JP6714334B2 - Hot work tool steel with excellent thermal conductivity and toughness - Google Patents

Hot work tool steel with excellent thermal conductivity and toughness Download PDF

Info

Publication number
JP6714334B2
JP6714334B2 JP2015186625A JP2015186625A JP6714334B2 JP 6714334 B2 JP6714334 B2 JP 6714334B2 JP 2015186625 A JP2015186625 A JP 2015186625A JP 2015186625 A JP2015186625 A JP 2015186625A JP 6714334 B2 JP6714334 B2 JP 6714334B2
Authority
JP
Japan
Prior art keywords
less
thermal conductivity
ceq
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015186625A
Other languages
Japanese (ja)
Other versions
JP2017061712A (en
Inventor
祐太 島村
祐太 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2015186625A priority Critical patent/JP6714334B2/en
Publication of JP2017061712A publication Critical patent/JP2017061712A/en
Application granted granted Critical
Publication of JP6714334B2 publication Critical patent/JP6714334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Description

本発明は、金型用鋼に関し、特にダイカストやホットスタンピングなどの、500℃以上の熱環境下で使用される、金型用鋼に関する。 TECHNICAL FIELD The present invention relates to a die steel, and more particularly to a die steel used in a thermal environment of 500° C. or higher, such as die casting and hot stamping.

近年、ダイカスト分野において、自動車の軽量化を目的としたアルミ部品の高強度化や、生産性向上を目的とした部品成型加工ピッチの短縮化から、ダイカスト金型への機械的および熱的負荷が増大している。その結果、金型には大割れやヒートチェックといった問題が生じやすくなっている。これらの問題に対応するため、金型材料には焼入れ性や靱性の優れる材料が求められている。また、前述した生産性向上を目的とした、生産サイクルのスピードの向上に対する、要求に応えるためには、材料の特性として高い熱伝導率が必要である。これらの点に着目した従来技術や類似技術として下記の特許文献に示す技術が挙げられるが、それぞれに問題がある。 In recent years, in the die-casting field, mechanical strength and thermal load on the die-casting die have been increased due to the higher strength of aluminum parts for the purpose of weight reduction of automobiles and the shortening of the part molding processing pitch for the purpose of improving productivity. It is increasing. As a result, the mold is prone to problems such as large cracks and heat checks. In order to cope with these problems, a die material that is excellent in hardenability and toughness is required. Further, in order to meet the demand for improving the speed of the production cycle for the purpose of improving the productivity described above, high thermal conductivity is required as a material property. As a conventional technique or a similar technique focusing on these points, there are techniques disclosed in the following patent documents, but each has its problems.

すなわち、従来の技術としては、高い機械的強度および耐摩耗性を有する鋼の偏析による粒界の不都合な影響を軽減する方法が提案されている(例えば、特許文献1参照。)。しかし、この提案の鋼の偏析による不都合な影響の軽減方法は炭化物形成に影響するNに関する限定が無いために、Nが過剰に添加された場合、マトリックス中にNが多く残存し、熱伝導性が低下する問題がある。 That is, as a conventional technique, there has been proposed a method for reducing the adverse effect of grain boundaries due to segregation of steel having high mechanical strength and wear resistance (see, for example, Patent Document 1). However, since the proposed method of reducing the adverse effect of segregation of steel has no limitation on N that affects carbide formation, when N is added in excess, a large amount of N remains in the matrix, resulting in thermal conductivity. There is a problem that

また、焼入性、熱伝導率および軟化抵抗の確保が可能な鋼、金型用鋼、およびこれを用いた金型に係る発明、特に大断面金型に適用しうる鋼、金型用鋼およびこれを用いた金型が提案されている(例えば、特許文献2参照。)。しかし、この提案の鋼はC−Ceqで示されるΔC値が本願の発明から外れるものであり、そのためにマトリックス中に残存する合金元素量が増加し、熱伝導性が低下する問題がある。 Further, steel capable of ensuring hardenability, thermal conductivity, and softening resistance, steel for molds, and inventions relating to molds using the same, particularly steels applicable to large-section molds, steels for molds And a mold using the same has been proposed (see, for example, Patent Document 2). However, this proposed steel has a problem that the ΔC value represented by C-Ceq deviates from the invention of the present application, so that the amount of alloying elements remaining in the matrix increases and the thermal conductivity decreases.

さらに、優れた熱拡散率、靱性および完全焼入性を有する熱間工具鋼で、高熱伝導率であり機械的耐久性、並びに室温および600℃を超える高温における降伏強さの高い鋼が提案されている(例えば、特許文献3参照。)。しかし、この提案の鋼の実施例に示されるMn量は、いずれも0.23%以下と少ないので、焼入れ性が不足し、靱性が低下する。 Furthermore, a hot work tool steel having excellent thermal diffusivity, toughness and complete hardenability, which has high thermal conductivity and mechanical durability, and high yield strength at room temperature and high temperatures of over 600° C. has been proposed. (See, for example, Patent Document 3). However, the Mn amounts shown in the examples of the proposed steels are as low as 0.23% or less, so that the hardenability is insufficient and the toughness is reduced.

同じく、優れた熱拡散率、硬度および耐摩耗性を有する熱間工具鋼が提案されている(例えば、特許文献4参照。)。しかし、この提案の鋼の実施例に示されるMn量は、いずれも0.6%以下と少ないので焼入れ性が不足し、靱性が低下する。 Similarly, a hot work tool steel having excellent thermal diffusivity, hardness and wear resistance has been proposed (see, for example, Patent Document 4). However, since the Mn amounts shown in the examples of the proposed steels are as low as 0.6% or less, the hardenability is insufficient and the toughness is reduced.

特表2007−538154号公報Japanese Patent Publication No. 2007-538154 特開2009−242820号公報JP, 2009-242820, A 特表2012−522886号公報Special table 2012-522886 gazette 特表2014−508218号公報Japanese Patent Publication No. 2014-508218

本願の発明が解決しようとする課題は、上記した先行技術である特許文献で提案された鋼よりも、より高いレベルの靱性や熱伝導率を兼ね備えた、ダイカストやホットスタンピングなどに適用可能な金型用鋼を提供することである。 The problem to be solved by the invention of the present application is that it has a higher level of toughness and thermal conductivity than the steel proposed in the patent document that is the above-mentioned prior art, and is applicable to die casting and hot stamping. It is to provide mold steel.

本願の上記の課題を解決するための手段で、第1の手段は、質量%で、C:0.20〜0.60%、Si:0.03〜0.50%未満、Mn:0.60超〜1.50%未満、Cr:0.21〜4.00%未満、Mo:0.5〜5.0%、2Mo+W:3.0〜13.0%未満、N:0.010〜0.030%未満を含有し、さらに、任意的成分として、W:4.0%未満、V:1.00%未満、Nb:1.0%未満を任意に含有し、残部Feおよび不可避的不純物からなり、かつ、Ceq:0.20%以上、ΔC=C−Ceqとするとき、ΔC:−0.300〜0.300%であり、B値:0.74〜0.94であることを特徴とする優れた熱伝導率および靱性を有する熱間工具鋼である。
ただし、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nbであり、この場合の%元素は各元素の質量%を示し、ΔC=C−CeqにおけるCは質量%であり、さらに、Ceqは、主に添加した各元素が全て炭化物となる場合に必要なC量の目安として用いられている炭素当量であり、そこでΔCは、鋼中のCと各炭化物形成元素量との関係から、熱伝導性の向上において重要な固溶元素量について考慮した指標である。さらに、B値=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceqであり、この場合の%元素は各元素の質量%を示す。
Means for solving the above problems of the present application, the first means, in mass%, C: 0.20 to 0.60%, Si: 0.03 to less than 0.50%, Mn: 0. More than 60 to less than 1.50%, Cr: 0.21 to less than 4.00%, Mo: 0.5 to 5.0%, 2Mo+W: 3.0 to less than 13.0%, N: 0.010 to Containing less than 0.030% , optionally containing W: less than 4.0%, V: less than 1.00%, Nb: less than 1.0% as optional components, balance Fe and unavoidable When it is made of impurities and Ceq: 0.20% or more and ΔC=C−Ceq, ΔC: −0.300 to 0.300% and B value: 0.74 to 0.94. Is a hot work tool steel having excellent thermal conductivity and toughness.
However, Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb, where the% element represents the mass% of each element, and ΔC=C -Ceq in Ceq is mass %, and further, Ceq is a carbon equivalent mainly used as a standard for the amount of C necessary when all the added elements become carbides, where ΔC is in the steel. From the relationship between C and the amount of each carbide forming element, it is an index considering the amount of solid solution element which is important in improving the thermal conductivity. Further, B value=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceq, and the% element in this case indicates the mass% of each element.

第2の手段は、第1の手段の元素に加えて、質量%で、Ni:2.0%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、Ceq:0.20%以上、ΔC=C−Ceqとするとき、ΔC:−0.300〜0.300%であり、B値:0.74〜0.94であることを特徴とする優れた熱伝導率および靱性を有する熱間工具鋼である。
ただし、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nbであり、この場合の%元素は各元素の質量%を示し、ΔC=C−CeqにおけるCは質量%であり、さらに、Ceqは、主に添加した各元素が全て炭化物となる場合に必要なC量の目安として用いられており、そこでΔCは、鋼中のCと各炭化物形成元素量との関係から、熱伝導性の向上において重要な固溶元素量について考慮した指標である。さらに、B値=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceqであり、この場合の%元素は各元素の質量%を示す。
A second means is, in addition to the element of the first means, in mass%, containing Ni: 2.0% or less, consisting of balance Fe and unavoidable impurities, and Ceq: 0.20% or more, When ΔC=C−Ceq, ΔC: −0.300 to 0.300% and B value: 0.74 to 0.94, heat having excellent thermal conductivity and toughness. Tool steel.
However, Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb, where the% element represents the mass% of each element, and ΔC=C C in -Ceq is% by mass, and Ceq is mainly used as a standard for the amount of C necessary when all the added elements become carbides, where ΔC is the same as C in steel. This is an index considering the amount of solid solution element which is important in improving the thermal conductivity in relation to the amount of carbide forming elements. Further, B value=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceq, and the% element in this case indicates the mass% of each element.

第1の手段および第2の手段において、高い熱伝導率を得るためには、高い焼戻し軟化抵抗性が必要である。すなわち、比較的に高い焼戻し温度を適用することによって、鋼中の炭化物形成元素を炭化物として析出させることで、基地組織中に固溶し熱伝導率を低下させる元素を減少させ、熱伝導率を上昇させる。高い焼戻し軟化抵抗性を得るためには、MoやWの元素の添加、およびこれらの元素に続いてVやNbの元素の添加が有効である。一方で、これらの元素のみを添加した場合、焼入れ性が不足し、十分な硬度が得られ難くなるばかりでなく、焼入れ時にベイナイトなどの組織が生成し、靱性が低くなる可能性がある。一方、靱性の向上には、Crなどの焼入れ性向上効果が比較的大きい元素の添加が有効である。このような状況の下で、B値は熱伝導率と靱性とを兼備するために、添加する炭化物形成元素のバランスについて考慮した式の値である。 In the first means and the second means, high temper softening resistance is required to obtain high thermal conductivity. That is, by applying a relatively high tempering temperature, by precipitating the carbide forming elements in the steel as carbides, the elements that form a solid solution in the matrix structure and reduce the thermal conductivity are reduced, and the thermal conductivity is reduced. To raise. In order to obtain high temper softening resistance, it is effective to add elements such as Mo and W, and subsequently add elements such as V and Nb. On the other hand, when only these elements are added, not only the hardenability becomes insufficient and it becomes difficult to obtain sufficient hardness, but also a structure such as bainite is generated during the quenching, which may result in a low toughness. On the other hand, in order to improve the toughness, it is effective to add an element such as Cr having a relatively large effect of improving the hardenability. Under such a circumstance, the B value is a value of an equation considering the balance of the carbide forming elements to be added in order to have both thermal conductivity and toughness.

本願の第1の手段および第2の手段の発明とすることで、従来の熱間工具鋼に比して靱性を示す衝撃値が高く、かつ熱伝導率が高いので、ダイカストやホットスタンピングなどに適用可能な金型用鋼を得ることができる。 By adopting the invention of the first means and the second means of the present application, since the impact value showing the toughness is high and the thermal conductivity is high as compared with the conventional hot work tool steel, it is suitable for die casting and hot stamping. Applicable mold steel can be obtained.

本発明の実施の形態について記載するに先立って、本願の請求項に係る発明の熱間工具鋼の構成要素の各成分元素およびそれらの条件などの限定理由について説明する。なお、各成分元素における%は、質量%である。 Before describing the embodiments of the present invention, the reasons for limiting each constituent element of the constituent elements of the hot work tool steel of the invention according to the claims of the present application and the conditions thereof will be described. In addition,% in each component element is mass %.

C:0.20〜0.60%
Cは、焼入れ性や焼入れ焼戻し硬さを十分に確保し、炭化物を形成することで耐摩耗性や高温強度を得るための元素である。Cが0.20%より少ないと、熱間工具鋼の硬さ、高温強度、耐摩耗性が十分に得られない。一方、Cが0.60%より多いと、熱間工具鋼中の成分および炭化物の偏析を助長し、靱性を低下させる。また、熱間工具鋼の固溶C量が増加して熱伝導性を低下させる。そこで、Cは0.20〜0.60%とする。
C: 0.20 to 0.60%
C is an element for ensuring sufficient hardenability and quenching and tempering hardness and forming carbide to obtain wear resistance and high temperature strength. When C is less than 0.20%, the hardness, high temperature strength and wear resistance of the hot work tool steel cannot be sufficiently obtained. On the other hand, when C is more than 0.60%, segregation of components and carbides in the hot work tool steel is promoted and toughness is reduced. In addition, the amount of solute C in the hot work tool steel increases, which lowers the thermal conductivity. Therefore, C is set to 0.20 to 0.60%.

Si:0.50%未満
Siは、焼入れ性および硬さの向上に寄与する元素である。しかし、Siが0.50%以上に多いと、熱伝導性を大きく低下させることから、できるだけ低めが望ましい。そこで、Siは0.50%未満とする。
Si: less than 0.50% Si is an element that contributes to the improvement of hardenability and hardness. However, if the Si content is more than 0.50%, the thermal conductivity is greatly reduced. Therefore, Si is set to less than 0.50%.

Mn:0.60超〜1.50%未満
Mnは、0.60%以下では焼入れ性が低くなり、焼入れ時にベイナイトなどの異常組織が形成されて、靱性を低下する。一方、Mnが1.50%以上に含有されると、熱間工具鋼のマトリックスを脆化させ靱性および熱間加工性を低下させる。そこで、Mnは0.60超〜1.50%未満とする。
Mn: more than 0.60 and less than 1.50% Mn has a hardenability of less than 0.60%, and an abnormal structure such as bainite is formed during quenching, which lowers toughness. On the other hand, when Mn is contained at 1.50% or more, the matrix of the hot work tool steel is embrittled and toughness and hot workability are deteriorated. Therefore, Mn is set to more than 0.60 and less than 1.50%.

Cr:4.00%未満
Crは、焼入れ性を改善する元素である。しかし、Crが4.00%以上と多く含有されると、Cr系炭化物の凝集および粗大化を助長し、靱性、高温強度および軟化抵抗性を低下させる。Crが4.00%以上に含有されると、焼戻しによる2次硬化のピークがより低温側へと移行し、焼戻し後のマトリックスに、より多くの合金元素が残存し、熱伝導性を低下させる。
Cr: less than 4.00% Cr is an element that improves hardenability. However, if Cr is contained in a large amount of 4.00% or more, it promotes the agglomeration and coarsening of Cr-based carbides and reduces the toughness, high temperature strength and softening resistance. When Cr is contained in 4.00% or more, the peak of secondary hardening due to tempering shifts to a lower temperature side, more alloy elements remain in the matrix after tempering, and the thermal conductivity is lowered. ..

Mo:0.5〜5.0%
Moは、焼入れ性や焼戻し時の2次硬化、耐摩耗性、高温強度、および軟化抵抗性に寄与する元素である。また、Moは、より高い焼戻し温度で炭化物を形成しやすく、これが影響して2次硬化のピークを高温側へ移行させる元素である。そこで、高い熱伝導率を得るためには、高い焼戻し温度を適用することが望ましいが、Moが0.5%未満では高い熱伝導率は得られない。そこで、Moは0.5%以上とする必要がある。しかし、Moが5.0%より多すぎると、マトリックスに残存するMoが増加して熱伝導性を低下させる。また、Moは炭化物の凝集・粗大化を助長し、靱性を低下させる。また、Moは高価な元素であるのでコスト高になる。そこで、Moは0.5〜5.0%とする。
Mo: 0.5-5.0%
Mo is an element that contributes to hardenability, secondary hardening during tempering, wear resistance, high temperature strength, and softening resistance. In addition, Mo is an element that easily forms carbides at a higher tempering temperature, which influences and shifts the peak of secondary hardening to the high temperature side. Therefore, in order to obtain high thermal conductivity, it is desirable to apply a high tempering temperature, but if Mo is less than 0.5%, high thermal conductivity cannot be obtained. Therefore, Mo needs to be 0.5% or more. However, if the Mo content is more than 5.0%, the amount of Mo remaining in the matrix increases and the thermal conductivity decreases. Further, Mo promotes the agglomeration/coarsening of carbides and reduces the toughness. Moreover, since Mo is an expensive element, the cost becomes high. Therefore, Mo is set to 0.5 to 5.0%.

W:4.0%以下
Wは、Moと同様に、焼入れ性や焼戻し時の2次硬化、耐摩耗性、高温強度、および軟化抵抗性に寄与する元素であり、また、より高い焼戻し温度で炭化物を形成しやすく、これが影響して2次硬化のピークを高温側へ移行させる元素であるため、必要に応じて添加できる。そこで、高い熱伝導率を得るためには、高い焼戻し温度を適用することが望ましいが、Wが4.0%より多いと、マトリックスに残存するWが増加して熱伝導性を低下させる。Wは炭化物の凝集・粗大化を助長し、靱性を低下させる。また、Wは高価な元素であるのでコスト高になる。そこで、Wは4.0%以下とする。
W: 4.0% or less W, like Mo, is an element that contributes to hardenability and secondary hardening during tempering, wear resistance, high temperature strength, and softening resistance, and at a higher tempering temperature. Since it is an element that easily forms a carbide, which influences the peak of the secondary hardening to the high temperature side, it can be added if necessary. Therefore, in order to obtain a high thermal conductivity, it is desirable to apply a high tempering temperature, but if W is more than 4.0%, W remaining in the matrix increases and the thermal conductivity decreases. W promotes agglomeration/coarsening of carbides and reduces toughness. In addition, W is an expensive element, so the cost becomes high. Therefore, W is set to 4.0% or less.

2Mo+W:3.0〜13.0%未満(ただし、上記のMo:0.5〜5.0%、かつ、W:4.0%未満の範囲内である。)
MoとWは、上記したように、焼入れ性や焼戻し時の2次硬化、耐摩耗性、高温強度、軟化抵抗性に寄与する元素である。また、MoとWは、より高い焼戻し温度で炭化物を形成しやすく、これが影響して2次硬化のピークを高温側へ移行させる元素である。ところで、MoとWは高い熱伝導率を得るために高い焼戻し温度が適用できることが望ましい。しかし、上記したMo:0.5〜5.0%、かつ、W:4.0%未満の範囲内で、2Mo+Wが、3.0%より少ないと、上記した2次硬化が得られない。一方、2Mo+Wが13.0%以上であると、熱間工具鋼のマトリックスに残存するMoやWが増加し、熱伝導性を低下させる。また、2Mo+Wが13.0%以上であると、MoやW系の炭化物の凝集および粗大化を助長し、靱性を低下させる上に、高価な元素であるのでコスト高になる。特にMoはWと同等の効果を得るためには、上記のようにMoはWの2倍の量の添加が必要である。したがって、2Mo+Wは3.0〜13.0%未満(ただし、Moは0.5〜5.0%、かつ、Wは4.0%未満の範囲内)とする。
2Mo+W: 3.0 to less than 13.0% (however, the above Mo: 0.5 to 5.0% and W: less than 4.0%).
As described above, Mo and W are elements that contribute to hardenability, secondary hardening during tempering, wear resistance, high temperature strength, and softening resistance. Further, Mo and W are elements that easily form carbides at a higher tempering temperature, which influences and shifts the peak of secondary hardening to the high temperature side. By the way, it is desirable that Mo and W can be applied with a high tempering temperature in order to obtain high thermal conductivity. However, if 2Mo+W is less than 3.0% within the range of Mo: 0.5 to 5.0% and W: less than 4.0%, the above-described secondary curing cannot be obtained. On the other hand, when 2Mo+W is 13.0% or more, Mo and W remaining in the matrix of the hot work tool steel increase, and the thermal conductivity decreases. Further, when 2Mo+W is 13.0% or more, it promotes agglomeration and coarsening of Mo and W-based carbides, lowers toughness, and is expensive because it is an expensive element. In particular, in order to obtain the same effect as W with Mo, it is necessary to add Mo in an amount twice as much as W as described above. Therefore, 2Mo+W is 3.0 to less than 13.0% (however, Mo is in the range of 0.5 to 5.0% and W is less than 4.0%).

V:1.00%未満
Vは、焼戻し時に微細で硬質なMC型炭窒化物を析出し、高温強度や耐摩耗性に寄与する元素であるため、必要に応じて添加できる。また、Vの炭窒化物は、焼入れ時には全量溶解せずに、一部は未固溶であるため、これらの炭窒化物が結晶粒の粗大化を抑制して、靱性の低下を抑制する。一方、Vは1.00%以上に含有させると、熱間工具鋼のマトリックスに残存するVが増加し、熱伝導性を低下させる。また、V系炭化物の凝集および粗大化を助長し、靱性を低下させる。また、Vは1.00%以上含有させるとコスト高となる。
V: less than 1.00% V is an element that precipitates fine and hard MC-type carbonitrides during tempering and contributes to high temperature strength and wear resistance, so V can be added as necessary. Further, the carbonitrides of V do not completely dissolve at the time of quenching, but a part thereof does not dissolve. Therefore, these carbonitrides suppress coarsening of crystal grains and suppress deterioration of toughness. On the other hand, when V is contained in an amount of 1.00% or more, the V remaining in the matrix of the hot work tool steel increases and the thermal conductivity decreases. In addition, it promotes the agglomeration and coarsening of the V-based carbides and reduces the toughness. Further, if V is contained in an amount of 1.00% or more, the cost becomes high.

Nb:1.0%未満
Nbは、Vと同様の効果を有する元素である。すなわち、Nbは、焼戻し時に微細で硬質なMC型炭窒化物を析出し、高温強度や耐摩耗性に寄与する元素であるため、必要に応じて添加できる。また、Nbの炭窒化物は、焼入れ時には全量溶解せずに、一部は未固溶であるため、これらの炭窒化物が結晶粒の粗大化を抑制して、靱性の低下を抑制する。一方、Nbは1.0%以上に含有させると、熱間工具鋼のマトリックスに残存するNbが増加し、熱伝導性を低下させる。また、Nb系炭化物の凝集および粗大化を助長し、靱性を低下させる。また、Nbは1.0%以上含有させるとコスト高となる。
Nb: less than 1.0% Nb is an element having the same effect as V. That is, Nb is an element that precipitates fine and hard MC-type carbonitrides during tempering and contributes to high-temperature strength and wear resistance, so Nb can be added as necessary. Further, the carbonitride of Nb is not completely dissolved at the time of quenching, and a part thereof is not solid-solved. Therefore, these carbonitrides suppress coarsening of crystal grains and suppress deterioration of toughness. On the other hand, when Nb is contained in an amount of 1.0% or more, the amount of Nb remaining in the matrix of the hot work tool steel increases and the thermal conductivity decreases. In addition, it promotes aggregation and coarsening of Nb-based carbides and reduces toughness. Further, if Nb is contained in an amount of 1.0% or more, the cost becomes high.

N:0.030%未満
Nは、Cと同様の効果が得られる元素である。しかし、Nが0.030%以上に過剰添加されると熱間工具鋼のマトリックス中のN量が増加し、該鋼の熱伝導性を低下させる。そこで、Nは0.030%未満とする。
N: less than 0.030% N is an element that achieves the same effect as C. However, if N is added in excess of 0.030% or more, the amount of N in the matrix of the hot work tool steel increases, and the thermal conductivity of the steel decreases. Therefore, N is set to less than 0.030%.

Ceq:0.20%以上
Ceqは、焼戻し軟化抵抗性を得るために十分な元素量を確保するために0.20以上を必要とする炭素当量であり、そこで、Ceqは0.20%以上とする。本発明において、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nbである。すなわち、Ceqは、この式中の%元素で示す元素が全て炭化物となる場合に必要な炭素当量の目安を示している。
Ceq: 0.20% or more Ceq is a carbon equivalent that requires 0.20 or more in order to secure a sufficient amount of elements to obtain temper softening resistance, where Ceq is 0.20% or more. To do. In the present invention, Ceq=0.06*%Cr+0.063*%Mo+0.033*%W+0.2*%V+0.1*%Nb. That is, Ceq indicates the standard of carbon equivalent required when all the elements indicated by% element in this formula become carbides.

ΔC=(C−Ceq):−0.300〜0.300%、望ましくは−0.100〜0.200%
ΔCは、−0.300%未満であると十分な焼入れ焼戻し硬さを得にくくなるばかりでなく、熱間工具鋼のマトリックスに残存する合金元素量が増加し、熱伝導性を低下させる。また、合金成分の偏析を助長し、靱性を低下させる。一方、ΔCは0.300%を超えると、熱間工具鋼のマトリックス中に過剰なCやNが残存し、熱伝導性を低下させる。また、CやNの偏析や炭化物偏析を助長し、靱性を低下させる。そこで、ΔC=(C−Ceq):−0.300〜0.300%、望ましくは−0.100〜0.200%とする。なお、ΔC=(C−Ceq)のCは質量%である。
ΔC=(C−Ceq): −0.300 to 0.300%, preferably −0.100 to 0.200%
If ΔC is less than -0.300%, not only it becomes difficult to obtain sufficient quenching and tempering hardness, but also the amount of alloying elements remaining in the matrix of the hot work tool steel increases and the thermal conductivity decreases. Further, it promotes segregation of alloy components and reduces toughness. On the other hand, when ΔC exceeds 0.300%, excessive C and N remain in the matrix of the hot work tool steel, which lowers the thermal conductivity. Further, it promotes segregation of C and N and segregation of carbides, and reduces toughness. Therefore, ΔC=(C−Ceq): −0.300 to 0.300%, preferably −0.100 to 0.200%. In addition, C of (DELTA)C=(C-Ceq) is mass %.

B値:0.74〜0.94
B値は、0.74より低すぎる(すなわちCeqの式からCr添加量の割合が大きい)と、高い焼戻し軟化抵抗性が得られず、すなわち高い焼戻し温度を適用することができずに、熱間工具鋼のマトリックス中に残存する合金元素の量が増加し、熱伝導性が低下する。一方、B値が0.94より高すぎると、焼入れ性が不足して、靱性を低下させる。なお、B値=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceqである。ここで%元素は各元素の質量%を示す。ところで、高い熱伝導率を得るためには、高い焼戻し軟化抵抗性が必要である。すなわち、比較的高い焼戻し温度を適用することによって、鋼中の炭化物形成元素を炭化物として析出させることで基地組織中に固溶し熱伝導率を低下させる元素を減少させ、熱伝導率を上昇させる。高い軟化抵抗性を得るためには、MoやWなどの元素、続いてVやNbの元素の添加が有効である。一方で、これらの元素のみを添加した場合、焼入れ性が不足し、十分な硬度が得られ難くなるばかりでなく、焼入れ時にベイナイトなどの組織が生成し、靱性が低くなる可能性がある。靱性の向上には、Crなどの焼入れ性向上効果が比較的大きい元素の添加が有効である。以上より解るように、B値の式は、熱伝導率と靱性とを兼備するために、添加する炭化物形成元素のバランスについて考慮した式である。
B value: 0.74 to 0.94
If the B value is lower than 0.74 (that is, the proportion of Cr added is large from the Ceq equation), high temper softening resistance cannot be obtained, that is, high tempering temperature cannot be applied, and heat The amount of alloying elements remaining in the matrix of the intermediate tool steel increases and the thermal conductivity decreases. On the other hand, when the B value is higher than 0.94, the hardenability is insufficient and the toughness is reduced. Note that B value=(0.063×% Mo+0.033×% W+0.2×% V+0.1×% Nb)/Ceq. Here,% element indicates mass% of each element. By the way, in order to obtain high thermal conductivity, high temper softening resistance is required. That is, by applying a relatively high tempering temperature, the elements that form a solid solution in the matrix structure and reduce the thermal conductivity by precipitating the carbide forming elements in the steel as carbides, and increase the thermal conductivity .. In order to obtain high softening resistance, it is effective to add elements such as Mo and W, and subsequently elements such as V and Nb. On the other hand, when only these elements are added, not only the hardenability becomes insufficient and it becomes difficult to obtain sufficient hardness, but also a structure such as bainite is generated during the quenching, which may result in a low toughness. To improve the toughness, it is effective to add an element such as Cr having a relatively large effect of improving the hardenability. As can be seen from the above, the formula for the B value is a formula that considers the balance of the carbide-forming elements to be added in order to have both thermal conductivity and toughness.

Ni:2.0%以下
Niは、本願の請求項2に係る発明において、焼入れ性の向上に必要な元素である。しかし、Niが2.0%より多いと、高価な元素であるのでコスト高となる。そこで、Niは2.0%以下とする。
Ni: 2.0% or less Ni is an element necessary for improving hardenability in the invention according to claim 2 of the present application. However, when Ni is more than 2.0%, it is an expensive element and the cost becomes high. Therefore, Ni is set to 2.0% or less.

次いで、本願の発明を実施するための形態について説明する。表1には、本願のNo.AないしRの18種の実施例である発明鋼と13種の比較例である比較鋼について、それぞれに含有される各元素の化学成分量を質量%で示している。本願のこれら表1に示す実施例および比較例の各化学成分の残部はFeであり、表1には示していないが、これらの鋼は、表1に示す化学成分とその残部であるFeの他に不可避的不純物を含有している。さらに、表1には、2Mo+Wの質量%、Ceq、ΔC、B値を各実施例の発明鋼のNo.A〜Rの18種と、比較例である比較鋼の1〜13の13種についてそれぞれの値を示している。 Next, modes for carrying out the invention of the present application will be described. Table 1 shows No. 1 of the present application. With respect to the invention steels of 18 kinds of Examples A to R and the comparative steels of 13 kinds of Comparative Examples, the chemical composition of each element contained in each is shown in mass %. The balance of each chemical component of the examples and comparative examples shown in Table 1 of the present application is Fe, and although not shown in Table 1, these steels have the chemical components shown in Table 1 and the balance of Fe. In addition, it contains inevitable impurities. Further, in Table 1, the mass% of 2Mo+W, Ceq, ΔC, and B value are the No. of the invention steels of each example. The respective values are shown for 18 types of A to R and 13 types of comparative steels 1 to 13 which are comparative examples.

表1に示す化学成分および残部Feおよび不可避的不純物からなる実施例である発明鋼と比較例である溶鋼を溶製して、それぞれを2トンのインゴットに鋳込んだ後、熱間鍛造によって、鍛練成形比が凡そ4Sとなる断面積100mm×220mmのそれぞれのブロックに仕上げた。なお、表1の発明鋼のNo.A〜Pの16種は請求項1(第1の手段)に係る発明の実施例鋼で、表1の発明鋼のNo.Q〜Rの2種は化学成分としてNiを含有しているので請求項2(第2の手段)に係る発明の実施例の鋼である。同様に表1の比較鋼のNo.12は、本願の請求項2(第2の手段)に係る発明の比較例の鋼である。 The invention steels, which are the examples and the comparative examples, made of the chemical components and the balance Fe and inevitable impurities shown in Table 1, were melted, cast into 2 ton ingots, and then hot forged. Each block having a cross-sectional area of 100 mm×220 mm having a wrought forming ratio of about 4 S was finished. Note that the invention steel Nos. Sixteen kinds of A to P are example steels of the invention according to claim 1 (first means), and the invention steel Nos. Since two kinds of Q to R contain Ni as a chemical component, they are steels of the embodiment of the invention according to claim 2 (second means). Similarly, the comparative steel Nos. 12 is steel of a comparative example of the invention according to claim 2 (second means) of the present application.

Figure 0006714334
Figure 0006714334

上記で得られた、それぞれのブロック材から試験片を採取して、980〜1080℃で焼入れを行い、焼入れ後、520〜650℃で2回焼戻しを行った。すなわち表2に示される焼入れ温度と焼戻温度を表1に示される各鋼種の試験片の熱処理に適用した。 Test pieces were taken from each of the block materials obtained above, quenched at 980 to 1080° C., and after tempering, tempered twice at 520 to 650° C. That is, the quenching temperature and tempering temperature shown in Table 2 were applied to the heat treatment of the test pieces of each steel type shown in Table 1.

Figure 0006714334
Figure 0006714334

表2における靭性はシャルピー衝撃試験により評価を実施した。用いた試験片は、上記の鍛伸材であるブロック材の中心部の圧延方向から、試験片を採取した。これらの試験片を980〜1080℃で焼入れを行い、焼入れ後に520〜650℃で2回焼戻しを行って、45HRCに調質した後、2mmUノッチシャルピー試験片に仕上げ加工した。シャルピー衝撃試験における衝撃値が30J/cm2以上であれば靱性は◎とし、同試験における衝撃値が20J/cm2以上30J/cm2未満であれば靱性は○とし、同試験における衝撃値が20J/cm2よりも低ければ靱性は×として評価した。 The toughness in Table 2 was evaluated by the Charpy impact test. The test pieces used were taken from the rolling direction of the central portion of the block material, which was the above-mentioned forged material. These test pieces were hardened at 980 to 1080° C., tempered twice at 520 to 650° C. after hardening, tempered to 45 HRC, and finished into 2 mm U-notch Charpy test pieces. If the impact value in the Charpy impact test is 30 J/cm 2 or more, the toughness is ◎, and if the impact value in the test is 20 J/cm 2 or more and less than 30 J/cm 2 , the toughness is O, and the impact value in the same test is If it was lower than 20 J/cm 2, the toughness was evaluated as x.

熱伝導率の測定には、レーザフラッシュ法を用いた。径10mm×1mm厚の熱伝導率測定用試験片を上記のブロック材から採取して試験片に供した。これらの試験片を表2に示す焼入れ温度で焼入れし、次いで焼戻し温度とする熱処理を適用して、熱伝導率を測定した。測定した熱伝導率が、40W/m・K以上であれば◎とし、30W/m・K以上、40W/m・K未満であれば○とし、30W/m・Kよりも低ければ×として、表2に評価して示した。 The laser flash method was used to measure the thermal conductivity. A test piece for measuring thermal conductivity having a diameter of 10 mm×1 mm was sampled from the above block material and used as the test piece. These test pieces were quenched at the quenching temperature shown in Table 2 and then subjected to heat treatment at the tempering temperature to measure the thermal conductivity. If the measured thermal conductivity is 40 W/m·K or more, it is marked as ◎, if it is 30 W/m·K or more and less than 40 W/m·K, it is marked as ○, and if it is lower than 30 W/m·K, it is marked as ×. The results are shown in Table 2.

本願の請求項1に係る発明および請求項2に係る発明の発明鋼では、表2に示すように、シャルピー衝撃試験による評価である靱性がNo.A〜Rに示す発明鋼では、いずれも衝撃値が20J/cm2以上30J/cm2未満である○、または衝撃値が30J/cm2以上である◎であり、さらに、レーザフラッシュ法を用いて測定した熱伝導率は30W/m・K以上で40W/m・K未満の○、または40W/m・K以上の◎であって、いずれも優れた熱伝導率および靱性を有する熱間工具鋼である。 これに反し、本願の発明の比較鋼では、表2に示すように、シャルピー衝撃試験による評価である靱性がNo.1〜13に示す比較鋼では、No.1、No.2、No.4〜6、No.8〜11は衝撃値が20J/cm2よりも低く×であり、No.3、No.7、No.12〜13の4例のみが○である。またレーザフラッシュ法を用いて測定した熱伝導率はNo.1〜3、No.6〜8、No.12、No.13が30W/m・Kよりも低くさらにNo.4、No.5、No.9〜11が30W/m・K以上で40W/m・K未満の○であって、約69%のものが靱性が低くさらに62%のものが熱伝導率の低い鋼である。 In the invention steels according to claim 1 and claim 2 of the present application, as shown in Table 2, the toughness evaluated by the Charpy impact test is No. In each of the invention steels shown in A to R, the impact value is 20 J/cm 2 or more and less than 30 J/cm 2 , or the impact value is 30 J/cm 2 or more, and the laser flash method is used. The measured thermal conductivity is 30 W/m·K or more and is less than 40 W/m·K, or is 40 W/m·K or more, and both are hot tools having excellent thermal conductivity and toughness. It is steel. On the contrary, in the comparative steel of the invention of the present application, as shown in Table 2, the toughness evaluated by the Charpy impact test is No. In the comparative steels shown in 1 to 13, No. 1, No. 2, No. 4-6, No. The impact values of Nos. 8 to 11 were lower than 20 J/cm 2 and were ×, and No. 3, No. 7, No. Only 4 cases of 12 to 13 are ◯. The thermal conductivity measured using the laser flash method is No. 1-3, No. 6-8, No. 12, No. 13 is lower than 30 W/mK, and further No. 4, No. 5, No. 9 to 11 are ◯ of 30 W/m·K or more and less than 40 W/m·K, and about 69% is steel having low toughness and 62% is steel having low thermal conductivity.

Claims (1)

質量%で、C:0.20〜0.60%、Si:0.03〜0.50%未満、Mn:0.60超〜1.50%未満、Cr:0.21〜4.00%未満、Mo:0.5〜5.0%、2Mo+W:3.0〜13.0%未満、N:0.010〜0.030%未満を含有し、
さらに、任意的成分として、W:4.0%未満、V:1.00%未満、Nb:1.0%未満を任意に含有し、
残部Feおよび不可避的不純物からなり、Ceq:0.20%以上、ΔC=C−Ceqとするとき、ΔC:−0.300〜0.300%、B値:0.74〜0.94であることを特徴とする優れた熱伝導率および靱性を有する熱間工具鋼。
ただし、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb、この場合の%元素は各元素の質量%を示し、ΔC=C−CeqにおけるCは質量%、さらにCeqは、主に添加した各元素が全て炭化物となる場合に必要なC量の目安、そこでΔCは、鋼中のCと各炭化物形成元素量との関係から、熱伝導性の向上において重要な固溶元素量について考慮した指標で、B値=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceqで、この場合の%元素は各元素の質量%である。
% By mass, C: 0.20 to 0.60%, Si: 0.03 to less than 0.50%, Mn: more than 0.60 to less than 1.50%, Cr: 0.21 to 4.00% Less, Mo: 0.5 to 5.0%, 2Mo+W: 3.0 to less than 13.0%, N: 0.010 to less than 0.030%,
Further, as an optional component, W: less than 4.0%, V: less than 1.00%, Nb: less than 1.0% is optionally contained,
When the balance is Fe and unavoidable impurities and Ceq: 0.20% or more and ΔC=C−Ceq, ΔC: −0.300 to 0.300%, B value: 0.74 to 0.94. A hot work tool steel having excellent thermal conductivity and toughness characterized by:
However, Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb, in which the% element indicates the mass% of each element, and ΔC=C−Ceq C in% by mass, further Ceq is a standard for the amount of C mainly necessary when all the added elements become carbides, where ΔC is the heat amount from the relationship between C in steel and the amount of each carbide forming element. It is an index considering the amount of solid solution element which is important in improving conductivity, and B value=(0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb)/Ceq. The% element is the mass% of each element.
JP2015186625A 2015-09-24 2015-09-24 Hot work tool steel with excellent thermal conductivity and toughness Active JP6714334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186625A JP6714334B2 (en) 2015-09-24 2015-09-24 Hot work tool steel with excellent thermal conductivity and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186625A JP6714334B2 (en) 2015-09-24 2015-09-24 Hot work tool steel with excellent thermal conductivity and toughness

Publications (2)

Publication Number Publication Date
JP2017061712A JP2017061712A (en) 2017-03-30
JP6714334B2 true JP6714334B2 (en) 2020-06-24

Family

ID=58429913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186625A Active JP6714334B2 (en) 2015-09-24 2015-09-24 Hot work tool steel with excellent thermal conductivity and toughness

Country Status (1)

Country Link
JP (1) JP6714334B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6800532B2 (en) * 2017-01-24 2020-12-16 山陽特殊製鋼株式会社 Hot tool steel with excellent thermal conductivity
CN107400838A (en) * 2017-09-19 2017-11-28 安徽恒利增材制造科技有限公司 A kind of high-wearing feature hot die steel and preparation method thereof
WO2020231346A1 (en) 2019-05-10 2020-11-19 Sij Metal Ravne D.D. Bainitic hot work tool steel
CN110184540A (en) * 2019-06-06 2019-08-30 南通聚星铸锻有限公司 A kind of ESR ingot and its smelting process
CN110468345A (en) * 2019-08-29 2019-11-19 江苏大学 A kind of hot die steel of high abrasion
JP2021091954A (en) * 2019-12-03 2021-06-17 大同特殊鋼株式会社 Steel for mold and mold
US11535917B2 (en) * 2019-12-03 2022-12-27 Daido Steel Co., Ltd. Steel for mold, and mold
CN110983186A (en) * 2019-12-23 2020-04-10 镇江中森科技有限公司 High alloy tool steel, method for manufacturing same, and method for using same as cutting edge steel insert-joint slicing knife
CN113444967A (en) * 2021-05-25 2021-09-28 暨南大学 High-toughness high-wear-resistance alloy steel for shot blasting machine blade

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688163A (en) * 1991-11-05 1994-03-29 Sanyo Special Steel Co Ltd Hot tool steel
JP2834654B2 (en) * 1993-10-01 1998-12-09 山陽特殊製鋼株式会社 High toughness hot work tool steel
SE511758C2 (en) * 1998-03-27 1999-11-22 Uddeholm Tooling Ab Steel material for hot work tools
EP1887096A1 (en) * 2006-08-09 2008-02-13 Rovalma, S.A. Hot working steel
CN101476082B (en) * 2009-02-10 2010-06-23 机械科学研究总院先进制造技术研究中心 High performance low cost hot work die steel
ES2388481T5 (en) * 2009-04-01 2024-06-04 Rovalma Sa Hot work tool steel with outstanding toughness and thermal conductivity

Also Published As

Publication number Publication date
JP2017061712A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP7045315B2 (en) Hot tool steel
JP6032881B2 (en) Hot mold steel
JP5076683B2 (en) High toughness high speed tool steel
JP6925781B2 (en) Hot tool steel with excellent high temperature strength and toughness
JP7083242B2 (en) Hot tool steel with excellent thermal conductivity
JP2005206913A (en) Alloy tool steel
JP5988732B2 (en) Cold work tool steel with high hardness and toughness
JP5929963B2 (en) Hardening method of steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP6529234B2 (en) High speed tool steel with high toughness and softening resistance
JP2020070457A (en) Hot work tool steel having excellent thermal conductivity
JP5881276B2 (en) Hot tool steel with excellent toughness, short-time and long-term softening resistance
CN105177430A (en) Alloy tool steel and production method thereof
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP6800532B2 (en) Hot tool steel with excellent thermal conductivity
JP2018003146A (en) High hardness matrix high speed steel having excellent toughness and high temperature strength
JP2000226635A (en) Hot tool steel excellent in high temperature strength and toughness
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP2020132891A (en) Mold steel having excellent thermal conductivity
JP7149250B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP3566162B2 (en) Hot tool steel with excellent weldability
JP3612459B2 (en) Mold steel for small lot production
JP2021011618A (en) Hot work tool steel having excellent thermal conductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6714334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250