JP2007009321A - Steel for plastic molding die - Google Patents

Steel for plastic molding die Download PDF

Info

Publication number
JP2007009321A
JP2007009321A JP2006094094A JP2006094094A JP2007009321A JP 2007009321 A JP2007009321 A JP 2007009321A JP 2006094094 A JP2006094094 A JP 2006094094A JP 2006094094 A JP2006094094 A JP 2006094094A JP 2007009321 A JP2007009321 A JP 2007009321A
Authority
JP
Japan
Prior art keywords
less
content
specifically
steel
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006094094A
Other languages
Japanese (ja)
Inventor
Motohiro Ibuki
基宏 伊吹
Shuji Hamano
修次 濱野
Takeshi Koga
猛 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006094094A priority Critical patent/JP2007009321A/en
Priority to KR1020060041565A priority patent/KR20060125467A/en
Priority to EP06011250A priority patent/EP1728884A1/en
Priority to US11/444,460 priority patent/US20060285992A1/en
Priority to TW095119539A priority patent/TW200643190A/en
Publication of JP2007009321A publication Critical patent/JP2007009321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for a plastic molding die which possesses enough hardness, wear resistance and corrosion resistance, and is excellent in high-precision processability and mirror polishing properties. <P>SOLUTION: The steel for a plastic molding die contains not more than 0.80 wt% C, not less than 0.01 wt% and less than 1.40 wt% Si, not less than 0.05 wt% and not more than 2.0 wt% Mn, not less than 0.005 wt% and not more than 1.00 wt% Ni, not less than 13.0 wt% and not more than 20.0 wt% Cr, not less than 0.20 wt% and not more than 4.0 wt% Mo+1/2W, not less than 0.01 wt% and not more than 1.00 wt% V, not less than 0.36 wt% and not more than 0.80 wt% N, not more than 0.02 wt% O, not more than 0.80 wt% Al, and the remainder substantially including Fe and unavoidable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラスチック成形金型用鋼に関するものである。   The present invention relates to steel for plastic molding dies.

近年、様々な分野において、種々のプラスチック成形品が使用されている。プラスチック成形品は、一般に、例えば、射出成形用金型などのプラスチック成形金型を用いて、所望の形状に成形されている。   In recent years, various plastic molded products are used in various fields. In general, a plastic molded product is molded into a desired shape using, for example, a plastic molding die such as an injection molding die.

ところで、プラスチック成形材料中には、主成分の樹脂に加えて、成形品の強度を向上させるなどの観点から、ガラス繊維などの充填材が添加される場合がある。この種の添加物は、金型を摩耗させるので、得られるプラスチック成形品の寸法精度が低下し、金型寿命を低下させる。   By the way, in addition to the main component resin, a filler such as glass fiber may be added to the plastic molding material from the viewpoint of improving the strength of the molded product. Since this type of additive wears the mold, the dimensional accuracy of the obtained plastic molded product is lowered, and the mold life is shortened.

また、プラスチック成形材料は、その混練過程などにおいて、樹脂の分解により腐食性ガスが発生することがある。この種の腐食性ガスは、金型内で圧縮されて高温、高圧になると、金型を腐食させ、得られるプラスチック成形品の表面荒れ、バリなどを発生させる。   In addition, the plastic molding material may generate corrosive gas due to the decomposition of the resin during the kneading process. When this type of corrosive gas is compressed in the mold and becomes high temperature and high pressure, the mold is corroded, and the resulting plastic molded product is roughened and burrs are generated.

したがって、プラスチック成形金型の材料には、高硬度、耐摩耗性、耐腐食性に優れた金属材料を用いる必要がある。   Therefore, it is necessary to use a metal material having high hardness, wear resistance, and corrosion resistance as the material for the plastic mold.

従来、この種の金属材料としては、例えば、SUS440Cやその改良材などのマルテンサイト系ステンレス鋼が知られている。   Conventionally, as this type of metal material, for example, martensitic stainless steel such as SUS440C and its improved material is known.

また、例えば、特許文献1には、重量%で、C:0.25〜1.0、Si:最大1.0、Mn:最大1.6、N:0.10〜0.35、Al:最大1.0、Co:最大2.8、Cr:14.0〜25.0、Mo:0.5〜3.0、Ni:最大3.9、V:0.04〜0.4、W:最大3.0、Nb:最大0.18、Ti:最大0.20を含み、CとNとの濃度の和が少なくとも0.5および最大1.2であり、残部がFeおよび不可避的不純物からなるプラスチック成形金型用の合金が開示されている。   Further, for example, in Patent Document 1, C: 0.25 to 1.0, Si: maximum 1.0, Mn: maximum 1.6, N: 0.10 to 0.35, Al: Max 1.0, Co: Max 2.8, Cr: 14.0-25.0, Mo: 0.5-3.0, Ni: Max 3.9, V: 0.04-0.4, W : Maximum 3.0, Nb: Maximum 0.18, Ti: Maximum 0.20, the sum of the concentrations of C and N is at least 0.5 and maximum 1.2, the balance being Fe and inevitable impurities An alloy for plastic molding dies is disclosed.

特許第3438121号Patent No. 3438121

しかしながら、特許文献1に記載の合金は、製造段階で粗大な晶出炭窒化物を生じやすく、生成した粗大な晶出炭窒化物と母相との硬さの違いに起因して、型彫り加工時に加工ムラが生じるなど、仕上げ精度が悪いといった問題があった。   However, the alloy described in Patent Document 1 tends to produce coarse crystallized carbonitrides in the production stage, and is caused by the difference in hardness between the generated coarse crystallized carbonitrides and the parent phase. There was a problem that finishing accuracy was poor, such as uneven processing during processing.

また、プラスチック成形金型では、成形品の面状を優れたものにする観点から、型内面を鏡面加工することが多いが、特許文献1に記載の合金は、粗大な晶出炭窒化物により、鏡面加工性が低下するといった問題があった。   Moreover, in the plastic molding die, the mold inner surface is often mirror-finished from the viewpoint of improving the surface shape of the molded product, but the alloy described in Patent Document 1 is based on coarse crystallized carbonitride. There was a problem that the mirror workability deteriorated.

もっとも、特許文献1に記載の合金において、単にC量を減少させることにより、粗大な晶出炭窒化物を生じにくくすることも考えられるが、これを行うと耐摩耗性が悪くなるといった問題が生じる。   However, in the alloy described in Patent Document 1, it may be possible to make coarse crystallized carbonitrides less likely by simply reducing the amount of C. However, if this is done, there is a problem that wear resistance deteriorates. Arise.

そこで、本発明が解決しようとする課題は、十分な硬度、耐摩耗性、耐腐食性を有しつつ、精密加工性、鏡面加工性に優れたプラスチック成形金型用鋼を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a steel for plastic molds having sufficient hardness, wear resistance, and corrosion resistance, and excellent in precision workability and mirror surface workability. .

上記課題を解決するため、本発明に係るプラスチック成形金型用鋼は、C:0.80wt%以下、Si:0.01wt%以上1.40wt%未満、Mn:0.05wt%以上2.0wt%以下、Ni:0.005wt%以上1.00wt%以下、Cr:13.0wt%以上20.0wt%以下、Mo+1/2W:0.20wt%以上4.0wt%以下、V :0.01wt%以上1.00wt%以下、N:0.36wt%以上0.80wt%以下、O:0.02wt%以下、および、Al:0.80wt%以下、を含み、残部が実質的にFeおよび不可避的不純物からなることを要旨とする。   In order to solve the above problems, the plastic mold steel according to the present invention has C: 0.80 wt% or less, Si: 0.01 wt% or more and less than 1.40 wt%, Mn: 0.05 wt% or more and 2.0 wt% %: Ni: 0.005 wt% or more and 1.00 wt% or less, Cr: 13.0 wt% or more and 20.0 wt% or less, Mo + 1 / 2W: 0.20 wt% or more and 4.0 wt% or less, V: 0.01 wt% 1.00 wt% or less, N: 0.36 wt% or more and 0.80 wt% or less, O: 0.02 wt% or less, and Al: 0.80 wt% or less, with the balance being substantially Fe and inevitable The gist is that it consists of impurities.

本発明に係るプラスチック成形金型用鋼は、上記成分組成にしたこと、特に、Cの含有量を減少させるとともにNの含有量を増加させているので、必要な硬さが確保される。そのため、十分な硬度、耐摩耗性を有する。   Since the steel for plastic molds according to the present invention has the above-described component composition, particularly the C content is decreased and the N content is increased, the necessary hardness is ensured. Therefore, it has sufficient hardness and wear resistance.

また、Nの含有量を増加させたことにより、窒素が母相に固溶し、かつ、形成される炭窒化物が微細なため耐腐食性にも優れる。   Further, by increasing the content of N, nitrogen is dissolved in the matrix phase and the formed carbonitride is fine, so that the corrosion resistance is excellent.

さらに、上記Cの含有量を減少させたことにより、製造段階において粗大な晶出炭窒化物が生じ難い。また、焼入れ時の未固溶炭窒化物も少なくなり、焼入れ焼戻しによる微細な炭窒化物が均一に分散される。そのため、精密加工性、鏡面加工性に特に優れる。   Furthermore, by reducing the content of C, coarse crystallized carbonitride is unlikely to occur in the production stage. In addition, undissolved carbonitride at the time of quenching is reduced, and fine carbonitride by quenching and tempering is uniformly dispersed. Therefore, it is particularly excellent in precision workability and mirror surface workability.

以下に、本発明の一実施形態について詳細に説明する。本発明に係るプラスチック成形金型用鋼は、以下のような元素を含み、残部が実質的にFeおよび不可避的不純物からなる。含まれる元素の種類、その含有量を特定した理由は、以下の通りである。   Hereinafter, an embodiment of the present invention will be described in detail. The steel for plastic molds according to the present invention contains the following elements, with the balance being substantially composed of Fe and inevitable impurities. The reasons for specifying the types of elements contained and their contents are as follows.

(1)C:0.80wt%以下。
Cは、強度、耐摩耗性を確保するのに必要な元素であって、Cr、Mo、W、V、Nbなどの炭化物形成元素と結合して炭化物を生成する元素である。また、Cは、焼入れ時に母相中に固溶し、マルテンサイト組織化することによって硬度を確保するのに必要な元素でもある。
(1) C: 0.80 wt% or less.
C is an element necessary for ensuring strength and wear resistance, and is an element that combines with carbide-forming elements such as Cr, Mo, W, V, and Nb to generate carbide. C is also an element necessary for ensuring hardness by solid solution in the matrix during quenching and martensite organization.

但し、Cの含有量が過度に多くなると、上記炭化物形成元素と結合しやすくなって多量の炭化物が晶出し、粗大な炭化物が残留するようになる。これを防止する観点から、Cの含有量は、具体的には、0.80wt%以下、好ましくは0.65wt%以下、さらに好ましくは、0.25wt%未満である。   However, when the content of C is excessively large, it is easy to combine with the carbide-forming element, and a large amount of carbides crystallize and coarse carbides remain. From the viewpoint of preventing this, the C content is specifically 0.80 wt% or less, preferably 0.65 wt% or less, and more preferably less than 0.25 wt%.

もっとも、本願では、Nの含有量を多くすることで硬さを上昇させることができるため、Cの含有量を可能な限り少なくすることにより、粗大な晶出炭化物の量、焼入れ時の未固溶炭化物の量を低下させ、焼入れ焼戻しによる微細な炭化物を均一に分散させることが望ましい。   However, in the present application, the hardness can be increased by increasing the N content. Therefore, by reducing the C content as much as possible, the amount of coarse crystallized carbides and unhardened during quenching can be increased. It is desirable to reduce the amount of molten carbide and uniformly disperse fine carbides by quenching and tempering.

(2)Si:0.01wt%以上1.40wt%未満。
Siは、後述するAlと同様、脱酸元素として機能する。しかしながら、Alは、Nと反応してAlNを生成し、母相中のNの固溶量を低下させると同時に、生成した粗大なAlNにより精密加工性、鏡面加工性を低下させる。したがって、鋼中におけるAlの含有量を抑制するため、脱酸元素としてSiを用いるのが好ましい。Siの含有量は、具体的には、0.01wt%以上、好ましくは0.05wt%以上、さらに好ましくは、0.10wt%以上である。
(2) Si: 0.01 wt% or more and less than 1.40 wt%.
Si functions as a deoxidizing element like Al described later. However, Al reacts with N to produce AlN, reducing the solid solution amount of N in the matrix, and at the same time, reducing the precision workability and mirror finish workability by the produced coarse AlN. Therefore, it is preferable to use Si as the deoxidizing element in order to suppress the Al content in the steel. Specifically, the Si content is 0.01 wt% or more, preferably 0.05 wt% or more, and more preferably 0.10 wt% or more.

但し、Siの含有量が過度に多くなると、熱間加工性や靱性が低下する。これを防止する観点から、Siの含有量は、具体的には、1.40wt%未満、好ましくは0.75wt%以下、さらに好ましくは0.25wt%以下である。   However, when the Si content is excessively increased, hot workability and toughness are deteriorated. From the viewpoint of preventing this, the Si content is specifically less than 1.40 wt%, preferably 0.75 wt% or less, and more preferably 0.25 wt% or less.

(3)Mn:0.05wt%以上2.0wt%以下。
Mnは、焼入れ性を向上させる元素として添加される。また、不可避的にSが含有された場合、Mnは、靱性の低下を抑制するのに有効である。Mnの含有量は、具体的には、0.05wt%以上である。
(3) Mn: 0.05 wt% or more and 2.0 wt% or less.
Mn is added as an element that improves hardenability. Moreover, when S is inevitably contained, Mn is effective in suppressing a decrease in toughness. Specifically, the Mn content is 0.05 wt% or more.

但し、Mnの含有量が過度に多くなると、熱間加工性が低下する。したがって、Mnの含有量は、2.0wt%以下である。   However, when the Mn content is excessively increased, the hot workability is deteriorated. Therefore, the Mn content is 2.0 wt% or less.

(4)Ni:0.005wt%以上1.00wt%以下。
Niは、Nの溶解量を増加させる。Niの含有量は、具体的には、0.005wt%以上である。
(4) Ni: 0.005 wt% or more and 1.00 wt% or less.
Ni increases the amount of N dissolved. Specifically, the Ni content is 0.005 wt% or more.

但し、Niの含有量が過度に多くなると、残留オーステナイトが増加し、寸法の経年変化を引き起こす。したがって、Niの含有量は、具体的には、1.00wt%以下である。   However, when the Ni content is excessively large, retained austenite increases and causes aging of the dimensions. Therefore, the Ni content is specifically 1.00 wt% or less.

(5)Cr:13.0wt%以上20.0wt%以下。
Crは、Nの溶解量を増加させるとともに、耐腐食性を向上させる。また、炭窒化物を形成する。Crの含有量は、具体的には、13.0wt%以上である。
(5) Cr: 13.0 wt% or more and 20.0 wt% or less.
Cr increases the amount of N dissolved and improves the corrosion resistance. Moreover, carbonitride is formed. Specifically, the Cr content is 13.0 wt% or more.

但し、Crの含有量が過度に多くなると、サブゼロ処理を行っても残留γ相が増加し、硬さが低下する。また、コストも高くなる。したがって、Crの含有量は、具体的には、20.0wt%以下である。   However, if the Cr content is excessively large, the residual γ phase increases and the hardness decreases even if the sub-zero treatment is performed. In addition, the cost increases. Therefore, the Cr content is specifically 20.0 wt% or less.

(6)Mo+1/2W:0.20wt%以上4.0wt%以下。
Mo、Wは、Nの溶解量を増加させる。また、焼入れ性を向上させる。この作用を得るには、Mo、Wの含有量は、具体的には、Mo+1/2Wで0.20wt%以上である。
(6) Mo + 1 / 2W: 0.20 wt% or more and 4.0 wt% or less.
Mo and W increase the amount of N dissolved. Moreover, hardenability is improved. In order to obtain this effect, the contents of Mo and W are specifically 0.20 wt% or more in Mo + 1 / 2W.

但し、Mo、Wの含有量が過度に多くなると、晶出炭窒化物の生成が促進され、衝撃値が低下する。したがって、Mo、Wの含有量は、具体的には、Mo+1/2Wで4.0wt%以下である。   However, when the contents of Mo and W are excessively increased, the formation of crystallized carbonitride is promoted and the impact value is lowered. Therefore, specifically, the contents of Mo and W are 4.0 wt% or less in terms of Mo + 1 / 2W.

(7)V:0.01wt%以上1.00wt%以下。
Vは、Nの溶解量を増加させる。また、炭窒化物を形成し、そのピン止め効果により結晶粒を微細化し、強度を向上させる。Vの含有量は、具体的には、0.01wt%以上である。
(7) V: 0.01 wt% or more and 1.00 wt% or less.
V increases the amount of N dissolved. Moreover, carbonitride is formed, and the crystal grain is refined by the pinning effect, thereby improving the strength. Specifically, the content of V is 0.01 wt% or more.

但し、Vの含有量が過度に多くなると、粗大な炭窒化物を生じやすくなり、精密加工性、鏡面加工性が低下する。したがって、Vの含有量は、具体的には、1.00wt%以下である。   However, when the V content is excessively large, coarse carbonitrides are likely to be produced, and precision workability and mirror finish workability are deteriorated. Therefore, the V content is specifically 1.00 wt% or less.

(8)N:0.36wt%以上0.80wt%以下。
Nは、侵入型元素であり、マルテンサイト組織の硬さを向上させるのに寄与する。その効果を得るためには、Nの含有量は、具体的には、0.36wt%以上である。このNの含有量は、sievertsの法則にしたがって加圧溶解することにより添加可能である。
(8) N: 0.36 wt% or more and 0.80 wt% or less.
N is an interstitial element and contributes to improving the hardness of the martensite structure. In order to obtain the effect, the N content is specifically 0.36 wt% or more. The N content can be added by dissolving under pressure according to the Sieverts law.

但し、Nの含有量が過度に多くなると、凝固中におけるNの濃化により、Nに起因するブローホール(以下、「Nブロー」という。)が生じやすくなり、加圧によるNブローの抑制が難しくなる。したがって、Nの含有量は、具体的には、0.80wt%以下である。   However, if the content of N is excessively large, the concentration of N during solidification tends to cause blow holes (hereinafter referred to as “N blow”) due to N, and suppression of N blow by pressurization is suppressed. It becomes difficult. Therefore, the N content is specifically 0.80 wt% or less.

(9)O:0.02wt%以下。
Oは、溶鋼中に不可避的に含まれる元素である。Oが多くなると、Si、Alと粗大な酸化物を生じ、これが介在物となって、靱性、精密加工性、鏡面加工性を低下させる。そのため、Oの含有量は極力低いほうが望ましい。Oの含有量は、具体的には、0.02wt%以下、好ましくは0.01wt%以下である。
(9) O: 0.02 wt% or less.
O is an element inevitably contained in the molten steel. When the amount of O increases, Si and Al and coarse oxides are formed, which become inclusions, and deteriorate toughness, precision workability, and mirror surface workability. Therefore, it is desirable that the O content is as low as possible. Specifically, the content of O is 0.02 wt% or less, preferably 0.01 wt% or less.

(10)Al:0.80wt%以下。
Alは、Siと同様に脱酸元素として機能する。但し、Alの含有量が過度に多くなると、粗大なAlNが生じやすくなり、精密加工性、鏡面加工性が著しく低下する。したがって、Alの含有量は、具体的には、0.80wt%以下である。
(10) Al: 0.80 wt% or less.
Al functions as a deoxidizing element like Si. However, if the Al content is excessively large, coarse AlN is likely to be generated, and the precision workability and mirror surface workability are significantly reduced. Therefore, the Al content is specifically 0.80 wt% or less.

また、本発明に係るプラスチック成形金型用鋼は、上述した必須元素に加えて、さらに、以下の元素から選択される1種または2種以上の元素を任意に含んでいても良い。これら元素の含有量を特定した理由は、以下の通りである。   In addition to the essential elements described above, the steel for plastic molds according to the present invention may optionally contain one or more elements selected from the following elements. The reason why the contents of these elements are specified is as follows.

<1>P:0.030wt%以下、S:0.030wt%以下。
P、Sは、鋼中に不可避的に含まれる。Pは、結晶粒界へ偏析し、Sは、硫化物を形成し、いずれも靱性を低下させる。したがって、P、Sの含有量は、多くとも0.030wt%以下が好ましい。
<1> P: 0.030 wt% or less, S: 0.030 wt% or less.
P and S are inevitably contained in the steel. P segregates to the grain boundaries, and S forms sulfides, both of which reduce toughness. Accordingly, the content of P and S is preferably at most 0.030 wt%.

<2>Cu:0.001wt%以上0.50wt%以下、Co:0.001wt%以上0.50wt%以下、B:0.0005wt%以上0.010wt%以下。
Cu、Co、Bは、何れも焼入れ性の向上に寄与する。Cuの含有量は、具体的には、0.001wt%以上である。Coの含有量は、具体的には、0.001wt%以上である。Bの含有量は、具体的には、0.0005wt%以上である。
<2> Cu: 0.001 wt% to 0.50 wt%, Co: 0.001 wt% to 0.50 wt%, B: 0.0005 wt% to 0.010 wt%.
Cu, Co, and B all contribute to the improvement of hardenability. Specifically, the content of Cu is 0.001 wt% or more. Specifically, the Co content is 0.001 wt% or more. Specifically, the content of B is 0.0005 wt% or more.

但し、Cu、Co、Bの含有量を過度に多くしても、焼入れ性の効果は飽和する。また、コストも上昇する。したがって、Cuの含有量は、具体的には、0.50wt%以下である。Coの含有量は、具体的には、0.50wt%以下である。Bの含有量は、具体的には、0.010wt%以下である。   However, even if the contents of Cu, Co, and B are excessively increased, the effect of hardenability is saturated. In addition, the cost increases. Therefore, the Cu content is specifically 0.50 wt% or less. Specifically, the Co content is 0.50 wt% or less. Specifically, the content of B is 0.010 wt% or less.

<3>Se:0.001wt%以上0.30wt%以下、Te:0.001wt%以上0.30wt%以下、Ca:0.001wt%以上0.10wt%以下、Pb:0.001wt%以上0.20wt%以下、Bi:0.001wt%以上0.30wt%以下。
Se、Te、Ca、Pb、Biは、被削性の向上に寄与する。Seの含有量は、具体的には、0.001wt%以上である。Teの含有量は、具体的には、0.001wt%以上である。Caの含有量は、具体的には、0.001wt%以上である。Pbの含有量は、具体的には、0.001wt%以上である。Biの含有量は、具体的には、0.001wt%以上である。
<3> Se: 0.001 wt% to 0.30 wt%, Te: 0.001 wt% to 0.30 wt%, Ca: 0.001 wt% to 0.10 wt%, Pb: 0.001 wt% to 0 20 wt% or less, Bi: 0.001 wt% or more and 0.30 wt% or less.
Se, Te, Ca, Pb, and Bi contribute to improvement of machinability. Specifically, the Se content is 0.001 wt% or more. Specifically, the content of Te is 0.001 wt% or more. Specifically, the content of Ca is 0.001 wt% or more. Specifically, the content of Pb is 0.001 wt% or more. Specifically, the Bi content is 0.001 wt% or more.

但し、Se、Te、Ca、Pb、Biの含有量が過度に多くなると、靱性が低下する。したがって、Seの含有量は、具体的には、0.30wt%以下である。Teの含有量は、具体的には、0.30wt%以下である。Caの含有量は、具体的には、0.10wt%以下である。Pbの含有量は、具体的には、0.20wt%以下である。Biの含有量は、具体的には、0.30wt%以下である。   However, if the content of Se, Te, Ca, Pb, Bi is excessively increased, the toughness is lowered. Therefore, the Se content is specifically 0.30 wt% or less. Specifically, the Te content is 0.30 wt% or less. Specifically, the Ca content is 0.10 wt% or less. Specifically, the content of Pb is 0.20 wt% or less. Specifically, the Bi content is 0.30 wt% or less.

<4>Ti:0.20wt%以下、Nb:0.001wt%以上0.30wt%以下、Ta:0.001wt%以上0.30wt%以下、Zr:0.001wt%以上0.30wt%以下。
Ti、Nb、Ta、Zrは、C、Nと結合して炭窒化物を形成し、結晶粒の粗大化抑制に寄与する。Tiの含有量は、具体的には、0.01wt%以上である。Nbの含有量は、具体的には、0.001wt%以上である。Taの含有量は、具体的には、0.001wt%以上である。Zrの含有量は、具体的には、0.001wt%以上である。
<4> Ti: 0.20 wt% or less, Nb: 0.001 wt% or more and 0.30 wt% or less, Ta: 0.001 wt% or more and 0.30 wt% or less, Zr: 0.001 wt% or more and 0.30 wt% or less.
Ti, Nb, Ta, and Zr combine with C and N to form carbonitrides, and contribute to suppressing coarsening of crystal grains. Specifically, the Ti content is 0.01 wt% or more. Specifically, the content of Nb is 0.001 wt% or more. Specifically, the content of Ta is 0.001 wt% or more. Specifically, the content of Zr is 0.001 wt% or more.

但し、Ti、Nb、Ta、Zrの含有量が過度に多くなると、靱性が低下する。したがって、Tiの含有量は、具体的には、0.20wt%以下である。Nbの含有量は、具体的には、0.30wt%以下である。Taの含有量は、具体的には、0.30wt%以下である。Zrの含有量は、具体的には、0.30wt%以下である。   However, when the content of Ti, Nb, Ta, Zr is excessively increased, the toughness is lowered. Therefore, the Ti content is specifically 0.20 wt% or less. Specifically, the content of Nb is 0.30 wt% or less. Specifically, the content of Ta is 0.30 wt% or less. Specifically, the content of Zr is 0.30 wt% or less.

また、上述したプラスチック成形金型用鋼は、含有される炭窒化物の粒径が、4.0μm以下、好ましくは3.5μm以下、さらに好ましくは3.0μm以下であると良い。精密加工性、鏡面加工性に特に優れるからである。   Moreover, the steel for plastic molding metal mold | die mentioned above is good in the particle size of the carbonitride contained being 4.0 micrometers or less, Preferably it is 3.5 micrometers or less, More preferably, it is 3.0 micrometers or less. This is because it is particularly excellent in precision workability and mirror surface workability.

なお、炭窒化物の粒径とは、仕上げ研磨した試料の測定面を腐食液により腐食し、この測定面を光学顕微鏡、走査型電子顕微鏡などで観察し、観察される炭窒化物の総数の90%以上がその値以下となる粒径の代表値を指す。   The particle size of carbonitride is the total number of carbonitrides observed by corroding the measurement surface of the finish-polished sample with a corrosive liquid and observing this measurement surface with an optical microscope, scanning electron microscope, or the like. The typical value of the particle size in which 90% or more is the value or less is indicated.

次に、上記プラスチック成形金型用鋼の製造方法の一例について説明する。
上述した組成を有するプラスチック成形金型用鋼を加圧可能な高周波誘導炉などの溶解炉で溶解し、インゴットなどに鋳造し、その後これらインゴットなどを熱間鍛造または熱間圧延して必要な寸法の鋼材に製造する方法などが挙げられる。
Next, an example of a method for producing the plastic molding steel will be described.
Plastic molding die steel having the above-mentioned composition is melted in a melting furnace such as a pressurizable high frequency induction furnace, cast into an ingot, etc., and then these ingots are hot forged or hot rolled to obtain the necessary dimensions. And a method of manufacturing the steel material.

上記プラスチック成形金型用鋼に対する熱処理の一例を示すと次の通りである。焼きなましは、具体的には、例えば、850〜900℃で3〜5時間加熱後、10〜20℃/時間の速度で600℃付近まで炉冷し、その後空冷することなどにより行うことができる。また、焼入れ・焼戻しは、具体的には、例えば、1000〜1200℃で0.5〜1.5時間加熱後、油冷して焼入れをし、その後、−196℃もしくは−76℃で0.5〜1時間サブゼロ処理を行い、その後、200〜700℃で0.5〜1.5時間加熱後、空冷して焼戻しをすることなどにより行うことができる。   An example of the heat treatment for the plastic mold steel is as follows. Specifically, the annealing can be performed, for example, by heating at 850 to 900 ° C. for 3 to 5 hours, then furnace-cooling to about 600 ° C. at a rate of 10 to 20 ° C./hour, and then air cooling. Further, the quenching / tempering is specifically carried out, for example, by heating at 1000 to 1200 ° C. for 0.5 to 1.5 hours, followed by oil cooling and quenching, and then at −196 ° C. or −76 ° C. to reach 0.00. Sub-zero treatment can be performed for 5 to 1 hour, and then heated at 200 to 700 ° C. for 0.5 to 1.5 hours, followed by air cooling and tempering.

以下、本発明を実施例を用いてより具体的に説明する。
表1に示す化学組成の鋼(実施例1〜実施例16に係る鋼、比較例1〜比較例6に係る鋼)を加圧可能な高周波誘導炉で溶製した後、50kgに鋳造し、熱間鍛造により60mm角の棒材をそれぞれ製造した。
Hereinafter, the present invention will be described more specifically with reference to examples.
After melting the steel having the chemical composition shown in Table 1 (steel according to Examples 1 to 16, steel according to Comparative Example 1 to Comparative Example 6) in a pressurizable high frequency induction furnace, it was cast to 50 kg, Each 60 mm square bar was manufactured by hot forging.

Figure 2007009321
Figure 2007009321

次に、実施例、比較例に係る各鋼について、表2に示すように、1030℃から1150℃で焼入れし、さらに実施例1〜16に係る鋼については−76℃たは−196℃でサブゼロ処理を行った後、200℃から475℃の温度で焼戻しを行った。これら各熱処理後のサンプルの諸特性を次のように評価した。   Next, about each steel which concerns on an Example and a comparative example, as shown in Table 2, it hardened at 1030 to 1150 degreeC, and also about -76 degreeC about the steel which concerns on Examples 1-16, or -196 degreeC After the sub-zero treatment, tempering was performed at a temperature of 200 ° C. to 475 ° C. Various characteristics of the samples after these heat treatments were evaluated as follows.

Figure 2007009321
Figure 2007009321

<炭窒化物の粒径>
各棒材から1辺15mmの立方体のブロックを切り出し、熱処理を行った後に測定面を#1500まで研磨した。次いで、1μmのダイヤモンドペーストを用いてバフ研磨し、仕上げ研磨を行った。次いで、ビレラ腐食液を使用して測定面を腐食した。次いで、光学顕微鏡により測定面を撮影(400倍で10視野)し、観察される炭窒化物の総数の90%以上がその値以下となる粒径の値を代表値とした。炭窒化物の粒径が4.0μm以下のものを合格とした。
<Particle size of carbonitride>
A cube block having a side of 15 mm was cut out from each bar, and after heat treatment, the measurement surface was polished to # 1500. Subsequently, buffing was performed using 1 μm diamond paste, and final polishing was performed. Subsequently, the measurement surface was corroded using Villera corrosive liquid. Next, the measurement surface was photographed with an optical microscope (10 fields at 400 magnifications), and the value of the particle size at which 90% or more of the total number of observed carbonitrides was less than that value was used as a representative value. A carbon nitride having a particle size of 4.0 μm or less was accepted.

<硬さ>
各棒材から1辺10mmの立方体のブロックを切り出し、熱処理を行った後に測定面と接地面を#400まで研磨した後、ロックウェルCスケールにより硬さを測定した。硬さがHRC55以上のものを合格とした。
<Hardness>
A cube block having a side of 10 mm was cut out from each bar, and after heat treatment, the measurement surface and the ground contact surface were polished to # 400, and then the hardness was measured by Rockwell C scale. A sample having a hardness of HRC 55 or higher was accepted.

<耐摩耗性>
ピンオンディスク摩擦摩耗試験機を用いて耐摩耗性を評価した。すなわち、各棒材からピンφ8mm×2本を切り出し、熱処理を行った。ディスクは、S45Cより切り出したものを用いた。試験条件は、すべり速度1.6m/s、すべり距離5000m、押し付け荷重10.5kgf、潤滑油なしとした。試験前後にピンの重量を測定し、これより摩耗重量を測定した。なお、表3では、比較例1に係る鋼(SUS440C)の摩耗量を100とした場合における、実施例に係る鋼および残りの比較例に係る鋼の摩耗重量比を示している。摩耗重量比が130未満を合格とした。
<Abrasion resistance>
Wear resistance was evaluated using a pin-on-disk friction and wear tester. That is, two pins φ8 mm × 2 were cut out from each bar and subjected to heat treatment. The disc cut out from S45C was used. The test conditions were a sliding speed of 1.6 m / s, a sliding distance of 5000 m, a pressing load of 10.5 kgf, and no lubricating oil. The weight of the pin was measured before and after the test, and the wear weight was measured from this. In Table 3, the wear weight ratio between the steel according to the example and the steel according to the remaining comparative examples when the wear amount of the steel according to comparative example 1 (SUS440C) is 100 is shown. A wear weight ratio of less than 130 was accepted.

<耐食性>
各棒材からφ15mm×60mmの丸棒を加工し、熱処理を行った後、仕上げ加工により表面を#400相当にした。次いで、JIS Z 2371に準拠して塩水噴霧試験を行い、発錆状態を確認した。なお、表3では、錆が発生しなかったものをA、僅かに錆が発生したものをB、かなり錆が発生したものをC、全面に錆が発生したものをDとして示しており、B以上を合格とした。
<Corrosion resistance>
A round bar of φ15 mm × 60 mm was processed from each bar, and after heat treatment, the surface was made equivalent to # 400 by finishing. Next, a salt spray test was performed in accordance with JIS Z 2371 to confirm the rusting state. In Table 3, A indicates that no rust has occurred, B indicates that rust has slightly occurred, C indicates that rust has occurred, and D indicates that rust has occurred on the entire surface. The above was regarded as passing.

<精密加工性>
各棒材から60mm×60mm×100mmの試験片を作製し、工具にφ10mmの超硬ソリッドエンドミル(6枚刃)を用い、速度120m/分、送り0.06mm/rev、切り込み幅0.5mm、切り込み高さ10mmの条件で加工を行った。次いで、JIS B0633に準拠して加工面の最大の表面粗さRを測定した。この際、最大の表面粗さRが2.0μm以下のものを合格とした。
<Precision workability>
A test piece of 60 mm × 60 mm × 100 mm is prepared from each bar, and a solid carbide end mill (6 blades) of φ10 mm is used as a tool, the speed is 120 m / min, the feed is 0.06 mm / rev, the cutting width is 0.5 mm, Processing was performed under the condition of a cutting height of 10 mm. Next, the maximum surface roughness R y of the processed surface was measured based on JIS B0633. At this time, a sample having a maximum surface roughness Ry of 2.0 μm or less was accepted.

<鏡面加工性>
各棒材から50mm×45mm×12mmの板材を加工し、熱処理を行った後、機械研磨により#14000まで研磨した。次いで、ケミカルエッチングを行い、試験片を作製した。次いで、JIS B0633に準拠して試験片の表面粗さRを測定した。この際、表面粗さRが0.05μm以下のものを合格とした。
<Mirror finish processability>
A 50 mm × 45 mm × 12 mm plate was processed from each bar, heat-treated, and then polished to # 14000 by mechanical polishing. Next, chemical etching was performed to prepare a test piece. It was then measured surface roughness R a of the test piece in conformity with JIS B0633. At this time, a sample having a surface roughness Ra of 0.05 μm or less was accepted.

以上の評価結果を表3に示す。   The above evaluation results are shown in Table 3.

Figure 2007009321
Figure 2007009321

表3によれば、以下のことが分かる。すなわち、比較例1に係る鋼は、粗大な晶出炭窒化物が存在するため、精密加工性、鏡面加工性に劣る。また、耐腐食性も劣る。   According to Table 3, the following can be understood. That is, the steel according to Comparative Example 1 is inferior in precision workability and mirror finish workability because coarse crystallized carbonitride exists. Moreover, corrosion resistance is also inferior.

また、比較例2、4に係る鋼は、Nの含有量が規定より少ないため、十分な硬さが得られず、耐摩耗性に劣る。   Moreover, since the steel which concerns on the comparative examples 2 and 4 has less N content than regulation, sufficient hardness is not acquired and it is inferior to abrasion resistance.

また、比較例3に係る鋼は、Oの含有量が規定より多いので、粗大な酸化物が形成され、また、比較例4に係る鋼も、Alの含有量が規定より多いので、粗大なAlNが形成される。そのため、これらは精密加工性に劣る。   Moreover, since the steel according to Comparative Example 3 has a larger O content than specified, a coarse oxide is formed, and the steel according to Comparative Example 4 also has a larger Al content than specified. AlN is formed. Therefore, these are inferior to precision workability.

また、比較例5に係る鋼は、Vの含有量が規定より多いので、粗大なVNが形成される。そのため、精密加工性、鏡面加工性に劣る。   Moreover, since the steel which concerns on the comparative example 5 has more V content than regulation, coarse VN is formed. Therefore, it is inferior to precision workability and mirror surface workability.

また、比較例6に係る鋼は、Oの含有量が規定より多いので、粗大な酸化物が形成され、精密加工性、鏡面加工性に劣る。   Moreover, since the steel which concerns on the comparative example 6 has more O content than regulation, a coarse oxide is formed and it is inferior to precision workability and mirror surface workability.

これら比較例1〜6に係る鋼に対し、本実施例1〜16に係る鋼は、何れも、十分な硬度、耐摩耗性、耐腐食性を有し、精密加工性、鏡面加工性に優れていることが確認できた。   In contrast to the steels according to Comparative Examples 1 to 6, all the steels according to Examples 1 to 16 have sufficient hardness, wear resistance, and corrosion resistance, and are excellent in precision workability and mirror surface workability. It was confirmed that

したがって、これら本発明に係る鋼は、プラスチック成形用金型の材料として好適に用いることができると言える。   Therefore, it can be said that the steel according to the present invention can be suitably used as a material for plastic molding dies.

Claims (5)

C :0.80wt%以下、
Si:0.01wt%以上1.40wt%未満、
Mn:0.05wt%以上2.0wt%以下、
Ni:0.005wt%以上1.00wt%以下、
Cr:13.0wt%以上20.0wt%以下、
Mo+1/2W:0.20wt%以上4.0wt%以下、
V :0.01wt%以上1.00wt%以下、
N :0.36wt%以上0.80wt%以下、
O :0.02wt%以下、および、
Al:0.80wt%以下、
を含み、残部が実質的にFeおよび不可避的不純物からなることを特徴とするプラスチック成形金型用鋼。
C: 0.80 wt% or less,
Si: 0.01 wt% or more and less than 1.40 wt%,
Mn: 0.05 wt% or more and 2.0 wt% or less,
Ni: 0.005 wt% or more and 1.00 wt% or less,
Cr: 13.0 wt% or more and 20.0 wt% or less,
Mo + 1 / 2W: 0.20 wt% or more and 4.0 wt% or less,
V: 0.01 wt% or more and 1.00 wt% or less,
N: 0.36 wt% or more and 0.80 wt% or less,
O: 0.02 wt% or less, and
Al: 0.80 wt% or less,
And the balance is substantially made of Fe and unavoidable impurities.
P :0.030wt%以下、および
S :0.030wt%以下、
から選択される1種または2種以上の元素をさらに含むことを特徴とする請求項1に記載のプラスチック成形金型用鋼。
P: 0.030 wt% or less, and S: 0.030 wt% or less,
The plastic mold steel according to claim 1, further comprising one or more elements selected from the group consisting of:
Cu:0.001wt%以上0.50wt%以下、
Co:0.001wt%以上0.50wt%以下、および、
B :0.0005wt%以上0.010wt%以下、
から選択される1種または2種以上の元素をさらに含むことを特徴とする請求項1または2に記載のプラスチック成形金型用鋼。
Cu: 0.001 wt% or more and 0.50 wt% or less,
Co: 0.001 wt% or more and 0.50 wt% or less, and
B: 0.0005 wt% or more and 0.010 wt% or less,
The plastic mold steel according to claim 1 or 2, further comprising one or more elements selected from the group consisting of:
Se:0.001wt%以上0.30wt%以下、
Te:0.001wt%以上0.30wt%以下、
Ca:0.001wt%以上0.10wt%以下、
Pb:0.001wt%以上0.20wt%以下、および、
Bi:0.001wt%以上0.30wt%以下、
から選択される1種または2種以上の元素をさらに含むことを特徴とする請求項1から3の何れかに記載のプラスチック成形金型用鋼。
Se: 0.001 wt% or more and 0.30 wt% or less,
Te: 0.001 wt% or more and 0.30 wt% or less,
Ca: 0.001 wt% or more and 0.10 wt% or less,
Pb: 0.001 wt% or more and 0.20 wt% or less, and
Bi: 0.001 wt% or more and 0.30 wt% or less,
The plastic mold steel according to any one of claims 1 to 3, further comprising one or more elements selected from the group consisting of:
Ti:0.20wt%以下、
Nb:0.001wt%以上0.30wt%以下、
Ta:0.001wt%以上0.30wt%以下、および、
Zr:0.001wt%以上0.30wt%以下、
から選択される1種または2種以上の元素をさらに含むことを特徴とする請求項1から4の何れかに記載のプラスチック成形金型用鋼。
Ti: 0.20 wt% or less,
Nb: 0.001 wt% or more and 0.30 wt% or less,
Ta: 0.001 wt% or more and 0.30 wt% or less, and
Zr: 0.001 wt% or more and 0.30 wt% or less,
5. The plastic mold steel according to claim 1, further comprising one or more elements selected from the group consisting of:
JP2006094094A 2005-06-02 2006-03-30 Steel for plastic molding die Pending JP2007009321A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006094094A JP2007009321A (en) 2005-06-02 2006-03-30 Steel for plastic molding die
KR1020060041565A KR20060125467A (en) 2005-06-02 2006-05-09 Steel for a plastic molding die
EP06011250A EP1728884A1 (en) 2005-06-02 2006-05-31 Steel for a plastic molding die
US11/444,460 US20060285992A1 (en) 2005-06-02 2006-06-01 Steel for a plastic molding die
TW095119539A TW200643190A (en) 2005-06-02 2006-06-02 Steel for a plastic molding die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005162823 2005-06-02
JP2006094094A JP2007009321A (en) 2005-06-02 2006-03-30 Steel for plastic molding die

Publications (1)

Publication Number Publication Date
JP2007009321A true JP2007009321A (en) 2007-01-18

Family

ID=36636190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094094A Pending JP2007009321A (en) 2005-06-02 2006-03-30 Steel for plastic molding die

Country Status (5)

Country Link
US (1) US20060285992A1 (en)
EP (1) EP1728884A1 (en)
JP (1) JP2007009321A (en)
KR (1) KR20060125467A (en)
TW (1) TW200643190A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097047A (en) * 2007-10-18 2009-05-07 Daido Steel Co Ltd Steel for plastic molding mold, and plastic molding mold
JP2010174319A (en) * 2009-01-29 2010-08-12 Daido Steel Co Ltd Steel for plastic molding mold, and plastic molding mold
JP2013082992A (en) * 2011-09-28 2013-05-09 Hitachi Metals Ltd Method for producing steel material excellent in toughness for die
WO2013146046A1 (en) * 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
JP2015045071A (en) * 2013-08-29 2015-03-12 山陽特殊製鋼株式会社 Steel for anticorrosive plastic molding die excellent in specularity
JP5705345B1 (en) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 High mirror surface plastic mold steel
JP2015101789A (en) * 2013-11-21 2015-06-04 ベーレル・エーデルシユタール・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method for producing plastic molds from martensitic chromium steel and plastic molds
CN111471928A (en) * 2020-05-11 2020-07-31 河北普阳钢铁有限公司 Wear-resistant steel plate with basket braided martensite metallographic structure and production method thereof
JP7152582B1 (en) 2021-11-09 2022-10-12 日本高周波鋼業株式会社 Mold steel with excellent mirror finish

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021300B4 (en) 2010-05-22 2012-03-22 Daimler Ag Wire-shaped spray material, functional layer that can be produced therewith and method for coating a substrate with a spray material
CN105705667B (en) * 2013-10-02 2017-11-21 尤迪霍尔姆斯有限责任公司 Corrosion-resistant and abrasion cold work tool steel
WO2015126311A1 (en) * 2014-02-18 2015-08-27 Uddeholms Ab Stainless steel for a plastic mould and a mould made of the stainless steel
DE102014217369A1 (en) 2014-09-01 2016-03-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. HIGH STRENGTH, MECHANICAL ENERGY ABSORBING AND CORROSION-RESISTANT FORM BODIES OF IRON ALLOYS AND METHOD FOR THE PRODUCTION THEREOF
EP3856946A1 (en) * 2018-09-28 2021-08-04 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same
JP7392330B2 (en) * 2018-10-12 2023-12-06 大同特殊鋼株式会社 Mold steel and molds
US11377718B2 (en) 2018-10-12 2022-07-05 Daido Steel Co., Ltd. Steel for mold

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US101430A (en) * 1870-04-05 Improvement in fastenings for fails, cans
DE3901470C1 (en) * 1989-01-19 1990-08-09 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De Cold-working steel and its use
DE4212966C2 (en) * 1992-04-18 1995-07-13 Ver Schmiedewerke Gmbh Use of a martensitic chromium steel
AT405193B (en) 1995-01-16 1999-06-25 Boehler Edelstahl USE OF A CHROMED MARTENSITIC IRON BASED ALLOY FOR PLASTICS
DE19620914A1 (en) * 1996-05-24 1997-11-27 Trw Deutschland Gmbh Stainless tempered steel for valves in internal combustion engines
JP2001107195A (en) * 1999-10-01 2001-04-17 Daido Steel Co Ltd Low carbon high hardness and high corrosion resistance martensitic stainless steel and its producing method
SE516622C2 (en) * 2000-06-15 2002-02-05 Uddeholm Tooling Ab Steel alloy, plastic forming tool and toughened plastic forming tool
JP4337268B2 (en) * 2001-02-27 2009-09-30 大同特殊鋼株式会社 High hardness martensitic stainless steel with excellent corrosion resistance
JP2005248263A (en) * 2004-03-04 2005-09-15 Daido Steel Co Ltd Martensitic stainless steel
JP4427790B2 (en) * 2004-06-04 2010-03-10 大同特殊鋼株式会社 Martensitic stainless steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097047A (en) * 2007-10-18 2009-05-07 Daido Steel Co Ltd Steel for plastic molding mold, and plastic molding mold
JP2010174319A (en) * 2009-01-29 2010-08-12 Daido Steel Co Ltd Steel for plastic molding mold, and plastic molding mold
JP2013082992A (en) * 2011-09-28 2013-05-09 Hitachi Metals Ltd Method for producing steel material excellent in toughness for die
AU2013238482B2 (en) * 2012-03-26 2015-07-16 Nippon Steel Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
JP5348354B1 (en) * 2012-03-26 2013-11-20 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipes for oil wells
WO2013146046A1 (en) * 2012-03-26 2013-10-03 新日鐵住金株式会社 Stainless steel for oil wells and stainless steel pipe for oil wells
US9783876B2 (en) 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
JP2015045071A (en) * 2013-08-29 2015-03-12 山陽特殊製鋼株式会社 Steel for anticorrosive plastic molding die excellent in specularity
JP2015101789A (en) * 2013-11-21 2015-06-04 ベーレル・エーデルシユタール・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method for producing plastic molds from martensitic chromium steel and plastic molds
JP5705345B1 (en) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 High mirror surface plastic mold steel
WO2015132977A1 (en) * 2014-03-06 2015-09-11 日本高周波鋼業株式会社 Steel for mold for plastic with high specularity
CN106460108A (en) * 2014-03-06 2017-02-22 日本高周波钢业株式会社 Steel for mold for plastic with high specularity
CN111471928A (en) * 2020-05-11 2020-07-31 河北普阳钢铁有限公司 Wear-resistant steel plate with basket braided martensite metallographic structure and production method thereof
JP7152582B1 (en) 2021-11-09 2022-10-12 日本高周波鋼業株式会社 Mold steel with excellent mirror finish
WO2023085137A1 (en) * 2021-11-09 2023-05-19 日本高周波鋼業株式会社 Die steel having excellent mirror finish properties
JP2023070594A (en) * 2021-11-09 2023-05-19 日本高周波鋼業株式会社 Die steel having excellent mirror finish properties

Also Published As

Publication number Publication date
TW200643190A (en) 2006-12-16
KR20060125467A (en) 2006-12-06
US20060285992A1 (en) 2006-12-21
EP1728884A1 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP2007009321A (en) Steel for plastic molding die
KR101355321B1 (en) Case hardened steel and method for producing the same
JP5412851B2 (en) Steel for plastic molds and plastic molds
US10774406B2 (en) Steel for mold and mold
JP6468366B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP6468365B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP2006328521A (en) Tool for precision working and tool steel
JP2009013439A (en) High toughness high-speed tool steel
JP5186878B2 (en) Steel for plastic molds and plastic molds
JPWO2021124511A1 (en) Martensitic stainless steel for high hardness and high corrosion resistance with excellent cold workability and its manufacturing method
JP2021116454A (en) Martensitic stainless steel excellent in cold workability for high hardness and high corrosion resistance use, and manufacturing method thereof
JP2005082814A (en) Prehardened steel for plastic molding die
JP6683075B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP2017066460A (en) Age hardening steel
JP2005082813A (en) Prehardened steel for plastic molding die
KR20020001933A (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP6683074B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP6866692B2 (en) Mold steel and mold
JP6801717B2 (en) Cold forging steel and its manufacturing method
JP6683073B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP2020063508A (en) Steel for mold, and mold
JP2016156081A (en) Alloy tool steel
JP5776959B2 (en) Die steel with excellent hot workability
JPH11335775A (en) Steel for metal mold for plastic molding, excellent in mirror-finish characteristics and machinability
JP6766531B2 (en) Cold forging steel and its manufacturing method