WO2009088027A1 - Cold-work die steel and dies for cold pressing - Google Patents

Cold-work die steel and dies for cold pressing Download PDF

Info

Publication number
WO2009088027A1
WO2009088027A1 PCT/JP2009/050097 JP2009050097W WO2009088027A1 WO 2009088027 A1 WO2009088027 A1 WO 2009088027A1 JP 2009050097 W JP2009050097 W JP 2009050097W WO 2009088027 A1 WO2009088027 A1 WO 2009088027A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
content
steel
mass
hardness
Prior art date
Application number
PCT/JP2009/050097
Other languages
French (fr)
Japanese (ja)
Inventor
Shogo Murakami
Tsuyoshi Tonomura
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Nippon Koshuha Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho, Nippon Koshuha Steel Co., Ltd. filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to CN2009800002926A priority Critical patent/CN101743335B/en
Priority to US12/598,324 priority patent/US20100132429A1/en
Publication of WO2009088027A1 publication Critical patent/WO2009088027A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working

Definitions

  • the present invention is a cold mold useful as a material for a cold press mold used when press forming (punching, bending, drawing, trimming, etc.) of steel sheets for automobiles, steel sheets for household appliances, etc. Steel and its cold press mold.
  • Cold stamping dies used for press forming of steel plates for automobiles, steel plates for household appliances, etc. are required to have an improved service life as the strength of the steel plates increases.
  • environmental issues are taken into consideration, and high-tensile steel sheets with a tensile strength of 590 MPa or more are increasingly used in order to improve the fuel efficiency of automobiles. Expected.
  • the cold press mold is manufactured by applying a hard coating to the surface of the cold mold steel as a base material.
  • Cold mold steel as a base material is generally manufactured through steps of annealing, cutting and quenching and tempering in this order.
  • high-C tool steels such as JIS SKH51 with high wear resistance and high-C high Cr alloy tool steels such as JIS SKD11 have been widely used as cold mold steels.
  • the hardness is improved by precipitation hardening of Cr-based carbides, Mo, W, and V-based carbides.
  • low alloy high-speed tool steel called matrix high speed steel, which has improved both toughness and wear resistance by reducing the alloy elements such as C, Mo, W, and V contained in JIS SKH51, Used in mold steel.
  • the technique of patent document 1 and the technique of patent document 2 are proposed as what aimed at the further improvement of the characteristic of these steel for cold molds.
  • Patent Document 1 an appropriate amount of Ni or Al is added for the purpose of obtaining excellent dimension suppressing properties, high hardness properties, and galling resistance without impairing necessary properties such as machinability and wear resistance.
  • a cold die steel is disclosed in which a proper amount of Cu is added in accordance with the addition, and the content of C and Cr is further adjusted to finely disperse the carbide distribution in the structure.
  • Patent Document 2 even if the quenching temperature is lower than that of the conventional matrix high speed, characteristics such as hardness and toughness after heat treatment can be obtained at the same level as the conventional matrix high speed.
  • an alloy tool steel having a structure in which 2 to 5 vol% of M 23 C 6 type carbide is generated in a tempered state and having a quenched and tempered structure in which at least one of MC type carbide and M 6 C type carbide is dispersed and precipitated. Has been.
  • the cold press mold is manufactured by applying a hard coating to the surface of the cold mold steel as a base material.
  • a hard film treatment there are a TD process for forming a film made of VC by thermal diffusion, a CVD process for forming a film made mainly of TiC, a PVD process for forming a film made mainly of TiN, and the like.
  • These hard coating treatments are appropriately employed depending on the circumstances of the mold user and the press manufacturer. Therefore, it is required to develop cold mold steel that can cope with any hard coating treatment. Needless to say, the cold press mold is required to have basic characteristics such as hardness, toughness, and heat treatment size change.
  • the cold press mold has a problem that stagnation occurs during cutting.
  • peeling occurs, the finished surface roughness becomes large, so that the lapping work after the heat treatment becomes difficult, and further the life of the mold is reduced.
  • the cutting tool life is shortened and the manufacturing cost is increased.
  • the content is reduced, there is a risk of adversely affecting basic properties such as hardness reduction, toughness reduction, and heat treatment dimensional change. Therefore, it is desired to develop a cold press die that ensures these basic characteristics and has no problems in terms of cutting finish surface roughness and cutting tool life.
  • the present invention has been made as a solution to these conventional problems, and has the required basic properties such as hardness, toughness, heat treatment size change, and can also handle various hard coating treatments.
  • An object of the present invention is to provide a steel for cold mold that is useful as a material for a cold press mold that has no problems in terms of roughness of the finished surface and cutting tool life, and to provide a cold press mold. Is.
  • the gist of the present invention is shown below.
  • C 0.5 to 0.7% by mass; Cr: 5.0 to 7.0% by mass; Si: 0.5 to 2.0% by mass; Mn: 0.1 to 2.0% by mass; Al: 0.001 to 0.010 mass%; Cu: 0.25 to 1.00% by mass; Ni: 0.25 to 1.00% by mass; N: 0.003 to 0.025 mass%; P: larger than 0 and 0.05% by mass or less; S: greater than 0 and 0.1% by weight or less; O: greater than 0 and 0.005 mass% or less; and containing at least one of Mo and W;
  • the balance contains iron and inevitable impurities, And 0.5 ⁇ [Mo] + 0.5 ⁇ [W] ⁇ 3.0; and [C] ⁇ [Cr] ⁇ 4, Further, the FP (parameter made of ferrite-forming elements) satisfies the requirement of [Si] / 5 + [Cr] / 5 + 2 ⁇ [Mo] + [W]
  • [] indicates the content (% by mass) of each element.
  • [3] The description according to [1] or [2], further comprising at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb in a total of more than 0 and 0.5% by mass or less Cold mold steel.
  • [4] The steel for cold mold as set forth in any one of [1] to [3], further containing Co of greater than 0 and 10% by mass or less.
  • [5] A cold press die produced by processing the steel for cold die according to any one of [1] to [4] and performing a surface treatment.
  • the steel for cold molds of the present invention As a material for cold stamping molds, it has the required basic properties such as hardness, toughness, heat treatment size change, and also supports various hard coating treatments. Furthermore, it is possible to obtain a cold press die that is free from problems in terms of the finished surface roughness and cutting tool life. In addition, a cold press die obtained by using the cold die steel can be suitably used particularly for forming a high-tensile steel plate having a tensile strength of 590 MPa or more.
  • the present inventor first eagerly searched for the cause of galling caused by damage to the TiN film formed by PVD treatment in a conventional cold press mold using JIS SKD11 or matrix high speed.
  • the cause of galling in the TiN film is the coarse Cr-based carbide produced in the cold mold steel used as the base material, and galling is generated starting from the Cr-based carbide. I found out.
  • the mechanism of damage of the TiN film by the Cr-based carbide is as shown in FIG.
  • a cold press mold having a TiN film 2 formed on its surface is prepared by applying a hard film treatment to the surface of the cold mold steel 1 as a base material. To do.
  • this cold mold steel 1 is made of JIS SKD11 or matrix high speed steel, coarse Cr carbide 3 is deposited on the surface of the cold mold steel 1 as a base material.
  • FIG. 1B When press molding is performed using this cold press die, as shown in FIG. 1B, when the molding slides in the direction of the arrow, a crack 4 is generated in the TiN film 2.
  • the part where the crack 4 is generated is a part where the Cr-based carbide 3 is deposited on the base material below the TiN film 2.
  • the crack 4 is the starting point, and the TiN film 2 is peeled off, which causes galling.
  • the cause of galling in the TiN film is Cr-based carbide.
  • the present inventor has found that by suppressing the formation of this Cr-based carbide, it is possible to prevent the TiN film from peeling off and to suppress the occurrence of problems such as extremely shortening the mold life.
  • the inclusion of C in the steel may be reduced.
  • the content of C is defined as 0.5 to 0.7 mass%
  • the content of Cr is 5.0 to 7.0 mass%
  • the product of these contents is specified.
  • parameters made of ferrite-generating elements such as Si, Cr, Mo, W, V, and Al and parameters made of austenite-generating elements such as Mn, Cu, and Ni are also defined.
  • the parameter (FP) defined by the ferrite-forming element is formulated into a mathematical formula, and the total content of the ferrite-forming elements is defined so as to satisfy the formula, whereby the hardness of the steel for cold molds is increased.
  • the finished surface accuracy of the machined work was also improved.
  • the parameter (AP) defined by the austenite-generating element is formulated, and the total content of the austenite-generating element is defined so as to satisfy the formula, thereby reducing the retained austenite in the steel.
  • the tool life during cutting was extended.
  • C 0.5 to 0.7% C is an element that ensures hardness and wear resistance and contributes to the suppression of HAZ softening.
  • a carbide film such as a VC film by TD treatment or a TiC film by CVD treatment is formed on the surface of the mold base material, there is a problem that the thickness of the film becomes thin if the C content is small.
  • the lower limit of the C content is set to 0.5% in order to effectively exhibit the above-described action.
  • the lower limit is preferably 0.55%.
  • the content is excessive, coarse Cr-based carbides are generated, and the TiN film formed by the PVD process is easily peeled off.
  • the upper limit of the C content is set to 0.7%.
  • the upper limit is preferably 0.65%.
  • Cr 5.0 to 7.0% Cr is an element useful for ensuring a predetermined hardness. Specifically, if the Cr content is too small, the hardenability is insufficient and a portion of bainite is generated, so that the hardness is lowered and the wear resistance cannot be ensured. Furthermore, Cr is an element useful for ensuring the corrosion resistance of the mold. Therefore, the lower limit of the Cr content is set to 5.0%. Further, the lower limit is preferably 5.5%. However, if the content is excessive, a large amount of coarse Cr-based carbide is generated, and the TiN film formed by the PVD treatment is easily peeled off. On the other hand, if the Cr content is excessive, the durability of the hard coating is reduced by shrinkage after heat treatment. Furthermore, if the Cr content is excessive, the toughness is also adversely affected. Therefore, the upper limit of the Cr content is set to 7.0%. Moreover, it is preferable that the upper limit is 6.5%.
  • Si 0.5 to 2.0% Si is useful as a deoxidizing element at the time of steelmaking, and is an element that contributes to improving hardness and securing machinability. Moreover, Si suppresses the temper softening of the martensite of the matrix and is useful for suppressing the HAZ softening.
  • the lower limit of the Si content is set to 0.5%.
  • the content is preferably 1.0% or more, more preferably 1.2% or more. However, if the content is excessive, the toughness decreases. Moreover, segregation increases and the size after heat treatment increases. Therefore, the upper limit of the Si content is set to 2.0%.
  • the content is preferably 1.85% or less.
  • Mn 0.1 to 2.0%
  • Mn is an element useful for ensuring hardenability. However, if the content is excessive, retained austenite increases, so that the desired hardness cannot be obtained unless tempering is performed at a high temperature, and the toughness also decreases. Taking these into consideration, the Mn content is determined to be in the range of 0.1 to 2.0%.
  • the lower limit of the Mn content is preferably 0.15%, and the upper limit is preferably 1.0%, more preferably 0.5%, and still more preferably 0.35%.
  • Al 0.001 to 0.010%
  • Al is an element useful as a deoxidizer. However, if the content is less than 0.001%, the effect cannot be sufficiently obtained. Therefore, the lower limit of the Al content is set to 0.001%. The lower limit is preferably 0.002%.
  • Al-based inclusions such as Al 2 O 3 and coarse AlN cause peeling during cutting and reduce the accuracy of the finished surface of the cut. Therefore, the upper limit of the Al content is set to 0.010%. The upper limit is preferably 0.008%.
  • Cu 0.25 to 1.00% Cu is an element necessary for improving the hardness by precipitation strengthening of ⁇ -Cu, and contributes to the suppression of HAZ softening. However, if the content is excessive, toughness is reduced and forging cracks are likely to occur. Therefore, the upper limit of the Cu content is set to 1.00%. The upper limit is preferably 0.80%. Further, the lower limit of the Cu content is 0.25%. The lower limit is preferably 0.30%.
  • Ni 0.25 to 1.00%
  • Ni is an element necessary for improving the hardness by precipitation strengthening of Al—Ni-based intermetallic compounds such as Ni 3 Al, and contributes to the suppression of HAZ softening.
  • Ni can also be used in combination with Cu to suppress hot brittleness due to excessive addition of Cu and to prevent cracking during forging.
  • the content is excessive, the retained austenite increases, and unless it is tempered at a high temperature, a predetermined hardness cannot be secured, and it expands after the heat treatment. Further, if the Ni content is excessive, toughness is also lowered. Taking these into account, the Ni content is determined to be in the range of 0.25 to 1.00%.
  • the lower limit of the Ni content is preferably 0.30%, and the upper limit is preferably 0.80%.
  • N 0.003 to 0.025%
  • N is an important element for forming an AlN precipitate together with Al to prevent crystal grain coarsening during quenching and achieving excellent toughness.
  • the lower limit of the N content was 0.003%.
  • the lower limit is preferably 0.004%.
  • the upper limit of the N content was 0.025%.
  • the upper limit is preferably 0.017%.
  • Mo + 0.5W 0.5-3.0%
  • Mo and W are elements that contribute to precipitation strengthening by forming M 3 C type carbides and M 6 C type carbides as well as forming Ni 3 Mo intermetallic compounds. However, if these contents are excessive, the above carbides and the like are excessively generated, resulting in a decrease in toughness, and a change in size after heat treatment becomes large. Therefore, the total content of Mo and W when applied to the formula of Mo + 0.5 ⁇ W is determined in the range of 0.5 to 3.0%.
  • the content of Mo alone is also preferably in the range of 0.5 to 3.0%.
  • the content of W alone is preferably 2.0% or less (including 0%). That is, Mo is an essential element and W is a selective element.
  • the lower limit of the content of W alone is more preferably 0.02%. Further, the lower limit of the content of Mo alone is more preferably 0.7%, and the upper limit is more preferably 2.5%. More preferably, the lower limit of the content of W alone is 0.05%, and the upper limit is 1.5%.
  • P greater than 0 and not more than 0.05%
  • P is an element that is unavoidably present in the molten raw material and is an element that inhibits toughness. Therefore, the upper limit of the P content is set to 0.05%. The upper limit is preferably 0.02%. In addition, although content of P is so preferable that it is small, since it is inevitably contained, the lower limit becomes substantially 0.005%.
  • S More than 0 and 0.1% or less S is an element useful for ensuring machinability. From the viewpoint of securing machinability, it is recommended that S is a content of preferably 0.002% or more, more preferably 0.004% or more. However, if the content is excessive, weld cracks occur. Therefore, the upper limit of the S content is set to 0.1%. The upper limit of the S content is preferably 0.07%, more preferably 0.05%, and still more preferably 0.025%.
  • O More than 0 and 0.005% or less O is an element contained in molten steel, and is unavoidably contained in steel. When the content of O is high, it reacts with Si, Al, etc. to form oxide inclusions. Therefore, the upper limit of the O content is set to 0.005%. The upper limit is preferably 0.003%, more preferably 0.002%. The lower the O content, the better. However, since it is inevitably contained, the lower limit is substantially about 0.0005%.
  • the above formula is a formula set for the purpose of suppressing the formation of coarse Cr-based carbides.
  • the product of the content of C and the content of Cr exceeds 4, the durability of the hard coating is reduced and the size after heat treatment is increased.
  • the product of the C content and the Cr content is preferably as small as possible, but the above-described addition of C and Cr In consideration of effectively exerting the action, the lower limit of this product is preferably about 0.8.
  • FP [Si] / 5 + [Cr] / 5 + 2 ⁇ [Mo] + [W] + 2 ⁇ [V] + 10 ⁇ [Al] ⁇ 5.0
  • the above mathematical formula is a mathematical formula defining and parameterizing the total content of ferrite-forming elements such as Si, Cr, Mo, W, V, and Al. If this parameter (FP) is larger than 5.0, the balance between hardness and toughness of the steel for cold mold is lost, and the accuracy of the finished surface of the machining work is also deteriorated. This parameter (FP) is more preferably 4.8 or less.
  • the FP value 2.11 determined from the lower limit value of elements essential to the cold mold steel according to the present invention, such as Si and Cr, is the substantial lower limit value of this parameter (FP).
  • AP [Mn] + 3 ⁇ ([Cu] + [Ni]) ⁇ 2.5
  • the above formula is a formula that defines and defines the total content of austenite-generating elements such as Mn, Cu, and Ni.
  • This parameter (AP) is more preferably 2.3 or less.
  • AP value 1.6 determined from the lower limit values of Mn, Cu, and Ni is substantially the lower limit value of this parameter (AP).
  • the requirements regarding the basic components in the steel for cold mold according to the present invention are as described above.
  • the balance contains iron and inevitable impurities.
  • examples of the impurity include Sn and Pb.
  • the following selective components may be further contained for the purpose of improving other characteristics.
  • V 0 to 0.5%
  • V is an element effective for suppressing HAZ softening, in addition to forming carbides such as VC and contributing to improvement in hardness.
  • it is an effective element for improving the surface hardness and increasing the depth of the hardened layer when a diffusion hardened layer is formed on the surface of the base material by nitriding such as gas nitriding, salt nitriding, plasma nitriding, etc. .
  • nitriding such as gas nitriding, salt nitriding, plasma nitriding, etc.
  • the upper limit of the V content is set to 0.5%.
  • the upper limit of the V content is preferably 0.4%, more preferably 0.3%.
  • These elements are all nitride-forming elements, and nitrides of these elements and AlN It is an element that contributes to fine dispersion and, as a result, prevents coarsening of crystal grains and contributes to improvement of toughness.
  • Ti is 0.01% or more
  • Zr is 0.02% or more
  • Hf is 0.04% or more
  • Ta is 0.04% or more
  • Nb is 0.0.
  • the total content of these elements is set to 0.5% or less.
  • the total content of these elements is preferably 0.4% or less, more preferably 0.3% or less.
  • these elements may be contained alone or in combination of two or more.
  • Co 10% or less Co is an element that increases the Ms point and is effective in reducing retained austenite, and can thereby improve the hardness.
  • the Co content is preferably approximately 1% or more. However, if the content is excessive, the cost is increased, so the upper limit is made 10%.
  • the upper limit of the Co content is preferably 5.5%.
  • the Ms point is one of the transformation temperatures (the temperature at which the phase change occurs, and when the transformation occurs over the temperature range, the temperature at which the transformation starts or ends). It means the temperature that begins to transform into martensite.
  • a cold press mold is manufactured using cold mold steel that satisfies the requirements described above.
  • An example of the manufacturing method of this cold press mold will be described. For example, after the cold mold steel of the present invention is melted, it is hot forged and then annealed (for example, held at about 700 ° C. for 7 hours). Then, after cooling in the furnace to about 400 ° C. at an average cooling rate of about 17 ° C./hr and then allowing to cool, it is softened and then roughly processed into a predetermined shape by cutting or the like, and then 950 to 1150 A cold press mold is manufactured by quenching at a temperature of 0 ° C. and further tempering at 400 to 530 ° C. to give a desired hardness.
  • a test piece of 20 mm T ⁇ 20 mm W ⁇ 15 mm L size is cut out from the above-mentioned annealed material to make a test piece for hardness measurement, and heat treatment, specifically, a quenching treatment ( Heating at 1030 ° C. for 120 minutes), air cooling, tempering treatment (kept at 450 to 520 ° C. for 180 minutes) and cooling were performed in this order.
  • the hardness when the tempering temperature was changed within the range of 450 to 520 ° C. was measured with a Vickers hardness meter (standard AVK manufactured by AKASHI, load 5 kg), and the maximum hardness was examined. In this test, those having a maximum hardness of 650 HV or more obtained by measurement were regarded as acceptable.
  • the test results are shown in Table 2.
  • the cutting finish surface roughness Ra was an average value of values obtained by investigating five 10 mm length ranges of the specimen. In this test, the cutting finish surface roughness Ra obtained by the test was 0.40 mm or less. The test results are shown in Table 2.
  • each chemical component As described in Table 1 and Table 2, the contents of each chemical component, the product of the content of C and the content of Cr, the parameter composed of a ferrite-forming element, and the parameter composed of an austenite-forming element are all requirements of the present invention.
  • No. which is an example of the invention satisfying 7 to 9, 11, and 14 to 20, all of the maximum hardness, Charpy impact value, cutting finish surface roughness, cutting tool life, and maximum heat treatment change amount were within the range of acceptance criteria.
  • No. 1 which is a comparative example which does not satisfy even one requirement of the present invention. For 1 to 6, 10, 12 to 13, and 21 to 26, at least one acceptance criterion is removed, and there is some defect.
  • the comparative examples 1 to 6, 10, 12 to 13, and 21 to 26 have some problems by removing one or more of the requirements of the present invention described above.
  • a characteristic example for each requirement described in the above was used as a comparative example.
  • a comparative example corresponding to each requirement defined in the present invention will be described.
  • a comparative example with too much C and Cr content is No. 1 and No. 2, on the contrary, the comparative example in which the content of C and the content of Cr are too small is No. 3 and no. 4. Both the comparative examples with too much and too little of these contents deviate from the acceptance criteria in all or any of Charpy impact value (toughness), cutting finish surface roughness, cutting tool life, maximum heat treatment size change amount. It was.
  • Comparative example with too much Mn content is No. 22.
  • the toughness was greatly lowered and the Charpy impact value deviated from the acceptance criterion.
  • the cutting tool life and the maximum heat treatment size change are also outside the acceptance criteria.
  • a comparative example with too much Al content is No. 10, on the contrary, there are too few comparative examples. 6. No. of comparative example having too much Al content. In No. 10, peeling occurred when finishing with a ball end mill, and the accuracy of the finished surface was deteriorated. In addition, the comparative example No. In 6, the Charpy impact value deviated from the acceptance criterion.
  • Comparative example with too much Ni content is No. 23, on the contrary, there are too few comparative examples. 1. No. whose content is excessive. In No. 23, the acceptance criterion was exceeded by the Charpy impact value and the maximum heat treatment change amount. Also, the cutting tool life is out of the acceptance criteria.
  • the comparative example where the numerical value calculated from Mo + 0.5W is too small is No. 24, and the numerical value is within the range of the present invention, but the case corresponding to the maximum of 3.0% which is the boundary value is No. 24. 25. No. In 24, the maximum hardness and Charpy impact value deviated from the acceptance criteria. No. 25, the Charpy impact value is lowered, although there is an influence that other requirements are removed.
  • Comparative example with too much V content is No. 26. No. of this comparative example. In No. 26, since the content of V was excessive, the toughness was lowered, and the acceptance criterion was deviated by the Charpy impact value. Moreover, the acceptance criteria were also out of the finished surface roughness.
  • a comparative example in which the product of the content of C and the content of Cr is too large is No. 1 and No. 2.
  • No. 1 and No. In No. 2 due to this influence, the life of the cutting tool was remarkably shortened and the size after heat treatment was increased.
  • a comparative example with too much N content is No. 27.
  • the toughness decreased and the Charpy impact value deviated from the acceptance criterion.
  • a comparative example with too large a parameter consisting of ferrite-forming elements is 1 to 4 and no. 25. Due to this influence, in these comparative examples, the balance of toughness is lost, or the accuracy of the finished surface of the cutting work is deteriorated. In particular, no. In No. 25, the toughness was greatly reduced, and the Charpy impact value deviated from the acceptance criterion.
  • a comparative example with too large a parameter composed of austenite-forming elements is 2-5, no. 12, 13, 22, and 23. Due to this influence, in these comparative examples, the amount of retained austenite increases, the amount of heat treatment change increases, and the tool life during cutting is shortened. In particular, no. 12 and no. No. 13 is out of the acceptance criteria only by the cutting tool life and the maximum heat treatment change amount.
  • the steel for cold molds of the present invention As a material for cold stamping molds, it has the required basic properties such as hardness, toughness, heat treatment size change, and also supports various hard coating treatments. Furthermore, it is possible to obtain a cold press die that is free from problems in terms of the finished surface roughness and cutting tool life. In addition, a cold press die obtained by using the cold die steel can be suitably used particularly for forming a high-tensile steel plate having a tensile strength of 590 MPa or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

The invention provides a cold-work die steel useful as material for dies for cold pressing which is excellent in basic characteristics such as hardness, toughness and dimensional change by heat treatment and which is also unproblematic with respect to roughness on machined surface and machine life; and dies made of the steel for cold pressing. A cold-work die steel which contains by mass C: 0.5 to 0.7%, Cr: 5.0 to 7.0%, Si: 0.5 to 2.0%, Mn: 0.1 to 2.0%, Al: 0.001 to 0.010%, Cu: 0.25 to 1.00%, Ni: 0.25 to 1.00%, Mo+0.5xW: 0.5 to 3.0%, V: 0.5% or below; P: 0.05% or below, S: 0.1% or below, and O: 0.005% or below and satisfies the requirements: [C]x[Cr]<4, FP=[Si]/5+[Cr]/5+ 2x[Mo]+[W]+2x[V]+10x[Al]<5.0, and AP=[Mn]+3x([Cu]+[Ni])<2.5; and dies for cold pressing which are made by using the steel.

Description

冷間金型用鋼および冷間プレス用金型Cold mold steel and cold press mold
 本発明は、自動車用鋼板や家電用鋼板などを、冷間等でプレス成形(打ち抜き、曲げ、絞り、トリミングなど)する際に用いられる冷間プレス用金型の素材として有用な冷間金型用鋼と、その冷間プレス用金型に関するものである。 INDUSTRIAL APPLICABILITY The present invention is a cold mold useful as a material for a cold press mold used when press forming (punching, bending, drawing, trimming, etc.) of steel sheets for automobiles, steel sheets for household appliances, etc. Steel and its cold press mold.
 自動車用鋼板や家電用鋼板などのプレス成形に用いられる冷間プレス用金型は、鋼板の高強度化に伴い、その寿命の改善が求められている。特に自動車用鋼板では、環境問題が考慮され、自動車の燃費を向上するために、引っ張り強度が590MPa以上のハイテン鋼板が採用されることが多くなってきており、今後その需要が益々高くなることが予想されている。 Cold stamping dies used for press forming of steel plates for automobiles, steel plates for household appliances, etc. are required to have an improved service life as the strength of the steel plates increases. Especially for automobile steel sheets, environmental issues are taken into consideration, and high-tensile steel sheets with a tensile strength of 590 MPa or more are increasingly used in order to improve the fuel efficiency of automobiles. Expected.
 そのハイテン鋼板をプレス成形するにあたり、表面処理を施された冷間プレス用金型の表面皮膜が、早期に損傷することで、型カジリやカジリと呼ばれるプレス成形時に焼きつく現象が発生し、冷間プレス用金型の金型寿命が極端に短くなるといった問題の発生が増加している。 When press-forming the high-tensile steel plate, the surface film of the cold-press die that has been surface-treated is damaged at an early stage, causing a phenomenon of seizure during press-forming called mold galling or galling. The occurrence of problems such as extremely shortening the die life of the hot press die is increasing.
 冷間プレス用金型は、母材となる冷間金型用鋼の表面に硬質皮膜処理を施すことで製造される。母材となる冷間金型用鋼は、一般に、焼鈍、切削加工及び焼入焼戻処理という工程をこの順に経て製造される。 The cold press mold is manufactured by applying a hard coating to the surface of the cold mold steel as a base material. Cold mold steel as a base material is generally manufactured through steps of annealing, cutting and quenching and tempering in this order.
 冷間金型用鋼として、従来から、JIS SKD11などの高C高Crの合金工具鋼や、更に耐摩耗性が改善されたJIS SKH51などの高速度工具鋼が汎用されている。これらの工具鋼では、Cr系炭化物やMo、W、V系炭化物の析出硬化により硬度の向上を図っている。更には、JIS SKH51が含有するC、Mo、W、Vなどの合金元素を低減することで、靭性、耐摩耗性の両方を向上させたマトリックスハイスと呼ばれる低合金高速度工具鋼も、冷間金型用鋼に使用されている。また、これら冷間金型用鋼の更なる特性の改善を図ったものとして特許文献1に記載の技術や、特許文献2に記載の技術も提案されている。 Conventionally, high-C tool steels such as JIS SKH51 with high wear resistance and high-C high Cr alloy tool steels such as JIS SKD11 have been widely used as cold mold steels. In these tool steels, the hardness is improved by precipitation hardening of Cr-based carbides, Mo, W, and V-based carbides. Furthermore, low alloy high-speed tool steel called matrix high speed steel, which has improved both toughness and wear resistance by reducing the alloy elements such as C, Mo, W, and V contained in JIS SKH51, Used in mold steel. Moreover, the technique of patent document 1 and the technique of patent document 2 are proposed as what aimed at the further improvement of the characteristic of these steel for cold molds.
 特許文献1には、被削性や耐摩耗性といった必要特性を阻害せずに、優れた変寸抑制特性と高硬度特性、耐カジリ性を得ることを目的として、適正量のNiやAlを添加し、それに応じた適正量のCuを添加すると共に、更にC及びCrの含有量を調整して組織中の炭化物分布を微細に分散した冷間ダイス鋼が開示されている。 In Patent Document 1, an appropriate amount of Ni or Al is added for the purpose of obtaining excellent dimension suppressing properties, high hardness properties, and galling resistance without impairing necessary properties such as machinability and wear resistance. A cold die steel is disclosed in which a proper amount of Cu is added in accordance with the addition, and the content of C and Cr is further adjusted to finely disperse the carbide distribution in the structure.
 また、特許文献2には、従来のマトリックスハイスより焼き入れ温度を低くしても、熱処理後の硬さ、靭性などの特性が従来のマトリックスハイスと同程度の特性が得られることを目的として、焼き戻し状態でM23型炭化物が2~5vol%生成する組織を有し、かつMC型炭化物及びMC型炭化物の少なくともいずれかが分散析出した焼入れ焼戻し組織を有する合金工具鋼が開示されている。 Further, in Patent Document 2, even if the quenching temperature is lower than that of the conventional matrix high speed, characteristics such as hardness and toughness after heat treatment can be obtained at the same level as the conventional matrix high speed. Disclosed is an alloy tool steel having a structure in which 2 to 5 vol% of M 23 C 6 type carbide is generated in a tempered state and having a quenched and tempered structure in which at least one of MC type carbide and M 6 C type carbide is dispersed and precipitated. Has been.
特開2006-169624号公報JP 2006-169624 A 特開2004-169177号公報JP 2004-169177 A
 冷間プレス用金型は、母材となる冷間金型用鋼の表面に硬質皮膜処理を施すことで製造される。この硬質皮膜処理としては、熱拡散によってVCでなる皮膜を形成するTD処理、主にTiCでなる皮膜を形成するCVD処理、主にTiNでなる皮膜を形成するPVD処理等がある。これらの硬質皮膜処理は、金型ユーザーやプレスメーカーの事情に応じて適宜採用されている。そのため、何れの硬質皮膜処理にも対応することができる冷間金型用鋼が開発されることが求められている。また、当然のことではあるが、冷間プレス用金型には、硬さや靭性、熱処理変寸といった基本特性を確保することも求められている。 The cold press mold is manufactured by applying a hard coating to the surface of the cold mold steel as a base material. As this hard film treatment, there are a TD process for forming a film made of VC by thermal diffusion, a CVD process for forming a film made mainly of TiC, a PVD process for forming a film made mainly of TiN, and the like. These hard coating treatments are appropriately employed depending on the circumstances of the mold user and the press manufacturer. Therefore, it is required to develop cold mold steel that can cope with any hard coating treatment. Needless to say, the cold press mold is required to have basic characteristics such as hardness, toughness, and heat treatment size change.
 更には、冷間プレス用金型には、切削加工中のむしれ発生といった問題もある。むしれが発生すると切削仕上げ面粗さが大きくなるため、熱処理後のラッピング作業が困難となり、更には金型寿命の低減を招く。また、切削工具寿命も短くなり、製造コストが増大する。これらの問題を解消するためには、問題の発生原因であるAl系介在物(Al、AlN)の析出を抑制する必要があるが、Al系介在物を析出する元素であるAlの含有量を低減すると、逆に、硬さ低下、靭性低下、熱処理変寸量の増大といった基本特性に悪影響を及ぼすおそれがある。よって、これらの基本特性を確保した上で、切削仕上げ面粗さや切削工具寿命といった面でも問題がない冷間プレス用金型が開発されることが待ち望まれている。 Furthermore, the cold press mold has a problem that stagnation occurs during cutting. When peeling occurs, the finished surface roughness becomes large, so that the lapping work after the heat treatment becomes difficult, and further the life of the mold is reduced. In addition, the cutting tool life is shortened and the manufacturing cost is increased. In order to solve these problems, it is necessary to suppress the precipitation of Al-based inclusions (Al 2 O 3 , AlN) that is the cause of the problem. On the other hand, when the content is reduced, there is a risk of adversely affecting basic properties such as hardness reduction, toughness reduction, and heat treatment dimensional change. Therefore, it is desired to develop a cold press die that ensures these basic characteristics and has no problems in terms of cutting finish surface roughness and cutting tool life.
 本発明は、これら従来の問題を解決せんとしてなされたもので、硬さ、靭性、熱処理変寸といった求められる基本特性を備えた上に、様々な硬質皮膜処理にも対応することができ、更には、切削仕上げ面粗さや切削工具寿命といった面でも問題のない冷間プレス用金型の素材として有用な冷間金型用鋼と、その冷間プレス用金型を提供することを課題とするものである。 The present invention has been made as a solution to these conventional problems, and has the required basic properties such as hardness, toughness, heat treatment size change, and can also handle various hard coating treatments. An object of the present invention is to provide a steel for cold mold that is useful as a material for a cold press mold that has no problems in terms of roughness of the finished surface and cutting tool life, and to provide a cold press mold. Is.
 本発明の要旨を以下に示す。
[1] C:0.5~0.7質量%;
 Cr:5.0~7.0質量%;
 Si:0.5~2.0質量%;
 Mn:0.1~2.0質量%;
 Al:0.001~0.010質量%;
 Cu:0.25~1.00質量%;
 Ni:0.25~1.00質量%;
 N:0.003~0.025質量%;
 P:0より大きく0.05質量%以下;
 S:0より大きく0.1質量%以下;
 O:0より大きく0.005質量%以下;及び
 Mo及びWのうち少なくとも一つを含有し、
 残部が鉄及び不可避的不純物を含み、
 且つ、0.5≦[Mo]+0.5×[W]≦3.0;及び
 [C]×[Cr]≦4という要件を満足し、
 更に、FP(フェライト生成元素からなるパラメータ)が、[Si]/5+[Cr]/5+2×[Mo]+[W]+2×[V]+10×[Al]≦5.0という要件を満足し、
 AP(オーステナイト生成元素からなるパラメータ)が、[Mn]+3×([Cu]+[Ni])≦2.5という要件を満足することを特徴とする冷間金型用鋼。
 但し、上式で[ ]は、各元素の含有量(質量%)を示す。
[2] 更に、V:0より大きく0.5質量%以下を含有する[1]記載の冷間金型用鋼。
[3] 更に、Ti、Zr、Hf、Ta、Nbからなる群から選択される少なくとも1種の元素を、合計で0より大きく0.5質量%以下含有する[1]または[2]記載の冷間金型用鋼。
[4] 更に、Coを0より大きく10質量%以下含有する[1]乃至[3]のいずれかに記載の冷間金型用鋼。
[5] [1]乃至[4]のいずれかに記載の冷間金型用鋼を加工し、表面処理を施すことによって製造される冷間プレス用金型。
The gist of the present invention is shown below.
[1] C: 0.5 to 0.7% by mass;
Cr: 5.0 to 7.0% by mass;
Si: 0.5 to 2.0% by mass;
Mn: 0.1 to 2.0% by mass;
Al: 0.001 to 0.010 mass%;
Cu: 0.25 to 1.00% by mass;
Ni: 0.25 to 1.00% by mass;
N: 0.003 to 0.025 mass%;
P: larger than 0 and 0.05% by mass or less;
S: greater than 0 and 0.1% by weight or less;
O: greater than 0 and 0.005 mass% or less; and containing at least one of Mo and W;
The balance contains iron and inevitable impurities,
And 0.5 ≦ [Mo] + 0.5 × [W] ≦ 3.0; and [C] × [Cr] ≦ 4,
Further, the FP (parameter made of ferrite-forming elements) satisfies the requirement of [Si] / 5 + [Cr] / 5 + 2 × [Mo] + [W] + 2 × [V] + 10 × [Al] ≦ 5.0. ,
A cold mold steel characterized in that AP (a parameter composed of an austenite-forming element) satisfies the requirement of [Mn] + 3 × ([Cu] + [Ni]) ≦ 2.5.
However, in the above formula, [] indicates the content (% by mass) of each element.
[2] The steel for cold mold as set forth in [1], further comprising V: greater than 0 and 0.5% by mass or less.
[3] The description according to [1] or [2], further comprising at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb in a total of more than 0 and 0.5% by mass or less Cold mold steel.
[4] The steel for cold mold as set forth in any one of [1] to [3], further containing Co of greater than 0 and 10% by mass or less.
[5] A cold press die produced by processing the steel for cold die according to any one of [1] to [4] and performing a surface treatment.
 本発明の冷間金型用鋼を冷間プレス用金型の素材に用いることで、硬さ、靭性、熱処理変寸といった求められる基本特性を備えた上に、様々な硬質皮膜処理にも対応することができ、更には、切削仕上げ面粗さや切削工具寿命といった面でも問題のない冷間プレス用金型を得ることができる。また、その冷間金型用鋼を用いて得られる冷間プレス用金型は、特に、引っ張り強度が590MPa以上のハイテン鋼板の成形用として好適に用いることができる。 By using the steel for cold molds of the present invention as a material for cold stamping molds, it has the required basic properties such as hardness, toughness, heat treatment size change, and also supports various hard coating treatments. Furthermore, it is possible to obtain a cold press die that is free from problems in terms of the finished surface roughness and cutting tool life. In addition, a cold press die obtained by using the cold die steel can be suitably used particularly for forming a high-tensile steel plate having a tensile strength of 590 MPa or more.
Cr系炭化物によるTiN皮膜の損傷のメカニズムを示すもので、(a)は元の冷間プレス用金型を示す縦断面図、(b)は冷間プレス用金型のTiN皮膜にクラックが発生した状態を示す縦断面図、(c)はそのクラックが起点となってTiN皮膜に剥離が発生した状態を示す縦断面図である。This shows the mechanism of damage to the TiN film by Cr carbide, (a) is a longitudinal sectional view showing the original cold press mold, (b) is a crack in the TiN film of the cold press mold The longitudinal cross-sectional view which shows the state which carried out, (c) is a longitudinal cross-sectional view which shows the state which peeling generate | occur | produced in the TiN membrane | film | coat from the crack. 実施例のシャルピー衝撃値の測定で用いたシャルピー衝撃試験片を示す説明図である。It is explanatory drawing which shows the Charpy impact test piece used by the measurement of the Charpy impact value of an Example. 実施例最大熱処理変寸量の測定で用いた試験体に、熱処理を施す際の熱処理条件を示す説明図である。It is explanatory drawing which shows the heat processing conditions at the time of heat-processing to the test body used by the measurement of the Example maximum heat processing size change amount.
符号の説明Explanation of symbols
1…冷間金型用鋼
2…TiN皮膜
3…Cr系炭化物
4…クラック
DESCRIPTION OF SYMBOLS 1 ... Cold mold steel 2 ... TiN film 3 ... Cr type carbide 4 ... Crack
 以下、本発明を実施形態に基づいて更に詳細に説明する。 Hereinafter, the present invention will be described in more detail based on embodiments.
 本発明者は、まず、従来のJIS SKD11やマトリックスハイスを素材に用いた冷間プレス用金型において、PVD処理によって形成されたTiN皮膜が損傷して、カジリが発生する原因を鋭意探求した。 The present inventor first eagerly searched for the cause of galling caused by damage to the TiN film formed by PVD treatment in a conventional cold press mold using JIS SKD11 or matrix high speed.
 探求の結果、TiN皮膜にカジリが発生する原因は、母材となる冷間金型用鋼に生成される粗大なCr系炭化物であり、そのCr系炭化物が起点となって、カジリが発生することを見出した。そのCr系炭化物によるTiN皮膜の損傷のメカニズムは、図1に示す通りである。 As a result of the search, the cause of galling in the TiN film is the coarse Cr-based carbide produced in the cold mold steel used as the base material, and galling is generated starting from the Cr-based carbide. I found out. The mechanism of damage of the TiN film by the Cr-based carbide is as shown in FIG.
 まず、図1(a)に示すように、母材となる冷間金型用鋼1の表面に硬質皮膜処理を施すことで、表面にTiN皮膜2を形成した冷間プレス用金型を準備する。この冷間金型用鋼1が、JIS SKD11やマトリックスハイスを素材として形成されている場合、母材である冷間金型用鋼1の表面には粗大なCr系炭化物3が析出している。この冷間プレス用金型を用いてプレス成形する際に、図1(b)に示すように、被成形物が矢印方向に摺動すると、TiN皮膜2にはクラック4が発生する。このクラック4が発生する部位は、TiN皮膜2の下方の母材にCr系炭化物3が析出している部位である。更に、被成形物を摺動すると、図1(c)に示すように、そのクラック4が起点となって、TiN皮膜2に剥離が生じ、カジリが発生する。 First, as shown in FIG. 1 (a), a cold press mold having a TiN film 2 formed on its surface is prepared by applying a hard film treatment to the surface of the cold mold steel 1 as a base material. To do. When this cold mold steel 1 is made of JIS SKD11 or matrix high speed steel, coarse Cr carbide 3 is deposited on the surface of the cold mold steel 1 as a base material. . When press molding is performed using this cold press die, as shown in FIG. 1B, when the molding slides in the direction of the arrow, a crack 4 is generated in the TiN film 2. The part where the crack 4 is generated is a part where the Cr-based carbide 3 is deposited on the base material below the TiN film 2. Furthermore, when the molding is slid, as shown in FIG. 1 (c), the crack 4 is the starting point, and the TiN film 2 is peeled off, which causes galling.
 以上説明したように、TiN皮膜のカジリ発生の原因はCr系炭化物である。本発明者は、このCr系炭化物の生成を抑制することで、TiN皮膜の剥離を防止でき、金型寿命が極端に短くなるといった問題を発生することを抑制できることを見出した。 As described above, the cause of galling in the TiN film is Cr-based carbide. The present inventor has found that by suppressing the formation of this Cr-based carbide, it is possible to prevent the TiN film from peeling off and to suppress the occurrence of problems such as extremely shortening the mold life.
 母材となる冷間金型用鋼の表面に析出する粗大なCr系炭化物3の生成を抑制して、PVD処理によって形成したTiN皮膜の寿命を長くするためには、鋼中のCの含有量とCrの含有量を低減させれば良い。しかし、Cの含有量を低減させ過ぎると、冷間金型用鋼の表面に、TD処理によるVC皮膜や、CVD処理によるTiC皮膜を形成することが難しくなる。そこで、本発明では、Cの含有量を0.5~0.7質量%、Crの含有量を5.0~7.0質量%とした上で、それらの含有量の積を規定することによって、冷間金型用鋼の表面に粗大なCr系炭化物3を析出させず、且つ一方で、必要とする十分な厚みのVC皮膜やTiC皮膜を形成することを可能とした。 In order to suppress the formation of coarse Cr-based carbide 3 precipitated on the surface of the cold mold steel as a base material and to prolong the life of the TiN film formed by PVD treatment, the inclusion of C in the steel The amount and the Cr content may be reduced. However, if the C content is excessively reduced, it becomes difficult to form a VC film by TD treatment or a TiC film by CVD treatment on the surface of the steel for cold mold. Therefore, in the present invention, the content of C is defined as 0.5 to 0.7 mass%, the content of Cr is 5.0 to 7.0 mass%, and the product of these contents is specified. Thus, the coarse Cr carbide 3 is not deposited on the surface of the cold mold steel, and on the other hand, it is possible to form a VC film or a TiC film having a sufficient thickness as required.
 また、本発明では、Si、Cr、Mo、W、V、Alといったフェライト生成元素からなるパラメータと、Mn、Cu、Niといったオーステナイト生成元素からなるパラメータも規定した。 In the present invention, parameters made of ferrite-generating elements such as Si, Cr, Mo, W, V, and Al and parameters made of austenite-generating elements such as Mn, Cu, and Ni are also defined.
 Si、Cr、Mo、W、V、Alといったフェライト生成元素の合計含有量が多過ぎた場合、冷間金型用鋼の硬さと靭性のバランスが崩れると共に、切削加工仕上げ面精度も悪化する。そこで、本発明では、フェライト生成元素により規定されるパラメータ(FP)を数式化し、その式を満足するようにフェライト生成元素の合計含有量を規定することで、冷間金型用鋼の硬さと靭性のバランスを良好にする共に、切削加工仕上げ面精度も向上させた。 When the total content of ferrite-forming elements such as Si, Cr, Mo, W, V, and Al is too large, the balance between hardness and toughness of the cold mold steel is lost, and the accuracy of the finished surface of the machining work is also deteriorated. Therefore, in the present invention, the parameter (FP) defined by the ferrite-forming element is formulated into a mathematical formula, and the total content of the ferrite-forming elements is defined so as to satisfy the formula, whereby the hardness of the steel for cold molds is increased. In addition to improving the balance of toughness, the finished surface accuracy of the machined work was also improved.
 また、Mn、Cu、Niといったオーステナイト生成元素の合計含有量が多過ぎた場合、残留オーステナイトが多くなることにより熱処理変寸量のばらつきが増大すると共に、切削時の工具寿命が短くなる。そこで、本発明では、オーステナイト生成元素により規定されるパラメータ(AP)を数式化し、その式を満足するようにオーステナイト生成元素の合計含有量を規定することで、鋼中の残留オーステナイトを少なくして熱処理変寸量のばらつきを減少させると共に、切削時の工具寿命を長くした。 Also, if the total content of austenite-generating elements such as Mn, Cu, and Ni is too large, the amount of retained austenite increases, resulting in an increase in variation in heat treatment size change and a shortened tool life during cutting. Therefore, in the present invention, the parameter (AP) defined by the austenite-generating element is formulated, and the total content of the austenite-generating element is defined so as to satisfy the formula, thereby reducing the retained austenite in the steel. In addition to reducing the variation in heat treatment dimension, the tool life during cutting was extended.
 以下、本発明の冷間金型用鋼中の化学成分の含有量の範囲限定理由について、元素毎に詳細に説明する。尚、本明細書中に記載する%は全て質量%を示す。 Hereinafter, the reason for limiting the range of the content of the chemical component in the cold mold steel of the present invention will be described in detail for each element. In addition, all% described in this specification shows the mass%.
 C:0.5~0.7%
 Cは、硬さ及び耐摩耗性を確保し、HAZ軟化の抑制にも寄与する元素である。また、金型母材の表面に、TD処理によるVC皮膜や、CVD処理によるTiC皮膜といった炭化物皮膜を形成する場合、Cの含有量が少ないと皮膜の厚さが薄くなるなどの問題もある。これらを勘案し、上記作用を有効に発揮させるためにCの含有量の下限を0.5%とした。また、その下限は0.55%であることが好ましい。但し、その含有量が過剰であると、粗大なCr系炭化物が生成して、PVD処理で形成されるTiN皮膜が剥離し易くなる。また、Cの含有量が過剰であると、残留オーステナイトが増加し、高温で焼戻処理を行わないと所望の硬さが得られないほか、焼戻処理後に膨張するなどして変寸が大きくなる。更に、Cの含有量が過剰であると靭性にも悪影響を及ぼす。よって、Cの含有量の上限を0.7%とした。また、その上限は0.65%であることが好ましい。
C: 0.5 to 0.7%
C is an element that ensures hardness and wear resistance and contributes to the suppression of HAZ softening. In addition, when a carbide film such as a VC film by TD treatment or a TiC film by CVD treatment is formed on the surface of the mold base material, there is a problem that the thickness of the film becomes thin if the C content is small. Considering these, the lower limit of the C content is set to 0.5% in order to effectively exhibit the above-described action. The lower limit is preferably 0.55%. However, if the content is excessive, coarse Cr-based carbides are generated, and the TiN film formed by the PVD process is easily peeled off. In addition, if the C content is excessive, retained austenite increases, and the desired hardness cannot be obtained unless tempering is performed at a high temperature. In addition, the size changes greatly due to expansion after tempering. Become. Furthermore, if the C content is excessive, the toughness is also adversely affected. Therefore, the upper limit of the C content is set to 0.7%. The upper limit is preferably 0.65%.
 Cr:5.0~7.0%
 Crは、所定の硬さを確保するために有用な元素である。詳しくは、Crの含有量が少な過ぎると、焼入性が不足してベイナイトが一部生成するため、硬さが低下し、耐摩耗性を確保することができない。更に、Crは金型の耐食性を確保するためにも有用な元素である。そこでCrの含有量の下限を5.0%とした。また、その下限は5.5%であることが好ましい。但し、その含有量が過剰であると、粗大なCr系炭化物が多量に生成して、PVD処理で形成されるTiN皮膜が剥離し易くなる。また、Crの含有量が過剰であると、熱処理後の収縮によって硬質皮膜の耐久性が低下する。更に、Crの含有量が過剰であると靭性にも悪影響を及ぼす。そこでCrの含有量の上限を7.0%とした。また、その上限は6.5%であることが好ましい。
Cr: 5.0 to 7.0%
Cr is an element useful for ensuring a predetermined hardness. Specifically, if the Cr content is too small, the hardenability is insufficient and a portion of bainite is generated, so that the hardness is lowered and the wear resistance cannot be ensured. Furthermore, Cr is an element useful for ensuring the corrosion resistance of the mold. Therefore, the lower limit of the Cr content is set to 5.0%. Further, the lower limit is preferably 5.5%. However, if the content is excessive, a large amount of coarse Cr-based carbide is generated, and the TiN film formed by the PVD treatment is easily peeled off. On the other hand, if the Cr content is excessive, the durability of the hard coating is reduced by shrinkage after heat treatment. Furthermore, if the Cr content is excessive, the toughness is also adversely affected. Therefore, the upper limit of the Cr content is set to 7.0%. Moreover, it is preferable that the upper limit is 6.5%.
 Si:0.5~2.0%
 Siは、製鋼時の脱酸元素として有用であり、硬さの向上と被削性確保に寄与する元素である。また、Siはマトリックスのマルテンサイトの焼戻し軟化を抑え、HAZ軟化の抑制に有用である。このような作用を有効に発揮するため、Siの含有量の下限を0.5%とした。その含有量は、好ましくは1.0%以上、より好ましくは1.2%以上である。但し、その含有量が過剰であると靭性が低下する。また、偏析が大きくなり、熱処理後の変寸が大きくなる。よってSiの含有量の上限を2.0%とした。その含有量は、好ましくは1.85%以下である。
Si: 0.5 to 2.0%
Si is useful as a deoxidizing element at the time of steelmaking, and is an element that contributes to improving hardness and securing machinability. Moreover, Si suppresses the temper softening of the martensite of the matrix and is useful for suppressing the HAZ softening. In order to effectively exhibit such an action, the lower limit of the Si content is set to 0.5%. The content is preferably 1.0% or more, more preferably 1.2% or more. However, if the content is excessive, the toughness decreases. Moreover, segregation increases and the size after heat treatment increases. Therefore, the upper limit of the Si content is set to 2.0%. The content is preferably 1.85% or less.
 Mn:0.1~2.0%
 Mnは、焼入性確保に有用な元素である。しかし、その含有量が過剰であると、残留オーステナイトが増加するため、高温で焼戻処理を行わないと所望の硬さが得られなくなるほか、靭性も低下する。これらを勘案して、Mnの含有量を0.1~2.0%の範囲に定めた。Mnの含有量の下限は、好ましくは0.15%であり、その上限は、好ましくは1.0%、より好ましくは0.5%、更に好ましくは0.35%である。
Mn: 0.1 to 2.0%
Mn is an element useful for ensuring hardenability. However, if the content is excessive, retained austenite increases, so that the desired hardness cannot be obtained unless tempering is performed at a high temperature, and the toughness also decreases. Taking these into consideration, the Mn content is determined to be in the range of 0.1 to 2.0%. The lower limit of the Mn content is preferably 0.15%, and the upper limit is preferably 1.0%, more preferably 0.5%, and still more preferably 0.35%.
 Al:0.001~0.010%
 Alは、脱酸剤として有用な元素である。しかし、含有量が0.001%未満であると、その効果は十分に得ることはできない。従って、Alの含有量の下限を0.001%とした。その下限は好ましくは0.002%である。一方、Alや粗大なAlNといったAl系介在物は、切削中にむしれの原因となり、切削仕上げ面精度を低下させるため、Alの含有量の上限を0.010%とした。その上限は、好ましくは0.008%である。
Al: 0.001 to 0.010%
Al is an element useful as a deoxidizer. However, if the content is less than 0.001%, the effect cannot be sufficiently obtained. Therefore, the lower limit of the Al content is set to 0.001%. The lower limit is preferably 0.002%. On the other hand, Al-based inclusions such as Al 2 O 3 and coarse AlN cause peeling during cutting and reduce the accuracy of the finished surface of the cut. Therefore, the upper limit of the Al content is set to 0.010%. The upper limit is preferably 0.008%.
 Cu:0.25~1.00%
 Cuは、ε-Cuの析出強化による硬さ向上を図るために必要な元素であり、HAZ軟化の抑制にも寄与する。但し、その含有量が過剰であると、靭性が低下し、また、鍛造割れが発生し易くなる。そこでCuの含有量の上限を1.00%とした。また、その上限は0.80%であることが好ましい。また、Cuの含有量の下限は0.25%である。また、その下限は0.30%であることが好ましい。
Cu: 0.25 to 1.00%
Cu is an element necessary for improving the hardness by precipitation strengthening of ε-Cu, and contributes to the suppression of HAZ softening. However, if the content is excessive, toughness is reduced and forging cracks are likely to occur. Therefore, the upper limit of the Cu content is set to 1.00%. The upper limit is preferably 0.80%. Further, the lower limit of the Cu content is 0.25%. The lower limit is preferably 0.30%.
 Ni:0.25~1.00%
 Niは、NiAlなどのAl-Ni系金属間化合物の析出強化による硬さ向上を図るために必要な元素であり、HAZ軟化の抑制にも寄与する。また、NiはCuと併用することにより、Cuの過剰添加による熱間脆性を抑制し、鍛造時の割れを防止することもできる。但し、その含有量が過剰であると、残留オーステナイトが増加して高温で焼戻処理をしないと所定の硬さを確保できないほか、熱処理後に膨張してしまう。また、Niの含有量が過剰であると、靭性も低下する。これらを勘案して、Niの含有量を0.25~1.00%の範囲に定めた。Niの含有量の下限は、好ましくは0.30%であり、その上限は、好ましくは0.80%である。
Ni: 0.25 to 1.00%
Ni is an element necessary for improving the hardness by precipitation strengthening of Al—Ni-based intermetallic compounds such as Ni 3 Al, and contributes to the suppression of HAZ softening. Ni can also be used in combination with Cu to suppress hot brittleness due to excessive addition of Cu and to prevent cracking during forging. However, if the content is excessive, the retained austenite increases, and unless it is tempered at a high temperature, a predetermined hardness cannot be secured, and it expands after the heat treatment. Further, if the Ni content is excessive, toughness is also lowered. Taking these into account, the Ni content is determined to be in the range of 0.25 to 1.00%. The lower limit of the Ni content is preferably 0.30%, and the upper limit is preferably 0.80%.
 N:0.003~0.025%
 Nは、Alと共にAlN析出物を形成して、焼入時の結晶粒粗大化を防止して、優れた靭性を達成するために重要な元素である。優れた靭性を達成するためにNの含有量の下限を0.003%とした。その下限は0.004%であることが好ましい。また、Nの含有量の上限を0.025%とした。その上限は0.017%であることが好ましい。
N: 0.003 to 0.025%
N is an important element for forming an AlN precipitate together with Al to prevent crystal grain coarsening during quenching and achieving excellent toughness. In order to achieve excellent toughness, the lower limit of the N content was 0.003%. The lower limit is preferably 0.004%. Further, the upper limit of the N content was 0.025%. The upper limit is preferably 0.017%.
 Mo+0.5W:0.5~3.0%
 MoとWは、何れもMC型炭化物、MC型炭化物を形成するほか、NiMo系金属間化合物などを形成し、析出強化に寄与する元素である。但し、これらの含有量が過剰であると、前記の炭化物などが過剰に生成し、靭性の低下を招くほか、熱処理後の変寸が大きくなる。そこで、Mo+0.5×Wの式に当てはめた場合のMoとWの合計含有量を0.5~3.0%の範囲に定めた。Mo単独の含有量も、0.5~3.0%の範囲が好ましい。また、W単独の含有量は、2.0%以下(0%を含む)であることが好ましい。即ち、Moが必須元素、Wが選択元素である。但し、W単独の含有量の下限は、0.02%であることがより好ましい。また、Mo単独の含有量の下限は0.7%、上限は2.5%であることが更に好ましい。W単独の含有量の下限は0.05%、上限は1.5%であることが更に好ましい。
Mo + 0.5W: 0.5-3.0%
Mo and W are elements that contribute to precipitation strengthening by forming M 3 C type carbides and M 6 C type carbides as well as forming Ni 3 Mo intermetallic compounds. However, if these contents are excessive, the above carbides and the like are excessively generated, resulting in a decrease in toughness, and a change in size after heat treatment becomes large. Therefore, the total content of Mo and W when applied to the formula of Mo + 0.5 × W is determined in the range of 0.5 to 3.0%. The content of Mo alone is also preferably in the range of 0.5 to 3.0%. The content of W alone is preferably 2.0% or less (including 0%). That is, Mo is an essential element and W is a selective element. However, the lower limit of the content of W alone is more preferably 0.02%. Further, the lower limit of the content of Mo alone is more preferably 0.7%, and the upper limit is more preferably 2.5%. More preferably, the lower limit of the content of W alone is 0.05%, and the upper limit is 1.5%.
 P:0より大きく0.05%以下
 Pは、溶解原料中に不可避的に存在する元素であり、靭性を阻害する元素である。そのため、Pの含有量の上限を0.05%とした。その上限は、好ましくは0.02%である。なお、Pの含有量は少ないほど好ましいが、不可避的に含まれているため、実質的にその下限は0.005%程度となる。
P: greater than 0 and not more than 0.05% P is an element that is unavoidably present in the molten raw material and is an element that inhibits toughness. Therefore, the upper limit of the P content is set to 0.05%. The upper limit is preferably 0.02%. In addition, although content of P is so preferable that it is small, since it is inevitably contained, the lower limit becomes substantially 0.005%.
 S:0より大きく0.1%以下
 Sは、被削性確保に有用な元素である。被削性確保の観点からはSを、好ましくは0.002%以上、より好ましくは0.004%以上の含有量とすることが推奨される。しかし、その含有量が過剰であると溶接割れが発生する。そこでSの含有量の上限を0.1%とした。Sの含有量の上限は、好ましくは0.07%、より好ましくは0.05%、更に好ましくは0.025%である。
S: More than 0 and 0.1% or less S is an element useful for ensuring machinability. From the viewpoint of securing machinability, it is recommended that S is a content of preferably 0.002% or more, more preferably 0.004% or more. However, if the content is excessive, weld cracks occur. Therefore, the upper limit of the S content is set to 0.1%. The upper limit of the S content is preferably 0.07%, more preferably 0.05%, and still more preferably 0.025%.
 O:0より大きく0.005%以下
 Oは、溶鋼中に含まれる元素で、不可避的に鋼中に含まれる。Oの含有量が高いと、Si、Alなどと反応し、酸化物系の介在物を形成する。そのため、Oの含有量の上限を0.005%とした。その上限は、好ましくは0.003%、より好ましくは0.002%である。なお、Oの含有量は少ないほど好ましいが、不可避的に含まれてくるため、実質的にその下限は0.0005%程度である。
O: More than 0 and 0.005% or less O is an element contained in molten steel, and is unavoidably contained in steel. When the content of O is high, it reacts with Si, Al, etc. to form oxide inclusions. Therefore, the upper limit of the O content is set to 0.005%. The upper limit is preferably 0.003%, more preferably 0.002%. The lower the O content, the better. However, since it is inevitably contained, the lower limit is substantially about 0.0005%.
 更に、本発明は、先に説明した各数式を満足することを必須要件としている。尚、各数式に示す[ ]は、各元素の含有量(質量%)を示す。 Furthermore, the present invention makes it essential to satisfy each mathematical formula described above. In addition, [] shown to each numerical formula shows content (mass%) of each element.
 [C]×[Cr]≦4
 上記数式は、粗大なCr系炭化物の生成抑制を目的として設定した数式である。Cの含有量とCrの含有量の積が4を超えると、硬質皮膜の耐久性が低下するほか、熱処理後の変寸が大きくなる。尚、粗大なCr系炭化物の生成抑制や、熱処理後の変寸抑制の観点からは、Cの含有量とCrの含有量の積は出来るだけ小さいことが好ましいが、CやCrの添加による上記作用を有効に発揮させることなども勘案すると、この積の下限は、概ね0.8であることが好ましい。
[C] × [Cr] ≦ 4
The above formula is a formula set for the purpose of suppressing the formation of coarse Cr-based carbides. When the product of the content of C and the content of Cr exceeds 4, the durability of the hard coating is reduced and the size after heat treatment is increased. In addition, from the viewpoint of suppressing the formation of coarse Cr-based carbides and suppressing the change in size after heat treatment, the product of the C content and the Cr content is preferably as small as possible, but the above-described addition of C and Cr In consideration of effectively exerting the action, the lower limit of this product is preferably about 0.8.
 FP=[Si]/5+[Cr]/5+2×[Mo]+[W]+2×[V]+10×[Al]≦5.0
 上記数式は、Si、Cr、Mo、W、V、Alといったフェライト生成元素の合計含有量をパラメータ化し規定した数式である。このパラメータ(FP)が、5.0より大きくなると、冷間金型用鋼の硬さと靭性のバランスが崩れると共に、切削加工仕上げ面精度も悪化する。このパラメータ(FP)は、4.8以下であることがより好ましい。Si、Crなど本発明にかかる冷間金型用鋼に必須で含有される元素の下限値から定まるFP値2.11が実質的な本パラメータ(FP)の下限値である。
FP = [Si] / 5 + [Cr] / 5 + 2 × [Mo] + [W] + 2 × [V] + 10 × [Al] ≦ 5.0
The above mathematical formula is a mathematical formula defining and parameterizing the total content of ferrite-forming elements such as Si, Cr, Mo, W, V, and Al. If this parameter (FP) is larger than 5.0, the balance between hardness and toughness of the steel for cold mold is lost, and the accuracy of the finished surface of the machining work is also deteriorated. This parameter (FP) is more preferably 4.8 or less. The FP value 2.11 determined from the lower limit value of elements essential to the cold mold steel according to the present invention, such as Si and Cr, is the substantial lower limit value of this parameter (FP).
 AP=[Mn]+3×([Cu]+[Ni])≦2.5
 上記数式は、Mn、Cu、Niといったオーステナイト生成元素の合計含有量をパラメータ化し規定した数式である。このパラメータ(AP)が、2.5より大きくなると、残留オーステナイトが多くなり、熱処理変寸量のばらつきが増大すると共に、切削時の工具寿命が短くなる。このパラメータ(AP)は、2.3以下であることがより好ましい。Mn、Cu、Niの下限値から定まるAP値1.6が実質的に本パラメータ(AP)の下限値である。
AP = [Mn] + 3 × ([Cu] + [Ni]) ≦ 2.5
The above formula is a formula that defines and defines the total content of austenite-generating elements such as Mn, Cu, and Ni. When this parameter (AP) is larger than 2.5, the retained austenite increases, the variation in the heat treatment sizing amount increases, and the tool life during cutting decreases. This parameter (AP) is more preferably 2.3 or less. AP value 1.6 determined from the lower limit values of Mn, Cu, and Ni is substantially the lower limit value of this parameter (AP).
 本発明の冷間金型用鋼中の基本成分に関する要件は以上の通りである。残部は鉄及び不可避的不純物を含む。不純物としては、例えば、Sn、Pbなどが挙げられる。また、本発明では、他の特性改善を目的として、更に以下の選択成分を含有させても良い。 The requirements regarding the basic components in the steel for cold mold according to the present invention are as described above. The balance contains iron and inevitable impurities. Examples of the impurity include Sn and Pb. In the present invention, the following selective components may be further contained for the purpose of improving other characteristics.
 V:0~0.5%
 Vは、VCなどの炭化物を形成して硬さ向上に寄与するほか、HAZ軟化の抑制に有効な元素である。また、母材表面に、ガス窒化、塩溶窒化、プラズマ窒化などの窒化処理を施して拡散硬化層を形成する場合に、表面硬さの向上や硬化層深さの上昇に有効な元素である。このような作用を有効に発揮させるためには、Vの含有量は、概ね0.05%以上添加することが好ましい。但し、その含有量が過剰であると、固溶C量が低下し、母相であるマルテンサイト組織の硬さ低下を招くほか、靭性が低下する。そこでVの含有量の上限を0.5%とした。Vの含有量の上限は、好ましくは0.4%、より好ましくは0.3%である。
V: 0 to 0.5%
V is an element effective for suppressing HAZ softening, in addition to forming carbides such as VC and contributing to improvement in hardness. In addition, it is an effective element for improving the surface hardness and increasing the depth of the hardened layer when a diffusion hardened layer is formed on the surface of the base material by nitriding such as gas nitriding, salt nitriding, plasma nitriding, etc. . In order to effectively exhibit such an action, it is preferable to add approximately 0.05% or more of the V content. However, when the content is excessive, the amount of dissolved C decreases, the hardness of the martensite structure which is the parent phase is decreased, and the toughness is decreased. Therefore, the upper limit of the V content is set to 0.5%. The upper limit of the V content is preferably 0.4%, more preferably 0.3%.
 Ti、Zr、Hf、Ta、Nbからなる群から選択される少なくとも1種の元素:合計0.5%以下
 これらの元素は、何れも窒化物形成元素であり、これら元素の窒化物及びAlNの微細分散化に寄与し、その結果、結晶粒の粗大化を防止して靭性の向上に寄与する元素である。以上のような作用を有効に発揮させるため、概ね、Tiを0.01%以上、Zrを0.02%以上、Hfを0.04%以上、Taを0.04%以上、Nbを0.02%以上、含有させることが好ましい。但し、これらの合計含有量が過剰であると、固溶C量が低下してマルテンサイトの硬さ低下を招く。そこでこれらの元素の合計含有量を0.5%以下とした。これらの元素の合計含有量は、好ましくは0.4%以下、更に好ましくは0.3%以下である。尚、これらの元素は、単独で含有させても良く、2種以上を併せて含有させても良い。
At least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb: 0.5% or less in total These elements are all nitride-forming elements, and nitrides of these elements and AlN It is an element that contributes to fine dispersion and, as a result, prevents coarsening of crystal grains and contributes to improvement of toughness. In order to effectively exhibit the above-described actions, in general, Ti is 0.01% or more, Zr is 0.02% or more, Hf is 0.04% or more, Ta is 0.04% or more, and Nb is 0.0. It is preferable to contain 02% or more. However, when these total contents are excessive, the amount of solid solution C falls and the hardness of a martensite falls. Therefore, the total content of these elements is set to 0.5% or less. The total content of these elements is preferably 0.4% or less, more preferably 0.3% or less. In addition, these elements may be contained alone or in combination of two or more.
 Co:10%以下
 Coは、Ms点を高め、残留オーステナイトの低減化に有効な元素であり、これにより硬さを向上させることができる。この作用を有効に発揮させるため、Coの含有量を、概ね、1%以上とすることが好ましい。但し、その含有量が過剰であると、コストなどの上昇を招くため、上限を10%とした。Coの含有量の上限は、好ましくは5.5%である。ここで、Ms点とは、変態温度(相変化の起こる温度で、変態が温度範囲にわたって起こるときは、変態が開始する温度、又は終了する温度)の一つであり、冷却の間にオーステナイトがマルテンサイトに変態し始める温度のことを意味する。
Co: 10% or less Co is an element that increases the Ms point and is effective in reducing retained austenite, and can thereby improve the hardness. In order to effectively exhibit this action, the Co content is preferably approximately 1% or more. However, if the content is excessive, the cost is increased, so the upper limit is made 10%. The upper limit of the Co content is preferably 5.5%. Here, the Ms point is one of the transformation temperatures (the temperature at which the phase change occurs, and when the transformation occurs over the temperature range, the temperature at which the transformation starts or ends). It means the temperature that begins to transform into martensite.
 以上記載した要件を満足した冷間金型用鋼を用いて、冷間プレス用金型が製造される。この冷間プレス用金型の製造方法の一例を説明すると、例えば、本発明の冷間金型用鋼を溶製後、熱間鍛造してから、焼鈍(例えば、約700℃で7時間保持した後、約17℃/hrの平均冷却速度で約400℃まで炉冷した後、放冷)を行って軟化した後、切削加工などによって所定の形状に粗加工を行ってから、950~1150℃の温度で焼入処理し、更に400~530℃で焼戻処理を行って所望の硬さを付与することで、冷間プレス用金型を製造する。 A cold press mold is manufactured using cold mold steel that satisfies the requirements described above. An example of the manufacturing method of this cold press mold will be described. For example, after the cold mold steel of the present invention is melted, it is hot forged and then annealed (for example, held at about 700 ° C. for 7 hours). Then, after cooling in the furnace to about 400 ° C. at an average cooling rate of about 17 ° C./hr and then allowing to cool, it is softened and then roughly processed into a predetermined shape by cutting or the like, and then 950 to 1150 A cold press mold is manufactured by quenching at a temperature of 0 ° C. and further tempering at 400 to 530 ° C. to give a desired hardness.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 本実施例では、表1に記載した計26種の成分組成の鋼種(No.1は、冷間金型用鋼として従来から用いられているJIS SKD11)を用い、真空誘導溶解炉で150kgのインゴットを溶製した後、900~1150℃に加熱し、40mmT×75mmW×約2000mmLの板を鍛造し、その後、約60℃/hrの平均冷却速度で徐冷を行った。100℃以下の温度まで冷却した後、再び、約850℃の温度まで加熱し、約50℃/hrの平均冷却速度で徐冷を行った(焼鈍)。以上のようにして得られた焼鈍材を用いて、以下の種々の試験を行った。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited by these examples.
In this example, a total of 26 types of steel compositions described in Table 1 (No. 1 is JIS SKD11 conventionally used as a steel for cold molds) and 150 kg in a vacuum induction melting furnace are used. After melting the ingot, it was heated to 900 to 1150 ° C. to forge a plate of 40 mmT × 75 mmW × about 2000 mmL, and then gradually cooled at an average cooling rate of about 60 ° C./hr. After cooling to a temperature of 100 ° C. or lower, the mixture was again heated to a temperature of about 850 ° C. and gradually cooled at an average cooling rate of about 50 ° C./hr (annealing). The following various tests were conducted using the annealed material obtained as described above.
 (1)最大硬さの測定
 前記した焼鈍材から、20mmT×20mmW×15mmLサイズの試験片を切り出して硬さ測定用試験片とし、この試験片に、熱処理、具体的には、焼入処理(1030℃で120分間加熱)、空冷、焼戻処理(450~520℃で180分間保持)及び放冷をこの順に行う処理を施した。焼戻温度を450~520℃範囲内で変化させたときの硬さをビッカーズ硬度計(AKASHI社製の規格AVK、荷重5kg)で測定し、その最大硬さを調べた。本試験では、測定で得られた最大硬さが650HV以上のものを合格とした。その試験結果を表2に示す。
(1) Measurement of maximum hardness A test piece of 20 mm T × 20 mm W × 15 mm L size is cut out from the above-mentioned annealed material to make a test piece for hardness measurement, and heat treatment, specifically, a quenching treatment ( Heating at 1030 ° C. for 120 minutes), air cooling, tempering treatment (kept at 450 to 520 ° C. for 180 minutes) and cooling were performed in this order. The hardness when the tempering temperature was changed within the range of 450 to 520 ° C. was measured with a Vickers hardness meter (standard AVK manufactured by AKASHI, load 5 kg), and the maximum hardness was examined. In this test, those having a maximum hardness of 650 HV or more obtained by measurement were regarded as acceptable. The test results are shown in Table 2.
 (2)シャルピー衝撃値の測定(靭性の測定)
 上記した焼鈍材に対し、熱処理、具体的には、焼入処理(1030℃で120分間加熱)、空冷、焼戻処理(450~520℃で180分間保持)及び空冷または放冷をこの順に行う処理を施した。次に、図2に示すような、10mmRのRノッチ部を有する試験片を切り出して靭性測定用試験片(シャルピー衝撃試験片)とした。この試験片を用いてシャルピー衝撃試験を実施し、室温での吸収エネルギー(シャルピー衝撃値)を測定した。シャルピー衝撃試験片は各の鋼種毎に3本ずつ採取し、これらの平均値をシャルピー衝撃値とした。本試験では、測定で得られたシャルピー衝撃値が20J以上のものを合格とした。その試験結果を表2に示す。
(2) Measurement of Charpy impact value (measurement of toughness)
Heat treatment, specifically quenching (heating at 1030 ° C. for 120 minutes), air cooling, tempering (holding at 450 to 520 ° C. for 180 minutes), and air cooling or cooling are performed in this order on the above annealed materials. Treated. Next, a test piece having an R notch portion of 10 mmR as shown in FIG. 2 was cut out to obtain a test piece for toughness measurement (Charpy impact test piece). A Charpy impact test was performed using this test piece, and the absorbed energy (Charpy impact value) at room temperature was measured. Three Charpy impact test specimens were collected for each steel type, and the average value of these specimens was taken as the Charpy impact value. In this test, a Charpy impact value obtained by measurement of 20 J or more was regarded as acceptable. The test results are shown in Table 2.
 (3)切削仕上げ面粗さの調査
 前記した焼鈍材を試験体とし、ボールエンドミルで仕上げ加工を行い、切削仕上げ面粗さを調べた。試験条件は以下の通りである。
  機械:MORI(BT40、5.5kw)
  工具:三菱 SRFH30S32M φ30
  チップ:三菱 SRFT30 VP10MF φ30
  突出長:118mm
  切削方向:ダウンカット
  切削速度:250mm/min
  送り速度:0.31mm/rev
  切込み:Ad0.3mm、Rd0.7mm
  切削油:なし(エアブロー)
  加工距離:257.1m
(3) Investigation of cutting finish surface roughness The above-mentioned annealed material was used as a specimen, and finishing was performed with a ball end mill, and the cutting finish surface roughness was examined. The test conditions are as follows.
Machine: MORI (BT40, 5.5kw)
Tool: Mitsubishi SRFH30S32M φ30
Chip: Mitsubishi SRFT30 VP10MF φ30
Protrusion length: 118mm
Cutting direction: Down cut Cutting speed: 250 mm / min
Feeding speed: 0.31mm / rev
Cutting depth: Ad0.3mm, Rd0.7mm
Cutting oil: None (Air blow)
Processing distance: 257.1m
 切削仕上げ面粗さRaは、試験体の10mmの長さ範囲を5箇所調査して得られた値の平均値とした。本試験では、試験で得られた切削仕上げ面粗さRaが0.40mm以下のものを合格とした。その試験結果を表2に示す。 The cutting finish surface roughness Ra was an average value of values obtained by investigating five 10 mm length ranges of the specimen. In this test, the cutting finish surface roughness Ra obtained by the test was 0.40 mm or less. The test results are shown in Table 2.
 (4)切削工具寿命の判定
 前記した焼鈍材を試験体とし、高送りカッタによる粗加工を行い、切削工具の寿命を調査した。試験条件は以下の通りである。
  機械:OKK(BT50、7.5kw)
  工具:三菱 AJX148R503SA42S φ50
  チップ:JOMW140520ZDSR-FT VP15TF
  切削速度:10m/min
  送り量:1.0mm/rev
  切込み:Ad1mm、Rd35mm
  突出長:80mm
  切削油:なし(エアブロー)
  寿命判定:工具摩耗、チッピング
(4) Judgment of cutting tool life The above-mentioned annealed material was used as a test specimen, rough machining was performed with a high-feed cutter, and the cutting tool life was investigated. The test conditions are as follows.
Machine: OKK (BT50, 7.5kw)
Tool: Mitsubishi AJX148R503SA42S φ50
Chip: JOMW140520ZDSR-FT VP15TF
Cutting speed: 10 m / min
Feed amount: 1.0mm / rev
Cutting depth: Ad1mm, Rd35mm
Protrusion length: 80mm
Cutting oil: None (Air blow)
Life judgment: Tool wear, chipping
 切削工具寿命は、JIS SKD11を素材とした試験体(No.1)を用いて粗加工を行ったときの切削工具の寿命を「1」とした場合、各々の試験体を用いて粗加工を行ったときの切削工具の寿命が、SKD11を素材とした試験体(No.1)を用いて粗加工を行ったときの切削工具の寿命の何倍になるかで判定した。この判定値が4.0以上になるものを合格とした。その試験結果を表2に示す。 When the cutting tool life is “1” when roughing is performed using a specimen (No. 1) made of JIS SKD11, the cutting tool life is roughened using each specimen. The life of the cutting tool when performed was determined by how many times the life of the cutting tool when roughing was performed using a test body (No. 1) made of SKD11. The determination value of 4.0 or higher was regarded as acceptable. The test results are shown in Table 2.
 (5)最大熱処理変寸量の測定
 前記した焼鈍材から、40mmT×75mmW×100mmLのブロックを、焼鈍材毎に6個ずつ切り出して最大熱処理変寸量測定用の試験体とし、この試験体に、図3に示すような条件で熱処理を施した。最大熱処理変寸量は、6個の試験体の熱処理前後の寸法変化量から求めた。試験体毎に直交する3方向(x方向、y方向、z方向)の寸法変化量を夫々求め、得られた3方向×6個の絶対値のうち最大の数値を、最大熱処理変寸量とした。本試験では、この最大熱処理変寸量が0.08以下のものを合格とした。その試験結果を表2に示す。
(5) Measurement of maximum heat treatment change amount From the above-mentioned annealed material, 6 blocks of 40 mm T × 75 mm W × 100 mm L are cut out for each anneal material to make a test piece for measuring the maximum heat treatment change amount. The heat treatment was performed under the conditions shown in FIG. The maximum heat treatment change amount was determined from the dimensional change amount before and after the heat treatment of six specimens. The amount of dimensional change in three directions (x direction, y direction, z direction) orthogonal to each specimen is obtained, and the maximum numerical value among the obtained three directions × 6 absolute values is the maximum heat treatment dimensional change amount. did. In this test, this maximum heat treatment dimension change amount was 0.08 or less. The test results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に記載したように、各化学成分の含有量、Cの含有量とCrの含有量の積、フェライト生成元素からなるパラメータ、オーステナイト生成元素からなるパラメータの全てが本発明の要件を満足する発明例であるNo.7~9、11、14~20は、最大硬さ、シャルピー衝撃値、切削仕上げ面粗さ、切削工具寿命、最大熱処理変寸量の全てが合格判定基準の範囲内となった。これに対し、本発明の要件を1つでも満たさない比較例であるNo.1~6、10、12~13、21~26は、合格判定基準を最低1つは外し、何らかの不具合を有している。 As described in Table 1 and Table 2, the contents of each chemical component, the product of the content of C and the content of Cr, the parameter composed of a ferrite-forming element, and the parameter composed of an austenite-forming element are all requirements of the present invention. No. which is an example of the invention satisfying 7 to 9, 11, and 14 to 20, all of the maximum hardness, Charpy impact value, cutting finish surface roughness, cutting tool life, and maximum heat treatment change amount were within the range of acceptance criteria. On the other hand, No. 1 which is a comparative example which does not satisfy even one requirement of the present invention. For 1 to 6, 10, 12 to 13, and 21 to 26, at least one acceptance criterion is removed, and there is some defect.
 No.1~6、10、12~13、21~26の比較例は、前記した本発明の要件のうち、1つ或いは2つ以上の要件を外すことで、何らかの不具合を有しているが、前記に記載した要件毎に特徴のあるものを比較例とした。以下、本発明に規定した要件毎に該当する比較例を説明する。 No. The comparative examples 1 to 6, 10, 12 to 13, and 21 to 26 have some problems by removing one or more of the requirements of the present invention described above. A characteristic example for each requirement described in the above was used as a comparative example. Hereinafter, a comparative example corresponding to each requirement defined in the present invention will be described.
 Cの含有量とCrの含有量が多過ぎる比較例がNo.1とNo.2、逆にCの含有量とCrの含有量が少な過ぎる比較例がNo.3とNo.4である。これらの含有量が多過ぎる比較例、少な過ぎる比較例ともに、シャルピー衝撃値(靭性)、切削仕上げ面粗さ、切削工具寿命、最大熱処理変寸量の全て、或いは何れかで合格判定基準を外れた。 A comparative example with too much C and Cr content is No. 1 and No. 2, on the contrary, the comparative example in which the content of C and the content of Cr are too small is No. 3 and no. 4. Both the comparative examples with too much and too little of these contents deviate from the acceptance criteria in all or any of Charpy impact value (toughness), cutting finish surface roughness, cutting tool life, maximum heat treatment size change amount. It was.
 Siの含有量が多過ぎる比較例がNo.21、逆に少な過ぎる比較例がNo.1である。特にその含有量が過剰であるNo.21では、靭性が大きく低下し、シャルピー衝撃値で合格判定基準を外れた。また、合格判定基準の範囲内ではあるが、熱処理後の変寸が比較的大きくなった。 No comparative example with too much Si content. 21, on the contrary, there are too few comparative examples. 1. In particular, No. whose content is excessive. In No. 21, the toughness was greatly lowered and the Charpy impact value deviated from the acceptance criterion. Moreover, although it was within the range of the acceptance criterion, the size change after the heat treatment became relatively large.
 Mnの含有量が多過ぎる比較例がNo.22である。この比較例では、靭性が大きく低下し、シャルピー衝撃値で合格判定基準を外れた。更に、切削工具寿命、最大熱処理変寸量でも合格判定基準を外れている。 Comparative example with too much Mn content is No. 22. In this comparative example, the toughness was greatly lowered and the Charpy impact value deviated from the acceptance criterion. Furthermore, the cutting tool life and the maximum heat treatment size change are also outside the acceptance criteria.
 Alの含有量が多過ぎる比較例がNo.10、逆に少な過ぎる比較例がNo.6である。Al含有量が多過ぎる比較例のNo.10では、ボールエンドミルで仕上げ加工をした際にむしれが発生し、切削仕上げ面精度が悪化した。また、少な過ぎる比較例のNo.6では、シャルピー衝撃値で合格判定基準を外れた。 A comparative example with too much Al content is No. 10, on the contrary, there are too few comparative examples. 6. No. of comparative example having too much Al content. In No. 10, peeling occurred when finishing with a ball end mill, and the accuracy of the finished surface was deteriorated. In addition, the comparative example No. In 6, the Charpy impact value deviated from the acceptance criterion.
 Cuの含有量が多過ぎる比較例がNo.23、逆に少な過ぎる比較例がNo.5である。その含有量が過剰であるNo.23では、靭性が低下し、シャルピー衝撃値で合格判定基準を外れた。更に、切削工具寿命、最大熱処理変寸量でも合格判定基準を外れている。一方、含有量が少な過ぎる比較例のNo.5でも、シャルピー衝撃値、最大熱処理変寸量で合格判定基準を外れた。 No comparative example with too much Cu content. 23, on the contrary, there are too few comparative examples. 5. No. whose content is excessive. In No. 23, the toughness decreased and the Charpy impact value deviated from the acceptance criterion. Furthermore, the cutting tool life and the maximum heat treatment size change are also outside the acceptance criteria. On the other hand, the comparative example No. 5 also deviated from the acceptance criteria in terms of Charpy impact value and maximum heat treatment change.
 Niの含有量が多過ぎる比較例がNo.23、逆に少な過ぎる比較例がNo.1である。その含有量が過剰であるNo.23では、シャルピー衝撃値、最大熱処理変寸量で合格判定基準を外れた。また、切削工具寿命でも合格判定基準を外れている。 Comparative example with too much Ni content is No. 23, on the contrary, there are too few comparative examples. 1. No. whose content is excessive. In No. 23, the acceptance criterion was exceeded by the Charpy impact value and the maximum heat treatment change amount. Also, the cutting tool life is out of the acceptance criteria.
 Mo+0.5Wから求められる数値が小さ過ぎる比較例がNo.24であり、その数値が本発明の範囲内ではあるが、境界値である最大の3.0%にあたる事例がNo.25である。No.24では、最大硬さとシャルピー衝撃値で合格判定基準を外れた。また、No.25では、他の要件を外した影響はあるが、シャルピー衝撃値が低下している。 The comparative example where the numerical value calculated from Mo + 0.5W is too small is No. 24, and the numerical value is within the range of the present invention, but the case corresponding to the maximum of 3.0% which is the boundary value is No. 24. 25. No. In 24, the maximum hardness and Charpy impact value deviated from the acceptance criteria. No. 25, the Charpy impact value is lowered, although there is an influence that other requirements are removed.
 Vの含有量が多過ぎる比較例がNo.26である。この比較例のNo.26では、Vの含有量が過剰であったため、靭性が低下し、シャルピー衝撃値で合格判定基準を外れた。また、切削仕上げ面粗さでも合格判定基準を外れた。 Comparative example with too much V content is No. 26. No. of this comparative example. In No. 26, since the content of V was excessive, the toughness was lowered, and the acceptance criterion was deviated by the Charpy impact value. Moreover, the acceptance criteria were also out of the finished surface roughness.
 Cの含有量とCrの含有量の積が多過ぎる比較例が、No.1とNo.2である。No.1とNo.2は、この影響で、切削工具の寿命が著しく短くなったと共に、熱処理後の変寸が大きくなった。 A comparative example in which the product of the content of C and the content of Cr is too large is No. 1 and No. 2. No. 1 and No. In No. 2, due to this influence, the life of the cutting tool was remarkably shortened and the size after heat treatment was increased.
 Nの含有量が多過ぎる比較例がNo.27である。その結果、靭性が低下し、シャルピー衝撃値で合格判定基準を外れた。 A comparative example with too much N content is No. 27. As a result, the toughness decreased and the Charpy impact value deviated from the acceptance criterion.
 フェライト生成元素からなるパラメータが大き過ぎる比較例が、No.1~4とNo.25である。この影響で、これらの比較例では、靭性のバランスが崩れたり、切削加工仕上げ面精度が悪化したりしている。特にこの要件のみを外したNo.25では、靭性が大きく低下し、シャルピー衝撃値で合格判定基準を外れた。 A comparative example with too large a parameter consisting of ferrite-forming elements is 1 to 4 and no. 25. Due to this influence, in these comparative examples, the balance of toughness is lost, or the accuracy of the finished surface of the cutting work is deteriorated. In particular, no. In No. 25, the toughness was greatly reduced, and the Charpy impact value deviated from the acceptance criterion.
 オーステナイト生成元素からなるパラメータが大き過ぎる比較例が、No.2~5、No.12、13、22、23である。この影響で、これらの比較例では、残留オーステナイトが多くなり、熱処理変寸量が増大すると共に、切削時の工具寿命が短くなっている。特にこの要件のみを外したNo.12とNo.13では、切削工具寿命と最大熱処理変寸量のみで合格判定基準を外れている。 A comparative example with too large a parameter composed of austenite-forming elements is 2-5, no. 12, 13, 22, and 23. Due to this influence, in these comparative examples, the amount of retained austenite increases, the amount of heat treatment change increases, and the tool life during cutting is shortened. In particular, no. 12 and no. No. 13 is out of the acceptance criteria only by the cutting tool life and the maximum heat treatment change amount.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年1月10日出願の日本特許出願(特願2008-003524)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Jan. 10, 2008 (Japanese Patent Application No. 2008-003524), the contents of which are incorporated herein by reference.
 本発明の冷間金型用鋼を冷間プレス用金型の素材に用いることで、硬さ、靭性、熱処理変寸といった求められる基本特性を備えた上に、様々な硬質皮膜処理にも対応することができ、更には、切削仕上げ面粗さや切削工具寿命といった面でも問題のない冷間プレス用金型を得ることができる。また、その冷間金型用鋼を用いて得られる冷間プレス用金型は、特に、引っ張り強度が590MPa以上のハイテン鋼板の成形用として好適に用いることができる。 By using the steel for cold molds of the present invention as a material for cold stamping molds, it has the required basic properties such as hardness, toughness, heat treatment size change, and also supports various hard coating treatments. Furthermore, it is possible to obtain a cold press die that is free from problems in terms of the finished surface roughness and cutting tool life. In addition, a cold press die obtained by using the cold die steel can be suitably used particularly for forming a high-tensile steel plate having a tensile strength of 590 MPa or more.

Claims (5)

  1.  C:0.5~0.7質量%;
     Cr:5.0~7.0質量%;
     Si:0.5~2.0質量%;
     Mn:0.1~2.0質量%;
     Al:0.001~0.010質量%;
     Cu:0.25~1.00質量%;
     Ni:0.25~1.00質量%;
     N:0.003~0.025質量%;
     P:0より大きく0.05質量%以下;
     S:0より大きく0.1質量%以下;
     O:0より大きく0.005質量%以下;及び
     Mo及びWのうち少なくとも一つを含有し、
     残部が鉄及び不可避的不純物を含み、
     且つ、0.5≦[Mo]+0.5×[W]≦3.0;及び
     [C]×[Cr]≦4という要件を満足し、
     更に、FP(フェライト生成元素からなるパラメータ)が、[Si]/5+[Cr]/5+2×[Mo]+[W]+2×[V]+10×[Al]≦5.0という要件を満足し、
     AP(オーステナイト生成元素からなるパラメータ)が、[Mn]+3×([Cu]+[Ni])≦2.5という要件を満足することを特徴とする冷間金型用鋼。
     但し、上式で[ ]は、各元素の含有量(質量%)を示す。
    C: 0.5 to 0.7% by mass;
    Cr: 5.0 to 7.0% by mass;
    Si: 0.5 to 2.0% by mass;
    Mn: 0.1 to 2.0% by mass;
    Al: 0.001 to 0.010 mass%;
    Cu: 0.25 to 1.00% by mass;
    Ni: 0.25 to 1.00% by mass;
    N: 0.003 to 0.025 mass%;
    P: greater than 0 and 0.05% by weight or less
    S: greater than 0 and 0.1% by weight or less;
    O: greater than 0 and 0.005 mass% or less; and containing at least one of Mo and W;
    The balance contains iron and inevitable impurities,
    And 0.5 ≦ [Mo] + 0.5 × [W] ≦ 3.0; and [C] × [Cr] ≦ 4,
    Further, the FP (parameter made of ferrite-forming elements) satisfies the requirement of [Si] / 5 + [Cr] / 5 + 2 × [Mo] + [W] + 2 × [V] + 10 × [Al] ≦ 5.0. ,
    A cold mold steel characterized in that AP (a parameter composed of an austenite-forming element) satisfies the requirement of [Mn] + 3 × ([Cu] + [Ni]) ≦ 2.5.
    However, in the above formula, [] indicates the content (% by mass) of each element.
  2.  更に、V:0より大きく0.5質量%以下を含有する請求項1記載の冷間金型用鋼。 Furthermore, the steel for cold molds of Claim 1 containing 0.5 mass% or less larger than V: 0.
  3.  更に、Ti、Zr、Hf、Ta、Nbからなる群から選択される少なくとも1種の元素を、合計で0より大きく0.5質量%以下含有する請求項1または2記載の冷間金型用鋼。 The cold mold according to claim 1 or 2, further comprising at least one element selected from the group consisting of Ti, Zr, Hf, Ta, and Nb in a total of more than 0 and 0.5% by mass or less. steel.
  4.  更に、Coを0より大きく10質量%以下含有する請求項1乃至3のいずれかに記載の冷間金型用鋼。 Furthermore, the steel for cold molds in any one of the Claims 1 thru | or 3 which contain more than 0 and 10 mass% or less of Co.
  5.  請求項1乃至4のいずれかに記載の冷間金型用鋼を加工し、表面処理を施すことによって製造される冷間プレス用金型。 A cold press die manufactured by processing the steel for cold die according to any one of claims 1 to 4 and performing a surface treatment.
PCT/JP2009/050097 2008-01-10 2009-01-07 Cold-work die steel and dies for cold pressing WO2009088027A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009800002926A CN101743335B (en) 2008-01-10 2009-01-07 Cold-work die steel and dies for cold pressing
US12/598,324 US20100132429A1 (en) 2008-01-10 2009-01-07 Cold-work die steel and dies for cold pressing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008003524A JP5276330B2 (en) 2008-01-10 2008-01-10 Cold mold steel and cold press mold
JP2008-003524 2008-01-10

Publications (1)

Publication Number Publication Date
WO2009088027A1 true WO2009088027A1 (en) 2009-07-16

Family

ID=40853139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050097 WO2009088027A1 (en) 2008-01-10 2009-01-07 Cold-work die steel and dies for cold pressing

Country Status (4)

Country Link
US (1) US20100132429A1 (en)
JP (1) JP5276330B2 (en)
CN (1) CN101743335B (en)
WO (1) WO2009088027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313012A (en) * 2017-06-12 2017-11-03 上海汇众汽车车桥系统有限公司 A kind of surface treatment method of cold punching die

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345415B2 (en) * 2008-03-05 2013-11-20 山陽特殊製鋼株式会社 Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
CN102399958A (en) * 2010-09-07 2012-04-04 上海明嘉金属科技有限公司 Shaping apparatus of precise continuous cold punching mold
CN103465417A (en) * 2013-09-09 2013-12-25 昆山奥德鲁自动化技术有限公司 Anti-wear method for plastic mould
CN103882339A (en) * 2014-02-21 2014-06-25 芜湖市鸿坤汽车零部件有限公司 High-carbon steel material and preparation method thereof
WO2016152967A1 (en) * 2015-03-26 2016-09-29 日立金属株式会社 Sliding component and sliding structure
CN104889266B (en) * 2015-06-02 2017-04-19 烟台裕和汽车零部件有限公司 Manufacture technology of trimming and punching mold of automotive body thermal forming part
JP6108260B1 (en) * 2015-09-29 2017-04-05 日立金属株式会社 Mold for hot forging, method for producing forged product using the same, and method for producing hot forging die
CN107475606A (en) * 2017-06-30 2017-12-15 太仓旺美模具有限公司 A kind of corrosion-resistant cold work die steel
CN110273112A (en) * 2018-03-16 2019-09-24 天津普信模具有限公司 A kind of high-strength durable automobile die material and preparation method thereof
CN109371329B (en) * 2018-12-24 2021-02-02 黄石华中模具材料研究所 High-temperature-resistant artificial crystal forming die steel material and preparation method thereof
JP2020132891A (en) * 2019-02-12 2020-08-31 山陽特殊製鋼株式会社 Mold steel having excellent thermal conductivity
GB202002451D0 (en) * 2020-02-21 2020-04-08 Rolls Royce Plc Article and method of manufacturing the same
CN113355597A (en) * 2021-05-24 2021-09-07 如皋市宏茂重型锻压有限公司 High-toughness high-wear-resistance cold-work die steel and manufacturing process thereof
JP2023122766A (en) 2022-02-24 2023-09-05 大同特殊鋼株式会社 Mold steel and metal mold
CN115319014B (en) * 2022-08-10 2024-04-02 成都成德重型锻造有限公司 Forging quality control method of ratchet disc for nuclear island

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273756A (en) * 1997-03-31 1998-10-13 Daido Steel Co Ltd Cold tool made of casting, and its production
JPH11181549A (en) * 1997-12-22 1999-07-06 Daido Steel Co Ltd Cold tool made of casting excellent in weldability and its production
JP2005194563A (en) * 2004-01-06 2005-07-21 Sanyo Special Steel Co Ltd High-precision die steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765141B2 (en) * 1985-09-18 1995-07-12 日立金属株式会社 Tool steel for hot working
JP2006193790A (en) * 2005-01-14 2006-07-27 Daido Steel Co Ltd Cold working tool steel
JP2006328521A (en) * 2005-05-30 2006-12-07 Daido Steel Co Ltd Tool for precision working and tool steel
JP2007197746A (en) * 2006-01-25 2007-08-09 Daido Steel Co Ltd Tool steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273756A (en) * 1997-03-31 1998-10-13 Daido Steel Co Ltd Cold tool made of casting, and its production
JPH11181549A (en) * 1997-12-22 1999-07-06 Daido Steel Co Ltd Cold tool made of casting excellent in weldability and its production
JP2005194563A (en) * 2004-01-06 2005-07-21 Sanyo Special Steel Co Ltd High-precision die steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313012A (en) * 2017-06-12 2017-11-03 上海汇众汽车车桥系统有限公司 A kind of surface treatment method of cold punching die
CN107313012B (en) * 2017-06-12 2019-03-01 上海汇众汽车车桥系统有限公司 A kind of surface treatment method of cold punching die

Also Published As

Publication number Publication date
JP2009167435A (en) 2009-07-30
US20100132429A1 (en) 2010-06-03
JP5276330B2 (en) 2013-08-28
CN101743335A (en) 2010-06-16
CN101743335B (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5276330B2 (en) Cold mold steel and cold press mold
JP5515442B2 (en) Hot tool steel and steel products using the same
JP5143531B2 (en) Cold mold steel and molds
CN100355927C (en) Steel excellent in machinability
JP5843173B2 (en) Manufacturing method of cold working mold
US20120168035A1 (en) Steel for machine structural use, manufacturing method for same, case hardened steel component, and manufacturing method for same
JP2011001572A (en) Tool steel for hot work and steel product using the same
JP2012001802A (en) Steel, and method for manufacturing the same, and steel sheet for quenching treatment
EP2154260B1 (en) Free-cutting alloy tool steel
JP4860774B1 (en) Cold work tool steel
JP5351528B2 (en) Cold mold steel and molds
JP2014025103A (en) Hot tool steel
JP2005336553A (en) Hot tool steel
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
CN111647797B (en) High-speed tool steel and steel heat treatment method thereof
JP2007162138A (en) Steel sheet for nitriding treatment and its production method
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
KR102550394B1 (en) Hot work tool steels and hot work tools
JP6416624B2 (en) Method for cutting cold tool steel and method for producing cold mold material
CN115279932A (en) Steel for hot working die, and method for producing same
JP2002088450A (en) Hot work tool steel
JP3365624B2 (en) Tool steel with excellent machinability and heat treatment and mold using the tool steel
JP5776959B2 (en) Die steel with excellent hot workability
JP2000192195A (en) Free cutting cold working tool steel
KR20240061233A (en) Free-cutting carbon steel, method of fabricating the same, and method for fabricating parts of free-cutting carbon steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000292.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12598324

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09700295

Country of ref document: EP

Kind code of ref document: A1