JP2020132891A - Mold steel having excellent thermal conductivity - Google Patents

Mold steel having excellent thermal conductivity Download PDF

Info

Publication number
JP2020132891A
JP2020132891A JP2019022999A JP2019022999A JP2020132891A JP 2020132891 A JP2020132891 A JP 2020132891A JP 2019022999 A JP2019022999 A JP 2019022999A JP 2019022999 A JP2019022999 A JP 2019022999A JP 2020132891 A JP2020132891 A JP 2020132891A
Authority
JP
Japan
Prior art keywords
less
steel
thermal conductivity
present
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019022999A
Other languages
Japanese (ja)
Inventor
康政 武藤
Yasumasa Muto
康政 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2019022999A priority Critical patent/JP2020132891A/en
Publication of JP2020132891A publication Critical patent/JP2020132891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

To provide a mold steel that has high thermal conductivity, high hardness and high toughness and is applicable to die casting and hot stamping.SOLUTION: Provided is a mold steel, containing, in mass%, C: more than 0.35 to 0.63%, Si: 0.01 to 1.20%, Mn: 0.01 to 0.92%, Cr: 0.40 to 4.00%, Cu: 0.05 to 2.85%, V: more than 0.10 to less than 0.45%, also containing at least one or more of Mo and W in the range of Mo: less than 1.50% and W: less than 1.80% and (Mo+5/6 W): 0.40 to less than 1.50, and, furthermore, the balance consists of Fe and inevitable impurities.SELECTED DRAWING: None

Description

この発明は、金型用鋼に関して、特にダイカストやホットスタンピングなどの、高温環境下で使用される金型用鋼に関する。 The present invention relates to mold steels, especially mold steels used in high temperature environments such as die casting and hot stamping.

近年、ダイカスト分野において、自動車の軽量化を目的としたアルミ部品の高強度化や、生産性向上を目的とした部品成形加工ピッチの短縮化から、ダイカスト用金型への機械的および熱的負荷が増大している。その結果、金型には摩耗、大割れ、ヒートチェックといった問題が生じやすくなっている。これらの問題に対応するため、金型材料には、硬度や靭性に優れる材料が求められている。また、ホットスタンピングでは、被加工材である鋼板の表面に発生したスケールによる金型の摩耗が問題となっており、金型材料には、高硬度が求められている。 In recent years, in the field of die casting, the mechanical and thermal load on die casting dies has been increased due to the increase in strength of aluminum parts for the purpose of reducing the weight of automobiles and the shortening of the parts molding processing pitch for the purpose of improving productivity. Is increasing. As a result, the mold is liable to have problems such as wear, large cracks, and heat check. In order to deal with these problems, the mold material is required to have excellent hardness and toughness. Further, in hot stamping, wear of the mold due to the scale generated on the surface of the steel plate as the work material has become a problem, and the mold material is required to have high hardness.

さらに、ダイカスト用金型やホットスタンピング用金型は内部に冷却回路が配されており、冷却回路を流れる冷却水による冷却効率が生産サイクルスピードに大きく影響する。冷却効率を高める方法としては、金型の高熱伝導率化がある。そのため、前述した生産性向上を目的とした、生産サイクルスピードの向上に対する要求に応えるためには、材料の特性として高い熱伝導率が要請されている。 Further, the die casting mold and the hot stamping mold are provided with a cooling circuit inside, and the cooling efficiency by the cooling water flowing through the cooling circuit greatly affects the production cycle speed. As a method of increasing the cooling efficiency, there is a method of increasing the thermal conductivity of the mold. Therefore, in order to meet the above-mentioned demand for improvement of production cycle speed for the purpose of improving productivity, high thermal conductivity is required as a characteristic of the material.

こうした背景から、質量%で、C:0.20〜0.50%、Si:0.50%以下、Mn:0.92%以下、Cr:4.00%以下、Ni:2.00%以下、2Mo+W:1.80%未満(ただし、Mo:0.90%未満、かつ、W:1.80%未満)、V:0.10超〜0.61%、N:0.040%以下、Al:0.080%以下を含有し、残部Feおよび不可避不純物からなり、TC=68.0−6.5Mn−5.7Cr−3.1V−4.4Mo−2.2W−24.7C−21.2N−6.5Ni−1.7Si+3.2A≧32.5を満足することを特徴とする熱伝導率に優れた熱間工具鋼が提案されている(たとえば特許文献1参照。)。
しかし、上記のものは、Cuを含有しておらず、不完全焼入れ相であるベイナイトが形成されやすいことから、靱性が不足することとなる。
Against this background, in terms of mass%, C: 0.25 to 0.50%, Si: 0.50% or less, Mn: 0.92% or less, Cr: 4.00% or less, Ni: 2.00% or less. , 2Mo + W: less than 1.80% (however, Mo: less than 0.90% and W: less than 1.80%), V: more than 0.10 to 0.61%, N: 0.040% or less, Al: Containing 0.080% or less, consisting of the balance Fe and unavoidable impurities, TC = 68.0-6.5Mn-5.7Cr-3.1V-4.4Mo-2.2W-24.7C-21 A hot tool steel having excellent thermal conductivity has been proposed, which is characterized by satisfying .2N-6.5Ni-1.7Si + 3.2A ≧ 32.5 (see, for example, Patent Document 1).
However, the above-mentioned ones do not contain Cu and tend to form bainite, which is an incompletely hardened phase, so that the toughness is insufficient.

また、質量%で、C:0.30〜0.50%、Si:0.10〜0.50%、Mn:0.1〜1.0%、Cr:4.5〜5.4%、Mo:1.4〜2.4%、W:1.0%以下、かつMo+W/2:1.7〜2.4%、V:0.30〜0.70%を含有し、さらに、残部Feおよび不可避不純物からなる鋼で、焼入焼戻し後に観察される残留炭化物の種類や割合がM236、M6C、M2C、MCからなる全炭化物中に占めるM6C、M2C、MCからなる炭化物の割合が5.0%以上、さらに全炭化物面積率が断面積0.01mm2辺り2%以下、シャルピー衝撃値が30J/cm2以上、軟化量(ΔHRC)が13HRC以下であることを特徴とする優れた高温強度および靱性を有する熱間金型用鋼が提案されている(たとえば特許文献2参照。)。
しかし、上記のものは、Cuを含有しておらず、不完全焼入れ相であるベイナイトが形成されやすいことから、靱性が不足することとなる。また、Cr量が過多であり、熱伝導率が不足する。
Further, in terms of mass%, C: 0.30 to 0.50%, Si: 0.10 to 0.50%, Mn: 0.1 to 1.0%, Cr: 4.5 to 5.4%, Mo: 1.4 to 2.4%, W: 1.0% or less, and Mo + W / 2: 1.7 to 2.4%, V: 0.30 to 0.70%, and the balance steel consisting of Fe and unavoidable impurities, quenching the type and proportion of residual carbides observed after tempering is M 23 C 6, M 6 C , M 2 C, M 6 in the whole carbides consisting MC C, M 2 The ratio of carbides consisting of C and MC is 5.0% or more, the total carbide area ratio is 2% or less per 0.01 mm 2 cross-sectional area, the Charpy impact value is 30 J / cm 2 or more, and the softening amount (ΔHRC) is 13 HRC or less. A hot mold steel having excellent high temperature strength and toughness has been proposed (see, for example, Patent Document 2).
However, the above-mentioned ones do not contain Cu and tend to form bainite, which is an incompletely hardened phase, so that the toughness is insufficient. In addition, the amount of Cr is excessive and the thermal conductivity is insufficient.

また、0.25<C<0.38、0.01<Si<0.30、0.92<Mn<1.80、0.8<Cr<2.2、0.8<Mo<1.4、0.25<V<0.58、残部Fe及び不可避的不純物からなる金型用鋼が提案されている(たとえば特許文献3参照。)。
しかし、上記のものは、Mn量が過多であって、Mnの過剰添加によって熱伝導率が低下する。
Further, 0.25 <C <0.38, 0.01 <Si <0.30, 0.92 <Mn <1.80, 0.8 <Cr <2.2, 0.8 <Mo <1. A mold steel composed of 4, 0.25 <V <0.58, the balance Fe and unavoidable impurities has been proposed (see, for example, Patent Document 3).
However, in the above-mentioned one, the amount of Mn is excessive, and the thermal conductivity decreases due to the excessive addition of Mn.

また、C:0.45超〜0.60%、Si:0.05〜0.20%、Mn:0.
3〜0.7%、Ni:0.2〜0.5%、Cr:0.2〜0.5%、V:0.03〜0.
1%、Al:0.01〜0.03%、S:0.010%未満、O:0.0030以下、N
:0.02%以下を含有し、残部がFeおよび不可避不純物からなり、かつ不可避不純物
中でP:0.015%以下、Cu:0.30%以下、Mo:0.20%以下に規制した組
成を有することを特徴とする熱伝導性に優れたプラスチック成形金型用鋼が提案されている(たとえば特許文献4参照。)。
しかし、上記のものは、V量が過小であり、焼入焼戻し硬さが不足する。
Further, C: more than 0.45 to 0.60%, Si: 0.05 to 0.20%, Mn: 0.
3 to 0.7%, Ni: 0.2 to 0.5%, Cr: 0.2 to 0.5%, V: 0.03 to 0.
1%, Al: 0.01 to 0.03%, S: less than 0.010%, O: 0.0030 or less, N
: 0.02% or less, the balance is composed of Fe and unavoidable impurities, and P: 0.015% or less, Cu: 0.30% or less, Mo: 0.20% or less among the unavoidable impurities. A steel for plastic molding dies having a composition and excellent thermal conductivity has been proposed (see, for example, Patent Document 4).
However, the above-mentioned one has an excessively small amount of V, and the quenching and tempering hardness is insufficient.

さらに、質量%で、0.15<C<0.43、0.20<Si<0.52、4.00<Cr<5.72、−0.05814×[Cr]+0.4326<Mn<−0.2907×[Cr]+2.4628・・式(1)、(但し式(1)中[Cr]はCrの含有量%を表す)、0.72<Mo<1.60、0.20<V<0.61、残部がFe及び不可避的不純物の組成を有する金型用鋼が提案されている(例えば、特許文献5参照。)。
しかし、この金型用鋼は、Cr量が過剰であって、熱伝導率が低下することとなる。
Further, in mass%, 0.15 <C <0.43, 0.20 <Si <0.52, 4.00 <Cr <5.72, -0.05814 × [Cr] +0.4326 <Mn < −0.2907 × [Cr] +2.4628 .. Equation (1), (wherein [Cr] in equation (1) represents% of Cr content), 0.72 <Mo <1.60, 0. Mold steels having a composition of 20 <V <0.61, the balance of Fe and unavoidable impurities have been proposed (see, for example, Patent Document 5).
However, the amount of Cr in this mold steel is excessive, and the thermal conductivity is lowered.

さらに、質量%でC:0.15〜0.35%、Si:0.05〜0.20%未満、Mn:0.05〜1.50%、P:0.020%以下、S:0.013%以下、Cu:0.10%以下、Ni:0.20%以下、Cr:0.20〜2.50%、Mo:0.50〜3.00%、V+Nb:0.05〜0.30%、Al:0.020〜0.040%、O:0.003%以下、N:0.010〜0.020%、残部が実質的にFeからなり、30HRC以上40HRC以下のロックウェル硬さを有するダイカスト金型用プリハードン鋼が提案されている(たとえば特許文献6参照。)。
しかし、上記のものは、C量が過小であって、焼入焼戻し硬さが不足する。
Further, in terms of mass%, C: 0.15 to 0.35%, Si: 0.05 to less than 0.20%, Mn: 0.05 to 1.50%, P: 0.020% or less, S: 0 .013% or less, Cu: 0.10% or less, Ni: 0.20% or less, Cr: 0.25 to 2.50%, Mo: 0.50 to 3.00%, V + Nb: 0.05 to 0 .30%, Al: 0.020 to 0.040%, O: 0.003% or less, N: 0.010 to 0.020%, the balance is substantially Fe, and the rockwell is 30 HRC or more and 40 HRC or less. A pre-hardened steel for a die-casting mold having hardness has been proposed (see, for example, Patent Document 6).
However, in the above case, the amount of C is too small, and the quenching and tempering hardness is insufficient.

また、0.26〜0.55重量%のC、<2重量%のCr、0〜10
重量%のMo、0〜15重量%のW、但しWとMoとの含有量は合計で1.8〜15重量
%となる、単独または合計で0〜3重量%の含有量を有する炭化物形成元素Ti,Zr,
Hf,Nb,Ta、0〜4重量%のV、0〜6重量%のCo、0〜1.6重量%のSi、
0〜2重量%のMn、0〜2.99重量%のNi、0〜1重量%のS、ならびに残り:鉄
および不可避の不純物、を有する工具鋼、特に熱間加工鋼が提案されている(たとえば特許文献7参照。)。
しかし、上記のものは、本発明でいうMo+5/6Wが過大であって、MoまたはWの過剰添加によって熱伝導率が低下する。
Further, 0.26 to 0.55% by weight of C, <2% by weight of Cr, 0 to 10
Carbide formation with 100% by weight Mo, 0-15% by weight W, where the total content of W and Mo is 1.8-15% by weight, either alone or with a total content of 0-3% by weight. Elements Ti, Zr,
Hf, Nb, Ta, 0-4% by weight V, 0-6% by weight Co, 0-1.6% by weight Si,
Tool steels with 0-2 wt% Mn, 0-2.99 wt% Ni, 0-1 wt% S, and the rest: iron and unavoidable impurities, especially hot-worked steels, have been proposed. (See, for example, Patent Document 7.).
However, in the above, Mo + 5 / 6W referred to in the present invention is excessive, and the thermal conductivity decreases due to the excessive addition of Mo or W.

また、%Ceq:0.20−1.2、%C:0.20−1.2、%N:0−1、%B:0−1、%Cr<1.5、%Ni=1.0−9、%Si<0.4、%Mn:0−3、%Al:0−2.5、%Mo:0−10、%W:0−15、%Ti:0−3、%Ta:0−3,%Zr:0−3、%Hf:0−3、%V:0−4、%Nb:0−3、%Cu:0−4、%Co:0−6、%S:0−1,%Se:0−1、%Te:0−1、%Bi:0−1、%As:0−1,%Sb:0−1,%Ca:0−1を有し、残部が鉄及び不可避不純物からなり、%Ceq:%C+0.86×%N+1.2×%B、%Mo+1/2・%W>1.2を満たす熱間工具鋼が提案されている(たとえば特許文献8参照。)。
しかし、上記のものは、Ni量が過多であって、Niの過剰添加によって熱伝導率が低下する。
Further,% Ceq: 0.20-1.2,% C: 0.20-1.2,% N: 0-1 and% B: 0-1.,% Cr <1.5,% Ni = 1. 0-9,% Si <0.4,% Mn: 0-3,% Al: 0-2.5,% Mo: 0-10,% W: 0-15,% Ti: 0-3,% Ta : 0-3,% Zr: 0-3,% Hf: 0-3,% V: 0-4,% Nb: 0-3,% Cu: 0-4,% Co: 0-6,% S: It has 0-1 and% Se: 0-1 and% Te: 0-1 and% Bi: 0-1 and% As: 0-1 and% Sb: 0-1 and% Ca: 0-1 and the balance. Is composed of iron and unavoidable impurities, and hot tool steels satisfying% Ceq:% C + 0.86 ×% N + 1.2 ×% B and% Mo + 1/2 ·% W> 1.2 have been proposed (for example, Patent Documents). 8).
However, in the above-mentioned products, the amount of Ni is excessive, and the thermal conductivity decreases due to the excessive addition of Ni.

特開2018−119177号公報JP-A-2018-119177 特開2017−155306号公報JP-A-2017-155306 特開2015−209588号公報Japanese Unexamined Patent Publication No. 2015-209588 特開2010−13716号公報Japanese Unexamined Patent Publication No. 2010-13716 特開2015−224363号公報Japanese Unexamined Patent Publication No. 2015-224363 特開2005−307242号公報Japanese Unexamined Patent Publication No. 2005-307242 特開2010−500471号公報Japanese Unexamined Patent Publication No. 2010-500471 特開2017−95802号公報JP-A-2017-95802

本願の発明が解決しようとする課題は、高熱伝導率、高硬度、高靭性を兼ね備えており、ダイカストやホットスタンピングなどに適用可能な金型用鋼を提供することである。 An object to be solved by the invention of the present application is to provide a mold steel which has high thermal conductivity, high hardness, and high toughness and can be applied to die casting, hot stamping, and the like.

発明者らは鋭意開発を進めた結果、以下の各手段に記載の合金成分、組織状態とすることで、高硬度、高靭性、高熱伝導率を兼備した金型用鋼が得られることを見出した。
なお、本発明でいう高硬度とは45HRC以上であること、高靱性とは焼入焼戻し後のシャルピー衝撃値が30J/cm2以上であること、高熱伝導率とは25.0W/m・K以上であることをいう。
As a result of diligent development, the inventors have found that mold steel having high hardness, high toughness, and high thermal conductivity can be obtained by using the alloy components and microstructures described in the following means. It was.
The high hardness in the present invention means 45 HRC or more, the high toughness means that the Charpy impact value after quenching and tempering is 30 J / cm 2 or more, and the high thermal conductivity means 25.0 W / m · K. That is all.

上記の課題を解決するための本発明の第1の手段は、質量%で、C:0.35超〜0.63%、Si:0.01〜1.20%、Mn:0.01〜0.92%、Cr:0.40〜4.00%、Cu:0.05〜2.85%、V:0.10超〜0.45%未満を含有し、
またMoとWのうち少なくとも一種以上をMo:1.50%未満かつW:1.80%未満かつ(Mo+5/6W):0.40〜1.50未満の範囲で含有し、
さらに残部がFeと不可避的不純物からなる金型用鋼である。
The first means of the present invention for solving the above problems is, in mass%, C: more than 0.35 to 0.63%, Si: 0.01 to 1.20%, Mn: 0.01 to. It contains 0.92%, Cr: 0.40 to 4.00%, Cu: 0.05 to 2.85%, V: more than 0.10 to less than 0.45%.
Further, at least one or more of Mo and W are contained in the range of Mo: less than 1.50%, W: less than 1.80%, and (Mo + 5 / 6W): 0.40 to less than 1.50.
Further, the balance is mold steel composed of Fe and unavoidable impurities.

その第2の手段は、第1の手段に記載の化学成分に加えて、Ni:0.01〜2.99%を含有し、さらに残部がFeと不可避的不純物からなる金型用鋼である。 The second means is a mold steel containing Ni: 0.01 to 2.99% in addition to the chemical components described in the first means, and the balance is Fe and unavoidable impurities. ..

その第3の手段は、第1又は第2の手段に記載の化学成分に加えて、N:0.001〜0.040%を含有し、さらに残部がFeと不可避的不純物からなる金型用鋼である。 The third means is for molds containing N: 0.001 to 0.040% in addition to the chemical components described in the first or second means, and the balance is Fe and unavoidable impurities. It is steel.

その第4の手段は、第1から第3のいずれか1の手段に記載の化学成分に加えて、Al:0.001〜0.300%を含有し、さらに残部がFeと不可避的不純物からなる金型用鋼である。 The fourth means contains Al: 0.001 to 0.300% in addition to the chemical components described in any one of the first to third means, and the balance is from Fe and unavoidable impurities. It is a steel for molds.

その第5の手段は、第1から第4の手段のいずれか1項に記載の鋼が、焼入れ焼戻しされた状態であることを特徴とする金型用鋼である。 The fifth means is a mold steel characterized in that the steel according to any one of the first to fourth means is in a state of being hardened and tempered.

その第6の手段は、第5の手段に記載の金型用鋼が、マルテンサイト単相組織であることを特徴とする金型用鋼である。 The sixth means is a mold steel according to the fifth means, characterized in that the mold steel has a martensite single-phase structure.

本発明の上記の手段による金型用鋼は、焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上と高熱伝導率であり、焼入焼戻し後の硬度が45.0HRC以上の高硬度であり、さらに焼入焼戻し後のシャルピー衝撃値が30J/cm2以上の高靭性であるなど、高熱伝導率、高硬度および高靭性の熱間工具鋼である。高硬度、高靱性、高熱伝導率を兼ね備えるものであるから、ダイカストやホットスタンピングなどの、高温環境下で使用される金型用鋼として優れた特性を発揮する。 The mold steel by the above means of the present invention has a high thermal conductivity of 25.0 W / m · K or more at room temperature after quenching and tempering, and a hardness of 45.0 HRC after quenching and tempering. It is a hot tool steel with high thermal conductivity, high hardness and high toughness, such as the above high hardness and high toughness with a charpy impact value of 30 J / cm 2 or more after quenching and tempering. Since it has high hardness, high toughness, and high thermal conductivity, it exhibits excellent characteristics as mold steel used in high temperature environments such as die casting and hot stamping.

本発明の実施の形態の説明に先立って、本願発明における化学成分等の限定理由を説明する。なお、説明における記載中の%は、質量%である。 Prior to the description of the embodiment of the present invention, the reasons for limiting the chemical components and the like in the present invention will be described. In addition,% in the description is mass%.

C:0.35超〜0.63%
Cは、鋼中に固溶することで、マトリックスを強化し、また炭化物を形成することで析出強化を促す元素である。Cは0.35%以下であると十分な焼入焼戻し硬さが得られない。一方、Cは0.63%より多いと偏析を助長し、靭性を低下させる。そこで、Cは0.35超〜0.63%とする。より好ましくは0.40〜0.60%である。
C: Over 0.35 to 0.63%
C is an element that strengthens the matrix by solid solution in steel and promotes precipitation strengthening by forming carbides. If C is 0.35% or less, sufficient quenching and tempering hardness cannot be obtained. On the other hand, if C is more than 0.63%, segregation is promoted and toughness is lowered. Therefore, C is set to more than 0.35 to 0.63%. More preferably, it is 0.40 to 0.60%.

Si:0.01〜1.20%
Siは、製鋼時の脱酸剤として必要な元素である。Siはマトリックスに固溶することで硬さを向上させる元素でもあるが、Siは0.01%より少ないと十分に脱酸されない。一方、Siは1.20%より多いと、Si炭化物を形成することなく、マトリックスに固溶して熱伝導率を大きく低下させる。そこで、Siは0.01〜1.20%とする。より好ましくは、0.05〜1.00%とする。
Si: 0.01 to 1.20%
Si is an element required as a deoxidizer during steelmaking. Si is also an element that improves hardness by being dissolved in the matrix, but if Si is less than 0.01%, it is not sufficiently deoxidized. On the other hand, if the amount of Si is more than 1.20%, it dissolves in the matrix without forming Si carbides and significantly lowers the thermal conductivity. Therefore, Si is set to 0.01 to 1.20%. More preferably, it is 0.05 to 1.00%.

Mn:0.01〜0.92%
Mnは、製鋼時の脱酸剤として必要な元素である。Mnは0.01%より少ないと十分に脱酸されない。一方、Mnは、0.92%より多すぎると、マトリックスに固溶して鋼の熱伝導率を低下させる。そこで、Mnは0.01〜0.92%とし、好ましくは、0.10〜0.85%とする。
Mn: 0.01 to 0.92%
Mn is an element required as a deoxidizer during steelmaking. If Mn is less than 0.01%, it will not be sufficiently deoxidized. On the other hand, if Mn is more than 0.92%, it dissolves in the matrix and lowers the thermal conductivity of the steel. Therefore, Mn is set to 0.01 to 0.92%, preferably 0.10 to 0.85%.

Cr:0.40〜4.00%
Crは、鋼の焼入性を向上させ、ベイナイト形成による靭性の低下を抑制するために必要な元素である。Crが0.40%より少ないと十分な靭性が得られない。一方、Crは4.00%より多いと、マトリックスに固溶して鋼の熱伝導率を低下させる。そこで、Crは0.40〜4.00%とする。より好ましくは、0.60〜3.00%とする。
Cr: 0.40 to 4.00%
Cr is an element necessary for improving the hardenability of steel and suppressing the decrease in toughness due to the formation of bainite. If Cr is less than 0.40%, sufficient toughness cannot be obtained. On the other hand, if Cr is more than 4.00%, it dissolves in the matrix and lowers the thermal conductivity of the steel. Therefore, Cr is set to 0.40 to 4.00%. More preferably, it is 0.60 to 3.00%.

Cu:0.05〜2.85%
Cuは焼入れ性を向上させ、ベイナイト形成による靱性の低下を抑制するのに必要な元素である。Cuが0.05%より少ないと、十分な靱性が得られない。一方、Cuが2.85%より多すぎると、マトリックスに固溶して鋼の熱伝導率を低下させる。そこで、Cuは0.05〜2.85%とする。より好ましくは、0.10〜2.60%とする。
Cu: 0.05 to 2.85%
Cu is an element necessary for improving hardenability and suppressing a decrease in toughness due to bainite formation. If the amount of Cu is less than 0.05%, sufficient toughness cannot be obtained. On the other hand, if Cu is more than 2.85%, it dissolves in the matrix and lowers the thermal conductivity of the steel. Therefore, Cu is set to 0.05 to 2.85%. More preferably, it is 0.10 to 2.60%.

V:0.10超〜0.45%未満
Vは、鋼の焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。Vは0.10以下であると十分な焼入焼戻し硬さが得られない。一方、Vは0.45%以上だとマトリックスに残存するVが増加し、熱伝導率を低下させる。そこで、Vは0.10超〜0.45%未満とする。より好ましくは0.25〜0.45%未満とする。
V: More than 0.10 to less than 0.45% V is an element that promotes secondary hardening during tempering of steel and enhances quenching and tempering hardness. If V is 0.10 or less, sufficient quenching and tempering hardness cannot be obtained. On the other hand, when V is 0.45% or more, V remaining in the matrix increases and the thermal conductivity decreases. Therefore, V is set to more than 0.10 to less than 0.45%. More preferably, it is less than 0.25 to 0.45%.

(選択的必須成分について)
MoとWのうち少なくともいずれか1種以上を含有し、Mo:1.50%未満、W:1.80%未満、(Mo+5/6W):0.40〜1.50未満
MoとWは、鋼の焼戻し時の二次硬化を促進し、焼入焼戻し硬さを高める元素である。そこで、本発明では、MoとWは少なくともいずれか1種以上をMo:1.50%未満、W:1.80%未満で含有するもの(すなわち、MoとWのいずれか一方あるいは双方を含有するもの)であって、さらにMo+5/6Wで0.40%〜1.50未満である。
Mo+5/6Wが0.40%より少ないと十分な焼入焼戻し硬さが得られないので0.40%以上とする。より好ましくは、0.45%以上とする。
一方、Mo:1.50%以上、W:1.80%以上、あるいはMo+5/6Wが1.50以上であると、すなわちMoやWが多すぎると、マトリックスに残存するMoやWが増加し、熱伝導率を低下させるので、Mo:1.50%未満、W:1.80%未満、(Mo+5/6W):0.40〜1.50未満とする。より好ましくは、0.45以上〜1.45以下である。
(About selective essential ingredients)
Contains at least one or more of Mo and W, Mo: less than 1.50%, W: less than 1.80%, (Mo + 5 / 6W): less than 0.40-1.50 Mo and W are It is an element that promotes secondary hardening during tempering of steel and enhances quenching and tempering hardness. Therefore, in the present invention, Mo and W contain at least one or more of Mo: less than 1.50% and W: less than 1.80% (that is, one or both of Mo and W are contained. Further, it is 0.40% to less than 1.50 at Mo + 5 / 6W.
If Mo + 5 / 6W is less than 0.40%, sufficient quenching and tempering hardness cannot be obtained, so the content is set to 0.40% or more. More preferably, it is 0.45% or more.
On the other hand, if Mo: 1.50% or more, W: 1.80% or more, or Mo + 5 / 6W is 1.50 or more, that is, if there are too many Mo and W, the Mo and W remaining in the matrix will increase. Since the thermal conductivity is lowered, Mo: less than 1.50%, W: less than 1.80%, (Mo + 5 / 6W): less than 0.40 to 1.50. More preferably, it is 0.45 or more and 1.45 or less.

(付加的成分について)
Ni:0.01〜2.99%
Niは、必ずしも添加する必要はないが、Crと同様に、鋼の焼入性を向上させ、ベイナイト形成による靱性低下を抑制する元素であることから、必要に応じて添加する。一方、Niは2.99%より多すぎると、マトリックスに固溶して熱伝導率を低下させる。そこで、Niは0.01〜2.99%とする。好ましくは、0.01〜2.00%とする。
(About additional ingredients)
Ni: 0.01 to 2.99%
Ni does not necessarily have to be added, but like Cr, it is an element that improves the hardenability of steel and suppresses the decrease in toughness due to bainite formation, so it is added as necessary. On the other hand, if Ni is more than 2.99%, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Ni is set to 0.01 to 2.99%. Preferably, it is 0.01 to 2.00%.

N:0.001〜0.040%
Nは、必ずしも添加する必要はないが、Cと同様に、鋼の焼入焼戻し硬さを大きくするのに有効な元素であり、必要に応じて、添加する。一方、Nは、0.040%より多く添加すると、過剰添加によって精錬の時間およびコストの上昇を招くこととなる。そこで、Nは0.001〜0.040%とし、好ましくは、0.001〜0.030%とする。
N: 0.001 to 0.040%
N is not necessarily added, but like C, it is an element effective for increasing the quenching and tempering hardness of steel, and is added as necessary. On the other hand, if N is added in an amount of more than 0.040%, the time and cost of refining will increase due to excessive addition. Therefore, N is 0.001 to 0.040%, preferably 0.001 to 0.030%.

Al:0.001〜0.300%
Alは、必ずしも添加する必要はないが、マトリクスに固溶して硬さを向上する元素であり、必要に応じて添加することができる。一方、Alが多すぎると、マトリックスに固溶して熱伝導率を低下させる。そこで、Alは0.001〜0.030%とし、好ましくは、0.005〜0.150%とする。
Al: 0.001 to 0.300%
Al is an element that does not necessarily need to be added, but is an element that dissolves in a matrix to improve hardness, and can be added as needed. On the other hand, if the amount of Al is too large, it dissolves in the matrix and lowers the thermal conductivity. Therefore, Al is 0.001 to 0.030%, preferably 0.005 to 0.150%.

焼入焼戻し状態での組織:マルテンサイト単相
焼入焼戻し状態での鋼の組織をマルテンサイト単相組織とするのは、不完全焼入れ相であるベイナイトが存在すると靭性が大幅に低下することから、ホットスタンピング・ダイカスト金型として使われた際に、十分な金型寿命が得られなくなるためである。そこで、焼入焼戻し状態での組織は、マルテンサイト単相が好ましく、マルテンサイト相とベイナイト相の混合組織は靱性が低いので望ましくない。
Structure in quenching and tempering state: Martensite single phase The structure of steel in the quenching and tempering state is martensite single phase structure because the toughness is significantly reduced in the presence of baynite, which is an incompletely hardened phase. This is because when used as a hot stamping die-casting mold, a sufficient mold life cannot be obtained. Therefore, the structure in the quenching and tempering state is preferably a martensite single phase, and a mixed structure of a martensite phase and a bainite phase is not desirable because it has low toughness.

次に、発明の実施の形態について、以下に記載する。
まず、表1の本願の発明鋼のNo.1〜27および表2のNo.28〜48、及び表3の比較鋼のNo.49〜64に記載の各化学成分と残部Feおよび不可避不純物からなる鋼を真空誘導溶解炉にて溶製し、それぞれ100kgの鋼塊を得た。得られた各鋼塊を、幅65mm、高さ30mmのブロックに熱間鍛伸した。
Next, embodiments of the invention will be described below.
First, No. 1 of the invention steel of the present application in Table 1. Nos. 1-27 and Table 2 Nos. 28 to 48 and the comparative steels in Table 3 Steel composed of each of the chemical components described in 49 to 64, the balance Fe, and unavoidable impurities was melted in a vacuum induction melting furnace to obtain 100 kg of each steel ingot. Each of the obtained ingots was hot forged into a block having a width of 65 mm and a height of 30 mm.

次いでこの鍛伸材を870℃から焼なましした後、ブロックの表面と中心の中間となる位置から、直径16mm、長さ160mmの丸棒を採取した。これらの丸棒は1030℃に保持した後、空冷によって焼入れを行ない、さらに570〜670℃で2回焼戻しを行った後、組織観察と各特性の調査を実施した。それらの結果を、表4〜6に示す。 Next, this forged material was annealed from 870 ° C., and then a round bar having a diameter of 16 mm and a length of 160 mm was collected from a position intermediate between the surface and the center of the block. These round bars were held at 1030 ° C., then quenched by air cooling, and then tempered twice at 570 to 670 ° C., and then microstructure observation and investigation of each characteristic were carried out. The results are shown in Tables 4-6.

なお、組織観察には、走査型電子顕微鏡を用いた。焼入焼戻し後の試料の鍛伸方向に平行な面を鏡面になるまで研磨し、ナイタールで腐食した後、観察を行った。組織観察により、ベイナイト組織の有無を確認し、ベイナイト組織が確認できずマルテンサイト単相であった場合は「M」と、マルテンサイト組織ベイナイト組織の混合組織の場合を「M+B」として記録した。 A scanning electron microscope was used for tissue observation. The surface parallel to the forging direction of the sample after quenching and tempering was polished until it became a mirror surface, corroded with nital, and then observed. The presence or absence of bainite tissue was confirmed by tissue observation, and the case where the bainite structure could not be confirmed and the martensite structure was monophasic was recorded as "M", and the case of a mixed structure of martensite structure bainite structure was recorded as "M + B".

Figure 2020132891
Figure 2020132891

Figure 2020132891
Figure 2020132891

Figure 2020132891
Figure 2020132891

これら試験片の鍛伸材の焼入焼戻された鋼の特性について、熱伝導率、焼入焼戻し硬さおよびシャルピー衝撃値を測定し、その結果を、発明鋼No.1〜48については表4、表5に示し、比較鋼のNo.49〜64については、表6に示した。 Regarding the characteristics of the tempered and tempered steel of the forged material of these test pieces, the thermal conductivity, the quenching and tempering hardness, and the Charpy impact value were measured, and the results were obtained as the invention steel No. Nos. 1 to 48 are shown in Tables 4 and 5, and the comparative steel Nos. 49 to 64 are shown in Table 6.

熱伝導率の測定には、レーザフラッシュ法を用いた。焼入焼戻し後の試料を直径10mm×1mmの円柱形状に仕上げ加工し、試験に供した。パルス・レーザーを円板の片面に照射して厚さ方向の熱拡散率を得て、定圧比熱と密度を乗じて焼入焼戻し後の室温での熱伝導率を得て、表4〜6の熱伝導率とした。この焼入焼戻し後の室温での熱伝導率が25.0W/m・K以上を高熱伝導率という。 The laser flash method was used to measure the thermal conductivity. The sample after quenching and tempering was finished into a cylindrical shape having a diameter of 10 mm × 1 mm and subjected to a test. Irradiate one side of the disk with a pulsed laser to obtain the thermal diffusivity in the thickness direction, and multiply it by the constant pressure specific heat and density to obtain the thermal conductivity at room temperature after quenching and quenching. It was defined as thermal conductivity. A thermal conductivity of 25.0 W / m · K or more at room temperature after quenching and tempering is called high thermal conductivity.

焼入焼戻し硬さはロックウェル硬さ試験機で測定した。焼入焼戻状態の試料の鍛伸方向に垂直な面を硬さ測定した。この焼入焼戻し後の硬さが45.0HRC以上を高硬度であると評価する。 The quenching and tempering hardness was measured with a Rockwell hardness tester. The hardness of the surface perpendicular to the forging direction of the sample in the quenched and tempered state was measured. A hardness of 45.0 HRC or more after quenching and tempering is evaluated as high hardness.

靭性は、シャルピー衝撃試験により評価を実施した。試験片は、焼入焼戻し後の試料から作製した。試験片形状は2mmUノッチシャルピー試験片であり、ノッチ方向は鍛伸方向に対して垂直な方向とした。この焼入焼戻し後のシャルピー衝撃値が30J/cm2以上を高靭性であると評価する。 The toughness was evaluated by the Charpy impact test. The test piece was prepared from a sample after quenching and tempering. The shape of the test piece was a 2 mm U notch Charpy test piece, and the notch direction was perpendicular to the forging direction. A Charpy impact value of 30 J / cm 2 or more after quenching and tempering is evaluated as having high toughness.

Figure 2020132891
Figure 2020132891

Figure 2020132891
Figure 2020132891

Figure 2020132891
Figure 2020132891

表3の比較鋼のNo.49はCの含有量が0.33%と本発明の範囲より低い。すると、表6の焼入焼戻し硬さが43.0HRCと本発明で得られる45.0HRC以上のものよりも硬さが低いものとなった。 No. of comparative steel in Table 3 49 has a C content of 0.33%, which is lower than the range of the present invention. Then, the quenching and tempering hardness in Table 6 was 43.0 HRC, which was lower than the hardness of 45.0 HRC or more obtained in the present invention.

表3の比較鋼のNo.50はCの含有量が0.65%と本発明の範囲より高い。すると、表6のシャルピー衝撃値が23.4J/cm2と本発明で得られる30.0J/cm2以上のものよりも靱性が低いものとなった。 No. of comparative steel in Table 3 50 has a C content of 0.65%, which is higher than the range of the present invention. Then, the Charpy impact value in Table 6 was 23.4 J / cm 2, which was lower than that obtained in the present invention at 30.0 J / cm 2 or more.

表3の比較鋼のNo.51はSiの含有量が1.23%と本発明の範囲より高い。すると、表6の熱伝導率が22.6W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 51 has a Si content of 1.23%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 22.6 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.52はMnの含有量が0.95%と本発明の範囲より高い。すると、表6の熱伝導率が24.4W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 The Mn content of 52 is 0.95%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 24.4 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.53はCrの含有量が0.37%と本発明の範囲より低く、ベイナイト組織が形成されている。すると、表6のシャルピー衝撃値が21.6J/cm2と本発明で得られる30.0J/cm2以上のものよりも靱性が低いものとなった。 No. of comparative steel in Table 3 In 53, the Cr content is 0.37%, which is lower than the range of the present invention, and a bainite structure is formed. Then, the Charpy impact value in Table 6 was 21.6 J / cm 2, which was lower than that obtained in the present invention at 30.0 J / cm 2 or more.

表3の比較鋼のNo.54はCrの含有量が4.12%と本発明の範囲より高い。すると、表6の熱伝導率が23.9W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 54 has a Cr content of 4.12%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 23.9 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.55はCuの含有量が0.04%と本発明の範囲より低く、ベイナイト組織が形成されている。すると、表6のシャルピー衝撃値が20.8J/cm2と本発明で得られる30.0J/cm2以上のものよりも靱性が低いものとなった。 No. of comparative steel in Table 3 55 has a Cu content of 0.04%, which is lower than the range of the present invention, and a bainite structure is formed. Then, the Charpy impact value in Table 6 was 20.8 J / cm 2, which was lower than that obtained in the present invention at 30.0 J / cm 2 or more.

表3の比較鋼のNo.56はCuの含有量が2.88%と本発明の範囲より高い。すると、表6の熱伝導率が24.9W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 56 has a Cu content of 2.88%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 24.9 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.57はMoの含有量が1.55%と本発明の範囲より高い。また、Mo+5/6Wの値も1.55%と本発明の範囲よりも高い。すると、表6の熱伝導率が24.1W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 57 has a Mo content of 1.55%, which is higher than the range of the present invention. The value of Mo + 5 / 6W is also 1.55%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 24.1 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.58はWの含有量が1.86%と本発明の範囲より高い。また、Mo+5/6Wの値も1.55%と本発明の範囲よりも高い。すると、表6の熱伝導率が24.4W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 58 has a W content of 1.86%, which is higher than the range of the present invention. The value of Mo + 5 / 6W is also 1.55%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 24.4 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.59はMo+5/6Wの値が1.54%と本発明の範囲よりも高い。すると、表6の熱伝導率が24.0W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 In 59, the value of Mo + 5 / 6W is 1.54%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 24.0 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.60はMo+5/6Wの値が0.33%と本発明の範囲より低い。すると、表6の焼入焼戻し硬さが44.1HRCと本発明で得られる45.0HRC以上のものよりも硬さが低いものとなった。 No. of comparative steel in Table 3 In 60, the value of Mo + 5 / 6W is 0.33%, which is lower than the range of the present invention. Then, the quenching and tempering hardness in Table 6 was 44.1 HRC, which was lower than the hardness of 45.0 HRC or more obtained in the present invention.

表3の比較鋼のNo.61はVの含有量が0.10%と本発明の範囲より低い。すると、表6の焼入焼戻し硬さが44.4HRCと本発明で得られる45.0HRC以上のものよりも硬さが低いものとなった。 No. of comparative steel in Table 3 61 has a V content of 0.10%, which is lower than the range of the present invention. Then, the quenching and tempering hardness in Table 6 was 44.4 HRC, which was lower than the hardness of 45.0 HRC or more obtained in the present invention.

表3の比較鋼のNo.62はVの含有量が0.48%と本発明の範囲より高い。すると、表6の熱伝導率が23.8W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 62 has a V content of 0.48%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 23.8 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.63はNiの含有量が3.02%と本発明の範囲より高い。すると、表6の熱伝導率が23.8W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 63 has a Ni content of 3.02%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 23.8 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

表3の比較鋼のNo.64はAlの含有量が0.311%と本発明の範囲より高い。すると、表6の熱伝導率が23.4W/m・Kと、本発明で得られる25.0W/m・K以上のものよりも熱伝導率が劣るものとなった。 No. of comparative steel in Table 3 64 has an Al content of 0.311%, which is higher than the range of the present invention. Then, the thermal conductivity in Table 6 was 23.4 W / m · K, which was inferior to that obtained in the present invention at 25.0 W / m · K or higher.

Claims (6)

質量%で、C:0.35超〜0.63%、Si:0.01〜1.20%、Mn:0.01〜0.92%、Cr:0.40〜4.00%、Cu:0.05〜2.85%、V:0.10超〜0.45%未満を含有し、
またMoとWのうち少なくとも一種以上をMo:1.50%未満かつW:1.80%未満かつ(Mo+5/6W):0.40〜1.50未満の範囲で含有し、
さらに残部がFeと不可避的不純物からなる金型用鋼。
By mass%, C: more than 0.35 to 0.63%, Si: 0.01 to 1.20%, Mn: 0.01 to 0.92%, Cr: 0.40 to 4.00%, Cu : 0.05 to 2.85%, V: more than 0.10 to less than 0.45%,
Further, at least one or more of Mo and W are contained in the range of Mo: less than 1.50%, W: less than 1.80%, and (Mo + 5 / 6W): 0.40 to less than 1.50.
Furthermore, the mold steel whose balance consists of Fe and unavoidable impurities.
請求項1に記載の化学成分に加えて、質量%でNi:0.01〜2.99%を含有し、さらに残部がFeと不可避的不純物からなる金型用鋼。 A mold steel containing Ni: 0.01 to 2.99% in mass% in addition to the chemical component according to claim 1, and the balance of which is Fe and unavoidable impurities. 請求項1又は2に記載の化学成分に加えて、質量%でN:0.001〜0.040%を含有し、さらに残部がFeと不可避的不純物からなる金型用鋼。 A mold steel containing N: 0.001 to 0.040% in mass% in addition to the chemical component according to claim 1 or 2, and the balance of which is Fe and unavoidable impurities. 請求項1から3のいずれか1項に記載の化学成分に加えて、質量%でAl:0.001〜0.300%を含有し、さらに残部がFeと不可避的不純物からなる金型用鋼。 In addition to the chemical component according to any one of claims 1 to 3, a mold steel containing Al: 0.001 to 0.300% in mass% and the balance being Fe and unavoidable impurities. .. 請求項1から4のいずれか1項に記載の鋼が、焼入れ焼戻しされた状態であることを特徴とする金型用鋼。 A steel for a mold, wherein the steel according to any one of claims 1 to 4 is in a state of being hardened and tempered. 請求項5の手段に記載の金型用鋼が、マルテンサイト単相組織であることを特徴とする金型用鋼。 The mold steel according to claim 5, wherein the mold steel has a martensite single-phase structure.
JP2019022999A 2019-02-12 2019-02-12 Mold steel having excellent thermal conductivity Pending JP2020132891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022999A JP2020132891A (en) 2019-02-12 2019-02-12 Mold steel having excellent thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022999A JP2020132891A (en) 2019-02-12 2019-02-12 Mold steel having excellent thermal conductivity

Publications (1)

Publication Number Publication Date
JP2020132891A true JP2020132891A (en) 2020-08-31

Family

ID=72262348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022999A Pending JP2020132891A (en) 2019-02-12 2019-02-12 Mold steel having excellent thermal conductivity

Country Status (1)

Country Link
JP (1) JP2020132891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017623A (en) * 2019-07-19 2021-02-15 山陽特殊製鋼株式会社 Tool steel for hot work, excellent in thermal conductivity
CN114318136A (en) * 2021-06-02 2022-04-12 中航上大高温合金材料股份有限公司 Manufacturing method of economical hot-work die steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148583A (en) * 1991-11-28 1993-06-15 Hitachi Metals Ltd Die material for forming shadow mask
JP2005527703A (en) * 2002-04-03 2005-09-15 アンドウステイール・フランス Large steel for producing injection molds for plastic materials or for manufacturing parts for metalworking
JP2009167435A (en) * 2008-01-10 2009-07-30 Kobe Steel Ltd Steel for cold-press die and die for cold-pressing
JP2009242820A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2011517729A (en) * 2008-03-18 2011-06-16 ウッデホルムス アーベー Steel, steel blank manufacturing method, and method of manufacturing this steel part
JP2013521411A (en) * 2010-03-08 2013-06-10 ビラレス メタルズ ソシエダッド アノニマ Tool steel for extrusion
KR20160041869A (en) * 2016-03-28 2016-04-18 두산중공업 주식회사 Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148583A (en) * 1991-11-28 1993-06-15 Hitachi Metals Ltd Die material for forming shadow mask
JP2005527703A (en) * 2002-04-03 2005-09-15 アンドウステイール・フランス Large steel for producing injection molds for plastic materials or for manufacturing parts for metalworking
JP2009167435A (en) * 2008-01-10 2009-07-30 Kobe Steel Ltd Steel for cold-press die and die for cold-pressing
JP2011517729A (en) * 2008-03-18 2011-06-16 ウッデホルムス アーベー Steel, steel blank manufacturing method, and method of manufacturing this steel part
JP2009242820A (en) * 2008-03-28 2009-10-22 Daido Steel Co Ltd Steel, steel for die and die using the same
JP2013521411A (en) * 2010-03-08 2013-06-10 ビラレス メタルズ ソシエダッド アノニマ Tool steel for extrusion
KR20160041869A (en) * 2016-03-28 2016-04-18 두산중공업 주식회사 Mold steel for die casting and hot stamping having the high thermal conductivity and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017623A (en) * 2019-07-19 2021-02-15 山陽特殊製鋼株式会社 Tool steel for hot work, excellent in thermal conductivity
CN114318136A (en) * 2021-06-02 2022-04-12 中航上大高温合金材料股份有限公司 Manufacturing method of economical hot-work die steel

Similar Documents

Publication Publication Date Title
JP4513608B2 (en) Hot-pressed steel sheet member and its manufacturing method
CA2969200C (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP5585623B2 (en) Hot-formed steel plate member and manufacturing method thereof
JP7083242B2 (en) Hot tool steel with excellent thermal conductivity
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
JP2007092155A (en) Wear resistant steel sheet having excellent low temperature toughness and its production method
JP2020070457A (en) Hot work tool steel having excellent thermal conductivity
JP5881276B2 (en) Hot tool steel with excellent toughness, short-time and long-term softening resistance
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP2020132891A (en) Mold steel having excellent thermal conductivity
JP6800532B2 (en) Hot tool steel with excellent thermal conductivity
CA3032083C (en) Seamless steel pipe and method for producing same
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JPH0353384B2 (en)
JP2021011618A (en) Hot work tool steel having excellent thermal conductivity
JP2005307242A (en) Prehardened steel for die casting mold
JP3566162B2 (en) Hot tool steel with excellent weldability
JP6956117B2 (en) Tool holder steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240109