JP2018154884A - Cold tool steel - Google Patents

Cold tool steel Download PDF

Info

Publication number
JP2018154884A
JP2018154884A JP2017053837A JP2017053837A JP2018154884A JP 2018154884 A JP2018154884 A JP 2018154884A JP 2017053837 A JP2017053837 A JP 2017053837A JP 2017053837 A JP2017053837 A JP 2017053837A JP 2018154884 A JP2018154884 A JP 2018154884A
Authority
JP
Japan
Prior art keywords
less
hardness
steel
cold tool
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017053837A
Other languages
Japanese (ja)
Other versions
JP6772915B2 (en
Inventor
卓宏 江口
Takahiro Eguchi
卓宏 江口
浩行 水野
Hiroyuki Mizuno
浩行 水野
康弘 福田
Yasuhiro Fukuda
康弘 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2017053837A priority Critical patent/JP6772915B2/en
Publication of JP2018154884A publication Critical patent/JP2018154884A/en
Application granted granted Critical
Publication of JP6772915B2 publication Critical patent/JP6772915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold tool steel having high hardness applicable to a cold tool used for molding a high-tensile material, capable of securing high impact value and maintaining machinability needed during manufacturing the cold tool, and having high strength and excellent in impact value and machinability.SOLUTION: A cold tool steel contains C:0.55 to 0.85%, Si:1.00 to 2.50%, Mn:0.30 to 1.50%, P:0.030% or less, S:0.100% or less, Cr:5.00 to 8.00%, Mo:1.00 to 2.00%, Ti:0.05 to 0.20%, B:0.0005 to 0.0050%, Al:0.005 to 0.150%, N:0.0250% or less and satisfies the formula 1:1.4×[Si]-2.7×[Mn]+1.7×[Mo]+1.5×[C]≥4. In a cross section structure after a hardening and tempering, coarse carbide with circle equivalent diameter of 15 μm or more is 50 or less in a field of view with 0.4 mm.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材料の冷間加工用の工具に用いられる冷間工具鋼に関する。   The present invention relates to a cold tool steel used for a tool for cold working of a steel material.

自動車の軽量化を図りつつ、衝突安全性確保、自動車骨格の高強度化等を実現するため、従来よりも薄い板厚で同等以上の強度を確保できる高張力鋼板(ハイテン材)の開発が積極的に進められ、その使用が増加している。しかし、ハイテン材は、軽量化に貢献できる一方で、深絞り、曲げ等の成形時の変形抵抗も増加するため、成形用の金型への負担が増加し、従来用いられてきた金型材では、耐摩耗性等の特性は不足しつつある。そのため、ハイテン材を加工する冷間工具(金型等)の性能向上が強く求められるようになってきた。   Development of high-tensile steel plates (high-tensile materials) that can ensure the same or higher strength with thinner plate thickness than before in order to realize collision safety and higher strength of the automobile skeleton while reducing the weight of automobiles. And its use is increasing. However, high-tensile materials can contribute to weight reduction, but also increase deformation resistance during molding such as deep drawing and bending, increasing the burden on the mold for molding. Characteristics such as wear resistance are deficient. For this reason, there has been a strong demand for improving the performance of cold tools (such as molds) for processing high-tensile materials.

特開2009−132990号公報JP 2009-132990 A

ハイテン材の成形時に必要な耐摩耗性を確保するためには、より高硬度とする必要があるが、一般的に硬度を高めると耐摩耗性は向上するものの、被削性、衝撃値(靱性)が低下するため、単純に硬度を高めるだけでは、問題を解決することができない。例えば、特許文献1に記載された工具鋼は、粗大炭化物の面積率を規制すると共に、各種合金を添加することにより、60HRC程度の硬度を確保しているが、衝撃値についてはSKD11との比較では若干の改善が見られるものの、改善の程度が十分でない。   In order to ensure the wear resistance required when forming high-tensile materials, it is necessary to increase the hardness. Generally, increasing the hardness improves the wear resistance, but machinability and impact value (toughness). ) Decreases, the problem cannot be solved simply by increasing the hardness. For example, the tool steel described in Patent Document 1 regulates the area ratio of coarse carbides and secures a hardness of about 60 HRC by adding various alloys, but the impact value is a comparison with SKD11. However, although there is some improvement, the degree of improvement is not sufficient.

本発明は、かかる背景に鑑みてなされたものであり、ハイテン材の成形に使用する冷間工具(金型等)に適用可能な高い硬度を有し、その上で、高い衝撃値を確保でき、かつ冷間工具製造時に必要な被削性も維持することができる、高強度で衝撃値及び被削性に優れた冷間工具鋼、特に、60HRC以上の高硬度領域においてSKD11との比較において少なくとも2倍以上の衝撃値を確保可能な冷間工具鋼を提供しようとするものである。   The present invention has been made in view of such a background, and has a high hardness applicable to a cold tool (mold, etc.) used for forming a high-tensile material, on which a high impact value can be secured. In addition, it is possible to maintain the machinability necessary when manufacturing a cold tool, and it is a high strength cold tool steel excellent in impact value and machinability, particularly in comparison with SKD11 in a high hardness region of 60 HRC or more. An object of the present invention is to provide a cold work tool steel capable of securing an impact value of at least twice.

本発明の一態様は、質量%で、C:0.55〜0.85%、Si:1.00〜2.50%、Mn:0.30〜1.50%、P:0.030%以下、S:0.100%以下、Cr:5.00〜8.00%、Mo:1.00〜2.00%、Ti:0.05〜0.20%、B:0.0005〜0.0050%、Al:0.005〜0.150%、N:0.0250%以下を含有し、残部がFeおよび不可避不純物からなり、
以下の式1を満足し、
式1:1.4×[Si]−2.7×[Mn]+1.7×[Mo]+1.5×[C]≧4(但し、式中における[X]は、元素Xの含有率(質量%)を示す。)、
かつ、焼入れ焼戻し処理後の断面組織において、円相当径にて15μm以上の粗大炭化物が、0.4mm2の視野中に50個以下である冷間工具鋼にある。
One embodiment of the present invention is mass%, C: 0.55 to 0.85%, Si: 1.00 to 2.50%, Mn: 0.30 to 1.50%, P: 0.030% Hereinafter, S: 0.100% or less, Cr: 5.00 to 8.00%, Mo: 1.00 to 2.00%, Ti: 0.05 to 0.20%, B: 0.0005 to 0 .0050%, Al: 0.005 to 0.150%, N: 0.0250% or less, with the balance consisting of Fe and inevitable impurities,
Satisfying the following formula 1,
Formula 1: 1.4 × [Si] −2.7 × [Mn] + 1.7 × [Mo] + 1.5 × [C] ≧ 4 (where, [X] is the content of element X) (Mass%).),
And in the cross-sectional structure after quenching and tempering treatment, there are 50 or less coarse carbides in an equivalent circle diameter of 50 μm or less in the cold tool steel in the field of view of 0.4 mm 2 .

上記冷間工具鋼は、上記特定の範囲の化学成分にすることによって、焼入れ焼戻し処理後の断面組織において観察される上記粗大炭化物の数を上記特定の範囲に抑えることができる。粗大炭化物の存在は、硬度が比較的低い場合(60HRC未満の領域)においては、耐摩耗性向上に寄与することが知られている。しかし、60HRC以上の高硬度領域においては、後述するように粗大炭化物による耐摩耗性向上効果がほとんど見られなくなることが見出された。この点に着目し、上述したように粗大炭化物の数を上記特定の範囲に抑えることにより、金型等の冷間工具製造に問題のない被削性を維持しつつ、靱性及び耐摩耗性向上効果を高硬度領域において引き出すことが可能となる。   By making the said cold tool steel into the chemical component of the said specific range, the number of the said coarse carbide | carbonized_material observed in the cross-sectional structure | tissue after a quenching and tempering process can be suppressed to the said specific range. It is known that the presence of coarse carbide contributes to improvement in wear resistance when the hardness is relatively low (region of less than 60 HRC). However, it has been found that in the high hardness region of 60 HRC or higher, the effect of improving wear resistance by coarse carbides is hardly seen as will be described later. Focusing on this point, as mentioned above, by suppressing the number of coarse carbides to the above specific range, improving toughness and wear resistance while maintaining machinability without problems in the production of cold tools such as dies. The effect can be extracted in the high hardness region.

そして、化学成分については、上記関係式1:1.4×[Si]−2.7×[Mn]+1.7×[Mo]+1.5×[C]≧4を満足させることを必須としている。これにより、焼入れ焼戻し処理後における硬度を60HRC以上に確保することが可能となる。その上で、特に、TiとBの両方の元素を同時に適量含有させることによって、単独添加の効果の場合に比べて、相乗的な効果を発揮させることができる。すなわち、Ti添加による結晶粒の微細化とB添加によるPの粒界偏析抑制による粒界強化効果が得られるだけでなく、両者の複合添加によって靱性が格段に向上する。さらには、上記のごとく、粗大炭化物の生成を抑制できるので、靱性向上だけでなく、優れた被削性を実現できる。   For chemical components, it is essential to satisfy the above relational expression 1: 1.4 × [Si] −2.7 × [Mn] + 1.7 × [Mo] + 1.5 × [C] ≧ 4. Yes. Thereby, the hardness after the quenching and tempering treatment can be secured to 60 HRC or more. In addition, by synthesizing appropriate amounts of both Ti and B elements at the same time, a synergistic effect can be exhibited as compared with the case of the effect of addition alone. That is, not only the grain refinement effect by grain refinement by addition of Ti and the suppression of grain boundary segregation of P by addition of B is obtained, but the toughness is remarkably improved by the combined addition of both. Furthermore, as described above, since the formation of coarse carbides can be suppressed, not only the toughness can be improved but also excellent machinability can be realized.

実施例1における、式1の値と硬さ(HRC)との関係を示す説明図。Explanatory drawing which shows the relationship between the value of Formula 1 in Example 1, and hardness (HRC). 実施例1における、硬さと衝撃値の関係に及ぼすTi、B複合添加の効果を示す説明図。Explanatory drawing which shows the effect of Ti and B compound addition which has on the relationship between hardness and an impact value in Example 1. FIG. 実施例1における、硬さと比摩耗量の関係に及ぼす粗大炭化物の有無の影響を示す説明図。Explanatory drawing which shows the influence of the presence or absence of a coarse carbide | carbonized_material on the relationship between hardness and specific wear amount in Example 1. FIG.

まず、上記冷間工具鋼の化学成分の限定理由について説明する。
C:0.55〜0.85%、
C(炭素)は、硬さを確保するために必要な元素であり、0.55%以上含有させる。一方、Cは過剰に添加すると靱性及び被削性の低下を招くため、C含有率の上限は0.85%とする。
First, the reasons for limiting the chemical components of the cold tool steel will be described.
C: 0.55-0.85%
C (carbon) is an element necessary for ensuring hardness, and is contained by 0.55% or more. On the other hand, if C is added excessively, the toughness and machinability are lowered, so the upper limit of the C content is set to 0.85%.

Si:1.00〜2.50%、
Si(ケイ素)は、鋼の硬さを確保すると共に焼戻し軟化抵抗性を高めるのに有効な元素であり、その効果を得るために1.00%以上含有させる。一方、Siは過剰に添加すると靱性低下と熱間加工性低下を招くため、Si含有率の上限は2.50%とする。
Si: 1.00-2.50%,
Si (silicon) is an element effective for securing the hardness of the steel and increasing the temper softening resistance, and is contained in an amount of 1.00% or more in order to obtain the effect. On the other hand, if Si is added excessively, the toughness and hot workability are reduced, so the upper limit of the Si content is 2.50%.

Mn:0.30〜1.50%、
Mn(マンガン)は、MnSの形成によって被削性向上に有効な元素である。そのため、Mnは0.30%以上含有させる。一方、Mnは過剰に添加すると焼戻し軟化抵抗性を低下させるため、Mn含有率の上限は1.50%とする。
Mn: 0.30 to 1.50%,
Mn (manganese) is an element effective for improving machinability by forming MnS. Therefore, Mn is contained by 0.30% or more. On the other hand, when Mn is added excessively, the temper softening resistance is lowered, so the upper limit of the Mn content is 1.50%.

P:0.030%以下、
P(リン)は、不可避的に含有される元素であるが、多量に含有された場合には、靱性低下のおそれがある。そのため、P含有率の上限は0.030%とする。
P: 0.030% or less,
P (phosphorus) is an element inevitably contained, but if contained in a large amount, the toughness may be lowered. Therefore, the upper limit of the P content is set to 0.030%.

S:0.100%以下、
S(硫黄)は、不可避的に含有される元素であるが、少量の積極添加で被削性を改善することができる元素である。しかしながら、多量に含有された場合には、靭性低下及びワイヤカット、機械加工後の面粗さ低下のおそれがある。そのため、S含有率の上限は0.100%とする。
S: 0.100% or less,
S (sulfur) is an element that is inevitably contained, but is an element that can improve machinability with a small amount of positive addition. However, when it is contained in a large amount, there is a risk of a decrease in toughness and a reduction in surface roughness after wire cutting and machining. Therefore, the upper limit of the S content is set to 0.100%.

Cr:5.00〜8.00%、
Cr(クロム)は、焼戻し処理後に高硬度を確保するのに有効であり、その効果を得るために5.00%以上含有させる。一方、Crは過剰に添加すると靱性及び被削性が低下すると共に、PVDまたはCVDにより皮膜を形成した場合の皮膜の密着性が低下するおそれがあるため、Cr含有率の上限は8.00%とする。
Cr: 5.00 to 8.00%,
Cr (chromium) is effective in securing high hardness after the tempering treatment, and is contained in an amount of 5.00% or more in order to obtain the effect. On the other hand, when Cr is added excessively, the toughness and machinability are lowered, and the adhesion of the film when the film is formed by PVD or CVD may be lowered. Therefore, the upper limit of the Cr content is 8.00%. And

Mo:1.00〜2.00%、
Mo(モリブデン)は、焼戻し軟化抵抗性を確保するのに有効であり、その効果を得るために1.00%以上含有させる。一方、Moは過剰に添加すると靱性及び被削性が低下するおそれがあるため、Mo含有率の上限は2.00%とする。
Mo: 1.00 to 2.00%,
Mo (molybdenum) is effective in securing tempering softening resistance, and is contained in an amount of 1.00% or more in order to obtain the effect. On the other hand, if Mo is added excessively, the toughness and machinability may be lowered, so the upper limit of the Mo content is 2.00%.

Ti:0.05〜0.20%、
Ti(チタン)は、上述したごとく、結晶粒の微細化に有効であると共に、Bとの複合添加によって高硬度域での靱性を相乗的に向上させる元素であり、これらの効果を得るために、0.05%以上含有させる。一方、Tiは過剰に添加すると逆に靱性低下のおそれがあるため、Ti含有率の上限は0.20%とする。
Ti: 0.05-0.20%,
As described above, Ti (titanium) is an element that is effective for refining crystal grains and synergistically improves toughness in a high hardness region by compound addition with B. To obtain these effects , 0.05% or more. On the other hand, if Ti is added in excess, the toughness may be lowered, so the upper limit of the Ti content is 0.20%.

B:0.0005〜0.0050%、
B(硼素)は、上述したごとく、Pの粒界偏析抑制による粒界強度向上効果があると共に、Tiとの複合添加によって高硬度域での靱性を相乗的に向上させる元素であり、これらの効果を得るために、0.0005%以上含有させる。一方、Bは過剰に添加しても、前記効果が飽和するので、B含有率の上限は0.0050%とする。
B: 0.0005 to 0.0050%,
B (boron) is an element that, as described above, has an effect of improving the grain boundary strength by suppressing grain boundary segregation of P, and synergistically improves toughness in a high hardness region by compound addition with Ti. In order to acquire an effect, it contains 0.0005% or more. On the other hand, even if B is added excessively, the above effect is saturated, so the upper limit of the B content is set to 0.0050%.

Al:0.005〜0.150%、
Al(アルミニウム)は、脱酸及び結晶粒微細化に有効な元素であり、その効果を得るために0.005%以上含有させる。一方、Alは過剰に添加すると酸化物系介在物の増加により靱性が低下するおそれがあるため、Al含有率の上限は0.150%とする。
Al: 0.005 to 0.150%,
Al (aluminum) is an element effective for deoxidation and crystal grain refinement, and is contained in an amount of 0.005% or more in order to obtain the effect. On the other hand, if Al is added excessively, the toughness may decrease due to an increase in oxide inclusions, so the upper limit of the Al content is set to 0.150%.

N:0.0250%以下、
N(窒素)は、不可避的に含有される元素であるが、多量に含有された場合には靱性を低下させたり、TiNが増加して、ピン止め効果のあるTiCを減少させ、結晶粒を粗大化させるおそれがある。そのため、N含有率の上限は0.0250%とする。
N: 0.0250% or less,
N (nitrogen) is an element that is unavoidably contained. However, when it is contained in a large amount, the toughness is reduced, or TiN is increased to reduce TiC having a pinning effect. There is a risk of coarsening. Therefore, the upper limit of the N content is set to 0.0250%.

さらに、上記冷間工具鋼は、上記必須添加元素に加えて、炭窒化物を利用したピン止めによる結晶粒微細化効果を得るために、以下のように任意元素を更に添加することができる。すなわち、V:0.20%以下、Nb:0.20%以下、W:0.50%以下、Ta:0.20%以下のうちの1種又は2種以上を含有することができる。   Furthermore, in order to obtain the crystal grain refining effect by pinning using carbonitride, in addition to the said essential addition element, the said cold tool steel can further add arbitrary elements as follows. That is, one or more of V: 0.20% or less, Nb: 0.20% or less, W: 0.50% or less, Ta: 0.20% or less can be contained.

V:0.20%以下、Nb:0.20%以下、
V(バナジウム)、Nb(ニオブ)は、前記の通り、結晶粒微細化による効果によって、高硬度域での靱性向上効果が期待できる任意添加元素である。従って、必要に応じて添加することが好ましい。一方、Nbは多量添加しても効果が飽和し、Vは過剰添加により靱性及び被削性が低下するおそれがあるため、両元素とも上限を0.20%とする。
V: 0.20% or less, Nb: 0.20% or less,
As described above, V (vanadium) and Nb (niobium) are optional additional elements that can be expected to have an effect of improving toughness in a high hardness region due to the effect of crystal grain refinement. Therefore, it is preferable to add as needed. On the other hand, even if Nb is added in a large amount, the effect is saturated, and V may cause the toughness and machinability to deteriorate due to excessive addition. Therefore, the upper limit of both elements is 0.20%.

W:0.50%以下、Ta:0.20%以下、
W(タングステン)及びTa(タンタル)も、炭窒化物を形成し、ピン止め効果により結晶粒微細化に寄与する元素である。ただし、含有しすぎても効果が飽和し、かつコスト高となるため、W含有率の上限は0.50%、Ta含有率の上限は0.20%とする。
W: 0.50% or less, Ta: 0.20% or less,
W (tungsten) and Ta (tantalum) are also elements that form carbonitrides and contribute to grain refinement by the pinning effect. However, since the effect is saturated and the cost is increased even if it is contained too much, the upper limit of the W content is 0.50% and the upper limit of the Ta content is 0.20%.

なお、炭窒化物(Tiは炭化物)を結晶粒微細化に利用するためには、一度ピン止め効果のない粗大な析出状態のものを固溶させ、再度微細に析出させなければならない。本発明の場合、固溶は、熱間圧延の際の加熱や鋼塊を鍛伸する際の加熱により行われ、析出は加工性向上のための球状化焼鈍処理により行うことになる。Tiは前記した通り結晶粒微細化とBとの複合添加による相乗効果によって靭性向上効果の大きい元素であるが、V、Nb、W、Taも結晶粒微細化に利用することは可能である。   In order to use carbonitride (Ti is carbide) for crystal grain refinement, a coarse precipitate having no pinning effect must be once dissolved and finely precipitated again. In the case of the present invention, solid solution is performed by heating during hot rolling or by forging a steel ingot, and precipitation is performed by spheroidizing annealing for improving workability. As described above, Ti is an element having a large toughness improving effect due to the synergistic effect of crystal grain refinement and combined addition with B, but V, Nb, W, and Ta can also be used for crystal grain refinement.

また、上記冷間工具鋼は、上記必須添加元素に加えて、以下の任意元素を更に添加することができる。すなわち、Mg:0.10%以下、Te:0.10%以下、Bi:0.05%以下の1種又は2種以上を含有することができる。   Moreover, in addition to the said essential addition element, the said cold tool steel can further add the following arbitrary elements. That is, one or more of Mg: 0.10% or less, Te: 0.10% or less, and Bi: 0.05% or less can be contained.

Mg:0.10%以下、Te:0.10%以下、Bi:0.05%以下、
これらMg(マグネシウム)、Te(テルル)、Bi(ビスマス)は、添加することによって更に被削性を向上させる効果が得られる。一方、過剰に添加してもその効果が飽和するため、含有率量の上限を、MgとTeは0.10%、Biは0.05%とする。
Mg: 0.10% or less, Te: 0.10% or less, Bi: 0.05% or less,
By adding these Mg (magnesium), Te (tellurium), and Bi (bismuth), the effect of further improving the machinability can be obtained. On the other hand, since the effect is saturated even if it is added excessively, the upper limit of the content is made 0.10% for Mg and Te and 0.05% for Bi.

次に、式1:1.4×[Si]−2.7×[Mn]+1.7×[Mo]+1.5×[C]≧4(但し、式中における[X]は、元素Xの含有率(質量%)を示す。)という要件は、上述した化学成分組成を前提として、さらに、60HRC以上の硬さを確保するために必要な条件であり、多くの実験により導かれたものである。したがって、上述した基本的な化学成分組成の範囲を満足するように各成分を含有させた上で、さらに、式1を満足するよう化学成分を制限することが、高硬度化を図るために重要である。   Next, Formula 1: 1.4 × [Si] −2.7 × [Mn] + 1.7 × [Mo] + 1.5 × [C] ≧ 4 (wherein [X] in the formula is the element X Is a necessary condition for securing a hardness of 60 HRC or more on the premise of the chemical component composition described above, and has been derived by many experiments. It is. Therefore, it is important to limit the chemical components so as to satisfy Formula 1 after adding each component so as to satisfy the basic chemical component composition range described above in order to achieve high hardness. It is.

また、上記冷間工具鋼は、焼入れ焼戻し処理後の断面組織において、円相当径にて15μm以上の粗大炭化物が、0.4mm2の視野中に50個以下である。本発明の冷間工具鋼は、基本的に粗大炭化物が生成されにくい成分設計を行っているが、仮に生成されたとしても、0.4mm2の視野中に50個以下の範囲に制御するという意味である。そして、この要件を確保することによって、上述したごとく、優れた被削性と靱性を確保することができる。なお、粗大炭化物の観察を行う断面組織は、冷間工具として必須の熱処理である焼入れ焼戻し処理を施した後の状態において行う。焼入れ条件及び焼戻し処理の条件は、後述する範囲内での最適条件を採用すれば良い。 The cold tool steel has 50 or less coarse carbides having an equivalent circle diameter of 15 μm or more in a 0.4 mm 2 field of view in the cross-sectional structure after quenching and tempering. The cold tool steel of the present invention is basically designed to prevent coarse carbides from being generated, but even if it is generated, it is controlled within the range of 50 or less in the field of view of 0.4 mm 2. Meaning. And by ensuring this requirement, excellent machinability and toughness can be ensured as described above. In addition, the cross-sectional structure | tissue which observes a coarse carbide | carbonized_material is performed in the state after performing the quenching tempering process which is heat processing essential as a cold tool. As the quenching condition and the tempering condition, an optimum condition within a range described later may be adopted.

本発明の冷間工具鋼は、主としてハイテン等の板成形用の金型として使用される。そして、熱間圧延や鋼塊の鍛伸等により母材製造後、加工性向上のための球状化焼鈍(例えば850℃程度に5時間程度加熱保持後550℃程度まで徐冷)した後、所定の金型形状に機械加工された後に焼入れ焼戻し処理され、高硬度で高い衝撃値を有する金型として製造することができる。そして、この際の焼入れ条件は、被処理材を1000〜1050℃に加熱保持した後空冷するという条件を採用することができる。   The cold tool steel of the present invention is mainly used as a mold for plate forming such as high tension steel. Then, after the base material is manufactured by hot rolling or steel ingot forging, spheroidizing annealing for improving workability (for example, heating to 850 ° C. for about 5 hours and then gradually cooling to about 550 ° C.) After being machined into a mold shape, quenching and tempering can be performed to produce a mold having high hardness and high impact value. And the quenching conditions in this case can employ | adopt the conditions of air-cooling, after heating and holding a to-be-processed material at 1000-1050 degreeC.

また、焼入れ後の焼戻しは、以下に説明する低温焼戻しと高温焼戻しが選択でき、中間の温度域での焼戻しは脆化するため、選択されない。そして、低温焼戻しの場合には、例えば被処理材を150℃〜200℃に60分保持した後空冷する条件とすることができ、高温焼戻しの場合には、例えば被処理材を450℃〜550℃に60分保持した後空冷する条件とすることができる。従って、焼戻し処理としては、上記の低温焼戻しと高温焼戻しのいずれかを採用可能であるが、これは、加工としてワイヤカットを利用するか否か、CVD又はPVDによる成膜処理を行うか否か等によって選択することができる。例えば、ワイヤカット処理を行う場合及びCVD又はPVDによる成膜処理を行う場合には、高温での焼戻し処理が有効である。一方、これらの処理が不要の場合には、低温での焼戻し処理が有効である。   Further, the tempering after quenching can be selected from low-temperature tempering and high-temperature tempering described below, and tempering in an intermediate temperature range becomes brittle and is not selected. In the case of low temperature tempering, for example, the material to be treated can be air-cooled after being held at 150 ° C. to 200 ° C. for 60 minutes. In the case of high temperature tempering, for example, the material to be treated is 450 ° C. to 550 ° C. It can be set as the conditions of air-cooling after hold | maintaining at 60 degreeC for 60 minutes. Therefore, as the tempering process, either the above-described low-temperature tempering or high-temperature tempering can be adopted, and this is whether or not a wire cut is used as processing, and whether or not a film forming process by CVD or PVD is performed. Etc. can be selected. For example, a tempering process at a high temperature is effective when performing a wire cut process and when performing a film formation process by CVD or PVD. On the other hand, when these processes are unnecessary, a tempering process at a low temperature is effective.

高温での焼戻し処理によれば、炭化物析出による二次硬化が期待でき、低温での焼戻し処理の場合と同等の高硬度特性を維持できると共に、残留オーステナイトを低減させることによるワイヤカット処理可能化やCVD又はPVDなどの高温での成膜処理が可能となるというメリットが得られる。一方、低温での焼戻し処理によれば、高温での焼戻し処理の場合よりも若干高めの衝撃値特性が得られるというメリットがある。したがって、冷間工具に求められる特性に応じて、焼戻し条件を設定することができる。   According to the tempering treatment at high temperature, secondary hardening due to carbide precipitation can be expected, high hardness characteristics equivalent to those in the case of tempering treatment at low temperature can be maintained, and wire cutting treatment can be made possible by reducing residual austenite, There is a merit that film formation at a high temperature such as CVD or PVD becomes possible. On the other hand, the tempering treatment at a low temperature has an advantage that a slightly higher impact value characteristic can be obtained than the case of the tempering treatment at a high temperature. Therefore, tempering conditions can be set according to the characteristics required for the cold tool.

(実施例1)
上記冷間工具鋼の実施例につき、比較のための複数の試料と共に説明する。まず、供試材として、表1に示す化学成分を有する複数の鋼(試料No.1〜38)を準備した。このうち、試料No.1〜20が本発明の条件を満足する鋼であり、試料No.21〜36が一部の条件を満足しない比較鋼であり、試料No.37が、過去に開発され、既に市販されている従来鋼、試料No.38がJIS規格のSKD11である。これらの鋼は、電気炉で溶解して鋼塊を作製し、鋼塊に熱間鍛造を施した後、850℃に4時間保持した後、550℃まで20℃/時間の冷却速度で徐冷するという球状化焼鈍により、機械加工性を高めた後、150mm×90mm×40mmのブロック状の試験片に加工した。この試験片に対して、表2に示す焼入れ温度に加熱して30分間保持した後に空冷する焼入れ処理を施した後、同表に示す焼戻温度に60分間保持した後に空冷する焼戻し処理を施した。そして、以下の各種試験を実施した。
Example 1
Examples of the cold tool steel will be described together with a plurality of samples for comparison. First, a plurality of steels (sample Nos. 1 to 38) having chemical components shown in Table 1 were prepared as test materials. Among these, sample no. 1 to 20 are steels satisfying the conditions of the present invention. 21 to 36 are comparative steels that do not satisfy some conditions. 37 is a conventional steel that has been developed in the past and is already on the market. 38 is JIS standard SKD11. These steels are melted in an electric furnace to produce steel ingots, hot forged to the steel ingots, held at 850 ° C. for 4 hours, and then gradually cooled to 550 ° C. at a cooling rate of 20 ° C./hour. After improving the machinability by spheroidizing annealing, it was processed into a block-shaped test piece of 150 mm × 90 mm × 40 mm. The test piece was subjected to a quenching treatment that was heated to the quenching temperature shown in Table 2 and held for 30 minutes and then air-cooled, and then held at the tempering temperature shown in the same table for 60 minutes and then air-cooled. did. And the following various tests were implemented.

Figure 2018154884
Figure 2018154884

Figure 2018154884
Figure 2018154884

<シャルピー衝撃試験>
上述した球状化焼鈍後、焼入れ焼戻し処理を行う直前の試験片から10Rノッチシャルピー試験片を切り出した。切り出し方向は、上述したブロック状の試験片の長手方向がシャルピー試験片の長手方向となるように向きを揃えた。そして、表面酸化の影響を避けるため、真空中において上述した焼入れ焼戻し処理を実施してこの試験の試験片とした。シャルピー衝撃試験は常温において行った。
<Charpy impact test>
After the spheroidizing annealing described above, a 10R notch Charpy test piece was cut out from the test piece immediately before performing the quenching and tempering treatment. The cutting direction was aligned so that the longitudinal direction of the block-shaped test piece described above was the longitudinal direction of the Charpy test piece. And in order to avoid the influence of surface oxidation, the quenching and tempering process mentioned above was implemented in the vacuum, and it was set as the test piece of this test. The Charpy impact test was performed at room temperature.

SKD11の硬度60HRCにおける10Rノッチの試験片によるシャルピー衝撃値は25J/cm2程度であり、その倍の値を超える60HRC以上において60J/cm2以上であれば、衝撃値は非常に優れていると言えるが、実際には、硬度が高いほど衝撃値が低くなる傾向にある。また、本発明では、ハイテン材を成形しても問題のない耐摩耗性を確保することを目的としているので、硬度は基本的に60HRC以上であることが必要である。そこで、60HRC以上の硬度域における各硬度ごとの目標衝撃値として、衝撃値評価値=シャルピー衝撃値(J/cm2)−(−10×硬さ(HRC)+660)(J/cm2)が正の値となれば良いという基準を設け、硬度が60HRC以上の試験片の結果に対してこの値を表2に示すと共に、正の場合を○、負の場合を×として示した。また、硬度が60HRC未満となった試験片の結果については、図2より、明らかに数値が劣るものについて、以下にその旨を記載した。 The Charpy impact value with a 10R notch specimen at a hardness of 60 HRC of SKD11 is about 25 J / cm 2 , and if the impact value is 60 J / cm 2 or more at 60 HRC or more exceeding the double value, the impact value is very excellent. Actually, the impact value tends to decrease as the hardness increases. Further, in the present invention, the object is to ensure wear resistance that does not cause a problem even if a high-tensile material is molded. Therefore, the hardness is basically required to be 60 HRC or more. Therefore, as a target impact value for each hardness in a hardness range of 60 HRC or more, impact value evaluation value = Charpy impact value (J / cm 2 ) − (− 10 × hardness (HRC) +660) (J / cm 2 ) A reference was made that a positive value should be used, and this value is shown in Table 2 for the result of a test piece having a hardness of 60 HRC or more, and a positive case was indicated as ◯ and a negative case as x. Moreover, about the result of the test piece in which hardness became less than 60 HRC, that is described below about the thing whose numerical value is clearly inferior from FIG.

<硬さ測定>
上記のシャルピー試験に用いた試験片におけるノッチ面のある側の平坦な部分を#220番の研磨紙を用いて研磨した後、その面のHRC硬度を測定した。測定結果を表2に示す。
<Hardness measurement>
The flat part on the side having the notch surface in the test piece used in the Charpy test was polished using # 220 polishing paper, and then the HRC hardness of the surface was measured. The measurement results are shown in Table 2.

<切削試験(ドリル試験)>
理研製鋼株式会社製ドリル、刃径:5.0mm、溝長:42mm、全長:92mm、シャンク径:5.0mm、シンニング:X形、先端角:135°、ねじれ角30°、材質:高コバルト高速度鋼(ホモ処理あり)、を使用してドリル試験を行った。試験条件は、切削速度:20m/min、回転数:1273rpm、送り:0.05mm/rev(送り速度:64mm/min)、穴深さ25mm(止まり穴)、切削油:あり、とし、上述した球状化焼鈍処理後のブロック状試験片(150mm×90mm×40mm)に200穴まで加工した。従来鋼のSKD11(試料38)の球状化焼鈍材も同時に評価し、使用したドリルの外周コーナー摩耗幅を比較した。機械加工性は、過去の実績から、従来鋼であるSKD11と比較して同等以上であれば、問題なく金型に加工可能と判断できることを考慮し、外周コーナー摩耗幅がSKD11(試料38)と同等以上ならば切削性不良(×)、少なければ切削性良好(○)と判断した。
<Cutting test (drill test)>
Riken Steel Co., Ltd. drill, blade diameter: 5.0 mm, groove length: 42 mm, full length: 92 mm, shank diameter: 5.0 mm, thinning: X shape, tip angle: 135 °, helix angle 30 °, material: high cobalt A drill test was performed using high speed steel (with homo treatment). The test conditions were as follows: cutting speed: 20 m / min, rotation speed: 1273 rpm, feed: 0.05 mm / rev (feed speed: 64 mm / min), hole depth 25 mm (blind hole), cutting oil: yes Block-shaped test pieces (150 mm × 90 mm × 40 mm) after spheroidizing annealing were processed up to 200 holes. The spheroidized annealing material of conventional steel SKD11 (sample 38) was also evaluated at the same time, and the outer peripheral corner wear width of the drill used was compared. In consideration of the fact that the machinability can be determined to be possible to process into a mold without any problem if it is equal to or higher than that of SKD11, which is a conventional steel, from the past results, the outer peripheral corner wear width is SKD11 (sample 38). If it was equal or higher, it was judged that machinability was poor (x), and if it was small, machinability was good (◯).

<粗大炭化物の確認>
焼入れ焼戻しの熱処理を施した後の断面組織を光学顕微鏡を用いて撮像した断面組織画像を用いて、0.4mm2の視野中での、円相当径15μm以上の粗大炭化物の個数を求めることにより行う。円相当径15μm以上であることの判断は、画像処理ソフトを用いることにより行うことができる。円相当径にて15μm以上の粗大炭化物が、0.4mm2の視野中に51個以上ある場合を、粗大炭化物有り、50個以下である場合を粗大炭化物の点で問題無しと判断し、表2に「有り」又は問題無しを意味する「○」で結果を示した。
<Confirmation of coarse carbide>
By obtaining the number of coarse carbides having a circle-equivalent diameter of 15 μm or more in a field of view of 0.4 mm 2 using a cross-sectional structure image obtained by imaging the cross-sectional structure after performing quenching and tempering heat treatment using an optical microscope. Do. The determination that the equivalent circle diameter is 15 μm or more can be made by using image processing software. When there are 51 or more coarse carbides with an equivalent circle diameter of 15 μm or more in the field of view of 0.4 mm 2 , it is judged that there are coarse carbides and there are no more than 50 coarse carbides in terms of coarse carbides. The result is shown by “◯”, which means “Yes” or “No problem” in 2.

表1及び表2から分かるように、試料No.1−20の鋼は、上述した特定の化学成分組成を具備し、かつ、式1の値が全て4.0以上である。また、粗大炭化物は、全て0.4mm2の視野中に50個以下の結果となっている。そのため、これらの鋼は、硬さが60HRC以上でありながら、衝撃値の値も非常に優れ、かつ、従来のSKD11と同等以上の、金型加工が可能な問題のない被削性を有していることが確認できた。 As can be seen from Tables 1 and 2, Sample No. The steel of 1-20 has the specific chemical composition described above, and all the values of Formula 1 are 4.0 or more. In addition, all coarse carbides result in 50 or less in a visual field of 0.4 mm 2 . Therefore, these steels have a hardness value of 60 HRC or more, an extremely excellent impact value, and a machinability that does not have a problem that enables die machining, which is equal to or higher than that of the conventional SKD11. It was confirmed that

これに対し、比較鋼としての試料No.21−36及び従来鋼としての試料No.37及び38においては、要求特性を全て具備する結果は一例も得られなかった。具体的に見ると、試料No.21は、C含有率が低すぎ、式1も満たさず、十分な硬度が得られなかった。試料No.22は、C含有率が高すぎ、高硬度は確保できても基準個数以上の粗大炭化物の存在が確認され、その結果衝撃値が低くなり、被削性も低下した。   On the other hand, sample No. as a comparative steel. 21-36 and Sample No. as conventional steel. In 37 and 38, none of the results having all the required characteristics were obtained. Specifically, sample no. No. 21 had too low C content, did not satisfy Formula 1, and could not obtain sufficient hardness. Sample No. No. 22 had a C content that was too high, and even though high hardness could be secured, the presence of coarse carbides exceeding the reference number was confirmed. As a result, the impact value was lowered and the machinability was also lowered.

試料No.23は、Si含有率が低すぎ、式1も満たさず、十分な硬度が得られなかった。試料No.24は、Si含有率が高すぎ、高硬度は確保できても衝撃値が低くなった。   Sample No. In No. 23, the Si content was too low, the formula 1 was not satisfied, and sufficient hardness was not obtained. Sample No. In No. 24, the Si content was too high, and the impact value was low even though high hardness could be secured.

試料No.25は、Mn含有率が低すぎ、式1も満たさず、十分な硬度が得られなかっただけでなく、被削性向上に有効なMnSが十分に形成されず被削性が低下した。試料No.26は、Mn含有率が高すぎ、式1も満たさず、十分な硬度が得られなかった。   Sample No. In No. 25, the Mn content was too low, the formula 1 was not satisfied, and not only a sufficient hardness was not obtained, but also MnS effective for improving the machinability was not sufficiently formed and the machinability was lowered. Sample No. No. 26 had an excessively high Mn content, did not satisfy Formula 1, and did not have sufficient hardness.

試料No.27は、Cr含有率が低すぎ、式1も満たさず、十分な硬度が得られなかった。試料No.28は、Cr含有率が高すぎ、式1も満たさず、十分な硬度が得られなかっただけでなく、所定個数以上の粗大炭化物の存在が確認され、粗大炭化物の影響で衝撃値及び被削性が低下した。   Sample No. In No. 27, the Cr content was too low, the formula 1 was not satisfied, and sufficient hardness was not obtained. Sample No. No. 28, the Cr content was too high, the formula 1 was not satisfied, and not only a sufficient hardness was not obtained, but also the presence of a predetermined number or more of coarse carbides was confirmed. Decreased.

試料No.29は、Mo含有率が低すぎ、式1も満たさず、十分な硬度が得られなかった。試料No.30は、Mo含有率が高く、式1を満たすために高硬度化を図ることができたものの、目標を満足する衝撃値、被削性の結果が得られなかった。   Sample No. In No. 29, the Mo content was too low, the formula 1 was not satisfied, and sufficient hardness was not obtained. Sample No. No. 30 had a high Mo content and was able to achieve high hardness in order to satisfy Equation 1, but no impact value and machinability results that satisfy the target were obtained.

試料No.31〜33は、本発明の衝撃値改善のためのポイントとなる元素であるTi及びBの含有率が低く、衝撃値改善効果が不十分となったため、式1を満たして十分な硬度が得られたものの、目標を満足する衝撃値が得られなかった。   Sample No. Nos. 31 to 33 have low contents of Ti and B, which are elements for improving the impact value of the present invention, and the effect of improving the impact value is insufficient. However, the impact value satisfying the target was not obtained.

試料No.34〜36は、個々の化学成分は上述した範囲内にあるものの式1を満たさないために十分な硬度が得られなかった。   Sample No. 34-36 did not satisfy Formula 1 although individual chemical components were within the above-mentioned range, and sufficient hardness was not obtained.

試料No.37は、JIS鋼ではないが、過去に開発され市販されている従来鋼であるが、硬度が低く、かつ、衝撃値も低かった。試料No.38は、従来鋼(SKD11)であるが、硬度が低く、衝撃値が大きく劣るものであった。   Sample No. Although 37 is not a JIS steel, it is a conventional steel that has been developed and marketed in the past, but has a low hardness and a low impact value. Sample No. 38 is a conventional steel (SKD11), which has a low hardness and a large inferior impact value.

図1は、表1及び表2に示す全ての試料について、式1の値を横軸に、硬さを縦軸にとってプロットしたものである。式1の値が4以上であることによって、60HRCを確実に確保できることがわかる。   FIG. 1 is a plot of all the samples shown in Table 1 and Table 2 with the value of Equation 1 on the horizontal axis and the hardness on the vertical axis. It turns out that 60HRC can be ensured reliably by the value of Formula 1 being 4 or more.

図2は、表1及び表2に示す全ての試料について、硬さを横軸に、衝撃値を縦軸にとってプロットしたものである。化学成分が適正なものを黒塗りのプロット点とし、適正でないものを白抜きのプロット点として示した。この結果より、本発明は、60HRC以上の硬さ領域において、Ti、Bの複合添加による相乗効果によって、衝撃値が高くなることが明確に理解できる。   FIG. 2 is a plot of hardness on the horizontal axis and impact value on the vertical axis for all samples shown in Tables 1 and 2. Those with the appropriate chemical composition were shown as black plot points, and those with the wrong chemical composition were shown as white plot points. From this result, it can be clearly understood that the impact value of the present invention is increased in a hardness region of 60 HRC or more due to a synergistic effect by combined addition of Ti and B.

(実施例2)
本例では、鋼材の硬さと粗大炭化物の有無とによる耐摩耗性への影響を調べた。まず、表3に示すごとく、本願における実施例に相当する開発鋼(E1〜E4)、従来鋼であるSKD11(S1〜S4)、市販のA鋼(A1〜A4)、市販のB鋼(B1〜B4)、市販のC鋼(C1〜C4)という大きく分けて5種類の鋼種についてそれぞれ4つの試料、合計20種類の試料を準備した。このうち、従来鋼SKD11とB鋼が粗大炭化物が生成される成分設計がされている鋼であり、その他は粗大炭化物が生成されにくい成分設計がされている鋼である。
(Example 2)
In this example, the influence on the wear resistance by the hardness of the steel material and the presence or absence of coarse carbides was investigated. First, as shown in Table 3, developed steel (E1 to E4) corresponding to the examples in the present application, SKD11 (S1 to S4) which are conventional steels, commercially available A steel (A1 to A4), commercially available B steel (B1) ˜B4) and commercially available C steels (C1 to C4), four samples were prepared for each of five types of steel, and a total of 20 types of samples were prepared. Among them, the conventional steels SKD11 and B are steels whose components are designed to generate coarse carbides, and the others are steels whose components are designed not to easily generate coarse carbides.

各試料は、実施例1と同様の製造方法によって製造し、最終の焼戻し温度を500℃〜530℃の範囲で変化させて硬さを調整した。各試料について、実施例1の場合と同様に、硬さを測定した。そして、耐摩耗性については、次のように、大越式摩耗試験機を用いて行った。   Each sample was manufactured by the same manufacturing method as in Example 1, and the final tempering temperature was changed in the range of 500 ° C. to 530 ° C. to adjust the hardness. For each sample, the hardness was measured in the same manner as in Example 1. And about abrasion resistance, it carried out using the Ogoshi type abrasion tester as follows.

<耐摩耗性試験>
大越式摩耗試験機による試験は、平板状の試験片に、リング部材を回転させながらその側面を押しつけ、試験片を摩耗させる試験である。リング部材としては、SCM415を使用した。試験条件は、試験距離:400m、摩耗速度:0.74m/s、荷重:6.3kgf(最終荷重)、潤滑油無しとした。試験片の摩耗幅を測定し、各鋼種の比摩耗量(Ws)を比較した。比摩耗量(Ws)の定義を以下に示す。
比摩耗量Ws=(Bb3)/(8rPL)mm2/kgf、
ここで、B:回転リングの厚み(mm)、r:回転リングの半径(mm)、b:摩耗痕幅(mm)、P:最終荷重(kgf)、L:摩擦距離(mm)である。
<Abrasion resistance test>
The test with the Ogoshi type abrasion tester is a test in which the test piece is worn by pressing the side surface of the flat test piece while rotating the ring member. As a ring member, SCM415 was used. The test conditions were as follows: test distance: 400 m, wear rate: 0.74 m / s, load: 6.3 kgf (final load), and no lubricant. The wear width of the test piece was measured, and the specific wear amount (Ws) of each steel type was compared. The definition of specific wear (Ws) is shown below.
Specific wear amount Ws = (Bb 3 ) / (8rPL) mm 2 / kgf,
Here, B: thickness of rotating ring (mm), r: radius of rotating ring (mm), b: wear scar width (mm), P: final load (kgf), L: friction distance (mm).

得られた硬さ及び比摩耗量について表3に示すと共に、図3に示した。図3は、横軸に硬さ、縦軸に比摩耗量をとり、各鋼種ごとにプロット点のマーク形状を変更し、粗大炭化物が形成されるSKD11とB鋼の結果を白抜きのプロット点で、その他の鋼種を黒塗りのプロット点で示した。そして、粗大炭化物が形成される鋼種のプロット点を大まかに結ぶ線を点線で示し、粗大炭化物が形成されにくい鋼種のプロット点を大まかに結ぶ線を実線で示した。   The obtained hardness and specific wear amount are shown in Table 3 and shown in FIG. Fig. 3 shows hardness on the horizontal axis and specific wear on the vertical axis, the mark shape of the plot points is changed for each steel type, and the results of the SKD11 and B steels where coarse carbides are formed are plotted in white. The other steel types are indicated by black plot points. And the line which roughly connects the plot points of the steel types where coarse carbides are formed is shown by a dotted line, and the line which roughly connects the plot points of steel types where coarse carbides are hard to be formed is shown by a solid line.

Figure 2018154884
Figure 2018154884

同図から知られるように、硬さが60HRC未満の範囲内では、硬さが同じであれば粗大炭化物有りの鋼種の方が耐摩耗性に優れているが、60HRC以上の場合には、粗大炭化物の有無による耐摩耗性に対する影響はほとんど無いことが分かる。この結果からみれば、60HRC以上においては、粗大炭化物を無くすことによって、これによる靱性及び被削性の向上を追求することが優位であることが明確に理解できる。   As can be seen from the figure, within the range where the hardness is less than 60 HRC, if the hardness is the same, the steel type with coarse carbide has better wear resistance. It can be seen that the presence or absence of carbide has little effect on the wear resistance. From this result, it can be clearly understood that at 60 HRC or more, it is advantageous to pursue the improvement of toughness and machinability by eliminating coarse carbides.

Claims (3)

質量%で、C:0.55〜0.85%、Si:1.00〜2.50%、Mn:0.30〜1.50%、P:0.030%以下、S:0.100%以下、Cr:5.00〜8.00%、Mo:1.00〜2.00%、Ti:0.05〜0.20%、B:0.0005〜0.0050%、Al:0.005〜0.150%、N:0.0250%以下を含有し、残部がFeおよび不可避不純物からなり、
以下の式1を満足し、
式1:1.4×[Si]−2.7×[Mn]+1.7×[Mo]+1.5×[C]≧4(但し、式中における[X]は、元素Xの含有率(質量%)を示す。)、
かつ、焼入れ焼戻し処理後の断面組織において、円相当径にて15μm以上の粗大炭化物が、0.4mm2の視野中に50個以下である冷間工具鋼。
In mass%, C: 0.55-0.85%, Si: 1.00-2.50%, Mn: 0.30-1.50%, P: 0.030% or less, S: 0.100 % Or less, Cr: 5.00 to 8.00%, Mo: 1.00 to 2.00%, Ti: 0.05 to 0.20%, B: 0.0005 to 0.0050%, Al: 0 0.005 to 0.150%, N: 0.0250% or less, with the balance being Fe and inevitable impurities,
Satisfying the following formula 1,
Formula 1: 1.4 × [Si] −2.7 × [Mn] + 1.7 × [Mo] + 1.5 × [C] ≧ 4 (where, [X] is the content of element X) (Mass%).),
And cold work tool steel in which the cross-sectional structure after quenching and tempering treatment has 50 or less coarse carbides having an equivalent circle diameter of 15 μm or more in a visual field of 0.4 mm 2 .
上記残部の一部に代えて、V:0.20%以下、Nb:0.20%以下、W:0.50%以下、Ta:0.20%以下のうちの1種又は2種以上を含有することを特徴とする請求項1に記載の冷間工具鋼。   Instead of a part of the remaining part, V: 0.20% or less, Nb: 0.20% or less, W: 0.50% or less, Ta: 0.20% or less The cold tool steel according to claim 1, which is contained. 上記残部の一部に代えて、Mg:0.10%以下、Te:0.10%以下、Bi:0.05%以下の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の冷間工具鋼。   2. It replaces with a part of said remainder, Mg: 0.10% or less, Te: 0.10% or less, Bi: 0.05% or less 1 type or 2 types or more are contained, It is characterized by the above-mentioned. Or the cold tool steel of 2.
JP2017053837A 2017-03-20 2017-03-20 Cold tool steel Active JP6772915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017053837A JP6772915B2 (en) 2017-03-20 2017-03-20 Cold tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017053837A JP6772915B2 (en) 2017-03-20 2017-03-20 Cold tool steel

Publications (2)

Publication Number Publication Date
JP2018154884A true JP2018154884A (en) 2018-10-04
JP6772915B2 JP6772915B2 (en) 2020-10-21

Family

ID=63717781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017053837A Active JP6772915B2 (en) 2017-03-20 2017-03-20 Cold tool steel

Country Status (1)

Country Link
JP (1) JP6772915B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161359A1 (en) * 2019-02-08 2020-08-13 Rovalma, S.A. Low cost high performant tool steels
CN116043106A (en) * 2022-11-08 2023-05-02 湖北楠田工模具科技有限公司 High-purity high-toughness long-service-period cold work die steel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222648A (en) * 1998-01-30 1999-08-17 Daido Steel Co Ltd Cold tool steel excellent in toughness and wear resistance and its production
JP2004169177A (en) * 2002-11-06 2004-06-17 Daido Steel Co Ltd Alloy tool steel, its manufacturing method, and die using it
JP2006193790A (en) * 2005-01-14 2006-07-27 Daido Steel Co Ltd Cold working tool steel
JP2006328521A (en) * 2005-05-30 2006-12-07 Daido Steel Co Ltd Tool for precision working and tool steel
JP2009132990A (en) * 2007-10-31 2009-06-18 Daido Steel Co Ltd Alloy tool steel and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222648A (en) * 1998-01-30 1999-08-17 Daido Steel Co Ltd Cold tool steel excellent in toughness and wear resistance and its production
JP2004169177A (en) * 2002-11-06 2004-06-17 Daido Steel Co Ltd Alloy tool steel, its manufacturing method, and die using it
JP2006193790A (en) * 2005-01-14 2006-07-27 Daido Steel Co Ltd Cold working tool steel
JP2006328521A (en) * 2005-05-30 2006-12-07 Daido Steel Co Ltd Tool for precision working and tool steel
JP2009132990A (en) * 2007-10-31 2009-06-18 Daido Steel Co Ltd Alloy tool steel and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020161359A1 (en) * 2019-02-08 2020-08-13 Rovalma, S.A. Low cost high performant tool steels
CN116043106A (en) * 2022-11-08 2023-05-02 湖北楠田工模具科技有限公司 High-purity high-toughness long-service-period cold work die steel and preparation method thereof
CN116043106B (en) * 2022-11-08 2023-12-15 湖北楠田工模具科技有限公司 High-purity high-toughness long-service-period cold work die steel and preparation method thereof

Also Published As

Publication number Publication date
JP6772915B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
EP2679697B1 (en) Manufacturing method for cold-working die
US20090311125A1 (en) Hot-working steel excellent in machinability and impact value
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP2009030160A (en) Steel for mechanical structure excellent in machinability and process for producing the same
JP4403875B2 (en) Cold work tool steel
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
JP5260460B2 (en) Case-hardened steel parts and manufacturing method thereof
JP6529234B2 (en) High speed tool steel with high toughness and softening resistance
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP5376302B2 (en) Die steel with excellent machinability
JP6620490B2 (en) Age-hardening steel
JP6772915B2 (en) Cold tool steel
JP6828591B2 (en) Bearing steel and bearing parts
JP5680461B2 (en) Hot work tool steel
JP5459197B2 (en) Alloy steel for machine structural use
JP6477383B2 (en) Free-cutting steel
JP2005336553A (en) Hot tool steel
JP2009108357A (en) Non-heat treated steel for martensite type hot-forging, and hot-forged non-heat treated steel part
JP6416624B2 (en) Method for cutting cold tool steel and method for producing cold mold material
JP3903966B2 (en) Case-hardened steel with excellent chip control
JP4322239B2 (en) Cold tool steel and manufacturing method thereof
JP6801542B2 (en) Mechanical steel and its cutting method
JP3497387B2 (en) Molds and tools made of high hardness cold tool steel
TWI647318B (en) Steel for cold working tool
JP5907416B2 (en) Method for producing hot work tool steel with excellent toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R150 Certificate of patent or registration of utility model

Ref document number: 6772915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250