided powder high-speed tool steel having both chipping property and wear resistance is provided by appropriately controlling the composition of the powder high-speed steel for high-speed cutting applications according to the present invention and the carbide in the structure. It has an extremely excellent effect that can be achieved.
Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina
Claims (3)
C:0.8〜2.5%、
Si:0.1〜1.0%、
Mn:0.1〜1.0%、
Cr:3.0〜5.0%、
Mo:2.0〜8.0%、
W:3.0〜14.0%、
V:2.0〜10.0%、
Co:0〜10%、
N:0.3〜1.5%
を含有し、かつCeq値:0.1〜0.8、残部Feおよび不可避的不純物からなる焼入焼戻しされた状態の窒化粉末高速度工具鋼であって、金属組織中の炭化物は平均粒径が4〜20μmであり、さらに、炭窒化物の平均粒径が2μm以下の範囲にあり、析出物の平均粒子間距離が10μm以下であることを特徴とする耐摩耗性に優れた窒化粉末高速度工具鋼。
但し、Ceq=(C%+N%)−{0.19+0.017(W%+2Mo%)+0.22V%} % By mass
C: 0.8 to 2.5%
Si: 0.1 to 1.0%,
Mn: 0.1 to 1.0%,
Cr: 3.0-5.0%,
Mo: 2.0 to 8.0%,
W: 3.0-14.0%,
V: 2.0-10.0%,
Co: 0 to 10%,
N: 0.3 to 1.5%
And a Ceq value of 0.1 to 0.8, a nitrided powder high-speed tool steel in a quenched and tempered state composed of the balance Fe and inevitable impurities, and the carbide in the metal structure has an average particle size 4-20 μm, the average particle size of the carbonitride is in the range of 2 μm or less, and the average interparticle distance of the precipitate is 10 μm or less. Speed tool steel.
However, Ceq = (C% + N%) − {0.19 + 0.017 (W% + 2Mo%) + 0.22V%}
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014161975A JP6410515B2 (en) | 2014-08-08 | 2014-08-08 | Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014161975A JP6410515B2 (en) | 2014-08-08 | 2014-08-08 | Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016037640A JP2016037640A (en) | 2016-03-22 |
JP6410515B2 true JP6410515B2 (en) | 2018-10-24 |
Family
ID=55528990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014161975A Active JP6410515B2 (en) | 2014-08-08 | 2014-08-08 | Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6410515B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6537342B2 (en) * | 2015-04-30 | 2019-07-03 | 山陽特殊製鋼株式会社 | High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance |
KR101827818B1 (en) * | 2016-10-14 | 2018-02-09 | 한국생산기술연구원 | Alloy for friction stir welding tool having enhanced hardness and durability, manufacturing method thereof, and friction stir welding tool |
JP6903468B2 (en) * | 2017-04-03 | 2021-07-14 | 山陽特殊製鋼株式会社 | Nitriding powder high speed tool steel with excellent wear resistance |
CN111172471B (en) * | 2020-02-18 | 2021-02-26 | 北京科技大学 | Preparation method of ice hockey skate blade material |
CN114381656A (en) * | 2020-10-22 | 2022-04-22 | 江苏天工工具有限公司 | Processing technology of injection molding high-speed steel |
CN115533101B (en) * | 2022-08-31 | 2024-06-14 | 东南大学 | Preparation method of powder metallurgy high-speed steel |
CN115652214B (en) * | 2022-11-11 | 2023-11-03 | 中铁建华南建设(广州)高科技产业有限公司 | Steel and preparation method thereof, hob ring |
CN116334491B (en) * | 2023-03-28 | 2024-06-21 | 如皋市宏茂重型锻压有限公司 | Die steel and heat treatment process for improving toughness of die steel |
CN116397121B (en) * | 2023-05-06 | 2024-08-16 | 河北工业大学 | Method for optimizing structure and performance of high-speed tool steel |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5371605A (en) * | 1976-12-09 | 1978-06-26 | Kobe Steel Ltd | Nitriding method for powdery material of steel and its filling vessel |
JPS59222554A (en) * | 1983-05-30 | 1984-12-14 | Kobe Steel Ltd | Powdered high-speed steel containing nitrogen |
SE514410C2 (en) * | 1999-06-16 | 2001-02-19 | Erasteel Kloster Ab | Powder metallurgically made steel |
JP3987297B2 (en) * | 2001-03-21 | 2007-10-03 | 株式会社神戸製鋼所 | Powdered high-speed steel and high-speed steel tool with excellent coating properties |
JP5831899B2 (en) * | 2011-09-12 | 2015-12-09 | 山陽特殊製鋼株式会社 | High toughness nitride powder high speed steel with excellent corrosion resistance and seizure resistance |
-
2014
- 2014-08-08 JP JP2014161975A patent/JP6410515B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016037640A (en) | 2016-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6410515B2 (en) | Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same | |
JP6432070B2 (en) | Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same | |
TWI700378B (en) | Steel for mold and mold | |
TWI654318B (en) | High speed tool steel and manufacturing method thereof | |
JP5929963B2 (en) | Hardening method of steel | |
JP6529234B2 (en) | High speed tool steel with high toughness and softening resistance | |
JP4860774B1 (en) | Cold work tool steel | |
JP6620490B2 (en) | Age-hardening steel | |
JP5600502B2 (en) | Steel for bolts, bolts and methods for producing bolts | |
CN113699446A (en) | Superfine high-toughness die steel and preparation method thereof | |
JP6301145B2 (en) | Sleeve dog gear | |
JP6710484B2 (en) | Powder high speed tool steel | |
JP4031607B2 (en) | Machine structural steel with reduced grain coarsening | |
JP2005281857A (en) | Raw material for nitrided component having excellent broaching workability and method for manufacturing nitrided component using the raw material | |
JP2005336553A (en) | Hot tool steel | |
CN112011740B (en) | High-toughness and high-hardness die steel and preparation method thereof | |
JP2014210941A (en) | Powder high-speed tool steel excellent in high-temperature temper hardness | |
JP6345945B2 (en) | Powdered high-speed tool steel with excellent wear resistance and method for producing the same | |
EP3870730A1 (en) | A method of producing a high speed steel alloy | |
JP6375691B2 (en) | Nitriding steel | |
JP6472174B2 (en) | Cold tool steel with high hardness and toughness that can be quenched at low temperature | |
JP6312120B2 (en) | Powdered high speed tool steel and manufacturing method thereof | |
JP2015129339A (en) | Tool steel and method for manufacturing high hardness tool | |
JP2006249494A (en) | Material for nitriding part excellent in suitability to broaching and method for manufacturing the same | |
JP2013185205A (en) | Steel component for case hardening |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170522 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20171020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6410515 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |