JP2013082992A - Method for producing steel material excellent in toughness for die - Google Patents

Method for producing steel material excellent in toughness for die Download PDF

Info

Publication number
JP2013082992A
JP2013082992A JP2012163184A JP2012163184A JP2013082992A JP 2013082992 A JP2013082992 A JP 2013082992A JP 2012163184 A JP2012163184 A JP 2012163184A JP 2012163184 A JP2012163184 A JP 2012163184A JP 2013082992 A JP2013082992 A JP 2013082992A
Authority
JP
Japan
Prior art keywords
stainless steel
steel material
hot
annealing
hot working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012163184A
Other languages
Japanese (ja)
Other versions
JP5904409B2 (en
Inventor
Ryuichiro Sugano
隆一朗 菅野
Takaaki Sekiyama
孝明 關山
Madoka Kishikawa
まどか 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012163184A priority Critical patent/JP5904409B2/en
Publication of JP2013082992A publication Critical patent/JP2013082992A/en
Application granted granted Critical
Publication of JP5904409B2 publication Critical patent/JP5904409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing steel material for a die, composed of martensitic stainless steel and excellent in toughness.SOLUTION: The method for producing steel material for a die is provided in which a martensitic stainless steel raw material having component composition containing by mass%, 0.3-0.5% C and 12.0 to 16.0% Cr, is hot-worked and successively, the hot-worked stainless steel raw material is annealed, wherein the hot working is carried out in such a manner that: the working ratio calculated using an expression of [(the thickness of the stainless steel raw material before hot working - the thickness of the stainless steel raw material after hot-working)/the thickness of the stainless steel raw material before subjected to the hot working]×100, is ≥55%; and the hot-worked stainless steel raw material is cooled to the temperature of the Ms point or lower and then successively, the stainless steel raw material is heated to the annealing temperature and subjected to the above annealing. In another embodiment, a method for producing steel material for a die is provided in which after the stainless steel raw material is annealed, the stainless steel raw material is hardened and tempered, and thus pre-hardened steel material is obtained.

Description

本発明は、各種の金型に用いることが可能な、靭性に優れた金型用鋼材の製造方法に関する。   The present invention relates to a method for producing a steel material for a mold having excellent toughness that can be used for various molds.

金型用鋼材は、一般に、鋳造によって得られた素材を熱間加工して形状を整え、続いて焼鈍を行って製造される。そして、この焼鈍材に金型形状への機械加工と焼入れ焼戻しを行って、所定の使用硬さに調整した金型が作製される。従来、プラスチック成型等の耐食性と磨き性が求められる金型用鋼材には、JIS−SUS420J2に代表される高C−高Crのマルテンサイト系ステンレス鋼や、その改良鋼材が使用されてきた(特許文献1〜3)。これらの成分組成でなる金型用鋼材は、焼入れ焼戻しによって50HRCの高硬度が得られるので、使用時の耐摩耗性にも優れる。しかし、この焼入れ焼戻し後の高硬度の状態では、金型形状への機械加工が容易ではないことから、一般的には、例えば30HRC未満の硬度の低い上記の焼鈍材の状態で提供され、これを金型形状に機械加工してから、上記の使用硬さに焼入れ焼戻ししている。   In general, steel for molds is manufactured by hot working a material obtained by casting to adjust the shape, followed by annealing. Then, the annealed material is machined into a mold shape and quenched and tempered to produce a mold adjusted to a predetermined hardness. Conventionally, high C-high Cr martensitic stainless steel represented by JIS-SUS420J2 and its improved steel materials have been used for mold steel materials that require corrosion resistance and polishability such as plastic molding (patents) Literatures 1-3). Since the steel for a mold having these component compositions has a high hardness of 50 HRC by quenching and tempering, it is excellent in wear resistance during use. However, in the high hardness state after quenching and tempering, machining into a mold shape is not easy, and thus, generally, it is provided in the above-described annealed material state having a low hardness of less than 30 HRC. Is machined into a mold shape and then tempered to the above-mentioned hardness.

これらの金型用鋼材には、あらかじめ焼入れ焼戻しされたプリハードン状態で提供されるものもある。プリハードン状態の金型用鋼材は、その焼入れ焼戻しのされた状態で金型形状に機械加工するので、焼入れ焼戻しによって生じる熱処理変形の課題を解決できるものである。例えば、上記の焼鈍材を30HRC程度に焼入れ焼戻しして提供されるものは、機械加工時の被切削性(工具寿命)は焼鈍材のそれより低いものの、機械加工自体は困難ではない。そして、提供された金型用鋼材は機械加工され、上記の50HRC程度の使用硬さに再度焼入れ焼戻しされる。あるいは、焼鈍材を40HRC程度に焼入れ焼戻ししてプリハードン状態で提供されるものは、この硬さでも機械加工は可能であるから、これを機械加工して、そのままの硬さで使用することも可能である。   Some of these mold steel materials are provided in a pre-hardened state that has been quenched and tempered in advance. The pre-hardened steel for molds is machined into a mold shape in the quenched and tempered state, so that the problem of heat treatment deformation caused by quenching and tempering can be solved. For example, what is provided by quenching and tempering the above-mentioned annealed material to about 30 HRC has lower machinability (tool life) during machining than that of the annealed material, but machining itself is not difficult. The provided steel for the mold is machined, and is tempered and tempered again to a working hardness of about 50 HRC. Alternatively, an annealed material that is quenched and tempered to about 40 HRC and provided in a pre-hardened state can be machined even at this hardness, so it can be machined and used as it is It is.

特開平04−002745号公報Japanese Patent Laid-Open No. 04-002745 特開平03−097829号公報Japanese Patent Laid-Open No. 03-097829 特開2007−277639号公報JP 2007-27739 A

特許文献1〜3が提案するマルテンサイト系ステンレス鋼の成分組成は、高硬度の金型を得るのに適したものである。しかし、これらの金型用鋼材の成分組成は、多くのCを含有することから、上記した熱間加工後の焼鈍によって、その組織中に粗大な炭化物が分布しやすい。そして、この粗大な炭化物は、後の焼入れ焼戻しによっても消去し難い。この結果、機械加工を経て完成した金型の組織中に、この粗大な炭化物が多く存在すると、金型の靭性が劣化して、使用時の割れ等、金型の早期の破損につながる恐れがあった。   The component composition of martensitic stainless steel proposed in Patent Documents 1 to 3 is suitable for obtaining a high-hardness mold. However, since the component composition of these steel materials for molds contains a large amount of C, coarse carbides are likely to be distributed in the structure by the annealing after the hot working described above. And this coarse carbide | carbonized_material is hard to erase | eliminate by subsequent quenching and tempering. As a result, if there is a lot of this coarse carbide in the structure of the mold completed through machining, the toughness of the mold deteriorates, which may lead to early damage of the mold such as cracking during use. there were.

本発明の目的は、SUS420J2や、特許文献1〜3等で提案される成分組成のマルテンサイト系ステンレス鋼でなる金型用鋼材を提供するにおいて、その靭性を向上できる製造方法を提供することである。   An object of the present invention is to provide a manufacturing method capable of improving the toughness in providing a steel material for a mold made of martensitic stainless steel having a component composition proposed in SUS420J2, Patent Documents 1 to 3, and the like. is there.

本発明者は、焼鈍後の鋼材中に粗大な炭化物が分布する現象が発生する原因を調査した。その結果、この現象は、熱間加工後の素材が有する組織形態に、次の焼鈍に移行するまでの温度履歴が影響して発生していることを突きとめた。そこで、この温度履歴を、前工程である熱間加工の条件とともに相互に見直したところ、熱間加工の条件管理および熱間加工後の素材の温度履歴の管理を適切に行えば、焼鈍時の粗大な炭化物の発生を抑制できることを見いだし、本発明に到達した。   The inventor investigated the cause of the phenomenon that coarse carbides are distributed in the steel material after annealing. As a result, it has been found that this phenomenon occurs due to the temperature history until the transition to the next annealing on the structure of the material after hot working. Therefore, when this temperature history was mutually reviewed together with the conditions of the hot working as the previous process, if the condition management of the hot working and the temperature history of the material after the hot working were appropriately performed, It has been found that generation of coarse carbides can be suppressed, and the present invention has been achieved.

すなわち、本発明は、質量%で、C:0.3〜0.5%、Cr:12.0〜16.0%を含む成分組成のマルテンサイト系のステンレス鋼素材を熱間加工し、引き続いて前記熱間加工した前記ステンレス鋼素材を焼鈍する金型用鋼材の製造方法であって、前記熱間加工は、[(熱間加工前のステンレス鋼素材の厚み−熱間加工後のステンレス鋼素材の厚み)/熱間加工前のステンレス鋼素材の厚み]×100の式で算出される加工率が55%以上であり、かつ、前記熱間加工後のステンレス鋼素材をMs点以下の温度まで冷却してから、引き続いて焼鈍温度に加熱して前記焼鈍することを特徴とする靭性に優れた金型用鋼材の製造方法である。好ましくは、前記焼鈍温度は、600℃以上および/または1000℃以下である。あるいはさらに、熱間加工に供する前記ステンレス鋼素材は、再溶解法によって作製されたことが好ましい。   That is, the present invention hot-processes a martensitic stainless steel material having a composition containing C: 0.3 to 0.5% and Cr: 12.0 to 16.0% by mass%, A method of manufacturing a steel for a mold for annealing the hot-worked stainless steel material, wherein the hot-working is [(thickness of stainless steel material before hot-working-stainless steel after hot-working. (Thickness of material) / thickness of stainless steel material before hot working] × 100 The processing rate calculated by the formula of 55 is equal to or higher than 55%, and the stainless steel material after hot working is at a temperature below Ms point. It is the manufacturing method of the steel material for metal mold | die excellent in the toughness characterized by heating to the annealing temperature after cooling to this, and annealing. Preferably, the annealing temperature is 600 ° C. or higher and / or 1000 ° C. or lower. Alternatively, the stainless steel material used for hot working is preferably produced by a remelting method.

また、本発明は、前記焼鈍した後に、焼入れ焼戻しして、プリハードン状態の金型用鋼材とすることを特徴とする金型用鋼材の製造方法である。   Moreover, this invention is the manufacturing method of the steel material for metal mold | die characterized by making the steel material for metal mold | die of a hardened state by quenching and tempering after the said annealing.

本発明の製造方法によれば、SUS420J2や、特許文献1〜3等で提案される成分組成の金型用鋼材の靭性を向上させることができ、特に大型の金型の提供に有用な製造方法である。   According to the manufacturing method of the present invention, it is possible to improve the toughness of the steel for molds having the component composition proposed in SUS420J2, Patent Documents 1 to 3, and the like, and particularly a manufacturing method useful for providing a large mold. It is.

本発明法および従来法で製造した金型用鋼材の一例を示す、焼鈍後の金属ミクロ組織を表す図面代用写真である。It is a drawing substitute photograph showing the metal microstructure after annealing which shows an example of the steel material for metal molds manufactured by the method of the present invention and the conventional method. 本発明法および比較法で製造した金型用鋼材の靭性に及ぼす熱間加工時の加工率の影響の一例を示す図である。It is a figure which shows an example of the influence of the processing rate at the time of hot working on the toughness of the steel material for metal mold | die manufactured by this invention method and the comparison method.

本発明の特徴は、熱間加工後の素材が焼鈍されるまでに経ていた従来の温度履歴を、その熱間加工時の条件とともに相互に見直したことで、最適な熱間加工および温度管理の手法を提案したところにある。以下に、本発明の各構成要件について説明する。   The feature of the present invention is that the conventional temperature history, which has been passed until the material after hot working is annealed, is reviewed together with the conditions during the hot working so that optimum hot working and temperature management can be performed. A method has been proposed. Below, each component of this invention is demonstrated.

(1)質量%で、C:0.3〜0.5%、Cr:12.0〜16.0%を含む成分組成のマルテンサイト系のステンレス鋼素材を熱間加工し、引き続いて前記熱間加工した前記ステンレス鋼素材を焼鈍する金型用鋼材の製造方法である。
上述の通り、本発明の目的は、SUS420J2や、特許文献1〜3等で提案される成分組成の金型用鋼材の靭性を向上するものである。そして、この金型用鋼材が、通常の方法に従って、該成分組成のマルテンサイト系ステンレス鋼素材を熱間加工し、引き続いて焼鈍して製造されることも、上述の通りである。以下、素材の成分組成(つまり、金型用鋼材の成分組成)について説明する(以下、「質量%」の表記は、単に「%」と記す)。
(1) Hot working a martensitic stainless steel material having a component composition containing C: 0.3 to 0.5% and Cr: 12.0 to 16.0% by mass%, followed by the heat It is the manufacturing method of the steel material for metal mold | die which anneals the said stainless steel raw material processed between.
As described above, an object of the present invention is to improve the toughness of the steel for molds having the component composition proposed in SUS420J2, Patent Documents 1 to 3, and the like. And as above-mentioned, this steel material for metal mold | dies is manufactured by carrying out the hot processing of the martensitic stainless steel raw material of this component composition, and subsequently annealing according to a normal method. Hereinafter, the component composition of the material (that is, the component composition of the steel material for molds) will be described (hereinafter, “mass%” is simply referred to as “%”).

・C:0.3〜0.5%
Cは、焼入れ性を高め、さらには、50HRC以上の十分な焼入れ焼戻し硬さを得るために必要な元素である。ただし、多すぎると、焼入れ後に焼割れが発生しやすくなる。よって、本発明では、0.3〜0.5%とする。好ましくは、0.33%以上および/または0.45%以下である。
・ C: 0.3-0.5%
C is an element necessary for improving the hardenability and further obtaining a sufficient quenching and tempering hardness of 50 HRC or more. However, if it is too much, it becomes easy for cracking to occur after quenching. Therefore, in the present invention, the content is set to 0.3 to 0.5%. Preferably, it is 0.33% or more and / or 0.45% or less.

・Cr:12.0〜16.0%
Crは、焼入れ性を高め、高い焼入れ焼戻し硬さを得るために必要な元素である。さらに、Crは、金型用鋼材の耐食性を高める重要な元素である。ただし、多すぎると、熱伝導率が著しく低下する。熱伝導率が高いと、金型として使用時の加熱・冷却の熱サイクルに要する時間を短縮でき、好適である。よって、本発明では、12.0〜16.0%とする。好ましくは、12.5%以上および/または15.0%以下である。
・ Cr: 12.0 to 16.0%
Cr is an element necessary for improving hardenability and obtaining high quenching and tempering hardness. Furthermore, Cr is an important element that enhances the corrosion resistance of the steel for molds. However, if the amount is too large, the thermal conductivity is significantly reduced. When the thermal conductivity is high, the time required for the heat cycle of heating and cooling during use as a mold can be shortened, which is preferable. Therefore, in the present invention, the content is 12.0 to 16.0%. Preferably, it is 12.5% or more and / or 15.0% or less.

その他の元素も含め、本発明の製造方法に係る金型用鋼材の成分組成として好ましい組成範囲を示すと、以下の通りである。
C:0.3〜0.5%(好ましくは、0.33%以上および/または0.45%以下)
Si:1.0%以下(好ましくは、0.2%以上および/または0.7%以下)
Mn:1.0%以下(好ましくは、0.2%以上および/または0.7%以下)
P:0.05%以下(好ましくは、0.03%以下)
S:0.01%以下(好ましくは、0.005%以下)
Ni:無添加〜1.0%(好ましくは、0.5%以下)
Cr:12.0〜16.0%(好ましくは、12.5%以上および/または15.0%以下)
MoおよびWの1種または2種:(Mo+1/2W)の式で0〜1.5%(好ましくは、0.1%以上および/または1.0%以下)
Fe:実質的に残部(例えば、残部Feおよび不可避的不純物を含む)
A preferable composition range including the other elements as a component composition of the steel for molds according to the production method of the present invention is as follows.
C: 0.3 to 0.5% (preferably 0.33% or more and / or 0.45% or less)
Si: 1.0% or less (preferably 0.2% or more and / or 0.7% or less)
Mn: 1.0% or less (preferably 0.2% or more and / or 0.7% or less)
P: 0.05% or less (preferably 0.03% or less)
S: 0.01% or less (preferably 0.005% or less)
Ni: No addition to 1.0% (preferably 0.5% or less)
Cr: 12.0 to 16.0% (preferably 12.5% or more and / or 15.0% or less)
One or two of Mo and W: 0 to 1.5% in the formula of (Mo + 1 / 2W) (preferably 0.1% or more and / or 1.0% or less)
Fe: Substantially the balance (for example, including the balance Fe and inevitable impurities)

Siは、被切削性を高める効果を有するが、多すぎると熱伝導率を極端に低下させる元素である。
Mnは、焼入れ性を高め、フェライトの生成を抑制する効果を有するが、多すぎると基地の粘さを極端に上げるため、被切削性を低下させる元素である。
Pは、多すぎると熱間加工性や靭性を低下させる元素である。
Sは、多すぎると熱間加工性や耐食性を低下させ、さらには、靭性の異方性を助長する元素である。
Niは、焼入れ性を高め、耐食性も向上させる効果を有するが、多すぎると熱伝導率を低下させる元素である。
MoおよびWは、焼戻し時の硬さを高める効果を有するが、多すぎると焼入れ時に基地に固溶しきれず、逆に、焼戻し硬さを低下させる。
Si has an effect of improving machinability, but if it is too much, it is an element that extremely lowers the thermal conductivity.
Mn has an effect of enhancing hardenability and suppressing the formation of ferrite, but if it is too much, it is an element that lowers machinability because it extremely increases the base viscosity.
P is an element that reduces hot workability and toughness when too large.
When S is too much, it is an element that decreases hot workability and corrosion resistance, and further promotes toughness anisotropy.
Ni has an effect of improving hardenability and improving corrosion resistance, but if it is too much, Ni is an element that decreases thermal conductivity.
Mo and W have an effect of increasing the hardness at the time of tempering, but if too much, they cannot be completely dissolved in the base at the time of quenching, and conversely, the tempering hardness is lowered.

(2)前記熱間加工は、[(熱間加工前のステンレス鋼素材の厚み−熱間加工後のステンレス鋼素材の厚み)/熱間加工前のステンレス鋼素材の厚み]×100の式で算出される加工率を55%以上とする。
本発明に係るステンレス鋼素材を熱間加工する際は、その加工性の向上と、炭化物の固溶による成分均質化のために、該素材を、通常、オーステナイト単相域の温度に加熱してから熱間加工する。そして、組織中の炭化物の微細化を目的とする本発明にとって、この熱間加工が終了した時の組織中の結晶粒は微細であることが有効である。つまり、後述する冷却過程以降において、該組織中のオーステナイト結晶粒界は炭化物の析出サイトとなるから、冷却前の結晶粒を微細にしておくことで、この析出サイトは増加して、焼鈍後の炭化物を微細にすることができる。
(2) The hot working is expressed by the formula [(thickness of stainless steel material before hot working−thickness of stainless steel material after hot working) / thickness of stainless steel material before hot working] × 100. The calculated machining rate is 55% or more.
When hot working the stainless steel material according to the present invention, the material is usually heated to a temperature in the austenite single-phase region in order to improve the workability and homogenize the components by solid solution of carbide. From hot working. And for the present invention aiming at the refinement of carbides in the structure, it is effective that the crystal grains in the structure when the hot working is completed are fine. That is, after the cooling process described later, the austenite grain boundary in the structure becomes a carbide precipitation site, so by making the crystal grains before cooling fine, this precipitation site increases, and after annealing The carbide can be made fine.

そこで、本発明では、上記のステンレス鋼素材を熱間加工する際の加工率を、以下の式による計算値で55%以上とすることが重要である。つまり、この加工率を55%以上とすることで、熱間加工中の組織には加工ひずみの蓄積と再結晶が繰り返される動的再結晶(dynamic recrystallization)の現象が進んで、結晶粒が十分に微細化され、炭化物の析出サイトを効果的に増やすことができる。好ましくは60%以上の加工率であり、さらに好ましくは65%以上の加工率である。また、結晶粒を微細にしておくことは、これ自体も破壊の組織単位を小さくすることに作用して、金型用鋼材の靭性などの機械特性を向上する効果を有する。
加工率(%)=[(熱間加工前のステンレス鋼素材の厚み−熱間加工後のステンレス鋼素材の厚み)/熱間加工前のステンレス鋼素材の厚み]×100
Therefore, in the present invention, it is important that the processing rate when the above stainless steel material is hot-worked is 55% or more as calculated by the following formula. That is, by setting the processing rate to 55% or more, a dynamic recrystallization phenomenon in which accumulation of processing strain and recrystallization is repeated progresses in the structure during hot processing, and the crystal grains are sufficient. Therefore, the number of carbide precipitation sites can be effectively increased. The processing rate is preferably 60% or more, and more preferably 65% or more. Further, keeping the crystal grains fine also has an effect of improving mechanical properties such as toughness of the steel material for the mold by itself acting to reduce the fracture structural unit.
Processing rate (%) = [(thickness of stainless steel material before hot working−thickness of stainless steel material after hot working) / thickness of stainless steel material before hot working] × 100

(3)前記熱間加工後のステンレス鋼素材をMs点以下の温度まで冷却してから、引き続いて焼鈍温度に加熱して前記焼鈍するものである。
上記の熱間加工を終えた素材は、そのまま放置すれば、加工終了温度から降温していく。このとき、素材は、加工後の冷却過程で炭化物が析出する温度域を通過するため、特にオーステナイト結晶粒界上に、微細な炭化物が析出しやすい。また、実際の操業においては、改めての加熱工程を省略して効率化するために、この冷却途中の素材は、すかさず焼鈍炉へ挿入されていた。したがって、従来、上記の微細な炭化物が析出した熱間加工後の素材は、具体的には300〜500℃付近の、十分な冷却をされないままの状態で、再び焼鈍温度に加熱され、長時間の焼鈍環境に曝されていた。そして、この温度履歴によって、上記の微細な炭化物は、金型用鋼の靭性を低下させるほどの粗大な炭化物へと成長していたことを、本発明者は突きとめた。
(3) After the hot-worked stainless steel material is cooled to a temperature below the Ms point, it is subsequently heated to the annealing temperature and annealed.
If the material after the above hot working is left as it is, the temperature is lowered from the working end temperature. At this time, since the material passes through a temperature range in which carbides precipitate in the cooling process after processing, fine carbides are likely to precipitate particularly on the austenite grain boundaries. In actual operation, in order to improve efficiency by omitting a new heating step, the material during the cooling has been inserted into the annealing furnace. Therefore, conventionally, the material after hot working in which the fine carbides are deposited is heated to the annealing temperature again in a state where it is not sufficiently cooled, specifically around 300 to 500 ° C. for a long time. It was exposed to the annealing environment. And this inventor discovered that said fine carbide | carbonized_material grew to the coarse carbide | carbonized_material so that the toughness of steel for metal mold | dies might be reduced by this temperature history.

そこで、本発明者は、熱間加工後の素材に上記の微細な炭化物が析出していたとしても、次の焼鈍工程において、その炭化物の成長を抑制できる手法を検討した。その結果、上記の熱間加工を終了して炭化物の析出サイトを増加した素材について、冷却の途中で焼鈍に移行せずにMs点以下の温度まで冷却し、素材をマルテンサイト組織化してから焼鈍温度に再加熱すれば、炭化物の粗大化を抑制できることを突きとめた。つまり、このマルテンサイト変態によって、組織中には次の焼鈍工程で炭化物が析出できるサイトがさらに増加している。この結果、焼鈍中に結晶粒界へ拡散できる炭素やクロムの量が減少して、結晶粒界に炭化物が存在していても、その成長が抑制される。なお、熱間加工後の素材を冷却する温度は、Ms点より低いほど望ましい。好ましくは(Ms点−30℃)以下、さらに好ましくは(Ms点−50℃)以下の温度である。具体的には、150℃以下、100℃以下、50℃以下の温度の順で低くなる程、好ましい。但し、低すぎると焼割れを生じる可能性がある。よって、好ましくは0℃以上の温度である。なお、冷却速度については、本発明に係るステンレス鋼素材がマルテンサイト組織化できるものであれば、特に定める必要はない。そして、これについては、例えば、空冷以上の速い冷却速度が確保できれば十分である。   Therefore, the present inventor has studied a method capable of suppressing the growth of the carbide in the next annealing step even if the fine carbide is deposited on the material after hot working. As a result, the material with increased carbide precipitation sites after the above-mentioned hot working is cooled to a temperature below the Ms point without transitioning to annealing during cooling, and the material is martensitic textured before annealing. It has been found that the coarsening of the carbide can be suppressed by reheating to a temperature. In other words, the martensitic transformation further increases the number of sites in the structure where carbides can precipitate in the next annealing step. As a result, the amount of carbon and chromium that can diffuse into the grain boundaries during annealing is reduced, and growth is suppressed even if carbides are present at the grain boundaries. In addition, the temperature which cools the raw material after hot processing is so preferable that it is lower than Ms point. The temperature is preferably (Ms point −30 ° C.) or lower, more preferably (Ms point −50 ° C.) or lower. Specifically, the lower the temperature in the order of 150 ° C. or lower, 100 ° C. or lower, and 50 ° C. or lower, the more preferable. However, if it is too low, there is a possibility of causing fire cracks. Therefore, the temperature is preferably 0 ° C. or higher. The cooling rate is not particularly required as long as the stainless steel material according to the present invention can be martensitic. And about this, it is enough if the quick cooling rate more than air cooling is securable, for example.

(4)好ましくは、前記焼鈍温度は、600℃以上および/または1000℃以下ある。
焼鈍状態で機械加工を行う場合、熱間加工後の焼鈍は硬さを低下させて加工性を向上させる効果を有する。また、後工程で発生する割れや曲がりを抑制する効果を有する。さらに、上記の成分組成でなるステンレス鋼においては、組織中にCr炭化物を均一に析出させることで発現する「結晶粒界のピン止め効果」により、後の焼入れ時で結晶粒の粗大化を抑制でき、靭性の低下を抑制できる効果も有する。これらの効果、特にピン止め効果を十分に得るためには、焼鈍温度は600℃以上が好ましい。ただし、焼鈍温度が高すぎると、上記のCr炭化物の析出が困難となるため、1000℃以下が好ましい。より好ましくは、650℃以上および/または950℃以下である。焼鈍は、例えば室温以下までの冷却を挟んで、2回以上を繰り返してもよい。
(4) Preferably, the said annealing temperature is 600 degreeC or more and / or 1000 degrees C or less.
When machining in an annealed state, annealing after hot working has the effect of reducing hardness and improving workability. Moreover, it has the effect of suppressing cracks and bends that occur in subsequent processes. In addition, in stainless steels with the above component composition, the “grain boundary pinning effect”, which is manifested by the uniform precipitation of Cr carbide in the structure, suppresses grain coarsening during subsequent quenching. And has an effect of suppressing a decrease in toughness. In order to sufficiently obtain these effects, particularly the pinning effect, the annealing temperature is preferably 600 ° C. or higher. However, if the annealing temperature is too high, precipitation of the above Cr carbide becomes difficult, so 1000 ° C. or less is preferable. More preferably, it is 650 degreeC or more and / or 950 degreeC or less. The annealing may be repeated twice or more, for example, with cooling to room temperature or lower.

そして、上記の焼鈍温度は、A3点以上とすることが、さらに好ましい。例えば、750℃以上である。A3点以上で焼鈍を行うと、組織中には新たなオーステナイト粒が形成され、これに伴い、炭化物の析出できるサイトも増加する。この結果、上記と同様の作用によって、炭化物の成長をさらに抑制することができる。また、炭化物の析出サイトの増加は、組織中の炭化物の数密度を増加させることともなる。これら多くの炭化物は、後の焼入れ時に、上記の「ピン止め効果」を発現して、結晶粒の微細化に作用する。2回以上の焼鈍を繰り返す場合は、少なくとも1回以上は、A3点以上の温度で実施することが好ましい。   And it is more preferable that said annealing temperature shall be more than A3 point. For example, it is 750 ° C. or higher. When annealing is performed at the point A3 or higher, new austenite grains are formed in the structure, and the sites where carbides can precipitate increase accordingly. As a result, carbide growth can be further suppressed by the same action as described above. Moreover, the increase in the precipitation site | part of a carbide | carbonized_material will also increase the number density of the carbide | carbonized_material in a structure | tissue. Many of these carbides exhibit the above-mentioned “pinning effect” during subsequent quenching and act on the refinement of crystal grains. When repeating annealing more than once, it is preferable to carry out at least once at a temperature of A3 point or higher.

(5)好ましくは、熱間加工に供する前記ステンレス鋼素材は、再溶解法によって得られたものである。
本発明の製造するステンレス鋼の場合、上記の焼鈍時において、Cr炭化物を均一に析出させることが好ましい。よって、出発素材である鋼塊は、成分偏析が極力低減されていることが好ましい。また、該ステンレス鋼を、特にプラスチック成型用の金型等に使用するときは、鋼材の磨き性に悪影響を及ぼすAl等の非金属介在物は極力低減することが好ましい。以上のことから、熱間加工に供する鋼素材は、エレクトロスラグ再溶解法や真空アーク再溶解法等の、消耗電極式再溶解法によって得ることが好ましい。
(5) Preferably, the stainless steel material subjected to hot working is obtained by a remelting method.
In the case of the stainless steel produced by the present invention, it is preferable to uniformly precipitate Cr carbide during the annealing. Therefore, it is preferable that the steel ingot as the starting material has component segregation reduced as much as possible. Further, when the stainless steel is used particularly for a mold for plastic molding, it is preferable to reduce as much as possible non-metallic inclusions such as Al 2 O 3 which adversely affect the polishability of the steel material. From the above, it is preferable that the steel material used for hot working is obtained by a consumable electrode type remelting method such as an electroslag remelting method or a vacuum arc remelting method.

(6)好ましくは、前記焼鈍した後に、焼入れ焼戻しして、プリハードン状態の金型用鋼材とするものである。
焼鈍後の金型用鋼材は、適宜、求められる硬さ、例えば25〜45HRCの硬さに焼入れ焼戻ししたプリハードン状態で提供できることは、上記の通りである。そして、機械加工時の被切削性(工具寿命)を重視するのであれば、25〜35HRC程度に焼入れ焼戻しすることが好ましい。また、機械加工後には、再度の焼入れ焼戻しを行わないのであれば、使用硬さも念頭に入れた35〜45HRC程度に焼入れ焼戻しすることが好ましい。
(6) Preferably, after annealing, quenching and tempering to obtain a pre-hardened steel for molds.
As described above, the steel for molds after annealing can be provided in a pre-hardened state that is appropriately quenched and tempered to a required hardness, for example, a hardness of 25 to 45 HRC. Then, if importance is attached to the machinability (tool life) during machining, it is preferable to quench and temper to about 25 to 35 HRC. In addition, after the machining, if re-quenching and tempering is not performed, it is preferable to quench and temper to about 35 to 45 HRC in consideration of use hardness.

真空アーク再溶解法によって、表1の化学成分を有するマルテンサイト系ステンレス鋼の鋼塊を準備した。これらの鋼塊のMs点は約200℃、A3点は約800℃である。次に、これらの鋼塊を1100〜1200℃に加熱して、上述した式による加工率が約58%の熱間加工を行った後、表2の条件に従って冷却し、続く1回または2回の焼鈍を行った。このとき、熱間加工後の冷却は空冷とし、冷却温度は素材の表面温度で管理した。また、焼鈍は、加熱炉中で所定時間保持した素材を、そのまま炉冷することで行った。そして、これらの焼鈍材に、50HRCプリハードンの焼入れ焼戻しに適用されている通常の1030℃からの焼入れと350℃の焼戻しを行って、焼入れ焼戻し後の硬さおよび靭性を評価した。靭性の評価は、10Rシャルピー衝撃試験片を採取して、室温での衝撃値を測定した。   An ingot of martensitic stainless steel having chemical components shown in Table 1 was prepared by vacuum arc remelting. These steel ingots have an Ms point of about 200 ° C. and an A3 point of about 800 ° C. Next, these steel ingots are heated to 1100 to 1200 ° C. and subjected to hot working with a working rate of about 58% according to the above formula, then cooled according to the conditions in Table 2, and then once or twice. Annealing was performed. At this time, the cooling after hot working was air cooling, and the cooling temperature was controlled by the surface temperature of the material. Moreover, annealing was performed by furnace-cooling the raw material hold | maintained for the predetermined time in the heating furnace. These annealed materials were subjected to normal quenching from 1030 ° C. and 350 ° C. applied to quenching and tempering of 50HRC prehardened, and the hardness and toughness after quenching and tempering were evaluated. For evaluation of toughness, 10R Charpy impact test specimens were collected and the impact value at room temperature was measured.

本発明法で製造した試料No.1〜5の金型用鋼材は、熱間加工後の冷却を室温まで実施したので、続く焼鈍後の組織は、オーステナイト粒界上の炭化物が微細なものになっていた(図1に、各試料の焼鈍後の金属ミクロ組織(×400倍)を示す)。そして、本発明法で製造した試料No.1〜5の金型用鋼材の、その後の焼入れ焼戻し特性は、50HRC以上の硬さにおいて、従来法で製造した試料No.6の金型用鋼材の倍以上の衝撃値を示した。   Sample No. manufactured by the method of the present invention was used. Since the steel materials for molds 1 to 5 were cooled to room temperature after hot working, the microstructure after the subsequent annealing had fine carbides on the austenite grain boundaries (in FIG. (The metal microstructure (* 400 times) after annealing of a sample is shown). And sample No. manufactured by the method of the present invention. The subsequent quenching and tempering characteristics of the steel materials for molds 1 to 5 were as follows: Sample No. The impact value more than double that of No. 6 steel for molds was shown.

真空アーク再溶解法によって、表3の化学成分を有するマルテンサイト系ステンレス鋼の鋼塊を準備した。これらの鋼塊のMs点は約200℃、A3点は約800℃である。次に、これらの鋼塊を1100〜1200℃に加熱して、上述した式による加工率が表4に示す通りの熱間加工を行った後、素材の表面温度が25℃の室温になるまで冷却し、続いて1回目が780℃、2回目が860℃の2回の焼鈍を行った。このとき、熱間加工後の冷却および焼鈍の要領は、実施例1のものに従った。そして、これらの焼鈍材に、1030℃からの焼入れと350℃の焼戻しを行って、硬さを約50HRCに調整し、靭性を評価した。靭性の評価は、10Rシャルピー衝撃試験片を採取して、室温での衝撃値を測定した。   An ingot of martensitic stainless steel having chemical components shown in Table 3 was prepared by a vacuum arc remelting method. These steel ingots have an Ms point of about 200 ° C. and an A3 point of about 800 ° C. Next, after heating these steel ingots to 1100 to 1200 ° C. and performing hot working with the processing rate according to the above formula as shown in Table 4, until the surface temperature of the material reaches room temperature of 25 ° C. Cooling was followed by two annealings, 780 ° C. for the first time and 860 ° C. for the second time. At this time, the procedure of cooling and annealing after hot working was in accordance with that of Example 1. Then, these annealed materials were quenched from 1030 ° C. and tempered at 350 ° C. to adjust the hardness to about 50 HRC, and toughness was evaluated. For evaluation of toughness, 10R Charpy impact test specimens were collected and the impact value at room temperature was measured.

試料No.11〜17の金型用鋼材は、ほぼ同一の成分組成を有しているが、その約50HRCの硬さにおける靭性は、熱間加工時の加工率の増加に従って向上した(図2に加工率と衝撃値の関係を示す)。そして、熱間加工後の冷却を室温まで実施したことに加えて、熱間加工時の加工率を55%以上に高めた試料No.11〜16の金型用鋼材は、60J/cmを超える衝撃値を示した。 Sample No. The steel materials for molds 11 to 17 have almost the same component composition, but their toughness at a hardness of about 50 HRC improved as the processing rate during hot working increased (the processing rate is shown in FIG. 2). And the impact value). And in addition to having implemented cooling after hot working to room temperature, Sample No. 5 with a working rate during hot working increased to 55% or more. The steel materials for molds 11 to 16 exhibited impact values exceeding 60 J / cm 2 .

Claims (5)

質量%で、C:0.3〜0.5%、Cr:12.0〜16.0%を含む成分組成のマルテンサイト系のステンレス鋼素材を熱間加工し、引き続いて前記熱間加工した前記ステンレス鋼素材を焼鈍する金型用鋼材の製造方法であって、
前記熱間加工は、[(熱間加工前のステンレス鋼素材の厚み−熱間加工後のステンレス鋼素材の厚み)/熱間加工前のステンレス鋼素材の厚み]×100の式で算出される加工率が55%以上であり、かつ、
前記熱間加工後のステンレス鋼素材をMs点以下の温度まで冷却してから、引き続いて焼鈍温度に加熱して前記焼鈍することを特徴とする靭性に優れた金型用鋼材の製造方法。
A martensitic stainless steel material having a component composition containing C: 0.3 to 0.5% and Cr: 12.0 to 16.0% by mass% was hot-worked, followed by the hot-working. A method for manufacturing a steel material for a mold for annealing the stainless steel material,
The hot working is calculated by the formula [(thickness of stainless steel material before hot working−thickness of stainless steel material after hot working) / thickness of stainless steel material before hot working] × 100. The processing rate is 55% or more, and
A method for producing a steel material for a mold having excellent toughness, wherein the stainless steel material after hot working is cooled to a temperature below the Ms point, and then is annealed by heating to an annealing temperature.
前記焼鈍温度は、600℃以上であることを特徴とする請求項1に記載の靭性に優れた金型用鋼材の製造方法。   The said annealing temperature is 600 degreeC or more, The manufacturing method of the steel material for metal mold | die excellent in toughness of Claim 1 characterized by the above-mentioned. 前記焼鈍温度は、1000℃以下であることを特徴とする請求項1または2に記載の靭性に優れた金型用鋼材の製造方法。   The said annealing temperature is 1000 degrees C or less, The manufacturing method of the steel material for molds excellent in toughness of Claim 1 or 2 characterized by the above-mentioned. 前記ステンレス鋼素材は、再溶解法によって得られたことを特徴とする請求項1ないし3のいずれかに記載の靭性に優れた金型用鋼材の製造方法。   The method for producing a steel material for a mold having excellent toughness according to any one of claims 1 to 3, wherein the stainless steel material is obtained by a remelting method. 前記焼鈍した後に、焼入れ焼戻しして、プリハードン状態の金型用鋼材とすることを特徴とする請求項1ないし4のいずれかに記載の靭性に優れた金型用鋼材の製造方法。   The method for producing a steel material for a mold having excellent toughness according to any one of claims 1 to 4, wherein the steel material for a mold in a hardened state is quenched and tempered after the annealing.
JP2012163184A 2011-09-28 2012-07-24 Manufacturing method of steel materials for molds with excellent toughness Active JP5904409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012163184A JP5904409B2 (en) 2011-09-28 2012-07-24 Manufacturing method of steel materials for molds with excellent toughness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011212338 2011-09-28
JP2011212338 2011-09-28
JP2012163184A JP5904409B2 (en) 2011-09-28 2012-07-24 Manufacturing method of steel materials for molds with excellent toughness

Publications (2)

Publication Number Publication Date
JP2013082992A true JP2013082992A (en) 2013-05-09
JP5904409B2 JP5904409B2 (en) 2016-04-13

Family

ID=48412659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163184A Active JP5904409B2 (en) 2011-09-28 2012-07-24 Manufacturing method of steel materials for molds with excellent toughness

Country Status (3)

Country Link
JP (1) JP5904409B2 (en)
CN (1) CN103114242B (en)
TW (1) TWI539007B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651745A (en) * 2013-11-21 2015-05-27 百乐特殊钢有限两合公司 Method for producing plastic molds made from martensitic chromium steel and plastic mold
WO2016136401A1 (en) * 2015-02-25 2016-09-01 日立金属株式会社 Hot-working tool and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130186B (en) * 2017-05-25 2019-06-18 湖北东舟重工科技股份有限公司 A kind of high-hardenability die steel and its preparation process
CN110016539B (en) * 2019-04-08 2020-09-18 中国科学院金属研究所 Method for determining optimal high-temperature diffusion annealing process of 718H pre-hardened plastic die steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328777A (en) * 1997-06-02 1998-12-15 Hitachi Metals Ltd Die for warm and hot working and manufacture of die material for warm and hot working
JPH11335782A (en) * 1998-05-22 1999-12-07 Daido Steel Co Ltd Steel for plastic molding die
JP2007009321A (en) * 2005-06-02 2007-01-18 Daido Steel Co Ltd Steel for plastic molding die

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769422B2 (en) * 1993-04-19 1998-06-25 日立金属株式会社 High strength stainless steel for fuel injection nozzle or needle of internal combustion engine, fuel injection nozzle for internal combustion engine and method of manufacturing the same
JP2968844B2 (en) * 1995-01-13 1999-11-02 日立金属株式会社 High hardness martensitic stainless steel with excellent pitting resistance
CN100363524C (en) * 2005-03-17 2008-01-23 上海材料研究所 Anticorrosion and antiwear martensitic stainless steel and its production method and use
JP4266383B2 (en) * 2006-10-17 2009-05-20 株式会社神戸製鋼所 Cold mold steel and molds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328777A (en) * 1997-06-02 1998-12-15 Hitachi Metals Ltd Die for warm and hot working and manufacture of die material for warm and hot working
JPH11335782A (en) * 1998-05-22 1999-12-07 Daido Steel Co Ltd Steel for plastic molding die
JP2007009321A (en) * 2005-06-02 2007-01-18 Daido Steel Co Ltd Steel for plastic molding die

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104651745A (en) * 2013-11-21 2015-05-27 百乐特殊钢有限两合公司 Method for producing plastic molds made from martensitic chromium steel and plastic mold
WO2016136401A1 (en) * 2015-02-25 2016-09-01 日立金属株式会社 Hot-working tool and manufacturing method therefor
JPWO2016136401A1 (en) * 2015-02-25 2017-06-29 日立金属株式会社 Hot tool and manufacturing method thereof
CN107208219A (en) * 2015-02-25 2017-09-26 日立金属株式会社 Hot working tool and its manufacture method
US10494688B2 (en) 2015-02-25 2019-12-03 Hitachi Metals, Ltd. Hot-working tool and manufacturing method therefor

Also Published As

Publication number Publication date
JP5904409B2 (en) 2016-04-13
CN103114242B (en) 2015-12-16
CN103114242A (en) 2013-05-22
TWI539007B (en) 2016-06-21
TW201313909A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
JP5338169B2 (en) High nitrogen martensitic stainless steel
JP5423806B2 (en) High toughness wear resistant steel and method for producing the same
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2013213255A (en) Hot working die steel
JP2009299120A (en) MANUFACTURING METHOD OF Ni-Cr-Fe TERNARY SYSTEM ALLOY MATERIAL
CN107779746B (en) Ultra-fine grain alloy steel with ultrahigh strength, high toughness, corrosion resistance, oxidation resistance and preparation method thereof
JP5929963B2 (en) Hardening method of steel
JPWO2016035316A1 (en) Steel pipe for thick oil well and manufacturing method thereof
JPWO2012090562A1 (en) Mold steel excellent in rust resistance and thermal conductivity and method for producing the same
JP5332517B2 (en) Manufacturing method of carburizing steel
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
CN108165714B (en) Heat treatment process for improving strength of 05Cr17Ni4Cu4Nb steel
JP6139062B2 (en) Cast iron casting manufacturing method
JP2011510175A (en) High alloy cold die steel
JP4860774B1 (en) Cold work tool steel
CN109023104B (en) 4Cr13 plastic die steel and preparation method thereof
JP2014025103A (en) Hot tool steel
JP2008202078A (en) Hot-working die steel
JP5332410B2 (en) Manufacturing method of carburizing steel
JP2014029015A (en) Method for producing bearing steel and bearing steel obtained by the method
KR101322972B1 (en) Martensitic stainless steel and method for manufacturing the same
TWI612143B (en) Precipitation-hardened nickel-based alloy and method of producing the same
JP2001123247A (en) Cold tool steel excellent in machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5904409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350