JP2006328521A - Tool for precision working and tool steel - Google Patents

Tool for precision working and tool steel Download PDF

Info

Publication number
JP2006328521A
JP2006328521A JP2005158235A JP2005158235A JP2006328521A JP 2006328521 A JP2006328521 A JP 2006328521A JP 2005158235 A JP2005158235 A JP 2005158235A JP 2005158235 A JP2005158235 A JP 2005158235A JP 2006328521 A JP2006328521 A JP 2006328521A
Authority
JP
Japan
Prior art keywords
less
tool
tool steel
carbides
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005158235A
Other languages
Japanese (ja)
Inventor
Takayuki Shimizu
崇行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005158235A priority Critical patent/JP2006328521A/en
Publication of JP2006328521A publication Critical patent/JP2006328521A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool steel used for the material of a tool for cold working, which has both high hardness and high toughness, and to provide a method of producing a tool for precision working using the same. <P>SOLUTION: The tool steel has an alloy composition comprising, by weight, 0.45 to 0.90% C, 0.1 to 2.0% Si, 0.1 to 1.5% Mn, 3.0 to 8.0% Cr and 0.02 to 0.5% V, and further comprising Mo and W so as to satisfy Mo+0.5W: 0.1 to 2.5%, and the balance Fe with impurities, and in which, provided that L=15.5C(%)+Cr(%), 14≤L≤20 is satisfied. In the tool steel, the number of carbides with a size of ≥10 μm expressed in terms of diameter is ≤10 pieces in a field of 0.5 mm<SP>2</SP>, and, when A-based, B-based and C-based inclusions are measured in accordance with the method of JIS G0555, (dA+dB+dC)60×400≤0.01% is satisfied. The tool steel is held at ≥1,150°C for ≥5 hr, thereafter, the shape of a tool is imparted thereto, then, quenching is performed from 1,000 to 1,060°C, and subsequently, tempering is performed at 500 to 65°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、工具、とくに鍛造やプレスなどの金型であって、精密な加工を行なうのに適した工具と、その材料とする工具鋼に関する。 The present invention relates to a tool, particularly a tool such as forging or pressing, which is suitable for precise machining, and a tool steel used as the material thereof.

各種の金型は、それを用いて製造する製品が小型化、複合化あるいは高性能化され、形状がいっそう複雑になるとともに高い寸法精度が要求されるようになってきていることに対応して、ますます複雑な形状と、より高い寸法精度の要求をみたさなければならない。たとえば、寸法精度は10μm以下が必要とされることが多くなってきている。 Various molds correspond to the fact that products manufactured using them are miniaturized, combined or enhanced in performance, the shape becomes more complicated and high dimensional accuracy is required. The demand for increasingly complex shapes and higher dimensional accuracy must be met. For example, the dimensional accuracy is often required to be 10 μm or less.

金型は、HRC55以上の高い硬度が要求されるものにおいては、耐摩耗性が金型寿命を決定するため、高い硬度を達成するとともに、炭化物を適切に分散させることが重要である。JISのSKJD11やSKH51に代表される冷間工具鋼に例をとれば、高い硬度を有し、かつ、直径相当で10μmを超える大きな炭化物が多数分布している。 In the case where the mold is required to have a high hardness of HRC 55 or higher, the wear resistance determines the mold life, so that it is important to achieve a high hardness and to disperse the carbide appropriately. Taking an example of cold tool steel represented by JIS SKJD11 and SKH51, a large number of large carbides having a high hardness and exceeding 10 μm are distributed.

出願人は、高い靱性と耐摩耗性とを兼ね備えた冷間工具鋼を提供することを意図して研究した結果、V含有量とCr含有量とのバランスを考慮して、Cr:6.0〜9.0%およびV1.0〜2.3%を含有する工具鋼において、0.35>V/Cr>0.15の関係を満たすことにより、一次晶出炭化物の形態を制御し、微細なVCを多数晶出させたものが好成績であることを見出して開示した(特許文献1)。 As a result of studying the intention of providing a cold work tool steel having both high toughness and wear resistance, the applicant has studied the balance between the V content and the Cr content, and Cr: 6.0 In the tool steel containing ~ 9.0% and V1.0 ~ 2.3%, by satisfying the relationship of 0.35> V / Cr> 0.15, the morphology of the primary crystallized carbide is controlled and fine It was discovered that a large number of crystallized VCs had good results (Patent Document 1).

上記した既知の工具鋼にせよ、出願人が開示した工具鋼にせよ、それを材料として金型を製造した場合、寸法精度に関して不満足な製品ができることが経験された。たとえば、小径のエンドミルで加工したときに、加工精度自体は1μm以下であるにもかかわらず、10μm程度の凹凸ができたり、切削工具が折損したりするといったトラブルが発生する。その理由をしらべたところ、大型の炭化物が存在するためであることがわかった。 Whether the above-mentioned known tool steel or the tool steel disclosed by the applicant, it has been experienced that when a mold is produced using the tool steel as a material, an unsatisfactory product is produced with respect to dimensional accuracy. For example, when machining with a small-diameter end mill, troubles such as irregularities of about 10 μm and breakage of the cutting tool occur even though the machining accuracy itself is 1 μm or less. When the reason was investigated, it turned out that it is because a large sized carbide | carbonized_material exists.

炭化物はきわめて高い硬度を有し、切削工具で炭化物を加工することはできないから、大きな炭化物と接触した工具が折損したり、指定の位置からずれたりする。切削によらず、放電加工やワイヤ放電加工を行なった場合も、同じ問題が生じる。表面の改質処理や鏡面加工に関しても、炭化物が原因となって、所望の寸法精度が得られないとか、表面の粗さが大きいとか、表面処理膜が局所的にはがれるなどのトラブルが発生する。工具の靱性にとって有害な巨大炭化物の生成を抑制するため、C量とCr量のバランスを最適化するよう企てた冷間工具鋼の提案はあるが(特許文献2)、炭化物や介在物の存在形態まで踏み込んでいない。
特開平10−025545 特開平10−060596
Since the carbide has a very high hardness and the carbide cannot be processed with a cutting tool, the tool in contact with the large carbide breaks or deviates from a specified position. The same problem occurs when electric discharge machining or wire electric discharge machining is performed regardless of cutting. Regarding surface modification treatment and mirror finishing, troubles such as failure to obtain desired dimensional accuracy, large surface roughness, and surface treatment film peeling off due to carbides occur. . In order to suppress the formation of giant carbides that are harmful to the toughness of the tool, there is a proposal of a cold tool steel that attempts to optimize the balance between the C content and the Cr content (Patent Document 2). I have not stepped into the existence form.
JP-A-10-025554 JP-A-10-060596

本発明の目的は、上記した技術の現状を一歩前進させ、硬度を低下させることなく、大きな炭化物と介在物とを極力減少させた工具鋼を提供し、それを材料とする、寸法精度の高い工具とその製造方法を実現することにある。 The object of the present invention is to provide a tool steel in which large carbides and inclusions are reduced as much as possible without lowering the hardness, by taking the current state of the above technology one step forward, and using it as a material, with high dimensional accuracy. It is to realize a tool and its manufacturing method.

本発明の工具鋼は、基本的な合金組成としては、重量%で、C:0.45〜0.90%、Si:0.1〜2.0%、Mn:0.1〜1.5%、Cr:3.0〜8.0%、およびV:0.02〜0.5%に加えて、MoおよびWを、Mo+0.5W:0.1〜2.5%となるように含有し、残部がFeおよび不可避な不純物からなり、
L=15.5C(%)+Cr(%)とするとき、14≦L≦20
である合金組成を有し、直径換算で直径10μm以上の炭化物が、0.5mm2の視野中に10個以内であって、A系、B系およびC系の介在物が、JIS G0555に定める方法に従って測定したとき、(dA+dB+dC)60×400≦0.01%であることを特徴とする。
The tool steel of the present invention has a basic alloy composition in weight%, C: 0.45-0.90%, Si: 0.1-2.0%, Mn: 0.1-1.5. %, Cr: 3.0 to 8.0%, and V: 0.02 to 0.5%, Mo and W are contained so that Mo + 0.5W: 0.1 to 2.5% And the balance consists of Fe and inevitable impurities,
When L = 15.5C (%) + Cr (%), 14 ≦ L ≦ 20
The number of carbides having a diameter of 10 μm or more in terms of diameter is 10 or less in a 0.5 mm 2 field of view, and inclusions of A, B, and C are defined in JIS G0555. When measured according to the method, (dA + dB + dC) 60 × 400 ≦ 0.01%.

本発明の工具鋼は、晶出炭化物、とくに大型のものが少なく、適切な熱処理を施すことにより、残留オーステナイト量および残留応力が低いものとなるから、精密な金型への加工が容易である。製造した金型は、高い靱性と高い耐摩耗性を合わせ有しており、かつ寸法安定性が高く、精密加工用の金型として性能が高く、長寿命である。 The tool steel of the present invention has few crystallized carbides, especially large ones, and by applying an appropriate heat treatment, the amount of residual austenite and residual stress is low, so that it can be easily processed into a precise mold. . The manufactured mold has both high toughness and high wear resistance, has high dimensional stability, has high performance as a mold for precision machining, and has a long life.

この工具鋼は、上記の基本的な合金成分に加えて、下記の任意な成分を、ひとつまたは二つ以上、追加的に含有することができる。
1)P:0.03%以下、S:0.03%以下、Al:0.03%以下、O:0.005%以下およびN:0.025%以下の1種または2種以上
2)Cu:1.0%以下、Ni:1.0%以下、Co:1.0%以下およびB:0.01%以下の1種または2種以上
3)Se:0.05%以下,Te:0.05%以下,Pb:0.05%以下,Bi:0.05%以下およびCa:0.05%以下の1種または2種以上
4)Nb:0.1%以下,Ta:0.1%以下,Ti:0.1%以下,Zr:0.1%以下,Mg:0.1%以下およびREM:0.1%以下の1種または2種以上
In addition to the above basic alloy components, this tool steel can additionally contain one or more of the following optional components.
1) P: 0.03% or less, S: 0.03% or less, Al: 0.03% or less, O: 0.005% or less, and N: 0.025% or less 2) Cu: 1.0% or less, Ni: 1.0% or less, Co: 1.0% or less and B: 0.01% or less 1 type or 2 types or more 3) Se: 0.05% or less, Te: 0.05% or less, Pb: 0.05% or less, Bi: 0.05% or less, and Ca: 0.05% or less 4) Nb: 0.1% or less, Ta: 0. 1% or less, Ti: 0.1% or less, Zr: 0.1% or less, Mg: 0.1% or less, and REM: 0.1% or less

このような工具鋼を使用した本発明の工具は、上記した合金組成のいずれかを有する工具鋼を材料とし、1150℃以上の温度に少なくとも5時間保持したのち塑性加工を行なって工具の形状を与え、上述の炭化物および介在物を有する工具である。この工具は、上記の工程に続いて、1000〜1060℃からの焼入れ・500〜650℃の焼戻しからなる熱処理を施して、熱処理後の残留オーステナイト量が5%以下、表面残留応力が±200MPa以内、硬さがHRC55〜65の状態とすることができる。それによって、所望の精密加工をおこなうことができる工具が実現する。 The tool of the present invention using such a tool steel is made of a tool steel having any of the alloy compositions described above, held at a temperature of 1150 ° C. or higher for at least 5 hours, and then subjected to plastic working to change the shape of the tool. A tool having the carbides and inclusions described above. This tool is subjected to heat treatment consisting of quenching from 1000 to 1060 ° C. and tempering from 500 to 650 ° C. following the above steps, the amount of retained austenite after heat treatment is 5% or less, and the surface residual stress is within ± 200 MPa. The hardness can be in a state of 55 to 65 HRC. Thereby, a tool capable of performing desired precision machining is realized.

以下に、本発明の工具鋼に到達した開発過程と、そこで得られた知見とについて説明する。発明者はまず、硬度を従来の工具鋼と同レベルに保ち、かつ大きな炭化物(晶出炭化物であって、直径相当で10μm以上)を極力減らすことを企てた。これには、炭化物形成元素としてのCと、Cr,Mo,WおよびVの量を調整することが必要であるが、これらは同時に、焼入れ・焼戻しにより得られる硬さを決定する元素でもあり、とくにCおよびCrの量が重要であるから、炭化物量を規定する前記「L」値を適正な範囲に限定した。また、炭化物のみならず、鋼中の介在物も炭化物と同様に、加工時のトラブルを引き起こす。そこで、A系、B系およびC系の介在物を極力低減すべきである。これらが第一の知見である。 Below, the development process which reached | attained the tool steel of this invention and the knowledge acquired there are demonstrated. The inventor first attempted to keep the hardness at the same level as that of the conventional tool steel and to reduce as much as possible large carbides (crystallized carbides having a diameter equivalent to 10 μm or more). For this, it is necessary to adjust the amounts of C and Cr, Mo, W and V as carbide forming elements, but these are also elements that determine the hardness obtained by quenching and tempering, In particular, since the amounts of C and Cr are important, the “L” value defining the amount of carbide is limited to an appropriate range. Moreover, not only carbides but also inclusions in steel cause troubles during processing, as with carbides. Therefore, inclusions in the A system, B system, and C system should be reduced as much as possible. These are the first findings.

つぎに、晶出する炭化物の量をなるべく少なくし、大きさを小さくすることが必要である。実験の結果、「直径相当で10μmを超える炭化物が0.5mm2につき10個以下」という限界を見出した。これを実現する手段としては、工具製造の工程で、炭化物をできるだけ固溶させることが効果的であることを見出した。合金組成を適正化して炭化物量を低減すれば、大きな炭化物の存在個数は減らすことができるが、実際の製造においては、インゴットの鋳造サイズやその中の部位によって、バラツキが大きい。従来の工具鋼に関して採用されてきた1100〜1140℃程度の鍛造・圧延開始温度を踏襲したのでは、炭化物がそのまま維持され、最終的には、部位によっては、大きな炭化物が多量に存在したままになる。そこで、従来の加熱温度を超える1150℃以上の高温に5時間以上保持するという対策をとった。これにより炭化物の量が減少し、サイズが小さくなって、上記の目標を達成することができる。好ましい加熱温度は、1180〜1250℃である。これが第二の知見である。 Next, it is necessary to reduce the amount of carbide crystallized as much as possible and to reduce the size. As a result of the experiment, the limit of “10 or less carbide per 0.5 mm 2 in diameter equivalent to 10 μm” was found. As a means for realizing this, it has been found that it is effective to dissolve carbide as much as possible in the tool manufacturing process. If the amount of carbides is reduced by optimizing the alloy composition, the number of large carbides can be reduced. However, in actual production, there are large variations depending on the casting size of the ingot and the parts in the ingot. By following the forging / rolling start temperature of about 1100 to 1140 ° C. that has been adopted for conventional tool steel, the carbide is maintained as it is, and finally, depending on the part, a large amount of large carbide remains. Become. In view of this, a measure was taken to maintain the temperature at 1150 ° C. or higher exceeding the conventional heating temperature for 5 hours or more. This reduces the amount of carbide and reduces the size, thereby achieving the above goals. A preferable heating temperature is 1180 to 1250 ° C. This is the second finding.

最後に、高い寸法精度の達成は、金型として使用する状態、すなわち焼入れ・焼戻しを施し、かつ、金型形状への加工、表面処理が完了している状態において、金型寸法が設計値から変動していないことが必要である。この段階で金型寸法が変動する理由としては、鋼中に残留しているオーステナイト組織が、使用中の温度条件、時間の経過、加工負荷などによって分解し、寸法変化につながるということと、鋼中に残留する応力が、熱処理や加工によって解放されて、寸法変化を引き起こすということが考えられる。 Finally, the achievement of high dimensional accuracy is achieved when the mold dimensions are determined from the design value in the state of use as a mold, that is, after quenching and tempering, and processing into a mold shape and surface treatment are completed. It is necessary not to fluctuate. The reason why the mold dimensions fluctuate at this stage is that the austenite structure remaining in the steel decomposes due to temperature conditions during use, the passage of time, processing load, etc., and leads to dimensional changes. It is conceivable that the stress remaining therein is released by heat treatment or processing to cause a dimensional change.

残留オーステナイトと残留応力を減らすには、適正な焼入れ・焼戻しを行なうことが必要である。残留オーステナイトは焼戻し温度が500℃以上になると分解し、残留応力も同程度の温度で解放される。したがって、500℃以上の焼戻し温度を採用すればよいが、焼戻し温度が高くなれば硬さが低下するので、HRC55以上が得られる条件として、上限650℃を選んだ。焼入れ温度は、1000℃未満では炭化物の固溶が少なく硬さが低く、1060℃を超えると結晶粒径が非常に大きくなり、靱性が低下する。そこで、1000〜1060℃から焼入れ、500〜650℃で焼戻す。これが第三の知見である。 In order to reduce residual austenite and residual stress, it is necessary to perform proper quenching and tempering. Residual austenite decomposes when the tempering temperature is 500 ° C. or higher, and the residual stress is released at a similar temperature. Therefore, a tempering temperature of 500 ° C. or higher may be adopted, but the hardness decreases as the tempering temperature increases. Therefore, the upper limit of 650 ° C. was selected as a condition for obtaining HRC 55 or higher. When the quenching temperature is less than 1000 ° C., the hardness of the carbide is small and the hardness is low, and when it exceeds 1060 ° C., the crystal grain size becomes very large and the toughness is lowered. Therefore, quenching is performed from 1000 to 1060 ° C, and tempering is performed at 500 to 650 ° C. This is the third finding.

残留オーステナイトを分解するには、焼入れ後にサブゼロ処理をすることも有効である。この処理は、0℃以下で行なうことが必要であるが、たとえば(ドライアイス+アルコール)などにより、容易に実現できる。焼戻し後もわずかでも残留オーステナイトが存在する場合は、300〜480℃程度の温度で、再度の焼戻しを行なうことが推奨される。それにより、わずか残った残留オーステナイトも安定化し、寸法変化をごく小さく抑えることができる。上記三つの知見を合わせることにより、金型にきわめて高い寸法精度と形状の安定化が達成できる。 In order to decompose the retained austenite, it is also effective to perform sub-zero treatment after quenching. This treatment needs to be performed at 0 ° C. or less, but can be easily realized by, for example, (dry ice + alcohol). If even a little retained austenite exists after tempering, it is recommended to perform tempering again at a temperature of about 300 to 480 ° C. Thereby, a little residual austenite is also stabilized, and the dimensional change can be suppressed to a very small level. By combining the above three findings, extremely high dimensional accuracy and shape stabilization can be achieved for the mold.

本発明の工具鋼においては、前記の基本的な合金組成を満たすことにより、M7C3を主体とする晶出炭化物と、M23C6を主体とする二次炭化物とが生成する。前者の生成量は、0.01〜5重量%の範囲である。焼入れ・焼戻しによりHRC55以上の硬さを得るためにも、上記の合金組成が必要である。以下に、合金組成、炭化物の分布および介在物量を前記のように決定した理由を説明する。 In the tool steel of the present invention, by satisfying the above basic alloy composition, crystallized carbide mainly composed of M7C3 and secondary carbide mainly composed of M23C6 are generated. The former production amount is in the range of 0.01 to 5% by weight. In order to obtain a hardness of HRC 55 or higher by quenching / tempering, the above alloy composition is required. The reason why the alloy composition, carbide distribution, and amount of inclusions are determined as described above will be described below.

C:0.45〜0.90%
Cは焼き入れ時のマルテンサイトの硬さを高くするために必須であって、Cr,Mo,Vなどの炭化物形成元素と結合して炭化物を形成することにより結晶粒を微細化するとともに、耐摩耗性を向上させる作用をする。前記した焼入れ・焼戻し後の硬さHRC55以上を確保するためには、0.45%以上の存在が必要である。0.90%を超えて添加すると、晶出炭化物が多くなりすぎて、靱性が低下する。
C: 0.45-0.90%
C is indispensable for increasing the hardness of martensite during quenching, and combines with carbide-forming elements such as Cr, Mo, V, etc. to form carbides. It works to improve wear. In order to ensure the hardness HRC 55 or more after quenching / tempering described above, the presence of 0.45% or more is necessary. If it exceeds 0.90%, the amount of crystallized carbide increases, and the toughness decreases.

Si:0.1〜2.0%
Siは、脱酸剤として添加され、鋼中に含有される。高温焼戻し硬さの向上に寄与する成分であり、そのためにも、0.1%以上を添加する。多量の添加は、熱間加工性を損なうとともに、焼入れ・焼戻し後の特性としての靱性を低下させるので、2.0%を上限とする。
Si: 0.1 to 2.0%
Si is added as a deoxidizer and contained in the steel. It is a component that contributes to improving the high-temperature tempering hardness, and for that purpose, 0.1% or more is added. Addition of a large amount impairs hot workability and reduces toughness as a characteristic after quenching and tempering, so 2.0% is made the upper limit.

Mn:0.1〜1.5%
Mnは焼入れ性を高める。HRC55以上の硬さを得るためには、0.1%以上の添加を要する。多量に存在すると熱間加工性を低下させるので、1.5%までの添加に止める。
Mn: 0.1 to 1.5%
Mn improves hardenability. In order to obtain a hardness of HRC 55 or higher, addition of 0.1% or more is required. If it is present in a large amount, the hot workability is lowered, so the addition is limited to 1.5%.

Cr:3.0〜8.0%
Crはマトリクス中に固溶して焼入れ性を高め、硬さの向上に寄与するとともに、炭化物を形成し、耐摩耗性を高くする。この効果を得るためには、3.0%以上添加する必要がある。8.0%を超える添加は、過大な量の晶出炭化物が形成し、焼入れ・焼戻し後の特性としての靱性と被削性の低下を結果するので、これを上限とする。
Cr: 3.0-8.0%
Cr dissolves in the matrix to improve hardenability and contribute to improvement in hardness, and also forms carbides and increases wear resistance. In order to acquire this effect, it is necessary to add 3.0% or more. Addition exceeding 8.0% results in the formation of an excessive amount of crystallized carbides, resulting in deterioration of toughness and machinability as characteristics after quenching and tempering, so this is the upper limit.

V:0.02〜0.5%
Vの作用は、安定な炭化物を形成して結晶粒の粗大化を防止することにあり、また、微細な炭化物を形成して耐摩耗性や硬さの向上に寄与する。こうした効果を得るためには、0.02%以上のV添加を要する。添加が多量に過ぎると、晶出炭化物が多量になって、被削性が低下し、熱間加工性も悪くなるので、0.5%以内の添加量を選ぶ。
V: 0.02-0.5%
The action of V is to form stable carbides to prevent coarsening of crystal grains, and to form fine carbides and contribute to improvement of wear resistance and hardness. In order to obtain such an effect, 0.02% or more of V is required. If the addition is too large, the amount of crystallized carbide will increase, the machinability will deteriorate, and the hot workability will deteriorate, so an addition amount within 0.5% is selected.

Mo当量(Mo+0.5W):0.1〜2.5%
MoもWも、マトリクス中に固溶して、焼入れ性を高めて鋼の硬さを向上させる。それとともに、炭化物を形成して耐摩耗性を高め、焼戻し軟化抵抗性を高める。これらの効果は、Mo当量が0.1%以上であるときに得られる。過大なMo当量は、熱間加工性、靱性および被削性を低下させるから、2.5%までの値とする。
Mo equivalent (Mo + 0.5W): 0.1-2.5%
Both Mo and W are dissolved in the matrix to enhance the hardenability and improve the hardness of the steel. At the same time, carbide is formed to increase wear resistance and to improve temper softening resistance. These effects are obtained when the Mo equivalent is 0.1% or more. An excessive Mo equivalent reduces hot workability, toughness, and machinability, so the value is set to 2.5%.

L=15.5C(%)+Cr(%)とするとき、14≦L≦20
本発明では、前述したように、晶出炭化物を少量に止めることを重要な前提としている。そこで、晶出炭化物を形成する主要な元素であるCおよびCrの量を、Lの値をもってコントロールする。晶出炭化物の量を前記の0.01〜5重量%の範囲にするためには、Lが14〜20の範囲になければならない。
When L = 15.5C (%) + Cr (%), 14 ≦ L ≦ 20
In the present invention, as described above, it is an important premise to keep the crystallized carbide in a small amount. Therefore, the amount of C and Cr, which are the main elements forming the crystallized carbide, is controlled by the value of L. In order for the amount of crystallized carbide to be in the range of 0.01 to 5% by weight, L must be in the range of 14 to 20.

直径換算で直径10μm以上の炭化物:0.5mm2の視野中に10個以内
ここで「直径換算」とは、炭化物を、同じ投影面積をもつ円に換算したときの、円の直径を意味する。晶出炭化物は、一般に直径換算で10μm以上の大型なものになるので、これが0.5mm2の視野中に10個以内、好ましくは5個以内であるようにする。
Carbide with a diameter of 10 μm or more in terms of diameter: 10 or less in a field of 0.5 mm 2 Here, “diameter conversion” means the diameter of a circle when the carbide is converted into a circle having the same projected area. . Since the crystallized carbide generally has a large diameter of 10 μm or more in terms of diameter, it is within 10 and preferably within 5 in a visual field of 0.5 mm 2 .

A系、B系およびC系の介在物:(dA+dB+dC)60×400≦0.01%
これらの介在物は、いずれも被削性を低下させるので、0.01%以下に抑える。それにより、放電加工やワイヤ放電加工に当たっての、また研削時のトラブルも減少するし、表面粗さもよくなる。
A system, B system and C system inclusions: (dA + dB + dC) 60 × 400 ≦ 0.01%
Any of these inclusions reduces the machinability, so the content is limited to 0.01% or less. Thereby, troubles during the electric discharge machining and wire electric discharge machining and grinding are reduced, and the surface roughness is improved.

P:0.03%以下、S:0.03%以下、Al:0.03%以下、O:0.005%以下およびN:0.025%以下の1種または2種以上
いずれも鋼中に不可避的に含有される。そのうちでAlおよびOはB系およびC系の介在物の構成成分であり、SはA系介在物の構成成分であって、それぞれの生成量に影響を与える。これら成分が多量になると、靱性や被削性が損なわれるので、含有量が上記の許容限度内であるようにする。これらを積極的に低減することにより、安定した靱性を維持することができるが、製造コストとの兼ね合いを考慮しなければならない。
P: 0.03% or less, S: 0.03% or less, Al: 0.03% or less, O: 0.005% or less, and N: 0.025% or less, both in the steel Inevitably contained. Among them, Al and O are constituents of B-type and C-type inclusions, and S is a constituent of A-type inclusions, which affect the respective generation amounts. When these components become large, toughness and machinability are impaired, so that the content is within the above allowable limit. By actively reducing these, stable toughness can be maintained, but a balance with manufacturing costs must be considered.

Cu:1.0%以下、Ni:1.0%以下、Co:1.0%以下およびB:0.01%以下の1種または2種以上
これらの元素はマトリクス中に固溶して、焼入れ性を向上させる。さらに、衝撃遷移温度を低下させるという機構を通じて、靱性を向上させ、それによって溶接性を維持するのにも役立つ。Coは、高温強度を高める作用もある。いずれも、多量に添加しても効果が飽和するので、その観点から上記それぞれの添加の限度を定めた。
One or more of Cu: 1.0% or less, Ni: 1.0% or less, Co: 1.0% or less, and B: 0.01% or less These elements are dissolved in the matrix, Improve hardenability. It also helps to improve toughness and thereby maintain weldability through a mechanism that lowers the impact transition temperature. Co also has the effect of increasing the high temperature strength. In any case, the effect is saturated even when added in a large amount, so the above-mentioned addition limits were determined from that viewpoint.

Se:0.05%以下,Te:0.05%以下,Pb:0.05%以下,Bi:0.05%以下およびCa:0.05%以下の1種または2種以上
いずれも被削性を改善する元素であって、その目的で添加されるが、SeおよびTeはMnと結合してA系介在物を増大させ、Caは酸化物を形成する。PbおよびBiは単独で粒界に析出する。精密な工具の提供を意図する本発明においては、精密加工時の表面粗さを粗くしないよう、添加する場合でも、上記の限界を超えない範囲内の量を選ぶ。好ましい範囲は、0.01%以下である。
Se: 0.05% or less, Te: 0.05% or less, Pb: 0.05% or less, Bi: 0.05% or less, and Ca: 0.05% or less Although it is an element that improves the properties and is added for that purpose, Se and Te combine with Mn to increase A-based inclusions, and Ca forms an oxide. Pb and Bi alone precipitate at the grain boundaries. In the present invention, which is intended to provide a precise tool, an amount within a range not exceeding the above-mentioned limit is selected even when it is added so as not to roughen the surface roughness during precision machining. A preferable range is 0.01% or less.

Nb:0.1%以下,Ta:0.1%以下,Ti:0.1%以下,Zr:0.1%以下,Mg:0.1%以下およびREM:0.1%以下の1種または2種以上
これらの元素は、炭化物の微細化や結晶粒の微細化による靱性向上という効果を期待して、添加することができる。添加量が多量に過ぎると、靱性が低下し、溶接性にとっても好ましくなくなるので、0.1%を上限とする。
Nb: 0.1% or less, Ta: 0.1% or less, Ti: 0.1% or less, Zr: 0.1% or less, Mg: 0.1% or less, and REM: 0.1% or less Alternatively, two or more kinds of these elements can be added in anticipation of an effect of improving toughness due to refinement of carbides and refinement of crystal grains. If the addition amount is too large, the toughness is lowered and the weldability becomes unfavorable, so 0.1% is made the upper limit.

焼入れ:1000〜1060℃・焼戻し:500〜650℃
この条件の熱処理を行なうことにより、残留オーステナイト量が5%以下、表面残留応力が±200MPa以内、硬さがHRC55〜65の状態とした工具が得られる。硬さHRC55を得るために、焼入れ温度1000〜1060℃が必要であり、残留オーステナイトの分解や表面残留応力の低下のために、焼戻し温度500℃以上が必要である。焼戻し温度が高くなると硬さが低下するから、HRC55を確保するために、650℃を限度とした。
Quenching: 1000-1060 ° C / Tempering: 500-650 ° C
By performing heat treatment under these conditions, a tool having a residual austenite amount of 5% or less, a surface residual stress within ± 200 MPa, and a hardness of HRC 55 to 65 can be obtained. In order to obtain the hardness HRC55, a quenching temperature of 1000 to 1060 ° C. is necessary, and a tempering temperature of 500 ° C. or more is necessary for decomposition of residual austenite and reduction of surface residual stress. Since the hardness decreases as the tempering temperature increases, in order to secure HRC55, the limit was set to 650 ° C.

表1に示す合金組成(重量%、残部Fe)の鋼各50kgを、高周波真空溶解炉で溶製して、インゴットに鋳造した。それぞれのインゴットを、表2に示す塑性加工温度で5時間以上保持したのち、熱間で鍛造して、一辺35mmの角棒にした。鍛造後、所徐冷し、球状化焼きなまし処理(800℃に保持し、18℃/時の冷却速度で徐冷)を施した。実施例および比較例の各鋼について、下記の試験を行なった。試験結果をあわせて表2に示す。 Each 50 kg of steel having an alloy composition (% by weight, balance Fe) shown in Table 1 was melted in a high-frequency vacuum melting furnace and cast into an ingot. Each ingot was held at the plastic working temperature shown in Table 2 for 5 hours or more and then forged hot to form a square bar with a side of 35 mm. After forging, it was gradually cooled and subjected to spheroidizing annealing treatment (maintained at 800 ° C. and gradually cooled at a cooling rate of 18 ° C./hour). The following tests were conducted on each steel of the examples and comparative examples. The test results are shown together in Table 2.

[炭化物量、介在物量の測定]
研磨した試料の表面を腐食(ピクリン酸−エタノールまたはビレラ溶液)し、光学顕微鏡により0.5mm2以上の視野を観察し(倍率200)、画像解析を行なって、炭化物の平均粒系および円相当直径10μm以上の炭化物の個数を測定して、その結果を、視野0.5mm2あたりの数に換算した。さらに、JISG0550に定める方法によって、(dA+dB+dC)60×400を測定した。
[Measurement of carbide content and inclusion content]
The surface of the polished sample is corroded (picric acid-ethanol or Virella solution), and a field of view of 0.5 mm 2 or more is observed with an optical microscope (magnification 200), image analysis is performed, and the average grain system of carbides and the circle equivalent The number of carbides having a diameter of 10 μm or more was measured, and the result was converted to the number per 0.5 mm 2 field of view. Furthermore, (dA + dB + dC) 60 × 400 was measured by the method defined in JISG0550.

[精密加工試験]エンドミル切削試験
工具:超硬ソリッドエンドミル(径0.2mm)、2枚刃
切削速度:350m/分
送り:0.01mm/rev.
切り込み:幅0.05mm、高さ2mm
工具冷却方法:エアブロー
工具寿命:折損までの切削距離
[Precision processing test] End mill cutting test Tool: Solid carbide end mill (diameter 0.2mm), 2-flute Cutting speed: 350m / min Feed: 0.01mm / rev.
Cutting depth: 0.05mm width, 2mm height
Tool cooling method: Air blow Tool life: Cutting distance to breakage

[硬さ]
表2に示す焼入れ・焼戻し条件で熱処理を施したものを、ロックウエルCスケールで測定。
[残留オーステナイト量]
硬さを測定した試験片から一辺10mmの正方形で厚さ2mmの試験片を切り出し、X線回折装置を用いて、各相のインテンシティを測定した。マルテンサイト相のインテンシティに対するオーステナイト相のそれとの比を以て、オーステナイト相の残留割合とした。
[残留応力]
一辺30mm×長さ40mmの試験片に対し、表2に示す焼入れ・焼戻し条件で熱処理を施したのち、表面の残留応力をX線回折により測定。
[耐衝撃性]シャルピー衝撃値
10Rノッチをもつシャルピー試験片を、材料の圧延方向が試験片の長さ方向となるように切り出し、熱処理した。JISZ2242に定める方法に従って、室温で試験した。
[Hardness]
What was heat-treated under the quenching and tempering conditions shown in Table 2 was measured on the Rockwell C scale.
[Amount of retained austenite]
A test piece having a side of 10 mm and a thickness of 2 mm was cut out from the test piece whose hardness was measured, and the intensity of each phase was measured using an X-ray diffractometer. The ratio of the austenite phase to the martensite phase intensity was used as the residual ratio of the austenite phase.
[Residual stress]
A test piece having a side of 30 mm and a length of 40 mm was subjected to heat treatment under the quenching and tempering conditions shown in Table 2, and the residual stress on the surface was measured by X-ray diffraction.
[Impact resistance] A Charpy test piece having a Charpy impact value of 10R notch was cut out and heat-treated so that the rolling direction of the material was the length direction of the test piece. The test was conducted at room temperature according to the method defined in JISZ2242.

[鏡面性]
50mm×10mm×30mmの試験片に対して、研削についで研磨(♯180→♯240→♯400→♯800→♯1500→♯3000→♯14000)を、機械研磨により実施し(♯3000以降はダイヤモンド砥粒を使用)、最大表面粗さRyを測定した。
[Mirror finish]
A test piece of 50 mm × 10 mm × 30 mm was ground after grinding (# 180 → # 240 → # 400 → # 800 → # 1500 → # 3000 → # 14000) by mechanical polishing (after # 3000) Using diamond abrasive grains), the maximum surface roughness Ry was measured.

Figure 2006328521
Figure 2006328521

Figure 2006328521
Figure 2006328521

実施例のデータから、つぎのことがわかる。比較例1の鋼は、CもCrも本発明の範囲を外れる過大な量であり、かつ、Lの値も本発明の上限を超えているため、大型の炭化物が10個も存在している。このような粗大な炭化物の存在が、精密な加工を妨げ、シャルピー衝撃値および鏡面性を低下させた。比較例2は、比較例1と逆にCr量が低すぎ、Lの値も下限を下回っているため、適切な条件の焼入れ・焼戻しを施しても、硬さの下限HRC55が得られていないから、金型材料としては使用に耐えない。比較例3および6は、P,S,Oの量が規制値より高く、そのため介在物量が多くなっていて、シャルピー衝撃値や鏡面性が低い。 The following can be understood from the data of the examples. In the steel of Comparative Example 1, both C and Cr are excessive amounts outside the scope of the present invention, and the value of L exceeds the upper limit of the present invention, so there are 10 large carbides. . The presence of such coarse carbides hindered precise processing, and reduced Charpy impact value and specularity. In Comparative Example 2, contrary to Comparative Example 1, the Cr amount is too low and the value of L is also below the lower limit. Therefore, even when quenching and tempering under appropriate conditions, the lower limit HRC55 of hardness is not obtained. Therefore, it cannot be used as a mold material. In Comparative Examples 3 and 6, the amounts of P, S, and O are higher than the regulation values, so that the amount of inclusions is increased, and the Charpy impact value and the specularity are low.

比較例4は、V量が過大であるため、CやCrの量が本発明の範囲内であり、それらのバランスも適正であるにもかかわらず、晶出炭化物が多くなって、精密加工性、シャルピー衝撃値、鏡面性のいずれも低い。比較例5は、Mo量が多すぎることと、塑性加工(熱間鍛造)の温度が低かったため、晶出炭化物が多量に残存している。よってこの鋼は、精密加工性、シャルピー衝撃値、鏡面性のすべてがよくない。比較例7は、Si量が本発明の限度を超えているので、シャルピー衝撃値が低い値にとどまった。比較例1および6の熱処理条件をみれば、焼戻し温度が低すぎて、残留オーステナイト量、残留応力とも高いこと、その結果、精密加工性が低いことがわかる。 In Comparative Example 4, since the amount of V is excessive, the amount of C and Cr is within the range of the present invention, and the balance between them is appropriate, but the amount of crystallized carbides increases and precision workability is increased. Both Charpy impact value and specularity are low. Since the comparative example 5 had too much Mo amount and the temperature of plastic working (hot forging) was low, a large amount of crystallized carbide remained. Therefore, this steel has poor precision workability, Charpy impact value and specularity. In Comparative Example 7, since the amount of Si exceeded the limit of the present invention, the Charpy impact value remained at a low value. From the heat treatment conditions of Comparative Examples 1 and 6, it can be seen that the tempering temperature is too low, the amount of retained austenite and the residual stress are both high, and as a result, the precision workability is low.

本発明の工具鋼は、冷間加工用の金型材料として使用したとき、もっともよくその性能を発揮する。具体的な例を挙げれば、曲げ金型、打ち抜き型、切り刃、転造型、パンチ部材たとえば歯車用のもの、絞り型、鍛造型、ダイス、スエージングダイスなどである。構造部材の材料としても有用であって、塑性加工用具、スクリュー部材、カム部材、シールプレート、ゲージなどの用途がある。そのほか本発明の工具鋼は、各種のプラスチックやゴムを成形するための金型、たとえば射出成形金型や押出し成形金型の在用としても好適である。 The tool steel of the present invention exhibits its performance best when used as a die material for cold working. Specific examples include bending dies, punching dies, cutting blades, rolling dies, punch members such as gears, drawing dies, forging dies, dies, swaging dies, and the like. It is also useful as a material for structural members and has applications such as plastic working tools, screw members, cam members, seal plates, and gauges. In addition, the tool steel of the present invention is also suitable for use as a mold for molding various plastics and rubbers, for example, an injection mold or an extrusion mold.

上記の金型や構造部材としては、さまざまな表面処理を施したものが含まれる、鏡面加工やケミカルエッチングを施したものはむろん、CVD処理、PVD処理、TD処理、窒化、クロムめっき、Ni−Pめっき、あるいは革シボ、梨地処理を施したものがある。電子ビーム照射、溶射、ショットピーニングなどの表面改質を行なった製品も、本発明の工具に包含される。
The above molds and structural members include those subjected to various surface treatments, those subjected to mirror finishing and chemical etching, of course, CVD treatment, PVD treatment, TD treatment, nitriding, chromium plating, Ni- There are P-plated, leather wrinkles, and satin finish. Products subjected to surface modification such as electron beam irradiation, thermal spraying, and shot peening are also included in the tool of the present invention.

Claims (7)

重量%で、C:0.45〜0.90%、Si:0.1〜2.0%、Mn:0.1〜1.5%、Cr:3.0〜8.0%、およびV:0.02〜0.5%に加えて、MoおよびWを、Mo+0.5W:0.1〜2.5%となるように含有し、残部がFeおよび不可避な不純物からなり、
L=15.5C(%)+Cr(%)とするとき、14≦L≦20
である合金組成を有し、直径換算で直径10μm以上の炭化物が、0.5mm2の視野中に10個以内であって、A系、B系およびC系の介在物が、JIS G0555に定める方法に従って測定したとき、(dA+dB+dC)60×400≦0.01%であることを特徴とする工具鋼。
By weight, C: 0.45-0.90%, Si: 0.1-2.0%, Mn: 0.1-1.5%, Cr: 3.0-8.0%, and V : In addition to 0.02 to 0.5%, Mo and W are contained so that Mo + 0.5W: 0.1 to 2.5%, with the balance being Fe and inevitable impurities,
When L = 15.5C (%) + Cr (%), 14 ≦ L ≦ 20
The number of carbides having a diameter of 10 μm or more in terms of diameter is 10 or less in a 0.5 mm 2 field of view, and inclusions of A, B, and C are defined in JIS G0555. Tool steel, wherein (dA + dB + dC) 60 × 400 ≦ 0.01% when measured according to the method.
請求項1に記載した合金成分に加え、P:0.03%以下、S:0.03%以下、Al:0.03%以下、O:0.005%以下およびN:0.025%以下の1種または2種以上を含有する請求項1の工具鋼。 In addition to the alloy components described in claim 1, P: 0.03% or less, S: 0.03% or less, Al: 0.03% or less, O: 0.005% or less, and N: 0.025% or less The tool steel of Claim 1 containing 1 type, or 2 or more types of these. 請求項1または2に記載した合金成分に加え、Cu:1.0%以下、Ni:1.0%以下、Co:1.0%以下およびB:0.01%以下の1種または2種以上を含有する請求項1または2の工具鋼。 In addition to the alloy components described in claim 1 or 2, one or two of Cu: 1.0% or less, Ni: 1.0% or less, Co: 1.0% or less, and B: 0.01% or less The tool steel of Claim 1 or 2 containing the above. 請求項1ないし3のいずれかに記載した合金成分に加え、Se:0.05%以下,Te:0.05%以下,Pb:0.05%以下,Bi:0.05%以下およびCa:0.05%以下の1種または2種以上を含有する請求項1ないし3のいずれかの工具鋼。 In addition to the alloy components according to any one of claims 1 to 3, Se: 0.05% or less, Te: 0.05% or less, Pb: 0.05% or less, Bi: 0.05% or less, and Ca: The tool steel according to any one of claims 1 to 3, containing 0.05% or less of one kind or two or more kinds. 請求項1ないし4のいずれかに記載した合金成分に加え、Nb:0.1%以下,Ta:0.1%以下,Ti:0.1%以下,Zr:0.1%以下,Mg:0.1%以下、およびREM:0.1%以下の1種または2種以上を含有する請求項1ないし4のいずれかの工具鋼。 In addition to the alloy components according to any one of claims 1 to 4, Nb: 0.1% or less, Ta: 0.1% or less, Ti: 0.1% or less, Zr: 0.1% or less, Mg: The tool steel according to any one of claims 1 to 4, comprising one or more of 0.1% or less and REM: 0.1% or less. 請求項1ないし5のいずれかに記載した合金組成を有する工具鋼を材料とし、1150℃以上の温度に少なくとも5時間保持したのち塑性加工を行なって工具の形状を与えた、請求項1に記載した炭化物および介在物を有する精密加工用工具。 The tool steel having the alloy composition according to any one of claims 1 to 5 is used as a material, and the shape of the tool is given by performing plastic working after being held at a temperature of 1150 ° C or higher for at least 5 hours. Tool for precision machining with carbides and inclusions. 請求項6に記載の工具であって、1000〜1060℃からの焼入れ・500〜65℃の焼戻しからなる熱処理を施してなり、熱処理後の残留オーステナイト量が5%以下、表面残留応力が±200MPa以内、硬さがHRC55〜65の状態とした精密加工用工具。
The tool according to claim 6, which is subjected to a heat treatment comprising quenching from 1000 to 1060 ° C. and tempering from 500 to 65 ° C., a residual austenite amount after the heat treatment is 5% or less, and a surface residual stress is ± 200 MPa. A tool for precision machining with a hardness of HRC55-65.
JP2005158235A 2005-05-30 2005-05-30 Tool for precision working and tool steel Pending JP2006328521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158235A JP2006328521A (en) 2005-05-30 2005-05-30 Tool for precision working and tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158235A JP2006328521A (en) 2005-05-30 2005-05-30 Tool for precision working and tool steel

Publications (1)

Publication Number Publication Date
JP2006328521A true JP2006328521A (en) 2006-12-07

Family

ID=37550515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158235A Pending JP2006328521A (en) 2005-05-30 2005-05-30 Tool for precision working and tool steel

Country Status (1)

Country Link
JP (1) JP2006328521A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055798A1 (en) * 2007-10-31 2009-05-06 Daido Tokushuko Kabushiki Kaisha Tool steel and manufacturing method thereof
WO2009063690A1 (en) * 2007-11-13 2009-05-22 Kabushiki Kaisha Kobe Seiko Sho Cold-work die steel and die
JP2010031366A (en) * 2008-06-26 2010-02-12 Hitachi Metals Ltd Die having high temperature strength and excellent surface finish property, and method for producing the same
WO2010026922A1 (en) * 2008-09-05 2010-03-11 Ntn株式会社 Method of assembling constant velocity universal joint
JP2010060097A (en) * 2008-09-05 2010-03-18 Ntn Corp Method of assembling constant velocity universal joint
US20100132429A1 (en) * 2008-01-10 2010-06-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Cold-work die steel and dies for cold pressing
WO2014046459A1 (en) * 2012-09-21 2014-03-27 한국기계연구원 Cold work tool steel with excellent tempering resistance
JP2014145100A (en) * 2013-01-28 2014-08-14 Sanyo Special Steel Co Ltd Cold tool steel having reduced alloy addition amount
JPWO2014030619A1 (en) * 2012-08-20 2016-07-28 日立金属株式会社 Method for cutting cold tool steel and method for producing cold mold material
JP2017155306A (en) * 2016-03-03 2017-09-07 山陽特殊製鋼株式会社 Hot tool steel having excellent high temperature strength and toughness
CN108396247A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of high strength and low cost toughness cold working die steel plate and its production method
JP2018154884A (en) * 2017-03-20 2018-10-04 愛知製鋼株式会社 Cold tool steel
KR102072606B1 (en) * 2018-10-02 2020-02-03 한국생산기술연구원 Super high strength tool steel strip with high impact toughness and preparing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286554A (en) * 1987-05-18 1988-11-24 Kobe Steel Ltd Steel for metal mold having superior machinability
JPS6411945A (en) * 1987-07-03 1989-01-17 Daido Steel Co Ltd Cold tool steel
JPH11222648A (en) * 1998-01-30 1999-08-17 Daido Steel Co Ltd Cold tool steel excellent in toughness and wear resistance and its production
JP2002088442A (en) * 2000-09-13 2002-03-27 Daido Steel Co Ltd Plastic die material for lens and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286554A (en) * 1987-05-18 1988-11-24 Kobe Steel Ltd Steel for metal mold having superior machinability
JPS6411945A (en) * 1987-07-03 1989-01-17 Daido Steel Co Ltd Cold tool steel
JPH11222648A (en) * 1998-01-30 1999-08-17 Daido Steel Co Ltd Cold tool steel excellent in toughness and wear resistance and its production
JP2002088442A (en) * 2000-09-13 2002-03-27 Daido Steel Co Ltd Plastic die material for lens and its production method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012272B2 (en) 2007-10-31 2011-09-06 Daido Tokushuko Kabushiki Kaisha Tool steels and manufacturing method thereof
EP2055798A1 (en) * 2007-10-31 2009-05-06 Daido Tokushuko Kabushiki Kaisha Tool steel and manufacturing method thereof
KR101138043B1 (en) * 2007-10-31 2012-04-23 다이도 토쿠슈코 카부시키가이샤 Tool steels and manufacturing method thereof
WO2009063690A1 (en) * 2007-11-13 2009-05-22 Kabushiki Kaisha Kobe Seiko Sho Cold-work die steel and die
JP2009120886A (en) * 2007-11-13 2009-06-04 Kobe Steel Ltd Steel for cold working die, and die
US20100132429A1 (en) * 2008-01-10 2010-06-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd) Cold-work die steel and dies for cold pressing
JP2010031366A (en) * 2008-06-26 2010-02-12 Hitachi Metals Ltd Die having high temperature strength and excellent surface finish property, and method for producing the same
WO2010026922A1 (en) * 2008-09-05 2010-03-11 Ntn株式会社 Method of assembling constant velocity universal joint
JP2010060097A (en) * 2008-09-05 2010-03-18 Ntn Corp Method of assembling constant velocity universal joint
JPWO2014030619A1 (en) * 2012-08-20 2016-07-28 日立金属株式会社 Method for cutting cold tool steel and method for producing cold mold material
WO2014046459A1 (en) * 2012-09-21 2014-03-27 한국기계연구원 Cold work tool steel with excellent tempering resistance
JP2014145100A (en) * 2013-01-28 2014-08-14 Sanyo Special Steel Co Ltd Cold tool steel having reduced alloy addition amount
JP2017155306A (en) * 2016-03-03 2017-09-07 山陽特殊製鋼株式会社 Hot tool steel having excellent high temperature strength and toughness
CN108396247A (en) * 2017-02-05 2018-08-14 鞍钢股份有限公司 A kind of high strength and low cost toughness cold working die steel plate and its production method
JP2018154884A (en) * 2017-03-20 2018-10-04 愛知製鋼株式会社 Cold tool steel
KR102072606B1 (en) * 2018-10-02 2020-02-03 한국생산기술연구원 Super high strength tool steel strip with high impact toughness and preparing method thereof

Similar Documents

Publication Publication Date Title
JP2006328521A (en) Tool for precision working and tool steel
US10774406B2 (en) Steel for mold and mold
JP2007009321A (en) Steel for plastic molding die
US20050252580A1 (en) Cold work tool steel
JP2007197746A (en) Tool steel
KR20060083142A (en) Cold working die steel
WO2009088027A1 (en) Cold-work die steel and dies for cold pressing
JP2010174319A (en) Steel for plastic molding mold, and plastic molding mold
JP2009013439A (en) High toughness high-speed tool steel
JP2008189982A (en) Tool steel
JP2003268500A (en) Tool steel for hot working excellent in machinability and its production method
WO2021124511A1 (en) High-hardness and high–corrosion resistance martensitic steel having excellent cold workability and production method for same
JP2020050916A (en) Martensitic stainless steel for high hardness and high corrosion resistant applications, excellent in cold workability, and manufacturing method therefor
JP2021116454A (en) Martensitic stainless steel excellent in cold workability for high hardness and high corrosion resistance use, and manufacturing method thereof
WO2014156487A1 (en) Steel material for die and process for producing same, process for producing prehardened steel product for die, and process for producing cold working die
JP5186878B2 (en) Steel for plastic molds and plastic molds
JP2005226150A (en) Annealing method of tool steel, production method of annealed material for tool steel, annealed material for tool steel, tool steel using the same and tool
US20060231172A1 (en) Steel article
JP2005336553A (en) Hot tool steel
JP2005082813A (en) Prehardened steel for plastic molding die
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
CN115279932B (en) Steel for hot working die, and method for producing same
JP2007162138A (en) Steel sheet for nitriding treatment and its production method
JP2001316769A (en) Cold tool steel
WO2011102402A1 (en) Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019