WO2016152967A1 - Sliding component and sliding structure - Google Patents

Sliding component and sliding structure Download PDF

Info

Publication number
WO2016152967A1
WO2016152967A1 PCT/JP2016/059355 JP2016059355W WO2016152967A1 WO 2016152967 A1 WO2016152967 A1 WO 2016152967A1 JP 2016059355 W JP2016059355 W JP 2016059355W WO 2016152967 A1 WO2016152967 A1 WO 2016152967A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
component
less
sliding component
present
Prior art date
Application number
PCT/JP2016/059355
Other languages
French (fr)
Japanese (ja)
Inventor
精心 上田
久保田 邦親
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP16768870.4A priority Critical patent/EP3276031A4/en
Priority to CN201680018301.4A priority patent/CN107429356B/en
Priority to KR1020177026781A priority patent/KR20170118904A/en
Priority to JP2017508417A priority patent/JP6424951B2/en
Publication of WO2016152967A1 publication Critical patent/WO2016152967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a sliding component used in various sliding environments such as an oil ring and a cam lobe incorporated in an internal combustion engine. Then, the present invention relates to a sliding structure such as an internal combustion engine configured by incorporating these sliding parts.
  • sliding parts constituting sliding structures such as oil rings, cam lobes, tappets, piston pins, cylinder liners, mission gears, thrust plates and vanes, which are constituent parts of internal combustion engines, are made of JIS steel as the material.
  • SUJ2 and SKD11 which have been used have been used.
  • SKD11 is a steel type that can achieve a high hardness of 60 HRC or higher by quenching and tempering, and also has abundant carbides in the structure, and therefore has excellent wear resistance.
  • die die which gave the sliding characteristic (self-lubrication characteristic) excellent in the raw material and improved abrasion resistance by improving the component composition of the raw material is proposed (patent document 1).
  • the press die disclosed in Patent Document 1 has excellent wear resistance due to its self-lubricating properties. However, it has not been considered to apply the material of the press die of Patent Document 1 to the components of the internal combustion engine.
  • An object of the present invention is to provide a sliding part having excellent wear resistance. And it is providing the sliding structure which comprised this sliding component.
  • the present invention in mass%, C: 0.7-1.6%, Si: 0.5-3.0%, Mn: 0.1-3.0%, P: 0.05% or less, S : 0.01 to 0.12%, Ni: 0.3 to 1.5%, Cr: 7.0 to 13.0%, one or two of Mo and W: (Mo + 1 / 2W)
  • Mo + 1 / 2W 0.5 to 1.7%
  • Al 0.10 to 0.70%
  • Nb 0 to 0.30 %
  • Remaining Fe and impurities and a hardness of 52 HRC or more and less than 58 HRC.
  • the present invention is configured such that the above-described sliding component of the present invention slides with the sliding surface of the mating component in an environment where lubricating oil is present on the sliding surface of the sliding component. It is a sliding structure characterized by these.
  • the wear resistance of the sliding part can be improved.
  • the sliding component of the present invention is, in mass%, C: 0.7 to 1.6%, Si: 0.5 to 3.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, S: 0.01 to 0.12%, Ni: 0.3 to 1.5%, Cr: 7.0 to 13.0%, one or two of Mo and W : 0.5 to 1.7% in the relational expression of (Mo + 1 / 2W), V: 0 to 0.70%, Cu: 0.1 to 1.0%, Al: 0.10 to 0.70%, Nb: 0 to 0.30%, balance Fe and impurity components.
  • the sliding component of the present invention is characterized by “co-addition of S and Cu” which greatly contributes to the expression of the self-lubricating property.
  • S and Cu are elements that are not actively added in most steel materials because they are elements that inhibit the hot workability of steel materials.
  • the effect of the component composition of the sliding component of the present invention will be described.
  • C 0.7 to 1.6% by mass (hereinafter simply referred to as “%”)
  • C is an element that dissolves in the base and imparts strength to the sliding component. Moreover, it is an element which forms carbide and enhances the wear resistance and seizure resistance of the sliding component.
  • C is set to 0.7 to 1.6%. Preferably it is 0.9% or more. Moreover, Preferably it is 1.3% or less. More preferably, the content is 1.1% or less.
  • Si is an element that improves the high-temperature softening characteristics of the sliding component.
  • Si is 0.5 to 3.0%.
  • it is 0.9% or more.
  • it is preferably 2.0% or less. More preferably, it is 1.5% or less. More preferably, it is 1.1% or less.
  • Mn is an element that enhances hardenability. However, if too much, the machinability deteriorates. Therefore, Mn is set to 0.1 to 3.0%. Preferably it is 0.3% or more. More preferably, it is 0.4% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.6% or less.
  • P is an element contained inevitably even if it does not usually add. And it is an element which inhibits the toughness of a sliding component. Therefore, it is made 0.05% or less. Preferably it is 0.03% or less. More preferably, the content is 0.02% or less.
  • ⁇ S: 0.01-0.12% S is an element that contributes to the improvement of the self-lubricating property of the sliding component of the present invention together with Cu described later.
  • This inventor investigated the phenomenon which has arisen on the sliding surface, when the sliding component which has the component composition of patent document 1 was used in the environment where lubricating oil intervened in the sliding surface. As a result, during this use, when the sliding surfaces of the sliding part and the mating part come into contact with each other at such a high surface pressure that the seizure occurs, organic components in the lubricating oil adsorbed on the sliding surface of the sliding part Has been dehydrogenated, and this has been found to change to substances such as diamond and graphite.
  • graphite intercalation compounds having a structure in which sulfate ions or sulfuric acid molecules are periodically sandwiched improve the self-lubricating properties of the sliding parts, so It was found that the friction coefficient can be kept low.
  • S in the sliding part is oxidized on the sliding surface in use to generate sulfate ions.
  • the generated sulfate ions are sandwiched between the graphite layers to promote the formation of the graphite intercalation compound.
  • the generated sulfate ions combine with the hydrogen ions generated by the dehydrogenation of the lubricating oil to form sulfuric acid molecules, which are sandwiched between the graphite layers to promote the formation of the graphite intercalation compounds. .
  • This increases the interplanar spacing of the graphite in the C-axis direction, suppresses the graphite from undergoing an allotropic transformation into diamond in a nano-level state, increases the degree of freedom of sliding, and improves the lubricity.
  • S is set to 0.01 to 0.12%. Preferably it is 0.03% or more. More preferably, it is 0.04% or more. More preferably, it is 0.05% or more. Moreover, Preferably it is 0.09% or less. More preferably, it is 0.08% or less.
  • Ni is an element that contributes to the maintenance of the hardness of the sliding component by binding to Al, which will be described later, in the quenching and tempering process, thereby precipitating a Ni—Al intermetallic compound.
  • Ni is set to 0.3 to 1.5%.
  • it is 0.4% or more.
  • it is preferably 1.0% or less. More preferably, it is 0.8% or less. More preferably, it is 0.6% or less.
  • Cr is an element that enhances the hardenability of the base. Moreover, it is an element which forms the above-mentioned C and a carbide
  • Mo and W are elements that form fine carbides in the structure after quenching and tempering and impart fatigue strength to the sliding component. However, if too much, machinability and toughness are reduced. Mo and W can be added alone or in combination. The addition amount at this time can be defined together by the relational expression of (Mo + 1 / 2W) since W is an atomic weight approximately twice that of Mo.
  • the value of (Mo + 1 / 2W) is 0.5 to 1.7%. Preferably it is 0.7% or more. More preferably, it is 0.9% or more. More preferably, it is 1.0% or more. Further, it is preferably 1.5% or less. More preferably, it is 1.3% or less. More preferably, it is 1.2% or less.
  • V can be contained for improving hardenability.
  • V forms hard VC carbide, the inclusion of excess V inhibits machinability. Therefore, in the present invention, even when V is contained, the content is made 0.70% or less.
  • it is 0.50% or less. More preferably, it is 0.30% or less. More preferably, it is 0.20% or less.
  • Cu 0.1 to 1.0%
  • Cu is an element that contributes to the improvement of the self-lubricating characteristics of the sliding component of the present invention. That is, Cu is an element that exhibits a catalytic action for producing the above-mentioned “graphite intercalation compound”. Cu can deposit a very small amount on the sliding surface of the sliding part after quenching and tempering. Then, Cu deposited on the sliding surface has a function of a catalyst that promotes the formation of the above-mentioned “graphite intercalation compound”. However, when Cu is contained excessively, red hot embrittlement of the material is caused and hot workability is deteriorated. Therefore, Cu is made 0.1 to 1.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. Further, it is preferably 0.8% or less. More preferably, it is 0.6% or less. More preferably, it is 0.5% or less.
  • Al is an element that combines with the above Ni to form a Ni—Al-based intermetallic compound and contributes to maintaining the hardness of the sliding component.
  • Al is made 0.10 to 0.70%.
  • it is 0.15% or more. More preferably, it is 0.25% or more.
  • it is 0.50% or less. More preferably, it is 0.45% or less.
  • Nb like V
  • Nb can be contained to improve hardenability.
  • excessive Nb content inhibits machinability. Therefore, in the present invention, even when Nb is contained, the content is made 0.30% or less. Preferably it is 0.20% or less. More preferably, it is 0.15% or less.
  • a preferable content for obtaining the above effect is 0.03% or more. More preferably, it is 0.05% or more. More preferably, it is 0.07% or more.
  • the self-lubricating property of the sliding component of the present invention is exhibited by utilizing the “deformation behavior due to friction” of the lubricating oil present on the sliding surface. Therefore, in order to develop the self-lubricating characteristics according to the present invention, it is only necessary to intervene with a counterpart component in use, for example, a hydrocarbon-based lubricating oil. Material) can be selected.
  • the sliding component of the present invention has a hardness of 52 HRC or more and less than 58 HRC.
  • the conventional sliding component has been adjusted to a hardness of 60 HRC or higher.
  • the sliding component of the present invention has higher fatigue strength than the conventional SKD11 due to the above-described component composition.
  • the value of the fatigue strength improves more notably by reducing the hardness of a sliding component moderately. That is, as shown in FIG. 1, the conventional SKD11 (x mark in FIG. 1) had a fatigue strength of about 560 MPa when adjusted to 60 HRC, which is the hardness of a general sliding component.
  • the fatigue strength value increases only to about 600 MPa even if the hardness is lowered.
  • the fatigue strength value shows a high fatigue strength of about 630 MPa when the hardness is lowered to 58 HRC. Thereafter, the high fatigue strength is maintained in a low hardness region.
  • the friction coefficient in use exhibited by the sliding component is effectively reduced as the fatigue strength value of the sliding component increases, and the present invention Lubricating characteristics are synergistically improved (see FIG. 3).
  • the present invention aims at a sliding component having a fatigue strength exceeding 600 MPa, which is difficult to achieve with the conventional SKD11.
  • the fatigue strength is preferably over 630 MPa.
  • the hardness of the sliding component of this invention shall be less than 58HRC as a range which can achieve this fatigue strength exceeding 600 MPa easily. Preferably it is 57 HRC or less.
  • the sliding component of the present invention when used, assuming that the hardness of the counterpart component is high, it is not a good idea to reduce the hardness of the sliding component of the present invention.
  • SUJ2 which is a bearing steel of the JIS steel type, is used as the mating part, the hardness is usually adjusted to 60 to 62 HRC, which is higher than the sliding part of the present invention.
  • SUJ2 is a “high carbon chrome bearing steel” standardized by JIS-G-4805, and its component composition is as follows in mass%. C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less, P: 0.025% or less, S: 0.025% or less, Cr: 1. 30 to 1.60%, remaining Fe and impurities
  • the sliding surface of the counterpart component slides with the sliding surface of the counterpart component in an “intermittent” contact mode such as rotation or reciprocation.
  • the applied Hertz stress increases.
  • this Hertz stress exceeds the fatigue strength of the sliding component, fine plastic deformation occurs on the sliding surface.
  • the sliding wear of the sliding parts is induced, the friction coefficient between the sliding surfaces is increased, and the self-lubricating property of the present invention is hindered. Therefore, the lower limit of the hardness of the sliding component of the present invention is 52 HRC. In this lower limit, it is preferably 53 HRC.
  • a metal material such as SUJ2 can be used as the material of the counterpart part, and a long-life sliding structure that achieves both suppression of seizure (adhesion) damage and improvement of fatigue life The body mechanism can be obtained.
  • Sample No. in Table 1 Respective sliding parts 1 and 2 having component compositions of 1 and 2 were prepared.
  • Sample No. 2 is SKD11.
  • each of the sliding parts 1 and 2 those in which the target hardness was adjusted to three types of A: 50 HRC, B: 55 HRC, and C: 60 HRC were prepared.
  • the actual hardness of each sliding component is 50.4 HRC for sliding component 1-A, 56.2 HRC for 1-B, 62.0 HRC for 1-C, 50.0 HRC for 2-A, 2-B was 55.8 HRC and 2-C was 61.0 HRC.
  • the sliding component 2-C made of SKD11 having a target hardness of 60 HRC corresponds to a conventional sliding component.
  • the fatigue strength of these sliding parts was measured. The fatigue strength was measured by processing each sliding part into a rotating bending fatigue test piece and performing an Ogoshi type rotating bending fatigue test on this.
  • the surface stress of the test piece was adjusted by adjusting the secondary moment of the cross section determined from the shape of the test piece and adjusting the weight of the weight suspended in the center of the parallel part of the test piece.
  • the stress amplitude was set so that the tensile stress and the compressive stress were equal in one rotation of the specimen (referred to as an amplitude ratio ⁇ 1).
  • the rotation speed of the test piece was 50 Hz (3,000 rpm).
  • rupture of a rotation bending fatigue test piece was made into fatigue strength. The results are shown in FIG.
  • the sliding components 2-A, 2-B, and 2-C which have component compositions that do not exhibit self-lubricating properties, have increased friction coefficients and measured friction coefficient values exceeding 0.30. .
  • seizure occurred before the sliding distance reached 100 m, and the friction coefficient rapidly increased.
  • sliding parts 1-A, 1-B, and 1-C which are component compositions that exhibit self-lubricating properties, did not cause seizure during a sliding distance of 100 m.
  • the sliding components 1-A and 1-B maintained the coefficient of friction therebetween being 0.30 or less.
  • the sliding component 1-B of the present invention in which the hardness is adjusted to “52 HRC or more and less than 58 HRC” synergistically improves the self-lubricating characteristics, The coefficient of friction was further reduced, and the value was 0.20 or less.
  • FIG. 3 shows the relationship between the fatigue strength of each sliding component and the sliding distance when the friction coefficient measured above reaches 0.20.
  • the value of the friction coefficient of “0.20” is an index of the friction coefficient when the sliding component exhibits a synergistic self-lubricating property under the test conditions of this example.
  • the sliding component 1-B of the present invention has a fatigue strength of over 600 MPa. Even when the sliding distance reached 100 m, a low coefficient of friction of 0.20 or less was maintained (in FIG. 3, for convenience, it is shown at the position “100 m”).
  • the sliding component 1-B of the present invention has improved self-lubricating properties (smaller friction coefficient) than the sliding components 1-A and 1-C, and the improved self-lubricating properties are: It was stably maintained over a long sliding distance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)
  • General Details Of Gearings (AREA)

Abstract

Provided is a sliding component which has excellent wear resistance. Also provided is a sliding structure which is provided with this sliding component. A sliding component which has a constituent composition containing, in mass%, 0.7-1.6% of C, 0.5-3.0% of Si, 0.1-3.0% of Mn, 0.05% or less of P, 0.01-0.12% of S, 0.3-1.5% of Ni, 7.0-13.0% of Cr, Mo and/or W in such amounts that (Mo + 1/2W) is 0.5-1.7%, 0-0.70% of V, 0.1-1.0% of Cu, 0.10-0.70% of Al and 0-0.30% of Nb, with the balance made up of Fe and impurities, and which has a hardness of 52 HRC or more but less than 58 HRC. A sliding structure which is configured such that the above-described sliding component is in sliding contact with a sliding surface of a counterpart component in an environment where a lubricant is present on a sliding surface of this sliding component.

Description

摺動部品および摺動構造体Sliding parts and sliding structures
 本発明は、例えば、内燃機関に組み込まれるオイルリングやカムローブ等の、各種摺動環境に用いられる摺動部品に関するものである。そして、これら摺動部品が組み込まれて構成される、内燃機関等の摺動構造体に関するものである。 The present invention relates to a sliding component used in various sliding environments such as an oil ring and a cam lobe incorporated in an internal combustion engine. Then, the present invention relates to a sliding structure such as an internal combustion engine configured by incorporating these sliding parts.
 従来、内燃機関の構成部品であるオイルリング、カムローブ、タペット、ピストンピン、シリンダライナー、ミッションギア、スラストプレートやベーン等の、摺動構造体を構成する摺動部品には、その素材としてJIS鋼種であるSUJ2やSKD11が用いられてきた。SKD11は、焼入れ焼戻しによって60HRC以上の高い硬さを達成でき、かつ、組織中の炭化物も豊富であることから、耐摩耗性に優れる鋼種である。そして、素材の成分組成を改良したことで、素材に優れた摺動特性(自己潤滑特性)を付与し、耐摩耗性を向上したプレス金型が提案されている(特許文献1)。 Conventionally, sliding parts constituting sliding structures such as oil rings, cam lobes, tappets, piston pins, cylinder liners, mission gears, thrust plates and vanes, which are constituent parts of internal combustion engines, are made of JIS steel as the material. SUJ2 and SKD11 which have been used have been used. SKD11 is a steel type that can achieve a high hardness of 60 HRC or higher by quenching and tempering, and also has abundant carbides in the structure, and therefore has excellent wear resistance. And the press metal mold | die which gave the sliding characteristic (self-lubrication characteristic) excellent in the raw material and improved abrasion resistance by improving the component composition of the raw material is proposed (patent document 1).
特開2007-002333号公報JP 2007-002333 A
 特許文献1のプレス金型は、その自己潤滑特性の発現によって、優れた耐摩耗性を有する。しかし、特許文献1のプレス金型の材料を、内燃機関の構成部品に適用することは、考えられていなかった。 The press die disclosed in Patent Document 1 has excellent wear resistance due to its self-lubricating properties. However, it has not been considered to apply the material of the press die of Patent Document 1 to the components of the internal combustion engine.
 本発明の目的は、耐摩耗性に優れた摺動部品を提供することである。そして、この摺動部品を具備した摺動構造体を提供することである。 An object of the present invention is to provide a sliding part having excellent wear resistance. And it is providing the sliding structure which comprised this sliding component.
 本発明は、質量%で、C:0.7~1.6%、Si:0.5~3.0%、Mn:0.1~3.0%、P:0.05%以下、S:0.01~0.12%、Ni:0.3~1.5%、Cr:7.0~13.0%、MoおよびWのうちの1種または2種:(Mo+1/2W)の関係式で0.5~1.7%、V:0~0.70%、Cu:0.1~1.0%、Al:0.10~0.70%、Nb:0~0.30%、残部Feおよび不純物の成分組成を有し、硬さが52HRC以上58HRC未満であることを特徴とする摺動部品である。 The present invention, in mass%, C: 0.7-1.6%, Si: 0.5-3.0%, Mn: 0.1-3.0%, P: 0.05% or less, S : 0.01 to 0.12%, Ni: 0.3 to 1.5%, Cr: 7.0 to 13.0%, one or two of Mo and W: (Mo + 1 / 2W) In the relational expression, 0.5 to 1.7%, V: 0 to 0.70%, Cu: 0.1 to 1.0%, Al: 0.10 to 0.70%, Nb: 0 to 0.30 %, Remaining Fe and impurities, and a hardness of 52 HRC or more and less than 58 HRC.
 また、本発明は、上記した本発明の摺動部品が、この摺動部品の摺動面に潤滑油が介在する環境下で、相手部品の摺動面と摺動するように構成されたことを特徴とする摺動構造体である。 Further, the present invention is configured such that the above-described sliding component of the present invention slides with the sliding surface of the mating component in an environment where lubricating oil is present on the sliding surface of the sliding component. It is a sliding structure characterized by these.
 本発明によれば、摺動部品の耐摩耗性を向上させることができる。 According to the present invention, the wear resistance of the sliding part can be improved.
本発明例および比較例の摺動部品の、硬さと疲労強度との関係の一例を示す図である。It is a figure which shows an example of the relationship between hardness and fatigue strength of the sliding component of the example of this invention and a comparative example. 本発明例および比較例の摺動部品の、ボールオンディスク試験で測定した摩擦係数の結果の一例を示す図である。It is a figure which shows an example of the result of the friction coefficient measured by the ball-on-disk test of the sliding parts of the example of the present invention and the comparative example. 本発明例および比較例の摺動部品の、疲労強度とボールオンディスク試験で測定した摩擦係数が0.20に到達したときの摺動距離との関係の一例を示す図である。It is a figure which shows an example of the relationship between the fatigue strength of the sliding parts of the example of this invention, and a sliding distance when the friction coefficient measured by the ball-on-disk test reaches 0.20.
 各種の摺動構造体を構成する多くの摺動部品は、オイルリングやカムローブといった内燃機関の構成部品に代表されるように、その摺動面に潤滑油が介在する環境下で、相手部品の摺動面と摺動して、使用されている。そして、この環境下で、本発明の摺動部品は、自己潤滑特性が効果的に発揮されて、摺動部品の耐摩耗性が向上することを突きとめた。以下、本発明の構成要件について、説明する。 Many of the sliding parts that make up various types of sliding structures, such as oil rings and cam lobes, are represented by components of internal combustion engines. Used by sliding with sliding surface. In this environment, the sliding component of the present invention has been found to exhibit self-lubricating properties effectively and improve the wear resistance of the sliding component. Hereinafter, the configuration requirements of the present invention will be described.
(1)本発明の摺動部品は、質量%で、C:0.7~1.6%、Si:0.5~3.0%、Mn:0.1~3.0%、P:0.05%以下、S:0.01~0.12%、Ni:0.3~1.5%、Cr:7.0~13.0%、MoおよびWのうちの1種または2種:(Mo+1/2W)の関係式で0.5~1.7%、V:0~0.70%、Cu:0.1~1.0%、Al:0.10~0.70%、Nb:0~0.30%、残部Feおよび不純物の成分組成を有する。
 上記の成分組成において、特に、本発明の摺動部品を特徴付けるのが、その自己潤滑特性の発現に大きく寄与する「SとCuとの共同添加」である。従来、SおよびCuは、鉄鋼材料の熱間加工性を阻害する元素であるとして、殆どの鉄鋼材料で積極的に添加されることのない元素であった。以下、本発明の摺動部品の成分組成について、その作用効果を説明する。
(1) The sliding component of the present invention is, in mass%, C: 0.7 to 1.6%, Si: 0.5 to 3.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, S: 0.01 to 0.12%, Ni: 0.3 to 1.5%, Cr: 7.0 to 13.0%, one or two of Mo and W : 0.5 to 1.7% in the relational expression of (Mo + 1 / 2W), V: 0 to 0.70%, Cu: 0.1 to 1.0%, Al: 0.10 to 0.70%, Nb: 0 to 0.30%, balance Fe and impurity components.
In the above component composition, particularly, the sliding component of the present invention is characterized by “co-addition of S and Cu” which greatly contributes to the expression of the self-lubricating property. Conventionally, S and Cu are elements that are not actively added in most steel materials because they are elements that inhibit the hot workability of steel materials. Hereinafter, the effect of the component composition of the sliding component of the present invention will be described.
・C:0.7~1.6質量%(以下、単に「%」と記す。)
 Cは、基地中に固溶して、摺動部品に強度を付与する元素である。また、炭化物を形成して、摺動部品の耐摩耗性や耐焼付き性を高める元素である。しかし、Cが多くなり過ぎると、基地に固溶するC量が増加して、摺動部品の形状に仕上げるときの被削性が劣化する。また、粗大な炭化物が生成されて、焼入れ時の熱処理変寸が大きくなる。よって、Cは、0.7~1.6%とする。好ましくは0.9%以上である。また、好ましくは1.3%以下とする。より好ましくは1.1%以下とする。
C: 0.7 to 1.6% by mass (hereinafter simply referred to as “%”)
C is an element that dissolves in the base and imparts strength to the sliding component. Moreover, it is an element which forms carbide and enhances the wear resistance and seizure resistance of the sliding component. However, when C increases excessively, the amount of C dissolved in the base increases, and the machinability when finishing into the shape of the sliding part deteriorates. Further, coarse carbides are generated, and the heat treatment size change during quenching is increased. Therefore, C is set to 0.7 to 1.6%. Preferably it is 0.9% or more. Moreover, Preferably it is 1.3% or less. More preferably, the content is 1.1% or less.
・Si:0.5~3.0%
 Siは、摺動部品の高温軟化特性を向上させる元素である。しかし、Siが多過ぎると、組織中のデルタフェライトの形成が顕著になり、摺動部品の硬さの維持を阻害する。よって、Siは、0.5~3.0%とする。好ましくは0.9%以上である。また、好ましくは2.0%以下である。より好ましくは1.5%以下である。さらに好ましくは1.1%以下である。
・ Si: 0.5-3.0%
Si is an element that improves the high-temperature softening characteristics of the sliding component. However, when there is too much Si, the formation of delta ferrite in the structure becomes remarkable, and the maintenance of the hardness of the sliding part is hindered. Therefore, Si is 0.5 to 3.0%. Preferably it is 0.9% or more. Moreover, it is preferably 2.0% or less. More preferably, it is 1.5% or less. More preferably, it is 1.1% or less.
・Mn:0.1~3.0%
 Mnは、焼入れ性を高める元素である。しかし、多過ぎると、被削性が劣化する。よって、Mnは、0.1~3.0%とする。好ましくは0.3%以上である。より好ましくは0.4%以上である。また、好ましくは1.0%以下である。より好ましくは0.6%以下である。
・ Mn: 0.1-3.0%
Mn is an element that enhances hardenability. However, if too much, the machinability deteriorates. Therefore, Mn is set to 0.1 to 3.0%. Preferably it is 0.3% or more. More preferably, it is 0.4% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.6% or less.
・P:0.05%以下
 Pは、通常、添加しなくても、不可避的に含有する元素である。そして、摺動部品の靱性を阻害する元素である。よって、0.05%以下とする。好ましくは0.03%以下とする。より好ましくは0.02%以下とする。
-P: 0.05% or less P is an element contained inevitably even if it does not usually add. And it is an element which inhibits the toughness of a sliding component. Therefore, it is made 0.05% or less. Preferably it is 0.03% or less. More preferably, the content is 0.02% or less.
・S:0.01~0.12%
 Sは、後述するCuと共に、本発明の摺動部品の自己潤滑特性の向上に寄与する元素である。本発明者は、特許文献1の成分組成を有する摺動部品を、その摺動面に潤滑油が介在した環境で使用したときに、摺動面に生じている現象を調査した。その結果、この使用中において、摺動部品と相手部品との摺動面どうしが焼付きを生じる程の高い面圧で接触すると、摺動部品の摺動面に吸着した潤滑油中の有機物成分が脱水素化されて、これがダイヤモンドやグラファイト等の物質に変化することを知見した。そして、これらダイヤモンドやグラファイト等の中でも、周期的に硫酸イオンまたは硫酸分子の挟み込まれた構成を有する「グラファイト層間化合物」は、摺動部品の自己潤滑特性を向上させて、お互いの摺動面間の摩擦係数を低く維持できることを見いだした。
・ S: 0.01-0.12%
S is an element that contributes to the improvement of the self-lubricating property of the sliding component of the present invention together with Cu described later. This inventor investigated the phenomenon which has arisen on the sliding surface, when the sliding component which has the component composition of patent document 1 was used in the environment where lubricating oil intervened in the sliding surface. As a result, during this use, when the sliding surfaces of the sliding part and the mating part come into contact with each other at such a high surface pressure that the seizure occurs, organic components in the lubricating oil adsorbed on the sliding surface of the sliding part Has been dehydrogenated, and this has been found to change to substances such as diamond and graphite. Among these diamonds and graphites, “graphite intercalation compounds” having a structure in which sulfate ions or sulfuric acid molecules are periodically sandwiched improve the self-lubricating properties of the sliding parts, so It was found that the friction coefficient can be kept low.
 そして、摺動部品中のSは、その使用中の摺動面において酸化され、硫酸イオンを生成する。そして、この生成された硫酸イオンが、グラファイト層間に挟み込まれて、上記のグラファイト層間化合物の形成を促す。または、この生成された硫酸イオンが、上記した潤滑油の脱水素化で生成された水素イオンと結合して、硫酸分子となり、これがグラファイト層間に挟み込まれて、上記のグラファイト層間化合物の形成を促す。これにより、グラファイトのC軸方向の面間隔が大きくなって、ナノレベルの状態でグラファイトがダイヤモンドに同素変態することを抑制し、すべりの自由度を高め潤滑性が向上する。しかし、摺動部品中のSが過剰になると、グラファイト層間に挟み込めない程の、過剰の硫酸イオンが摺動面に生成される。そして、この過剰の硫酸イオンが摺動面の損傷を助長して、自己潤滑特性の発現を阻害する。よって、Sは、0.01~0.12%とする。好ましくは0.03%以上である。より好ましくは0.04%以上である。さらに好ましくは0.05%以上である。また、好ましくは0.09%以下である。より好ましくは0.08%以下である。 Then, S in the sliding part is oxidized on the sliding surface in use to generate sulfate ions. The generated sulfate ions are sandwiched between the graphite layers to promote the formation of the graphite intercalation compound. Alternatively, the generated sulfate ions combine with the hydrogen ions generated by the dehydrogenation of the lubricating oil to form sulfuric acid molecules, which are sandwiched between the graphite layers to promote the formation of the graphite intercalation compounds. . This increases the interplanar spacing of the graphite in the C-axis direction, suppresses the graphite from undergoing an allotropic transformation into diamond in a nano-level state, increases the degree of freedom of sliding, and improves the lubricity. However, when S in the sliding component becomes excessive, excessive sulfate ions are generated on the sliding surface so as not to be sandwiched between the graphite layers. This excess sulfate ion promotes damage to the sliding surface and inhibits the expression of self-lubricating properties. Therefore, S is set to 0.01 to 0.12%. Preferably it is 0.03% or more. More preferably, it is 0.04% or more. More preferably, it is 0.05% or more. Moreover, Preferably it is 0.09% or less. More preferably, it is 0.08% or less.
・Ni:0.3~1.5%
 Niは、焼入れ焼戻し工程で、後述するAlと結合してNi-Al系金属間化合物を析出し、摺動部品の硬さの維持に寄与する元素である。しかし、Niが多過ぎると、焼入れ焼戻し前の焼鈍状態において、摺動部品の形状に加工するときの被削性が劣化する。よって、Niは、0.3~1.5%とする。好ましくは0.4%以上である。また、好ましくは1.0%以下である。より好ましくは0.8%以下である。さらに好ましくは0.6%以下である。
・ Ni: 0.3-1.5%
Ni is an element that contributes to the maintenance of the hardness of the sliding component by binding to Al, which will be described later, in the quenching and tempering process, thereby precipitating a Ni—Al intermetallic compound. However, if there is too much Ni, the machinability when processing into the shape of the sliding component in the annealed state before quenching and tempering deteriorates. Therefore, Ni is set to 0.3 to 1.5%. Preferably it is 0.4% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.8% or less. More preferably, it is 0.6% or less.
・Cr:7.0~13.0%
 Crは、基地の焼入れ性を高める元素である。また、上述のCと炭化物を形成して、摺動部品の耐摩耗性や耐焼付き性を高める元素である。しかし、炭化物の増加は、被削性を劣化させる。よって、Crは、7.0~13.0%とする。好ましくは7.5%以上である。より好ましくは8.0%以上である。また、好ましくは11.0%以下である。より好ましくは10.0%以下である。さらに好ましくは9.0%以下である。
・ Cr: 7.0 to 13.0%
Cr is an element that enhances the hardenability of the base. Moreover, it is an element which forms the above-mentioned C and a carbide | carbonized_material, and improves the abrasion resistance and seizure resistance of a sliding component. However, the increase in carbides deteriorates machinability. Therefore, Cr is set to 7.0 to 13.0%. Preferably it is 7.5% or more. More preferably, it is 8.0% or more. Moreover, it is preferably 11.0% or less. More preferably, it is 10.0% or less. More preferably, it is 9.0% or less.
・MoおよびWのうちの1種または2種:(Mo+1/2W)の関係式で0.5~1.7%
 MoおよびWは、焼入れ焼戻し後の組織中に微細な炭化物を形成して、摺動部品に疲労強度を付与する元素である。しかし、多過ぎると、被削性や靭性の低下を招く。MoおよびWは、単独または複合で添加できる。そして、この際の添加量は、WがMoの約2倍の原子量であることから、(Mo+1/2W)の関係式で一緒に規定できる。そして、本発明では、(Mo+1/2W)の値で0.5~1.7%とする。好ましくは0.7%以上である。より好ましくは0.9%以上である。さらに好ましくは1.0%以上である。また、好ましくは1.5%以下である。より好ましくは1.3%以下である。さらに好ましくは1.2%以下である。
・ One or two of Mo and W: 0.5 to 1.7% in the relational expression of (Mo + 1 / 2W)
Mo and W are elements that form fine carbides in the structure after quenching and tempering and impart fatigue strength to the sliding component. However, if too much, machinability and toughness are reduced. Mo and W can be added alone or in combination. The addition amount at this time can be defined together by the relational expression of (Mo + 1 / 2W) since W is an atomic weight approximately twice that of Mo. In the present invention, the value of (Mo + 1 / 2W) is 0.5 to 1.7%. Preferably it is 0.7% or more. More preferably, it is 0.9% or more. More preferably, it is 1.0% or more. Further, it is preferably 1.5% or less. More preferably, it is 1.3% or less. More preferably, it is 1.2% or less.
・V:0~0.70%
 Vは、焼入れ性の向上のために含有することができる。但し、Vは、硬質のVC炭化物を形成するため、過剰のVの含有は被削性を阻害する。よって、本発明では、Vを含有する場合でも、0.70%以下とする。好ましくは0.50%以下である。より好ましくは0.30%以下である。さらに好ましくは0.20%以下である。
・ V: 0 ~ 0.70%
V can be contained for improving hardenability. However, since V forms hard VC carbide, the inclusion of excess V inhibits machinability. Therefore, in the present invention, even when V is contained, the content is made 0.70% or less. Preferably it is 0.50% or less. More preferably, it is 0.30% or less. More preferably, it is 0.20% or less.
・Cu:0.1~1.0%
 Cuは、前述したSと共に、本発明の摺動部品の自己潤滑特性の向上に寄与する元素である。つまり、Cuは、上記の「グラファイト層間化合物」を生成するための触媒作用を示す元素である。Cuは、焼入れ焼戻し後の摺動部品において、その摺動面に極く微量を析出させることができる。そして、摺動面に析出したCuは、上述の「グラファイト層間化合物」の形成を促す触媒の機能を有する。しかし、Cuを過剰に含有すると、素材の赤熱脆化を招いて、熱間加工性が劣化する。よって、Cuは、0.1~1.0%とする。好ましくは0.2%以上である。より好ましくは0.3%以上である。また、好ましくは0.8%以下である。より好ましくは0.6%以下である。さらに好ましくは0.5%以下である。
Cu: 0.1 to 1.0%
Cu, together with S described above, is an element that contributes to the improvement of the self-lubricating characteristics of the sliding component of the present invention. That is, Cu is an element that exhibits a catalytic action for producing the above-mentioned “graphite intercalation compound”. Cu can deposit a very small amount on the sliding surface of the sliding part after quenching and tempering. Then, Cu deposited on the sliding surface has a function of a catalyst that promotes the formation of the above-mentioned “graphite intercalation compound”. However, when Cu is contained excessively, red hot embrittlement of the material is caused and hot workability is deteriorated. Therefore, Cu is made 0.1 to 1.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. Further, it is preferably 0.8% or less. More preferably, it is 0.6% or less. More preferably, it is 0.5% or less.
・Al:0.10~0.70%
 Alは、上記のNiと結合してNi―Al系金属間化合物を形成し、摺動部品の硬さの維持に寄与する元素である。しかし、Alが多過ぎると、組織中のデルタフェライトの形成が顕著になり、摺動部品の硬さの維持を阻害する。よって、Alは、0.10~0.70%とする。好ましくは0.15%以上とする。より好ましくは0.25%以上とする。また、好ましくは0.50%以下とする。より好ましくは0.45%以下である。
・ Al: 0.10 to 0.70%
Al is an element that combines with the above Ni to form a Ni—Al-based intermetallic compound and contributes to maintaining the hardness of the sliding component. However, when there is too much Al, the formation of delta ferrite in the structure becomes remarkable, and the maintenance of the hardness of the sliding part is hindered. Therefore, Al is made 0.10 to 0.70%. Preferably it is 0.15% or more. More preferably, it is 0.25% or more. Moreover, Preferably it is 0.50% or less. More preferably, it is 0.45% or less.
・Nb:0~0.30%
 Nbは、Vと同様、焼入れ性の向上のために含有することができる。但し、過剰のNbの含有は被削性を阻害する。よって、本発明では、Nbを含有する場合でも、0.30%以下とする。好ましくは0.20%以下とする。より好ましくは0.15%以下とする。なお、上記の効果を得るのに好ましい含有量は、0.03%以上である。より好ましくは0.05%以上である。さらに好ましくは0.07%以上である。
・ Nb: 0 to 0.30%
Nb, like V, can be contained to improve hardenability. However, excessive Nb content inhibits machinability. Therefore, in the present invention, even when Nb is contained, the content is made 0.30% or less. Preferably it is 0.20% or less. More preferably, it is 0.15% or less. A preferable content for obtaining the above effect is 0.03% or more. More preferably, it is 0.05% or more. More preferably, it is 0.07% or more.
 以上の成分組成によって、本発明の摺動部品が有する自己潤滑特性は、その摺動面に介在する潤滑油の「摩擦による変質挙動」を利用して発揮される。よって、本発明に係る自己潤滑特性の発現には、その使用中の相手部品との間で、例えば、炭化水素系といった、潤滑油が介在してさえすればよく、相手部品について、幅広い素材(材質)の選択が可能である。 With the above component composition, the self-lubricating property of the sliding component of the present invention is exhibited by utilizing the “deformation behavior due to friction” of the lubricating oil present on the sliding surface. Therefore, in order to develop the self-lubricating characteristics according to the present invention, it is only necessary to intervene with a counterpart component in use, for example, a hydrocarbon-based lubricating oil. Material) can be selected.
(2)本発明の摺動部品は、硬さが52HRC以上58HRC未満である。
 一般的に、摺動部品の硬さを下げることは、摺動部品の耐摩耗性の低下に繋がると考えられていた。したがって、従来の摺動部品は60HRC以上の硬さに調整されていた。しかし、本発明の摺動部品は、上述した成分組成によって、従来のSKD11よりも高い疲労強度を有している。そして、その疲労強度の値は、摺動部品の硬さを適度に下げることで、より顕著に向上する。つまり、図1に示すように、従来のSKD11(図1中の×印)は、一般的な摺動部品の硬さである60HRCに調整したときの疲労強度が約560MPaであった。そして、その疲労強度の値は、硬さを下げていっても、約600MPa程度までにしか上昇しない。一方、本発明に係る成分組成の材料(図1中の○印)の場合、その疲労強度の値は、硬さを58HRCに下げたときに約630MPaの高い疲労強度を示す。そして、それ以降、低い硬さ域において上記の高い疲労強度を維持する。
(2) The sliding component of the present invention has a hardness of 52 HRC or more and less than 58 HRC.
In general, it has been considered that reducing the hardness of a sliding component leads to a decrease in wear resistance of the sliding component. Therefore, the conventional sliding component has been adjusted to a hardness of 60 HRC or higher. However, the sliding component of the present invention has higher fatigue strength than the conventional SKD11 due to the above-described component composition. And the value of the fatigue strength improves more notably by reducing the hardness of a sliding component moderately. That is, as shown in FIG. 1, the conventional SKD11 (x mark in FIG. 1) had a fatigue strength of about 560 MPa when adjusted to 60 HRC, which is the hardness of a general sliding component. And the value of the fatigue strength increases only to about 600 MPa even if the hardness is lowered. On the other hand, in the case of the material of the component composition according to the present invention (circle mark in FIG. 1), the fatigue strength value shows a high fatigue strength of about 630 MPa when the hardness is lowered to 58 HRC. Thereafter, the high fatigue strength is maintained in a low hardness region.
 そして、上述した成分組成でなる本発明の摺動部品において、それが呈する使用中の摩擦係数は、その摺動部品の有する疲労強度の値の上昇とともに効果的に減少して、本発明の自己潤滑特性が相乗的に向上する(図3参照)。そして、この相乗的に向上した自己潤滑特性を安定して得られる疲労強度として、本発明では、従来のSKD11では到達が困難な600MPaを超える疲労強度を有する摺動部品を狙いとする。好ましくは630MPaを超える疲労強度である。そして、本発明の摺動部品の硬さは、この600MPaを超える疲労強度を容易に達成できる範囲として、58HRC未満とする。好ましくは57HRC以下である。 In the sliding component of the present invention having the above-described component composition, the friction coefficient in use exhibited by the sliding component is effectively reduced as the fatigue strength value of the sliding component increases, and the present invention Lubricating characteristics are synergistically improved (see FIG. 3). As the fatigue strength that can stably obtain this synergistically improved self-lubricating property, the present invention aims at a sliding component having a fatigue strength exceeding 600 MPa, which is difficult to achieve with the conventional SKD11. The fatigue strength is preferably over 630 MPa. And the hardness of the sliding component of this invention shall be less than 58HRC as a range which can achieve this fatigue strength exceeding 600 MPa easily. Preferably it is 57 HRC or less.
 但し、本発明の摺動部品を使用するときに、その相手部品の硬さが高いことを想定すれば、本発明の摺動部品の硬さを低くすることは得策ではない。例えば、相手部品にJIS鋼種の軸受鋼であるSUJ2を用いた場合、その硬さは、通常、60~62HRCに調整されており、本発明の摺動部品よりも硬さが高い。SUJ2は、JIS-G-4805で規格化されている「高炭素クロム軸受鋼鋼材」であり、その成分組成は、質量%で、以下の通りである。
 C:0.95~1.10%、Si:0.15~0.35%、Mn:0.50%以下、P:0.025%以下、S:0.025%以下、Cr:1.30~1.60%、残部Feおよび不純物
However, when the sliding component of the present invention is used, assuming that the hardness of the counterpart component is high, it is not a good idea to reduce the hardness of the sliding component of the present invention. For example, when SUJ2, which is a bearing steel of the JIS steel type, is used as the mating part, the hardness is usually adjusted to 60 to 62 HRC, which is higher than the sliding part of the present invention. SUJ2 is a “high carbon chrome bearing steel” standardized by JIS-G-4805, and its component composition is as follows in mass%.
C: 0.95 to 1.10%, Si: 0.15 to 0.35%, Mn: 0.50% or less, P: 0.025% or less, S: 0.025% or less, Cr: 1. 30 to 1.60%, remaining Fe and impurities
 そして、本発明の摺動部品がオイルリングやカムローブであるなら、その摺動面は、回転または往復運動といった“間欠的な”接触形態で、相手部品の摺動面と摺動する。このような接触形態において、本発明の摺動部品の硬さが相手部品のそれよりも大幅に低いと、負荷されるヘルツ応力が上昇する。そして、このヘルツ応力が、摺動部品の疲労強度を越えると、摺動面に微細な塑性変形が生じる。そして、摺動部品のはく離摩耗を誘発して、摺動面間の摩擦係数が上昇し、本発明の自己潤滑特性を阻害する。よって、本発明の摺動部品の硬さは、下限を52HRCとする。この下限において、好ましくは53HRCである。より好ましくは54HRCである。さらに好ましくは55HRCである。
 これらの条件によって、例えば、相手部品の素材にSUJ2等の金属材料を用いることができ、焼付き(凝着)損傷の抑制と、疲労寿命の向上との両立をはかった長寿命の摺動構造体の機構を得ることができる。
If the sliding component of the present invention is an oil ring or cam lobe, the sliding surface slides with the sliding surface of the counterpart component in an “intermittent” contact mode such as rotation or reciprocation. In such a contact form, when the hardness of the sliding component of the present invention is significantly lower than that of the counterpart component, the applied Hertz stress increases. When this Hertz stress exceeds the fatigue strength of the sliding component, fine plastic deformation occurs on the sliding surface. Then, the sliding wear of the sliding parts is induced, the friction coefficient between the sliding surfaces is increased, and the self-lubricating property of the present invention is hindered. Therefore, the lower limit of the hardness of the sliding component of the present invention is 52 HRC. In this lower limit, it is preferably 53 HRC. More preferably, it is 54HRC. More preferably, it is 55HRC.
Under these conditions, for example, a metal material such as SUJ2 can be used as the material of the counterpart part, and a long-life sliding structure that achieves both suppression of seizure (adhesion) damage and improvement of fatigue life The body mechanism can be obtained.
 表1の試料No.1、2の成分組成を有する、それぞれの摺動部品1、2を準備した。なお、試料No.2はSKD11である。 Sample No. in Table 1 Respective sliding parts 1 and 2 having component compositions of 1 and 2 were prepared. Sample No. 2 is SKD11.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、摺動部品1、2のそれぞれについて、狙い硬さがA:50HRC、B:55HRC、C:60HRCの3種類に調整したものを準備した。このとき、それぞれの摺動部品の実際の硬さは、摺動部品1-Aが50.4HRC、1-Bが56.2HRC、1-Cが62.0HRC、2-Aが50.0HRC、2-Bが55.8HRC、2-Cが61.0HRCであった。そして、狙い硬さが60HRCのSKD11でなる摺動部品2-Cが、従来の摺動部品に相当する。そして、これら摺動部品の疲労強度を測定した。疲労強度の測定方法は、それぞれの摺動部品を回転曲げ疲労試験片に加工して、これに大越式回転曲げ疲労試験を行うものとした。試験片の形状から定まる断面二次モーメントと、試験片の平行部の中央に吊る錘の重量の調整とによって、試験片の表面応力を調整した。応力振幅は、試験片の1回転において、引張および圧縮の応力が等しくなる条件(振幅比-1という)とした。試験片の回転速度は、50Hz(3,000rpm)とした。そして、回転曲げ疲労試験片の破断に至るときの応力を、疲労強度とした。結果を図1に示す。 Next, for each of the sliding parts 1 and 2, those in which the target hardness was adjusted to three types of A: 50 HRC, B: 55 HRC, and C: 60 HRC were prepared. At this time, the actual hardness of each sliding component is 50.4 HRC for sliding component 1-A, 56.2 HRC for 1-B, 62.0 HRC for 1-C, 50.0 HRC for 2-A, 2-B was 55.8 HRC and 2-C was 61.0 HRC. The sliding component 2-C made of SKD11 having a target hardness of 60 HRC corresponds to a conventional sliding component. And the fatigue strength of these sliding parts was measured. The fatigue strength was measured by processing each sliding part into a rotating bending fatigue test piece and performing an Ogoshi type rotating bending fatigue test on this. The surface stress of the test piece was adjusted by adjusting the secondary moment of the cross section determined from the shape of the test piece and adjusting the weight of the weight suspended in the center of the parallel part of the test piece. The stress amplitude was set so that the tensile stress and the compressive stress were equal in one rotation of the specimen (referred to as an amplitude ratio −1). The rotation speed of the test piece was 50 Hz (3,000 rpm). And the stress at the time of reaching the fracture | rupture of a rotation bending fatigue test piece was made into fatigue strength. The results are shown in FIG.
 そして、それぞれの摺動部品にボールオンディスク試験を行って、各摺動部品の有する自己潤滑特性を評価した。試験条件は、以下の通りである。そして、摺動距離が100mに到達するまでの間で、摩擦係数の変化を連続的に測定した。結果を図2に示す。
  装置:CSM製摩擦摩耗試験機
  試験片:
   ・ディスク(摺動部品):直径20mm×厚さ5mm
   ・ボール(相手部品):SUJ2(直径6mm、硬さ62HRC)
  ボール荷重:10N
  ディスク回転数:500rpm
  摺動半径:3.3mm
  摺動距離:100m
  塗油量:0.1μl
  油種(潤滑油):
   ・基油:市販パラフィン油
   ・蟻酸:添加量2.9×10-4ppm
Then, a ball-on-disk test was performed on each sliding component to evaluate the self-lubricating characteristics of each sliding component. The test conditions are as follows. The change in the coefficient of friction was continuously measured until the sliding distance reached 100 m. The results are shown in FIG.
Equipment: CSM friction and wear tester Test piece:
・ Disk (sliding part): Diameter 20mm x thickness 5mm
・ Ball (mating part): SUJ2 (diameter 6mm, hardness 62HRC)
Ball load: 10N
Disk rotation speed: 500rpm
Sliding radius: 3.3mm
Sliding distance: 100m
Oil amount: 0.1 μl
Oil type (lubricant):
・ Base oil: Commercial paraffin oil ・ Formic acid: Amount 2.9 × 10 −4 ppm
 図2より、自己潤滑特性を発現しない成分組成である摺動部品2-A、2-B、2-Cは、その摩擦係数が上昇して、0.30を超える摩擦係数の値を計測した。そして、摺動部品2-B、2―Cは、摺動距離が100mに到達する前に、焼付きが発生して、摩擦係数が急激に上昇した。 As shown in FIG. 2, the sliding components 2-A, 2-B, and 2-C, which have component compositions that do not exhibit self-lubricating properties, have increased friction coefficients and measured friction coefficient values exceeding 0.30. . In the sliding parts 2-B and 2-C, seizure occurred before the sliding distance reached 100 m, and the friction coefficient rapidly increased.
 これに対して、自己潤滑特性を発現する成分組成である摺動部品1-A、1-B、1-Cは、100mの摺動距離の間で、焼付きが発生しなかった。そして、摺動部品1-A、1-Bは、その間の摩擦係数の値が、0.30以下を維持した。そして、上記の自己潤滑特性を発現する成分組成に加えて、硬さを「52HRC以上58HRC未満」に調整した本発明の摺動部品1-Bは、自己潤滑特性が相乗的に向上して、摩擦係数がさらに低下し、その値は0.20以下であった。 In contrast, sliding parts 1-A, 1-B, and 1-C, which are component compositions that exhibit self-lubricating properties, did not cause seizure during a sliding distance of 100 m. In addition, the sliding components 1-A and 1-B maintained the coefficient of friction therebetween being 0.30 or less. In addition to the component composition that exhibits the above self-lubricating characteristics, the sliding component 1-B of the present invention in which the hardness is adjusted to “52 HRC or more and less than 58 HRC” synergistically improves the self-lubricating characteristics, The coefficient of friction was further reduced, and the value was 0.20 or less.
 図3に、各摺動部品の疲労強度と、上記で計測した摩擦係数が0.20に到達したときの摺動距離との関係を示す。ここで「0.20」の摩擦係数の値は、上述の通り、本実施例の試験条件において、摺動部品が相乗的な自己潤滑特性を発揮しているときの摩擦係数の指標である。図3より、本発明の摺動部品1-Bは、疲労強度が600MPaを超えている。そして、摺動距離が100mに到達したときでも、0.20以下の低い摩擦係数を維持していた(図3においては、便宜上、その「100m」の位置に示している)。本発明の摺動部品1-Bは、摺動部品1-A、1-Cに比べて、自己潤滑特性が向上しており(摩擦係数が小さく)、かつ、その向上した自己潤滑特性が、長い摺動距離で安定的に維持された。 FIG. 3 shows the relationship between the fatigue strength of each sliding component and the sliding distance when the friction coefficient measured above reaches 0.20. Here, as described above, the value of the friction coefficient of “0.20” is an index of the friction coefficient when the sliding component exhibits a synergistic self-lubricating property under the test conditions of this example. From FIG. 3, the sliding component 1-B of the present invention has a fatigue strength of over 600 MPa. Even when the sliding distance reached 100 m, a low coefficient of friction of 0.20 or less was maintained (in FIG. 3, for convenience, it is shown at the position “100 m”). The sliding component 1-B of the present invention has improved self-lubricating properties (smaller friction coefficient) than the sliding components 1-A and 1-C, and the improved self-lubricating properties are: It was stably maintained over a long sliding distance.

Claims (2)

  1. 質量%で、C:0.7~1.6%、Si:0.5~3.0%、Mn:0.1~3.0%、P:0.05%以下、S:0.01~0.12%、Ni:0.3~1.5%、Cr:7.0~13.0%、MoおよびWのうちの1種または2種:(Mo+1/2W)の関係式で0.5~1.7%、V:0~0.70%、Cu:0.1~1.0%、Al:0.10~0.70%、Nb:0~0.30%、残部Feおよび不純物の成分組成を有し、硬さが52HRC以上58HRC未満であることを特徴とする摺動部品。 In mass%, C: 0.7 to 1.6%, Si: 0.5 to 3.0%, Mn: 0.1 to 3.0%, P: 0.05% or less, S: 0.01 0 to 0.12%, Ni: 0.3 to 1.5%, Cr: 7.0 to 13.0%, one or two of Mo and W: (Mo + 1 / 2W) 0.5 to 1.7%, V: 0 to 0.70%, Cu: 0.1 to 1.0%, Al: 0.10 to 0.70%, Nb: 0 to 0.30%, balance Fe And a sliding component characterized by having a component composition of impurities and having a hardness of 52 HRC or more and less than 58 HRC.
  2. 請求項1に記載の摺動部品が、該摺動部品の摺動面に潤滑油が介在する環境下で、相手部品の摺動面と摺動するように構成されたことを特徴とする摺動構造体。 The sliding component according to claim 1, wherein the sliding component is configured to slide with the sliding surface of the counterpart component in an environment where lubricating oil is present on the sliding surface of the sliding component. A moving structure.
PCT/JP2016/059355 2015-03-26 2016-03-24 Sliding component and sliding structure WO2016152967A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16768870.4A EP3276031A4 (en) 2015-03-26 2016-03-24 Sliding component and sliding structure
CN201680018301.4A CN107429356B (en) 2015-03-26 2016-03-24 Sliding structure body
KR1020177026781A KR20170118904A (en) 2015-03-26 2016-03-24 Sliding component and sliding structure
JP2017508417A JP6424951B2 (en) 2015-03-26 2016-03-24 Sliding component and sliding structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015064365 2015-03-26
JP2015-064365 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152967A1 true WO2016152967A1 (en) 2016-09-29

Family

ID=56978743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059355 WO2016152967A1 (en) 2015-03-26 2016-03-24 Sliding component and sliding structure

Country Status (5)

Country Link
EP (1) EP3276031A4 (en)
JP (1) JP6424951B2 (en)
KR (1) KR20170118904A (en)
CN (1) CN107429356B (en)
WO (1) WO2016152967A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056282A1 (en) * 2016-09-20 2018-03-29 日立金属株式会社 Sliding component, sliding structure, and method for sliding sliding structure
JP6472938B1 (en) * 2017-10-30 2019-02-20 Tpr株式会社 Pressure ring, internal combustion engine, wire for pressure ring, and method for manufacturing wire for pressure ring
WO2019087562A1 (en) * 2017-10-30 2019-05-09 Tpr株式会社 Pressure ring, internal combustion engine, wire stock for pressure ring, and method of manufacturing wire stock for pressure ring

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927967A (en) * 2022-12-22 2023-04-07 美利林科技(攀枝花)有限公司 High-toughness steel forging for ball mill and preparation process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345958A (en) * 1992-06-11 1993-12-27 Nikko Youzai Kogyo Kk Steel hardened by supercooling treatment
JP2003113443A (en) * 2001-10-04 2003-04-18 Nkk Corp High strength hot-rolled steel sheet with high workability due to little directional surface roughness
JP2007002333A (en) * 2005-05-26 2007-01-11 Hitachi Metals Ltd Press die with excellent self-lubricating property

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772330B2 (en) * 1985-11-20 1995-08-02 日立金属株式会社 Abrasion resistant, sliding iron-based sintered material
CN100513609C (en) * 2002-12-25 2009-07-15 日立金属株式会社 Cold die steel excellent in characteristic of suppressing dimensional change
WO2005010226A1 (en) * 2003-07-29 2005-02-03 Nippon Piston Ring Co., Ltd. Cam lobe member, camshaft using the same and method for producing cam lobe member
JP4403875B2 (en) * 2004-05-14 2010-01-27 大同特殊鋼株式会社 Cold work tool steel
JP4737606B2 (en) * 2004-11-18 2011-08-03 日立金属株式会社 Cold die steel with excellent deformation suppression characteristics and galling resistance
RU2277135C1 (en) * 2004-12-22 2006-05-27 Юрий Серафимович Булыгин Steel
CN100489141C (en) * 2007-06-05 2009-05-20 北京钢研高纳科技股份有限公司 High-temperature long-life self-lubricating wearproof alloy material
JP5076683B2 (en) * 2007-06-29 2012-11-21 大同特殊鋼株式会社 High toughness high speed tool steel
JP5276330B2 (en) * 2008-01-10 2013-08-28 株式会社神戸製鋼所 Cold mold steel and cold press mold
CN101918605A (en) * 2008-01-21 2010-12-15 日立金属株式会社 Alloy to be surface-coated and sliding members
JP5305179B2 (en) * 2008-03-27 2013-10-02 日立金属株式会社 Piston ring material for internal combustion engines
CN102392199B (en) * 2011-11-16 2013-05-29 钢铁研究总院 Material-saving heat-resisting antifriction self-lubricating material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05345958A (en) * 1992-06-11 1993-12-27 Nikko Youzai Kogyo Kk Steel hardened by supercooling treatment
JP2003113443A (en) * 2001-10-04 2003-04-18 Nkk Corp High strength hot-rolled steel sheet with high workability due to little directional surface roughness
JP2007002333A (en) * 2005-05-26 2007-01-11 Hitachi Metals Ltd Press die with excellent self-lubricating property

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276031A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056282A1 (en) * 2016-09-20 2018-03-29 日立金属株式会社 Sliding component, sliding structure, and method for sliding sliding structure
JPWO2018056282A1 (en) * 2016-09-20 2018-10-04 日立金属株式会社 Sliding parts, sliding structure and sliding method of sliding structure
JP6472938B1 (en) * 2017-10-30 2019-02-20 Tpr株式会社 Pressure ring, internal combustion engine, wire for pressure ring, and method for manufacturing wire for pressure ring
WO2019087562A1 (en) * 2017-10-30 2019-05-09 Tpr株式会社 Pressure ring, internal combustion engine, wire stock for pressure ring, and method of manufacturing wire stock for pressure ring

Also Published As

Publication number Publication date
CN107429356A (en) 2017-12-01
JPWO2016152967A1 (en) 2017-11-02
EP3276031A4 (en) 2018-12-19
EP3276031A1 (en) 2018-01-31
JP6424951B2 (en) 2018-11-21
KR20170118904A (en) 2017-10-25
CN107429356B (en) 2019-09-20

Similar Documents

Publication Publication Date Title
WO2014196614A1 (en) Piston ring, raw material therefor, and production method for both
WO2016152967A1 (en) Sliding component and sliding structure
JPWO2009069762A1 (en) Piston ring steel and piston ring
RU2674177C2 (en) Highly heat conductive piston ring for internal combustion engine
CN101978085B (en) Piston ring material for internal combustion engine
WO2017012841A1 (en) Tribological system, comprising a valve seat ring and a valve
DE102007054181A1 (en) Corrosion-resistant coating and manufacturing method thereof
KR100701812B1 (en) Material for sliding parts having self-lubricity and wire material for piston ring
EP3106533A1 (en) Sliding mechanism
JP6139605B2 (en) Piston ring and manufacturing method thereof
WO2010147139A1 (en) Sintered slider material and process for manufacture thereof
JP2008057624A (en) Pulley for continuously variable transmission
WO2013082221A1 (en) High modulus wear resistant gray cast iron for piston ring applications
JP6422044B2 (en) Sliding structure and sliding method of sliding structure
US4948556A (en) Piston ring material and piston ring
JP6784869B2 (en) piston ring
JP2021006659A (en) Steel component and method for producing the same
JP2019090096A (en) Cast iron material
JP2866868B2 (en) Piston ring material
JP6587570B2 (en) Piston ring wire for internal combustion engine and piston ring for internal combustion engine
WO2013020880A1 (en) Medium-lubricated bearing arrangement for use in a corrosive medium, more particularly sea water
JP2021006660A (en) Steel component and method for producing the same
JPH1161344A (en) Material for piston ring excellent in scuffing resistance and workability
JPH04143256A (en) Piston ring material
JP2015110835A (en) Piston ring material for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508417

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768870

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177026781

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE