JP2015129339A - Tool steel and method for manufacturing high hardness tool - Google Patents

Tool steel and method for manufacturing high hardness tool Download PDF

Info

Publication number
JP2015129339A
JP2015129339A JP2014001988A JP2014001988A JP2015129339A JP 2015129339 A JP2015129339 A JP 2015129339A JP 2014001988 A JP2014001988 A JP 2014001988A JP 2014001988 A JP2014001988 A JP 2014001988A JP 2015129339 A JP2015129339 A JP 2015129339A
Authority
JP
Japan
Prior art keywords
quenching
steel
tool
stage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014001988A
Other languages
Japanese (ja)
Inventor
健 若月
Ken Wakatsuki
健 若月
直樹 梅森
Naoki Umemori
直樹 梅森
清水 崇行
Takayuki Shimizu
崇行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014001988A priority Critical patent/JP2015129339A/en
Publication of JP2015129339A publication Critical patent/JP2015129339A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tool steel capable of exhibiting high hardness with suppressing addition of alloy elements at low and a method for manufacturing a tool using the same.SOLUTION: A tool steel contains, by mass%, C:1.00 to 2.00%, Si:0.05 to 1.00%, Mn:0.20 to 1.50%, Cr:3.00 to 9.00%, Mo:0.50 to 3.00%, W:0 to 4.00%, [W]+2[Mo]:less than 9%, where [] represents content mass% of an element in [], and the balance Fe with inevitable impurities and two-stage hardening is conducted with first stage hardening by heating at 1000 to 1200°C and quickly cooling for a hardening treatment and second stage hardening for heating at 800 to less than 1050°C and quickly cooling.

Description

この発明は工具鋼及び高硬度工具の製造方法に関する。   The present invention relates to a tool steel and a method for manufacturing a high hardness tool.

従来、65HRC以上の硬さが必要な金型等の工具のための材料(工具鋼)として、主に高速度工具鋼(ハイス)が使用されている。   Conventionally, high-speed tool steel (high speed) is mainly used as a material (tool steel) for tools such as dies that require hardness of 65 HRC or higher.

しかしながらハイスはMo,V,W,Co等の合金元素を多く添加した高価な材料であり、自ずとその用途は耐摩耗性や耐熱性が特に必要とされる場合に限られている。
こうしたことから、合金元素の添加を少なく抑えながらハイス並に高い硬度を発現することのできる材料(工具鋼)の実現が望まれていた。
However, high speed steel is an expensive material to which a large amount of alloy elements such as Mo, V, W, and Co are added, and its application is naturally limited to cases where wear resistance and heat resistance are particularly required.
For these reasons, it has been desired to realize a material (tool steel) that can exhibit high hardness as high as high speed while suppressing the addition of alloy elements.

尚本発明に対する先行技術として、下記特許文献1には「高硬度低合金高速度工具鋼」についての発明が示され、そこにおいてCoを添加せず、低合金で経済性の高い材料で、HRC65以上の熱処理硬さを得ることができる工具材を提供することを目的とした高硬度低合金高速度工具鋼が開示されている。   As prior art to the present invention, the following Patent Document 1 discloses an invention relating to “high hardness, low alloy high speed tool steel”, in which HCo65 is a low alloy and highly economical material without adding Co. A high hardness low alloy high speed tool steel intended to provide a tool material capable of obtaining the above heat treatment hardness is disclosed.

しかしながらこのものは、合金元素としてV,Wの複合添加を必須とすること、とりわけ[W]+2[Mo]を9〜13%と多量に添加することを必須とする点で本発明と異なる。
またこの特許文献1には、1000〜1200℃の温度を焼入れ温度とする1段目の焼入れと、800〜1050℃未満の温度を焼入れ温度とする2段目の焼入れとを行う点が開示されておらず、本発明と異なる。
However, this is different from the present invention in that the combined addition of V and W as an alloy element is essential, and in particular, it is essential to add [W] +2 [Mo] in a large amount of 9 to 13%.
Further, Patent Document 1 discloses that a first-stage quenching in which a temperature of 1000 to 1200 ° C. is used as a quenching temperature and a second-stage quenching in which a temperature of 800 to 1050 ° C. is used as a quenching temperature. This is different from the present invention.

他の先行技術として、下記特許文献2には「低合金高速度工具鋼およびその製造方法」についての発明が示され、そこにおいて耐摩耗性(高硬度)と靭性との両立を狙いとして、低合金高速度工具鋼にNb及び/又はTaを従来以上に多量に含有させる点が開示されている。
しかしながらこの特許文献2に記載のものは、C含有量が1%に満たない低Cのもので本発明と異なる。
またこの特許文献2においても、焼入れ処理として2段階の焼入れを行う点の開示はなく、本発明と異なる。
As another prior art, the following Patent Document 2 discloses an invention relating to “low alloy high speed tool steel and its manufacturing method”, in which the aim is to achieve both wear resistance (high hardness) and toughness. It is disclosed that an alloy high-speed tool steel contains Nb and / or Ta in a larger amount than before.
However, the thing of this patent document 2 is a thing of the low C whose C content is less than 1%, and differs from this invention.
Also in this Patent Document 2, there is no disclosure of performing a two-stage quenching as a quenching process, which is different from the present invention.

特開平3−153841号公報Japanese Patent Laid-Open No. 3-153841 特開平10−330894号公報JP-A-10-330894

本発明は以上のような事情を背景とし、合金元素の添加を少なく抑えながら高硬度を発現することのできる工具鋼及びこれを用いた工具の製造方法を提供することを目的としてなされたものである。   The present invention has been made for the purpose of providing a tool steel capable of developing high hardness while suppressing the addition of alloying elements and a method for manufacturing a tool using the same, against the background as described above. is there.

而して請求項1は工具鋼に関するもので、質量%でC:1.00〜2.00%,Si:0.05〜1.00%,Mn:0.20〜1.50%,Cr:3.00〜9.00%,Mo:0.50〜3.00%,W:0〜4.00%,[W]+2[Mo]:9%未満(但し[ ]は[ ]内の元素の含有質量%を表す)を含有し、残部Fe及び不可避的不純物の組成を有することを特徴とする。   Thus, Claim 1 relates to a tool steel, and in mass% C: 1.00 to 2.00%, Si: 0.05 to 1.00%, Mn: 0.20 to 1.50%, Cr: 3.00 to 9.00%, Mo: 0.50 to 3.00% , W: 0 to 4.00%, [W] +2 [Mo]: Less than 9% (where [] represents the mass% of the element in []), with the balance of Fe and inevitable impurities It is characterized by that.

請求項2のものは、請求項1において、質量%でV:0.10〜1.00%を更に含有することを特徴とする。   According to a second aspect of the present invention, in the first aspect, the composition further comprises V: 0.10 to 1.00% by mass%.

請求項3のものは、請求項1,2の何れかにおいて、質量%でN:0.030〜0.150%を更に含有し、且つAl:0.040〜0.100%,Ti:0.0040〜0.100%,Nb:0.0040〜0.100%の何れか1種又は2種以上を含有することを特徴とする。   A third aspect of the present invention is the method according to any one of the first and second aspects, further comprising N: 0.030 to 0.150% by mass%, Al: 0.040 to 0.100%, Ti: 0.0040 to 0.100%, Nb: 0.0040 to It contains any one or more of 0.100%.

請求項4のものは、請求項1〜3の何れかにおいて、質量%でCu:0.15〜0.30%,B:0.0010〜0.0100%の何れか1種又は2種を更に含有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the composition further comprises any one or two of Cu: 0.15-0.30% and B: 0.0010-0.0100% by mass%. .

請求項5のものは、請求項1〜4の何れかにおいて、質量%でS:0.010〜0.200%を更に含有することを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the composition further contains S: 0.010 to 0.200% by mass.

請求項6のものは、請求項1〜5の何れかの工具鋼であって、1000〜1200℃に加熱して急冷する1段目の焼入れを行った後、800〜1050℃未満の温度に加熱して急冷する2段目の焼入れを行って使用するものであることを特徴とする。   A sixth aspect of the present invention is the tool steel according to any one of the first to fifth aspects, wherein the first stage quenching is performed by heating to 1000 to 1200 ° C and quenching, and then the temperature is less than 800 to 1050 ° C. It is characterized in that it is used after being subjected to second-stage quenching which is heated and rapidly cooled.

請求項7のものは、請求項6の工具鋼であって、前記1段目の焼入れと2段目の焼入れとの2段階の焼入れ及び焼戻し後にHRC65以上の硬さの得られるものであることを特徴とする。   A seventh aspect of the present invention is the tool steel according to the sixth aspect, wherein a hardness of HRC 65 or more can be obtained after two-stage quenching and tempering of the first-stage quenching and second-stage quenching. It is characterized by.

請求項8は高硬度工具の製造方法に関するもので、請求項1〜5の何れかに記載の工具鋼を用いて工具を製造するに際し、焼入れ処理として1000〜1200℃に加熱して急冷する1段目の焼入れを行った後、800〜1050℃未満の温度に加熱して急冷する2段目の焼入れを行うことを特徴とする。   Claim 8 relates to a method for manufacturing a high-hardness tool. When a tool is manufactured using the tool steel according to any one of claims 1 to 5, it is rapidly quenched by heating to 1000 to 1200 ° C. as a quenching treatment. After performing the second stage quenching, the second stage quenching is performed by heating to a temperature of less than 800 to 1050 ° C. and rapidly cooling.

以上のように本発明の工具鋼は、Cについては1.00〜2.00%と多く含有させているものの、他の合金元素についてはCrが3.00〜9.00%,Moが0.50〜3.00%,Wが0〜4.00%で且つ[W]+2[Mo]が9%未満と少ない。
このため本発明の工具鋼は所要コストが安価である。
尚本発明の工具鋼は、必要に応じてV,N,Al,Ti,Nb,Cu,B,S等を請求項2,請求項3,請求項4,請求項5に規定する所要量で含有させることができる。
As described above, although the tool steel of the present invention contains C as much as 1.00 to 2.00%, other alloy elements include Cr of 3.00 to 9.00%, Mo of 0.50 to 3.00%, and W of 0 to 4.00% and [W] +2 [Mo] are less than 9%.
For this reason, the tool steel of the present invention is inexpensive.
In the tool steel of the present invention, V, N, Al, Ti, Nb, Cu, B, S, etc. are required as required according to claims 2, 3, 4, and 5 as required. It can be included.

本発明の工具鋼は、2段階の焼入れを施すことによって本来の能力を発揮し、高い硬度を発現することができる。
詳しくは、本発明の工具鋼は上記のように合金元素を多く添加しない簡単な組成のものであるにも拘らず、1000〜1200℃の焼入れ温度に加熱し急冷する1段目の焼入れと、その後における800〜1050℃未満の焼入れ温度に加熱し急冷する2段目の焼入れとの2段階の焼入れを行うことで、HRC65以上の高硬度を発現することが可能である。
以下にこれを詳しく説明する。
The tool steel of the present invention can exhibit its original ability and exhibit high hardness by performing two-stage quenching.
Specifically, the tool steel of the present invention has a simple composition in which a large amount of alloying elements are not added as described above, but the first stage quenching is performed by heating to a quenching temperature of 1000 to 1200 ° C. and quenching, It is possible to develop a high hardness of HRC 65 or higher by performing two-stage quenching with a second-stage quenching which is then heated to a quenching temperature of less than 800 to 1050 ° C. and rapidly cooled.
This will be described in detail below.

前述したように、ハイスではMo,V,W,Co等の合金元素を多く添加する。そのため、焼入れに際してはこれらを固溶させるために1200〜1350℃程度の高い温度(焼入れ温度)に加熱し、焼入れを行う。そしてその焼入れによってMC等の炭化物の析出と組織のマルテンサイト化とを行う。 As described above, high speed alloy elements such as Mo, V, W, and Co are added in high speed. Therefore, at the time of quenching, it is heated to a high temperature (quenching temperature) of about 1200 to 1350 ° C. in order to dissolve these, and quenching is performed. And by the quenching, carbides such as M 6 C are precipitated and the structure is martensitic.

ハイスでは、合金元素を多く添加し固溶させるため、焼入れ状態で残留オーステナイトが多く(例えば30%程度)生成する。
そこでハイスの場合、その後にマルテンサイト状態にある鋼を600℃程度の温度で焼戻し処理して、残留オーステナイトをマルテンサイト化するとともにWC,MoC,VC等の硬い炭化物を析出させることで2次硬化させ、高硬度を発現させる。
In the high speed steel, a lot of alloying elements are added and dissolved, so that a lot of retained austenite is generated (for example, about 30%) in the quenched state.
In the case of high speed steel, the steel in the martensite state is subsequently tempered at a temperature of about 600 ° C. to convert the retained austenite to martensite and to precipitate hard carbides such as W 2 C, Mo 2 C, and VC. And secondarily cured to develop high hardness.

これに対し本発明の鋼(工具鋼。以下単に鋼とすることがある)の場合、合金元素の添加が少ないために1000〜1200℃の低い焼入れ温度で第1段目の焼入れを行うことができる。即ちその低い焼入れ温度に鋼(実際には鋼を所定形状に加工した金型等の工具)を加熱することで鋼をオーステナイト化し且つ添加した合金元素をこれに固溶させることができる。   On the other hand, in the case of the steel of the present invention (tool steel; hereinafter simply referred to as steel), the first-stage quenching can be performed at a quenching temperature as low as 1000 to 1200 ° C. because there is little addition of alloying elements. it can. That is, by heating the steel (actually a tool such as a mold obtained by processing the steel into a predetermined shape) to the low quenching temperature, the steel can be austenitized and the added alloy element can be dissolved therein.

この第1段目の焼入れ温度での保持の時間は3〜300分とすることができる。またその後の急冷を油冷却或いはガス冷却とすることができる。
ここでガス冷却とは、対象物に窒素ガス等の不活性ガス或いはその他の非酸化性ガスを吹き付けて行う冷却方法である。
この第1段目の焼入れにおいては、焼入れ温度への加熱後の急冷を3〜300℃/minの冷却速度の下で行うことができる。
The holding time at the first stage quenching temperature can be 3 to 300 minutes. The subsequent rapid cooling can be oil cooling or gas cooling.
Here, the gas cooling is a cooling method performed by spraying an inert gas such as nitrogen gas or other non-oxidizing gas onto the object.
In this first stage quenching, rapid cooling after heating to the quenching temperature can be performed at a cooling rate of 3 to 300 ° C./min.

上記1段目の焼入れは、炭化物を固溶させることを目的とした焼入れであり、鋼を1000〜1200℃の焼入れ温度に加熱することによって鋼の組織を実質的にオーステナイト単相若しくはこれに近い状態とし、その後の急冷によってこれをマルテンサイト変態させる。
本発明の鋼は合金元素の添加が少ないために、この第1段目の焼入れにおける急冷によって炭化物は殆ど析出しないか又は析出しても僅かであり、また組織は殆どがマルテンサイト変態(80〜90%程度がマルテンサイト変態)して残留オーステナイトとして残るのは僅か(10〜20%程度)である。また残留オーステナイトを減らすため、サブゼロ処理してもよい。
The first-stage quenching is quenching for the purpose of dissolving the carbides, and by heating the steel to a quenching temperature of 1000 to 1200 ° C., the structure of the steel is substantially austenite single phase or close to this. It is made into a state, and is then martensitic transformed by rapid cooling.
Since the steel of the present invention has a small amount of addition of alloy elements, the carbide hardly precipitates or only slightly precipitates by the rapid cooling in the first stage quenching, and the structure is mostly martensitic transformation (80 to 80). Only about 90% (about 10-20%) remains as retained austenite after martensite transformation). In order to reduce retained austenite, sub-zero treatment may be performed.

1段目の焼入れを施したものに対して行う2段目の焼入れは、微細な炭化物を析出させることを目的とした処理で、この2段目の焼入れでは、鋼(上記したように実際には金型等の工具)を800〜1050℃未満の焼入れ温度に加熱する。   The second-stage quenching performed on the first-stage quenching is a treatment aimed at precipitating fine carbides. In the second-stage quenching, steel (as described above is actually Is heated to a quenching temperature of less than 800-1050 ° C.

この温度域は、鋼が再びオーステナイト化する温度域であるとともに、本発明の鋼の成分系では炭化物M23が析出する温度域である。詳しくはこの温度域は、オーステナイトと炭化物M23の両相が併存する領域である。逆に言えばこの第2段目の焼入れは、1段目の焼入れによって、変態により一旦生成したマルテンサイト組織を焼入れ温度への加熱により分解して再度オーステナイト化するとともに、併せて組織に固溶していた炭化物形成元素を炭化物M23(多くはCrやFeの炭化物でMo,W等の炭化物も微小量含まれる)として析出させる処理である。そしてこの処理によって、炭化物がマトリックス中に微細に分散析出する。 This temperature range is a temperature range in which the steel is austenitized again, and is a temperature range in which carbide M 23 C 6 is precipitated in the steel component system of the present invention. Specifically, this temperature range is a region where both phases of austenite and carbide M 23 C 6 coexist. In other words, in the second-stage quenching, the martensite structure once generated by the transformation is decomposed by heating to the quenching temperature by the first-stage quenching, and is austenitized again. This is a treatment for precipitating the formed carbide-forming elements as carbides M 23 C 6 (mostly carbides of Cr and Fe, including a small amount of carbides such as Mo and W). By this treatment, carbides are finely dispersed and precipitated in the matrix.

尚、800〜1050℃未満の加熱により炭化物M23を良好に析出させるには、鋼をその焼入れ温度に適当な時間保持しておくのが良い。その適当な時間は、加熱温度が低ければ長くなり、高ければ短くなる等加熱温度や生産性等の事情によって定まってくるが、これを含めて3〜120分とするのが適当である。 In order to precipitate the carbide M 23 C 6 satisfactorily by heating at a temperature below 800 to 1050 ° C., the steel should be kept at the quenching temperature for an appropriate time. The appropriate time is longer depending on circumstances such as the heating temperature and productivity, such as being longer if the heating temperature is lower and shorter if the heating temperature is higher, but is suitably 3 to 120 minutes including this.

因みに図1は、本発明の鋼の組成範囲内にあるC-0.30Si-0.4Mn-4.00Cr-2.00Mo-1.00W-残部Fe(質量%)の組成の鋼についてThermo-Calc(Thermo-Calc Software AB社製)を用いて求めた状態図で(横軸はC%,縦軸は温度)、この図から、800℃〜1050℃未満の温度域に加熱し保持することで、オーステナイト(γ)と炭化物M23が生成することが見て取れる。 Incidentally, FIG. 1 shows Thermo-Calc (Thermo-Calc for a steel having a composition of C-0.30Si-0.4Mn-4.00Cr-2.00Mo-1.00W-balance Fe (mass%) within the composition range of the steel of the present invention. (Abscissa is C%, vertical axis is temperature). From this figure, austenite (γ is obtained by heating and holding in a temperature range below 800 ° C. to 1050 ° C. ) And the carbide M 23 C 6 can be seen.

以上のように焼入れ温度に加熱し保持した後において急冷を行うと、ここにおいて再度生成したオーステナイトは急冷により再びマルテンサイト変態し、急冷後の組織は、マルテンサイト組織に微細炭化物が多く分散析出した組織となって高硬度となる。   When quenching is performed after heating and holding at the quenching temperature as described above, the austenite produced again here undergoes martensite transformation again by quenching, and the microstructure after quenching has a large amount of fine carbide dispersed and precipitated in the martensite structure. It becomes a structure and high hardness.

つまりハイスの場合には、焼入れ後にマルテンサイト状態を保ちつつ鋼を約600℃程度の温度で焼戻しし、その焼戻しにより炭化物を析出し2次硬化する現象を利用するものであるのに対し、上記の2段階焼入れでは、1段目の焼入れによって組織をマルテンサイト化した上で、再びこれを800〜1050℃未満の焼入れ温度に加熱して、一旦生成したマルテンサイトを分解させてオーステナイト化し、併せてこのときに炭化物を析出させた上で、再び急冷して焼入れし、オーステナイトを再度マルテンサイト変態させるもので、従来のハイスにおける焼入れ焼戻し処理とは異なったものである。
尚、実際の金型等工具の製造に際しては、通常は上記2段階の焼入れに続いて焼戻し処理を行う。その際の焼戻し処理では加熱温度を200〜700℃とすることができる。またその後の冷却は空冷とすることができる。
In other words, in the case of high-speed steel, the steel is tempered at a temperature of about 600 ° C. while maintaining the martensite state after quenching, and the phenomenon of precipitation of carbide and secondary hardening by the tempering is utilized. In the two-stage quenching, the structure is martensiticized by the first-stage quenching, and then again heated to a quenching temperature of less than 800 to 1050 ° C. to decompose the martensite once generated to austenite, At this time, carbides are precipitated, quenched again and quenched, and austenite is again martensitic transformed, which is different from the conventional quenching and tempering treatment in high speed steel.
In actual production of tools such as molds, tempering is usually performed following the above-mentioned two-stage quenching. In the tempering process at that time, a heating temperature can be 200-700 degreeC. Further, the subsequent cooling can be air cooling.

次に本発明における化学成分等の限定理由を以下に詳述する。
[請求項1の化学成分について]
C:1.00〜2.00%
1000〜1200℃の範囲内の焼入れ温度で全ての炭化物が固溶可能且つ必要な硬さを得るのに十分な炭化物が析出するようにC含有量を1.00〜2.00%の範囲内とする。C含有量が1.00%未満であると析出炭化物量が不足し、十分な硬さが得られない。逆に2.00%を超えて多く含有させると、融点が下がり焼入れが困難となる。好ましくは1.00〜1.65%の範囲内である。更に好ましくは1.20〜1.55%の範囲内である。
Next, the reasons for limiting the chemical components and the like in the present invention will be described in detail below.
[Chemical component of claim 1]
C: 1.00 to 2.00%
The C content is in the range of 1.00 to 2.00% so that all carbides can be dissolved at a quenching temperature in the range of 1000 to 1200 ° C. and sufficient carbides are precipitated to obtain the required hardness. If the C content is less than 1.00%, the amount of precipitated carbide is insufficient and sufficient hardness cannot be obtained. On the other hand, if the content exceeds 2.00%, the melting point decreases and quenching becomes difficult. Preferably it is in the range of 1.00 to 1.65%. More preferably, it is in the range of 1.20 to 1.55%.

Si:0.05〜1.00%
Siの含有量を0.05%以上とすることで焼入れ性や硬さが向上し、1.00%でその効果は飽和状態となる。また、過剰にSiを含有させると靭性の劣化や熱伝導率の低下を招く。好ましい含有量は0.30〜0.65%である。
Si: 0.05-1.00%
When the Si content is 0.05% or more, the hardenability and hardness are improved, and the effect is saturated at 1.00%. Moreover, when Si is excessively contained, the toughness is deteriorated and the thermal conductivity is lowered. A preferable content is 0.30 to 0.65%.

Mn:0.20〜1.50%
Mn含有量が0.20%未満であると焼入れ性が不足し、十分な硬さと衝撃値が得られない。逆に1.50%を超えて過剰に含有させると、衝撃値が低下するだけでなく、焼鈍しでの軟化が困難となり製造性が悪化する。好ましい含有量は0.65〜1.20%である。
Mn: 0.20 to 1.50%
When the Mn content is less than 0.20%, the hardenability is insufficient and sufficient hardness and impact value cannot be obtained. On the other hand, if it is contained excessively exceeding 1.50%, not only the impact value is lowered, but also softening by annealing becomes difficult and the productivity is deteriorated. The preferred content is 0.65 to 1.20%.

Cr:3.00〜9.00%
Cr含有量が3.00%未満では焼入れ性が不足するとともに、2段目の焼入れ時に(Cr,Fe)23型の炭化物を十分に析出生成することが難しく、十分な硬さと衝撃値が得られない。逆に9.00%を超えて過剰に含有させると、熱伝導率が大きく低下するため9.00%を上限値とする。好ましい含有量は3.50〜6.00%である。
Cr: 3.00 to 9.00%
When the Cr content is less than 3.00%, the hardenability is insufficient, and it is difficult to sufficiently precipitate and form (Cr, Fe) 23 C 6 type carbide during the second stage quenching, and sufficient hardness and impact value are obtained. I can't. On the other hand, if it exceeds 9.00% and excessively contained, the thermal conductivity is greatly reduced, so 9.00% is made the upper limit. The preferred content is 3.50 to 6.00%.

Mo:0.50〜3.00%
Moは炭化物を形成し、硬さの上昇や耐摩耗性を向上させる効果がある。
Moは2段目の焼入れ時にM23型の炭化物を形成する働きがあり、また焼戻し硬さの上昇や耐摩耗性を向上させる働きがある。但し含有量が0.50%未満ではその効果は小さい。逆に3.00%を超えて過剰に含有させると、その向上効果が飽和状態となるとともに、これ以上の含有量増加はコスト増加となり経済性を損なう。好ましい含有量は1.20〜2.50%である。
Mo: 0.50 ~ 3.00%
Mo forms carbides and has the effect of increasing hardness and improving wear resistance.
Mo has a function of forming M 23 C 6 type carbides during second-stage quenching, and has a function of increasing the tempering hardness and improving the wear resistance. However, if the content is less than 0.50%, the effect is small. On the other hand, if it is contained excessively exceeding 3.00%, the improvement effect becomes saturated, and an increase in content beyond this increases costs and impairs economy. A preferable content is 1.20 to 2.50%.

W:0〜4.00%
Wは炭化物を形成し、焼戻しに際しては焼戻し硬さの上昇や耐摩耗性を向上させる効果がある。但し4.00%を超えて多量に含有させると靭性が低下する恐れがある。
W: 0 to 4.00%
W forms carbides and has the effect of increasing the tempering hardness and improving the wear resistance during tempering. However, if the content exceeds 4.00%, the toughness may decrease.

Weq(W当量)=[W]+2[Mo]:9%未満
添加元素としてのWとMoは同様の効果をもたらすため、W当量(Weq)が所定の範囲となるようにWとMoの添加量を決めるのが好ましい。Weqの所要の含有量は9.00%未満であるが、Moの添加により所要のWeqを満たすことができるときにはWは無添加であっても良い。
本発明において、Weqの好ましい量は7.0%以下である。
尚、本発明の工具鋼においては下記の成分が下記の量で含まれることがあるが、これらは鋼における不可避的不純物に該当する。
Cu:<0.15質量%
Ni:<0.15質量%
S:<0.010質量%
P:<0.050質量%
O:<0.010質量%
V:<0.10質量%
N:<0.030質量%
Al:<0.040質量%
Ti:<0.0040質量%
Nb:<0.0040質量%
B:<0.0010質量%
Weq (W equivalent) = [W] + 2 [Mo]: Less than 9% W and Mo as additive elements bring about the same effect, so W and Mo are added so that the W equivalent (Weq) is within the specified range. The amount is preferably determined. The required content of Weq is less than 9.00%, but W may be added when the required Weq can be satisfied by the addition of Mo.
In the present invention, the preferred amount of Weq is 7.0% or less.
In the tool steel of the present invention, the following components may be included in the following amounts, which correspond to inevitable impurities in the steel.
Cu: <0.15 mass%
Ni: <0.15 mass%
S: <0.010 mass%
P: <0.050 mass%
O: <0.010 mass%
V: <0.10% by mass
N: <0.030% by mass
Al: <0.040 mass%
Ti: <0.0040 mass%
Nb: <0.0040 mass%
B: <0.0010 mass%

[請求項2の化学成分について]
V:0.10〜1.00%
請求項2では、Vを0.10〜1.00%の範囲で含有させる。
請求項1の化学成分によって得られる硬さで不十分な場合には、請求項2に従ってVを含有させることで硬さを更に高めることができる。
請求項1のWや請求項2のVの炭化物は2段目の焼入れの際にも析出しては来るが、2段階の焼入れ後の焼戻しの際にVの炭化物がWの炭化物とともに(Wが添加してある場合)析出し、鋼が2次硬化して硬度が上昇する。
Vは安定なMC型炭化物を形成し、結晶粒の粗大化防止や焼戻し硬さを上昇させる働きがある。そのためには0.10%以上含有させる必要がある。但し1.00%を超えて過剰に含有させると靭性が低下する。
[Chemical component of claim 2]
V: 0.10 to 1.00%
In Claim 2, V is contained in the range of 0.10 to 1.00%.
If the hardness obtained by the chemical component of claim 1 is insufficient, the hardness can be further increased by containing V according to claim 2.
The carbide of W of claim 1 and the carbide of V of claim 2 also precipitates during the second stage quenching, but the carbide of V together with the carbide of W during the tempering after the second stage quenching (W Is added) and the steel is secondarily hardened to increase the hardness.
V forms a stable MC type carbide and has the function of preventing coarsening of crystal grains and increasing the tempering hardness. For that purpose, it is necessary to make it contain 0.10% or more. However, if it exceeds 1.00% and is contained excessively, the toughness is lowered.

[請求項3の化学成分について]
N:0.030〜0.150%
Nは、添加された又は不可避的に含まれるAl,Ti,Nbの窒化物形成元素と結合して微細な窒化物を形成することにより、結晶粒を微細化する効果がある。但し0.030%未満の少ない含有量では効果が小さい。逆に0.150%を超えて過剰に含有させると窒化物が過剰に形成し、靭性や被削性の低下を招くため0.150%を上限値とする。
Al:0.040〜0.100%
Ti:0.0040〜0.100%
Nb:0.0040〜0.100%
何れの元素も、添加された又は不可避的に含まれるC,N,Oと微細な化合物(窒化物,炭化物,酸化物)を形成することで、結晶粒を微細化する効果がある。但しそれぞれ下限値未満の含有量では効果が小さく、逆に上限値を超えて多量に含有させると化合物が過剰に形成し、靭性や被削性の低下を招く。
[Chemical component of claim 3]
N: 0.030-0.150%
N has the effect of refining crystal grains by forming fine nitrides by combining with added or inevitably contained nitride elements of Al, Ti, and Nb. However, if the content is less than 0.030%, the effect is small. Conversely, if it exceeds 0.150% and excessively contained, nitrides will be excessively formed, leading to a decrease in toughness and machinability, so 0.150% is made the upper limit.
Al: 0.040 to 0.100%
Ti: 0.0040 to 0.100%
Nb: 0.0040 to 0.100%
Any element has the effect of refining crystal grains by forming fine compounds (nitrides, carbides, oxides) with C, N, O added or inevitably contained. However, if the content is less than the lower limit value, the effect is small. Conversely, if the content exceeds the upper limit value and contained in a large amount, the compound is excessively formed and the toughness and machinability are lowered.

[請求項4の化学成分について]
Cu:0.15〜0.30%
B:0.0010〜0.0100%
これらの元素は焼入れ性を向上させる働きがある。但し何れの元素も下限値未満では焼入れ性向上効果が小さく、逆に上限値を超えて過剰に含有させると効果が飽和する。
[Chemical component of claim 4]
Cu: 0.15-0.30%
B: 0.0010-0.0100%
These elements have a function of improving hardenability. However, if any element is less than the lower limit, the effect of improving the hardenability is small. Conversely, if the element is excessively contained exceeding the upper limit, the effect is saturated.

[請求項5の化学成分について]
S:0.010〜0.200%
Sは、Mnと結合して被削性を向上させる働きがある。このような働きのためには0.010%以上含有させることが必要である。逆に0.200%を超えて過剰に含有させると硫化物の形成量が過剰となり、靭性が低下するため上限値を0.200%とする。
[Chemical component of claim 5]
S: 0.010-0.200%
S combines with Mn to improve machinability. For such a function, it is necessary to contain 0.010% or more. On the other hand, if the content exceeds 0.200%, the amount of sulfide formed becomes excessive and the toughness decreases, so the upper limit is made 0.200%.

[2段階の焼入れについて]
a)1段目の焼入れについて
1段目の焼入れは、炭化物全体を固溶させることを目的として1000〜1200℃を焼入れ温度とする。1000℃未満の温度では炭化物全体を固溶させることが難しい。
本発明の鋼の成分系では1200℃以下の温度で炭化物の全体を固溶させることが可能であるため、上限値を1200℃とする。
[About two-stage quenching]
a) About the first-stage quenching The first-stage quenching is performed at a quenching temperature of 1000 to 1200 ° C. for the purpose of dissolving the entire carbide in solid solution. At temperatures below 1000 ° C., it is difficult to dissolve the entire carbide.
In the steel component system of the present invention, the entire carbide can be dissolved at a temperature of 1200 ° C. or lower, so the upper limit is set to 1200 ° C.

b)2段目の焼入れについて
2段目の焼入れは、1段目の焼入れで一旦生成したマルテンサイトを分解してオーステナイト化し、また微細な炭化物を析出させることを目的として800〜1050℃未満の焼入れ温度に加熱する。
800℃未満の温度ではマルテンサイト→オーステナイト化が不十分であり、また800℃未満或いは1050℃以上の温度では目的とする炭化物が十分に微細析出しないため、焼入れ温度をこの範囲内とする。
b) Second-stage quenching The second-stage quenching is performed at a temperature lower than 800 to 1050 ° C. for the purpose of decomposing martensite once formed in the first-stage quenching into austenite and precipitating fine carbides. Heat to quenching temperature.
When the temperature is less than 800 ° C., martensite → austenite is insufficient, and when the temperature is less than 800 ° C. or 1050 ° C. or more, the target carbide is not sufficiently finely precipitated, the quenching temperature is set within this range.

以上のように本発明によれば、合金元素の添加の少ない、安価な工具鋼を用いながら金型等の工具の硬度を効果的に高硬度となすことができる。   As described above, according to the present invention, it is possible to effectively increase the hardness of a tool such as a mold while using an inexpensive tool steel with little addition of alloy elements.

本発明の組成範囲内にある鋼の状態図の一例を示した図である。It is the figure which showed an example of the phase diagram of steel in the composition range of this invention. 本発明の製造方法における熱処理の説明図である。It is explanatory drawing of the heat processing in the manufacturing method of this invention.

表1に示す発明例及び比較例の鋼を50kg真空誘導炉で溶解し、鋳造した。この鋼塊を1150℃に加熱し、断面がφ55mmの丸棒に鍛造した。
次に、950℃で2〜3時間加熱した後、30℃/hの冷却速度で600℃まで冷却し、90〜100HRBまで軟化させた(球状化焼鈍し処理)。
この丸棒から、厚さ15mmの試験片を切り出し、表1に各々示す条件で焼入れ・焼戻しを行った。
詳しくは、発明例の場合には1段目の焼入れと2段目の焼入れとの2段階の焼入れを行った後焼戻しを行い、また比較例については1段階だけの焼入れを行った後焼戻しを行った。
Inventive and comparative steels shown in Table 1 were melted and cast in a 50 kg vacuum induction furnace. This ingot was heated to 1150 ° C. and forged into a round bar having a cross section of φ55 mm.
Next, after heating at 950 ° C. for 2 to 3 hours, it was cooled to 600 ° C. at a cooling rate of 30 ° C./h, and softened to 90 to 100 HRB (spheroidizing annealing treatment).
From this round bar, a test piece having a thickness of 15 mm was cut out and quenched and tempered under the conditions shown in Table 1.
Specifically, in the case of the invention example, the first-stage quenching and the second-stage quenching are performed in two stages, and then tempering is performed. In the comparative example, only one-stage quenching is performed and then tempering is performed. went.

発明例の1段目の焼入れは、図2の(2-1)に示しているように中間温度(850℃)で1時間保持した後、焼入れ温度で1時間保持し、油冷または加圧ガス吹付けで冷却を行った。
2段目の焼入れは、図2の(2-2)に示しているように1段目の焼入れが完了し、室温まで冷却した後、再度加熱して行った。
詳しくは、図2の(2-2)に示すように800〜1050℃未満の焼入れ温度で1時間保持し、油冷または加圧ガス吹付けで冷却を行った。
焼戻しは、図2の(2-3)に示すように表1に示す温度で1時間保持し、空冷する操作を2回繰り返すことにより行った。
In the first-stage quenching of the invention example, as shown in FIG. 2 (2-1), after holding at an intermediate temperature (850 ° C.) for 1 hour, holding at the quenching temperature for 1 hour, oil cooling or pressurization Cooling was performed by gas blowing.
The second-stage quenching was performed by heating again after the first-stage quenching was completed and cooled to room temperature as shown in FIG. 2 (2-2).
Specifically, as shown in (2-2) of FIG. 2, it was held at a quenching temperature of less than 800 to 1050 ° C. for 1 hour, and cooled by oil cooling or pressurized gas spraying.
Tempering was performed by repeating the operation of holding for 1 hour at the temperature shown in Table 1 and air cooling twice as shown in (2-3) of FIG.

得られた発明例及び比較例の鋼について、熱処理後の硬さ(HT硬さ)、即ち焼入れ・焼戻し後の硬さ(HRC)を測定した。測定は10点行ってその平均値で評価した。結果が表1に併せて示してある。   About the steel of the obtained example of an invention and a comparative example, the hardness (HT hardness) after heat processing, ie, the hardness (HRC) after hardening and tempering, was measured. The measurement was performed 10 points, and the average value was evaluated. The results are also shown in Table 1.

Figure 2015129339
Figure 2015129339

表1において、比較例1の鋼種はハイスのSKH51相当材,比較例2の鋼種はSKH55相当材,比較例3の鋼種はSKH57相当材,比較例4の鋼種はSKH2相当材で、Mo,V,W等の合金元素の添加量が多く、且つまたW+2Moで表されるW当量(タングステン当量)Weqの値が本発明の上限値である9を遥かに超えて大きい。また比較例3については、添加元素として高価なCoが10%と多量に添加されている。
このため各比較例のものは、1200℃を超える高温の焼入れ温度での1段だけの焼入れと焼戻しとによって、硬さ66HRC以上が得られている。
In Table 1, the steel type of Comparative Example 1 is Heiss SKH51 equivalent material, Comparative Example 2 steel type is SKH55 equivalent material, Comparative Example 3 steel type is SKH57 equivalent material, Comparative Example 4 steel type is SKH2 equivalent material, Mo, V , W and the like are added in a large amount, and the value of W equivalent (tungsten equivalent) Weq represented by W + 2Mo is far larger than the upper limit 9 of the present invention. In Comparative Example 3, expensive Co as an additive element is added in a large amount of 10%.
Therefore, in each comparative example, a hardness of 66 HRC or more is obtained by only one-stage quenching and tempering at a quenching temperature higher than 1200 ° C.

一方実施例1〜実施例15の鋼種は、何れも合金元素の添加が少ないにも拘らず、1200℃以下の低い温度を焼入れ温度とする1段目の焼入れと、800〜1050℃未満の焼入れ温度の下での2段目の焼入れと、その後の焼戻しとによって、比較例1〜4のハイスにほぼ匹敵するような高硬度が得られている。
以上より、本発明に係る工具鋼は、冷間工具鋼又は高速度工具鋼として用いると好適である。
On the other hand, the steel grades of Examples 1 to 15 were all hardened at the first stage with a low temperature of 1200 ° C. or lower, and quenched at 800 to 1050 ° C., despite the small addition of alloying elements. High hardness almost comparable to the high speed of Comparative Examples 1 to 4 is obtained by the second stage quenching under temperature and the subsequent tempering.
From the above, the tool steel according to the present invention is preferably used as cold tool steel or high-speed tool steel.

Claims (8)

質量%で
C:1.00〜2.00%
Si:0.05〜1.00%
Mn:0.20〜1.50%
Cr:3.00〜9.00%
Mo:0.50〜3.00%
W:0〜4.00%
[W]+2[Mo]:9%未満
(但し[ ]は[ ]内の元素の含有質量%を表す)
を含有し、残部Fe及び不可避的不純物の組成を有することを特徴とする工具鋼。
By mass% C: 1.00 to 2.00%
Si: 0.05-1.00%
Mn: 0.20 to 1.50%
Cr: 3.00 to 9.00%
Mo: 0.50 ~ 3.00%
W: 0 to 4.00%
[W] + 2 [Mo]: Less than 9% (However, [] represents the mass content of elements in [])
A tool steel characterized by having a composition of balance Fe and inevitable impurities.
質量%で
V:0.10〜1.00%
を更に含有することを特徴とする請求項1に記載の工具鋼。
In mass% V: 0.10 to 1.00%
The tool steel according to claim 1, further comprising:
質量%で
N:0.030〜0.150%
を更に含有し、且つ
Al:0.040〜0.100%
Ti:0.0040〜0.100%
Nb:0.0040〜0.100%
の何れか1種又は2種以上を含有することを特徴とする請求項1,2の何れかに記載の工具鋼。
In mass% N: 0.030-0.150%
And further containing
Al: 0.040 to 0.100%
Ti: 0.0040 to 0.100%
Nb: 0.0040 to 0.100%
The tool steel according to any one of claims 1 and 2, characterized by containing one or more of the above.
質量%で
Cu:0.15〜0.30%
B:0.0010〜0.0100%
の何れか1種又は2種を更に含有することを特徴とする請求項1〜3の何れかに記載の工具鋼。
In mass%
Cu: 0.15-0.30%
B: 0.0010-0.0100%
The tool steel according to any one of claims 1 to 3, further comprising any one or two of the above.
質量%で
S:0.010〜0.200%
を更に含有することを特徴とする請求項1〜4の何れかに記載の工具鋼。
In mass% S: 0.010-0.200%
The tool steel according to any one of claims 1 to 4, further comprising:
1000〜1200℃に加熱して急冷する1段目の焼入れを行った後、800〜1050℃未満の温度に加熱して急冷する2段目の焼入れを行って使用することを特徴とする請求項1〜5の何れかに記載の工具鋼。   The first stage quenching is performed by heating to 1000 to 1200 ° C and quenching, and then the second stage quenching is performed by heating to a temperature of less than 800 to 1050 ° C and quenching. Tool steel in any one of 1-5. 前記1段目の焼入れと2段目の焼入れとの2段階の焼入れ及び焼戻し後に、HRC65以上の硬さの得られる請求項6に記載の工具鋼。   The tool steel according to claim 6, wherein a hardness of HRC 65 or more is obtained after two-stage quenching and tempering of the first-stage quenching and the second-stage quenching. 請求項1〜5の何れかに記載の工具鋼を用いて工具を製造するに際し、焼入れ処理として1000〜1200℃に加熱して急冷する1段目の焼入れと、該1段目の焼入れの後において800〜1050℃未満の温度に加熱して急冷する2段目の焼入れとを行うことを特徴とする高硬度工具の製造方法。   When manufacturing a tool using the tool steel according to any one of claims 1 to 5, after quenching the first stage of quenching by heating to 1000 to 1200 ° C and quenching as a quenching treatment, In the manufacturing method of the high-hardness tool characterized by performing the 2nd quenching which heats to the temperature below 800-1050 degreeC, and quenches rapidly.
JP2014001988A 2014-01-08 2014-01-08 Tool steel and method for manufacturing high hardness tool Pending JP2015129339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001988A JP2015129339A (en) 2014-01-08 2014-01-08 Tool steel and method for manufacturing high hardness tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001988A JP2015129339A (en) 2014-01-08 2014-01-08 Tool steel and method for manufacturing high hardness tool

Publications (1)

Publication Number Publication Date
JP2015129339A true JP2015129339A (en) 2015-07-16

Family

ID=53760267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001988A Pending JP2015129339A (en) 2014-01-08 2014-01-08 Tool steel and method for manufacturing high hardness tool

Country Status (1)

Country Link
JP (1) JP2015129339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725688A (en) * 2020-11-25 2021-04-30 河钢股份有限公司 Cold and hot dual-purpose steel for thread rolling die and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725688A (en) * 2020-11-25 2021-04-30 河钢股份有限公司 Cold and hot dual-purpose steel for thread rolling die and preparation method thereof

Similar Documents

Publication Publication Date Title
JP7045315B2 (en) Hot tool steel
JP5076683B2 (en) High toughness high speed tool steel
CN111511936B (en) Wire rod for cold heading, worked product using the same, and method for manufacturing the same
JP6410515B2 (en) Nitride powder high-speed tool steel excellent in wear resistance and method for producing the same
JP2013533919A (en) Steel high-performance machine parts and their manufacturing methods
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
JP2016003395A (en) Steel for surface treatment machine component having excellent properties, component of the steel and manufacturing method therefor
JP2013227598A (en) Iron casting and method for manufacturing the same
JP4316361B2 (en) Cooled and annealed bainite steel parts and method for manufacturing the same
JP2007308784A (en) Alloy steel
JP6977414B2 (en) Mold
JP2015183265A (en) Method for producing steel material excellent in cold workability or machinability
JP5641298B2 (en) Manufacturing method of steel for plastic molding dies
JP6364219B2 (en) Cast iron castings and manufacturing method thereof
JP5206056B2 (en) Manufacturing method of non-tempered steel
JP2005023375A (en) High hardness steel having excellent cold workability, heat resistance and wear resistance
CN110462083B (en) Steel having high hardness and excellent toughness
JP2005281857A (en) Raw material for nitrided component having excellent broaching workability and method for manufacturing nitrided component using the raw material
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP2018165408A (en) Production method of steel material excellent in cold workability or machinability
JP2015129339A (en) Tool steel and method for manufacturing high hardness tool
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JPH0853735A (en) Steel for bearing
JP2013044036A (en) Method for producing ferrous material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222