JP2004169177A - Alloy tool steel, its manufacturing method, and die using it - Google Patents

Alloy tool steel, its manufacturing method, and die using it Download PDF

Info

Publication number
JP2004169177A
JP2004169177A JP2003346050A JP2003346050A JP2004169177A JP 2004169177 A JP2004169177 A JP 2004169177A JP 2003346050 A JP2003346050 A JP 2003346050A JP 2003346050 A JP2003346050 A JP 2003346050A JP 2004169177 A JP2004169177 A JP 2004169177A
Authority
JP
Japan
Prior art keywords
less
tool steel
alloy tool
steel
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003346050A
Other languages
Japanese (ja)
Inventor
Kozo Ozaki
公造 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003346050A priority Critical patent/JP2004169177A/en
Priority to CNB200310103821XA priority patent/CN100357476C/en
Publication of JP2004169177A publication Critical patent/JP2004169177A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide alloy tool steel having a quenching temperature lower than that of conventional matrix high speed steel and also having the same characteristics such as hardness and toughness after heat treatment, as those of conventional alloy tool steel, and to provide its manufacturing method and a die using it. <P>SOLUTION: The alloy tool steel has a composition which contains prescribed amounts of C, Si, Mn, P, S, Cu, Ni, Cr, Mo or/and W, V, Al, O and N and further contains prescribed amounts of one or more elements among Co, Nb, Ti, B, Ta, Zr, Pb, Bi, Ca, Te, Se, REM and Mg and has the balance Fe with inevitable impurities and in which inequality -0.2<ΔC<0.2 (where ΔC=C-(0.06×Cr+0.063×Mo+0.033×W+0.2×V+0.1×Nb)) is satisfied and the value of Lc defined by equation Lc=(8.8×Mo+5.9×W+50×V+40×Nb)/(6×Cr) is made to 1.0 to 2. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、熱間金型や冷間における鍛造、圧造、据え込み、剪断などに用いる各種工具に適した合金工具鋼及びその製造方法、並びにそれを用いた金型に関する。   The present invention relates to an alloy tool steel suitable for various tools used in hot dies and cold forging, forging, upsetting, shearing, and the like, a method of manufacturing the same, and a dies using the same.

従来、硬さが55HRC以上で使用される鍛造、圧造、据え込み、剪断などに用いる各種工具は、冷間ダイス鋼、マトリックスハイスが主として使用され、高速度工具鋼が一部使用されていた。また、近年熱間及び温間鍛造技術の向上に伴い、熱間及び温間鍛造にも高靱性のマトリックスハイスなどが使用されるようになってきた。   Conventionally, various tools used for forging, forging, upsetting, shearing, and the like used with a hardness of 55 HRC or more mainly use cold die steel and matrix high-speed steel, and partially use high-speed tool steel. In recent years, with the improvement of hot and warm forging techniques, matrix toughness and the like having high toughness have been used for hot and warm forging.

上記各種用途に使用されるマトリックスハイスは、高速度工具鋼をベースにし、炭化物量を極力抑えた鋼種(高速度工具鋼のマトリックスに類似した成分組成の鋼)で、例えば、C:0.4〜0.8%、Cr:3.0〜7.0%、Mo:1.0〜7.0%、W:0.1〜3.0%、Mo+1/2W:2.0〜7.0%.V:0.5〜2.0%、残部が実質的にFeからなるものなどが知られている(例えば、特許文献1参照。)。   The matrix high-speed steel used in the above-mentioned various applications is a steel type (steel having a component composition similar to the matrix of the high-speed tool steel) which is based on a high-speed tool steel and minimizes the amount of carbide. 0.8%, Cr: 3.0-7.0%, Mo: 1.0-7.0%, W: 0.1-3.0%, Mo + 1 / 2W: 2.0-7.0. %. V: 0.5 to 2.0%, with the balance being substantially composed of Fe, etc. (for example, see Patent Document 1).

このようなマトリックスハイスにおいては、焼入れ温度が高速度鋼より若干低いが1100℃以上であるため、従来の熱間ダイス鋼、冷間ダイス鋼など(焼入れ温度が、例えば1000〜1050℃)と一緒に熱処理をすることができないので、この合金だけを熱処理するための熱処理チャンスを別途設ける必要が生じている。このため、熱処理費用が高くなる(熱間ダイス鋼および冷間ダイス鋼の2倍、高速度鋼の0.9〜1.0倍)という問題がある。   In such a matrix HSS, the quenching temperature is slightly lower than that of the high-speed steel but is 1100 ° C. or higher, so that it can be used together with conventional hot die steel, cold die steel, etc. (quenching temperature is, for example, 1000 to 1050 ° C.). Therefore, it is necessary to separately provide a heat treatment chance for heat treating only this alloy. Therefore, there is a problem that the heat treatment cost is high (twice that of hot die steel and cold die steel, and 0.9 to 1.0 times that of high speed steel).

また、マトリックスハイスを高靱性化及び高硬度化するため、焼入れ性を改善することが提案されている(例えば、特許文献2参照。)。
しかし、この提案の冷間工具鋼においても焼入れ温度が1140℃前後であるため、上記マトリックスハイスと同様に熱処理チャンスを別途設ける必要が生じるという問題が解決されていない。
Further, it has been proposed to improve the hardenability in order to increase the toughness and hardness of the matrix high-speed steel (for example, see Patent Document 2).
However, even in the case of the proposed cold tool steel, the quenching temperature is about 1140 ° C., so that the problem that it is necessary to separately provide a heat treatment chance as in the case of the matrix HSS has not been solved.

また、近年熱間・温間鍛造技術の向上に伴い、従来の金型では、強度が不足し十分な寿命を達成できない場合や、靭性が低く、早期破壊となる場合などが問題になっている。そこで、従来よりも高強度の熱間ダイス鋼や、高靭性のマトリックスハイスを金型へ適用するニーズも高くなってきている。   In recent years, with the improvement of hot and warm forging techniques, there have been problems with conventional dies in which the strength is insufficient and a sufficient life cannot be achieved, or where the toughness is low and early fracture occurs. . Therefore, there is an increasing need to apply a hot die steel having higher strength and a matrix tougher having higher toughness than ever before to a mold.

特開平11−229031号公報JP-A-11-229031 特開平7−316739号公報JP-A-7-316739

本発明は、従来のマトリックスハイスより焼入れ温度が低く、1100℃以下の焼入れ温度、望ましくは従来の熱間ダイス鋼、冷間ダイス鋼などの焼入れ温度(例えば、1000〜1050℃)と同程度の温度で焼入れをすることができ、熱処理後の硬さ、靱性などの特性が従来のものと同程度の合金工具鋼及びその製造方法、並びにそれを用いた金型を提供することを課題としている。   The present invention has a quenching temperature lower than that of the conventional matrix high-speed steel, and a quenching temperature of 1100 ° C. or less, preferably the same as the quenching temperature (eg, 1000 to 1050 ° C.) of the conventional hot die steel, cold die steel, or the like. An object of the present invention is to provide an alloy tool steel which can be quenched at a temperature, and has properties such as hardness and toughness after heat treatment, which are comparable to those of a conventional alloy tool, a method for manufacturing the same, and a mold using the same. .

課題を解決するための手段・発明の効果Means for Solving the Problems / Effects of the Invention

上記課題を解決するため、合金工具鋼における熱処理前(焼鈍し状態)の炭化物の種類・量と、焼入れ温度と、焼戻し後の硬さとの関係について、本発明者が鋭意研究を重ねた結果、炭化物の種類・量を適正化することで、焼入れを1100℃以下で行うことが可能となり、さらには500℃以上での焼戻し後の最高硬さをHRC(ロックウェルCスケール硬さ)55以上とすることが可能となることを見出した。   In order to solve the above problems, the present inventor has conducted intensive studies on the relationship between the type and amount of carbide before heat treatment (annealed state), the quenching temperature, and the hardness after tempering in alloy tool steel. By optimizing the type and amount of carbides, quenching can be performed at 1100 ° C or lower, and the maximum hardness after tempering at 500 ° C or higher is HRC (Rockwell C scale hardness) 55 or higher. I found that it was possible to do that.

すなわち、本発明の合金工具鋼では、
焼鈍し状態でM23型炭化物が2〜5vol%生成する組成を有し(ただし、M
はFe,Cr,Mo,W,V,Nbより選ばれる1種又は2種以上)、かつMC型炭化物及びMC型炭化物の少なくともいずれかが分散析出した焼入れ焼戻し組織を有してなり、かつロックウェルCスケール硬さがHRC55以上HRC66以下であることを特徴とする。
That is, in the alloy tool steel of the present invention,
M 23 C 6 type carbide in annealed state has a composition that generates 2~5vol% (however, M
Is one or two or more selected from Fe, Cr, Mo, W, V, and Nb), and has a quenched and tempered structure in which at least one of MC-type carbide and M 6 C-type carbide is dispersed and precipitated; In addition, Rockwell C scale hardness is HRC55 or more and HRC66 or less.

ここで、M23型炭化物は、その固溶温度が比較的低温であり、マトリックスへの固溶を通じて硬さ確保に寄与する炭化物である。一方、MC型炭化物及びMC型炭化物は、1100℃以下の低温焼入れではマトリックスに固溶しにくく、硬さ向上への寄与が小さい炭化物である。また、MC、MC型炭化物は硬質であり、粗大なものが残留すると靭性(衝撃値)を大幅に低下させてしまう。そこで、焼入れ時にマトリックスへ固溶しにくい炭化物、すなわちMC型炭化物及びMC型炭化物を微細に少量分散させることで、結晶粒の粗大化を防止し、靭性を確保することが可能となる。 Here, the M 23 C 6 type carbide has a relatively low solid solution temperature and is a carbide that contributes to securing hardness through solid solution in the matrix. On the other hand, MC-type carbides and M 6 C-type carbides are hardly solid-dissolved in the matrix when quenched at a low temperature of 1100 ° C. or lower, and are small contributions to improvement in hardness. In addition, MC and M 6 C type carbides are hard, and if coarse carbides remain, toughness (impact value) is greatly reduced. Therefore, by hardly dispersing a small amount of carbide that hardly forms a solid solution in the matrix during quenching, that is, MC-type carbide and M 6 C-type carbide, it is possible to prevent coarsening of crystal grains and secure toughness.

必要な硬さを確保する(硬さの下限をHRC55とする)ためには、焼戻し状態において2vol%以上のM23型炭化物が必要である。一方、上限は特には限定されないが、5vol%を超えることはマトリックスハイスとしては現実的ではない。また、硬さの上限も特には限定されないが、HRC66を超えることはマトリックスハイスとしては現実的でない。 To ensure the stiffness required (and HRC55 the lower limit of hardness), it is necessary to 2 vol% or more of the M 23 C 6 type carbide in a tempered state. On the other hand, the upper limit is not particularly limited, but exceeding 5 vol% is not realistic as a matrix high speed. Also, the upper limit of the hardness is not particularly limited, but exceeding HRC 66 is not practical as a matrix high-speed steel.

なお、本発明の合金工具鋼は、具体的には、950℃以上1100℃以下(より好ましくは1000℃以上1050℃以下)の温度で焼入れを行い、500℃以上700℃未満の温度で焼戻しを行うことにより得ることができる。   The alloy tool steel of the present invention is specifically quenched at a temperature of 950 ° C or higher and 1100 ° C or lower (more preferably 1000 ° C or higher and 1050 ° C or lower) and tempered at a temperature of 500 ° C or higher and lower than 700 ° C. Can be obtained.

次に、本発明の合金工具鋼では、
質量%で、Fe:79.135〜93.75%、C:0.50〜0.80%、Si:0.10〜2.00%、Mn:0.10〜1.00%、P:0.050%以下、S:0.015%以下、Cu:1.00%以下、Ni:1.00%以下、Cr:4.50〜6.00%、Mo:0.05〜5.00%、W:5.00%以下、V:0.05〜1.00%、Nb:0.50%以下を含有し、かつ
2×Mo(%)+W(%)が2以上10以下とすることができる。
以下、各数値範囲について限定理由を述べる。
Next, in the alloy tool steel of the present invention,
In mass%, Fe: 79.135 to 93.75%, C: 0.50 to 0.80%, Si: 0.10 to 2.00%, Mn: 0.10 to 1.00%, P: 0.050% or less, S: 0.015% or less, Cu: 1.00% or less, Ni: 1.00% or less, Cr: 4.50 to 6.00%, Mo: 0.05 to 5.00 %, W: 5.00% or less, V: 0.05 to 1.00%, Nb: 0.50% or less, and 2 × Mo (%) + W (%) is 2 to 10 be able to.
Hereinafter, the reasons for limitation in each numerical range will be described.

Fe(鉄):79.135〜93.75%
Feは、鋼を構成するのに必須の元素であるため主成分として含有させる。そのためには79.135%以上の添加が必要である。また、93.75%を超えると合金工具鋼として必要な他の添加成分を含有させることができなくなってしまう。つまり、本発明の合金工具鋼は、以下に列挙する添加成分を除いた残部が実質的にFeからなる。
Fe (iron): 79.135 to 93.75%
Fe is an essential element for constituting steel, and is therefore contained as a main component. For this purpose, it is necessary to add 79.135% or more. On the other hand, when the content exceeds 93.75%, it becomes impossible to contain other additional components necessary for the alloy tool steel. That is, in the alloy tool steel of the present invention, the balance excluding the following additional components is substantially made of Fe.

C(炭素):0.50〜0.80%
Cは、Fe、Cr、Mo、W、V、Nbなどの炭化物形成元素と結合し炭化物を形成する。焼入れ時のマトリックスへ固溶し、固溶したCr、Mo、W、V、Nbなどの元素と結合し、炭化物として析出して二次硬化に寄与するので、焼戻し時に焼戻し硬さを確保することを可能としている。
焼入れ・焼戻し後に最低限の硬さを確保するためには、Cの添加量が0.50%以上必要である。他方、Cの添加量が増加し過ぎると、焼入れ時に残留する硬質炭化物量が増加し、金型用途に使用される工具鋼とし大切な特性の一つである衝撃値の低下を招くので、これを防止するため上限を0.80%とする。これにより、安定した硬さ−靭性の確保が可能となる。
C (carbon): 0.50 to 0.80%
C combines with carbide forming elements such as Fe, Cr, Mo, W, V, and Nb to form carbides. Solid solution in the matrix at the time of quenching, and combine with dissolved elements such as Cr, Mo, W, V, and Nb, and precipitate as carbide to contribute to secondary hardening. Is possible.
In order to secure the minimum hardness after quenching / tempering, the amount of C added must be 0.50% or more. On the other hand, if the added amount of C is excessively increased, the amount of hard carbide remaining during quenching increases, and the impact value, which is one of the important characteristics of tool steel used for mold applications, is lowered. The upper limit is set to 0.80% in order to prevent the above. Thereby, stable hardness-toughness can be ensured.

Si(ケイ素):0.10〜2.00%
Siは主に脱酸剤として添加されるとともに、炭化物、マトリックス両方に固溶し硬さの増大に寄与する。そのため、0.10%以上を添加する。他方、Si添加による熱間での加工性低下や靭性低下を防止するため、上限を2.00%とする。
Si (silicon): 0.10-2.00%
Si is mainly added as a deoxidizing agent and also forms a solid solution in both the carbide and the matrix to contribute to an increase in hardness. Therefore, 0.10% or more is added. On the other hand, the upper limit is set to 2.00% in order to prevent a decrease in workability and a decrease in toughness due to the addition of Si.

Mn(マンガン):0.10〜1.00%
Mnは脱酸元素として、また焼入れ性向上元素として使用される。Mnの添加量が増加し過ぎると熱間加工性の低下が発生するため、上限を1.00%とする。また、不可避的にSが少量含有された場合に、熱間加工性を劣化させる不純物のSを固定して熱間加工性の劣化を防止する効果があるため、下限を0.10%とする。
Mn (manganese): 0.10-1.00%
Mn is used as a deoxidizing element and as a hardenability improving element. If the added amount of Mn is too large, the hot workability is reduced, so the upper limit is made 1.00%. In addition, when a small amount of S is inevitably contained, the lower limit is set to 0.10% because there is an effect of fixing S as an impurity that deteriorates hot workability and preventing deterioration of hot workability. .

P(リン):0.050%以下
Pは溶解原料中に不可避的に存在する。P濃度の上昇に伴い、粒界脆化のおもな原因となる。そのため、上限を0.050%以下とする。また、粒界脆化をより抑えるには、望ましくは、Pを0.020%以下とすることでより効果的となる。また、上限を0.1%としても、その効果を得られることがある。
P (phosphorus): 0.050% or less P is inevitably present in the dissolved raw material. As the P concentration increases, it becomes a major cause of grain boundary embrittlement. Therefore, the upper limit is set to 0.050% or less. In order to further suppress grain boundary embrittlement, desirably, if P is set to 0.020% or less, it becomes more effective. Further, even when the upper limit is set to 0.1%, the effect may be obtained.

S(硫黄):0.015%以下
Sは、不可避的に溶解原料中に存在する。また、被削性を向上させる目的で、Mnと同時に添加することもできる。しかし、硫化物の形成が増加すると、材料の靭性劣化が顕著になる。そのため、添加量(混入量)の上限を0.015%とする。
S (sulfur): 0.015% or less S is inevitably present in the dissolved raw material. Further, for the purpose of improving machinability, it can be added simultaneously with Mn. However, as the formation of sulfide increases, the toughness of the material deteriorates significantly. Therefore, the upper limit of the addition amount (mixing amount) is set to 0.015%.

Cu(銅):1.00%以下
Cuは、多量に添加すると赤熱脆性を示し、熱間加工性を低下させるため、その上限を1.00%とする。また、上限を0.25%とすることもできる。
Cu (copper): 1.00% or less When Cu is added in a large amount, it exhibits red hot embrittlement and lowers hot workability. Therefore, the upper limit is set to 1.00%. Further, the upper limit can be set to 0.25%.

Ni(ニッケル):1.00%以下
Niは、多量に添加すると焼入れ・焼戻し後も残留γが残り、靭性を低下させる。よって、その問題が発生しない上限の値とし、1.00%以下とする。また、上限を0.25%とすることもできる。
Ni (nickel): 1.00% or less When Ni is added in a large amount, residual γ remains even after quenching and tempering, and the toughness is reduced. Therefore, the upper limit value at which the problem does not occur is set to 1.00% or less. Further, the upper limit can be set to 0.25%.

Cr(クロム):4.50〜6.00%(好ましくは5.00〜6.00%)
Crは、炭化物形成元素として炭化物を形成する。なお、炭化物はVを主としたMC炭化物、Mo、Wを主としたMC系炭化物、Crを主としたM23系またはM系炭化物に分類できる。
ここで、Cr添加量を大幅に増加させた場合、焼入れ処理時の残留炭化物の増加よる靭性低下を招く。よって、その上限を6.00%とする。また、Cr系炭化物の量が少ないと、1100℃以下での熱処理により焼戻し後の硬度確保が困難である。そのため、その下限を4.50%とする。さらに望ましくは、5.00%以上添加することで、より確実に硬度確保が可能となる。
Cr (chromium): 4.50 to 6.00% (preferably 5.00 to 6.00%)
Cr forms carbide as a carbide forming element. The carbides can be classified into MC carbides mainly composed of V, M 6 C-based carbides mainly composed of Mo and W, M 23 C 6 -based carbides mainly composed of Cr and M 7 C 3 series carbides.
Here, when the amount of added Cr is significantly increased, the toughness is reduced due to an increase in residual carbides during the quenching process. Therefore, the upper limit is set to 6.00%. When the amount of the Cr-based carbide is small, it is difficult to secure hardness after tempering by heat treatment at 1100 ° C. or lower. Therefore, the lower limit is set to 4.50%. More desirably, by adding 5.00% or more, the hardness can be ensured more reliably.

Mo(モリブデン):0.05〜5.00%、W(タングステン):5.00%以下、2×Mo(%)+W(%)(以下、Weqとする)が2以上10以下(好ましくは4.0以上8.0以下)
Mo、Wは、硬質のMC炭化物を主に形成する。同時に焼入れ時にマトリックスへ固溶し、500℃以上の焼戻しにて2次硬化に寄与する。この2次硬化による硬さを十分確保するため必要なWeqが2以上となる。また、元素別の最低限の添加量とし、Mo:0.05%、W:0%とする。さらに硬度確保が容易になるように、好ましくはWeqを4.0以上とする。
さらに、Weqの上限は、W、Moを多量に添加させると、安定なMC型炭化物が形成されてしまい、1100℃以下より焼入れてもマトリックスへの十分な固溶量を確保できなくなるため、Weqを10以下とする。また、望ましくは、Weqを8.0以下とすることで、より安定した硬さ確保が可能となる。
Weqの上限値に対応し、Mo量の上限を5.00%とする。またWを多量に含有したMC炭化物はより安定で、焼入れ時にマトリックスへの固溶が困難である。よって、W量の上限は5.00%とする。
Mo (molybdenum): 0.05 to 5.00%, W (tungsten): 5.00% or less, 2 × Mo (%) + W (%) (hereinafter, referred to as Weq) is 2 to 10 (preferably) (4.0 or more and 8.0 or less)
Mo and W mainly form hard M 6 C carbides. At the same time, it forms a solid solution in the matrix during quenching and contributes to secondary hardening by tempering at 500 ° C. or higher. The required Weq is 2 or more in order to sufficiently secure the hardness by the secondary curing. Further, the minimum amount of addition for each element is set to 0.05% for Mo and 0% for W. In order to further ensure the hardness, Weq is preferably set to 4.0 or more.
Further, the upper limit of Weq is that if a large amount of W or Mo is added, a stable M 6 C-type carbide is formed, and a sufficient amount of solid solution in the matrix cannot be secured even when quenched at 1100 ° C. or lower. , Weq is 10 or less. Desirably, by setting Weq to 8.0 or less, more stable hardness can be ensured.
The upper limit of the Mo amount is set to 5.00% corresponding to the upper limit of Weq. M 6 C carbides containing a large amount of W are more stable, and are difficult to form a solid solution in a matrix during quenching. Therefore, the upper limit of the W amount is 5.00%.

V(バナジウム):0.05〜1.00%
Vは、Cと結合し、硬質で高温でも安定なMC型炭化物を形成する。その為、炭化物量が少なく、炭化物がほとんど含有されない材料(自動車用構造用鋼など)では、焼入れ時の結晶粒粗大化防止に利用されている。ここでも、同様にCr系炭化物、MC系炭化物が焼入れ処理によりマトリックスへ固溶した後、このMC系炭化物が残留し、結晶粒の粗大化を防止する。この作用を得るには0.05%以上の添加が必要となる。また、多量にVを添加すると、凝固時に粗大なMC炭化物を形成し破壊の起点となることから、その上限を1.00%とする。
V (vanadium): 0.05 to 1.00%
V combines with C to form an MC-type carbide that is hard and stable at high temperatures. For this reason, materials having a small amount of carbide and containing little carbide (such as structural steel for automobiles) are used to prevent coarsening of crystal grains during quenching. Here, similarly, after the Cr-based carbide and the M 6 C-based carbide are solid-dissolved in the matrix by the quenching treatment, the MC-based carbide remains and prevents the crystal grains from becoming coarse. To obtain this effect, 0.05% or more must be added. Also, if a large amount of V is added, coarse MC carbides are formed during solidification and become the starting point of fracture, so the upper limit is made 1.00%.

Nb(ニオブ):0.50%以下
NbはVよりMC型炭化物を形成しやすい。そのためVと同時にNbを添加することも可能である。しかし、NbはVに比べ粗大なMC炭化物を形成しやすいので、その上限を0.50%とする。
Nb (niobium): 0.50% or less Nb is easier to form MC type carbide than V. Therefore, it is possible to add Nb simultaneously with V. However, since Nb tends to form coarse MC carbides compared to V, the upper limit is set to 0.50%.

次に、本発明の合金工具鋼では、Coを8.00%以下含有させることができる。
Co(コバルト):8.00%以下
Coはマトリックスへ固溶しその硬さを上昇させる。また、高温で長時間使用する用途の材料では、その内部組織の変化(炭化物の凝集・粗大化防止)を抑える作用がある。その結果、Coを添加するとにより軟化抵抗(高温で長時間保持した後の硬さ低下)が優れるようになる。よって、積極的にその効果を発揮するためCoを添加するが、添加量が多いと、靭性を損なうためその上限を8%とする。また、軟化抵抗を考慮しない場合には、上限を3.00%以下とすることもできる。
Next, in the alloy tool steel of the present invention, 8.00% or less of Co can be contained.
Co (cobalt): 8.00% or less Co forms a solid solution in the matrix and increases its hardness. In addition, a material used for a long time at a high temperature has an effect of suppressing a change in its internal structure (prevention of agglomeration and coarsening of carbide). As a result, by adding Co, the softening resistance (decrease in hardness after holding at a high temperature for a long time) becomes excellent. Therefore, Co is added to positively exhibit the effect, but if the addition amount is large, the toughness is impaired, so the upper limit is set to 8%. When the softening resistance is not taken into account, the upper limit may be 3.00% or less.

次に、本発明の合金工具鋼では、Ti:0.10%以下、Ca,Te,Seの合計:0.10%以下、Pb,Biの合計:1.00%以下、Ta,Zrの合計:0.10%以下、Mg:0.01%以下、REM:0.010%以下、B:0.010%以下、Al:0.01%以下、O:0.01%以下、N:0.02%以下を含有させることができる。
以下、各数値範囲について限定理由を列挙する。
Next, in the alloy tool steel of the present invention, Ti: 0.10% or less, total of Ca, Te, Se: 0.10% or less, total of Pb, Bi: 1.00% or less, total of Ta, Zr : 0.10% or less, Mg: 0.01% or less, REM: 0.010% or less, B: 0.010% or less, Al: 0.01% or less, O: 0.01% or less, N: 0 0.02% or less.
In the following, the reasons for limitation are listed for each numerical range.

Ti(チタン):0.10%以下
TiはV、Nbと同様にMC型炭化物を形成しやすい元素である。そのため、Nb、Vと同時に添加し使用することも可能とする。しかし、TiはNと結合しTiNを形成しやすいため、上限を0.10%とする。
Ti (titanium): 0.10% or less Ti is an element that easily forms MC-type carbide like V and Nb. Therefore, it is possible to add and use simultaneously with Nb and V. However, since Ti is easily combined with N to form TiN, the upper limit is set to 0.10%.

Ca(カルシウム),Te(テルル),Se(セレン)の合計:0.10%以下
Ca、Te、Seはいずれも、S、Mnとともに使用し、MnSの形態制御に適用されている。不可避的に外部より混入し、安定な酸化物・硫化物を形成し、延性劣化の原因となるため3種類の合計で0.10%以下とする。
The sum of Ca (calcium), Te (tellurium), and Se (selenium): 0.10% or less All of Ca, Te, and Se are used together with S and Mn, and are applied to control the form of MnS. It is inevitably mixed from the outside to form stable oxides and sulfides, which may cause ductility deterioration.

Pb(鉛),Bi(ビスマス)の合計:1.00%以下
Pb、Biはいずれも低融点の金属で、鋼中に介在物として存在する。融点が低いため、鋼の熱間加工性を著しく低下するので、2種類の合計で1.00%以下とする。
Total of Pb (lead) and Bi (bismuth): 1.00% or less Both Pb and Bi are low melting point metals and exist as inclusions in steel. Since the melting point is low, the hot workability of the steel is remarkably reduced, so that the total of the two types is set to 1.00% or less.

Ta(タンタル),Zr(ジルコニウム)の合計:0.10%以下
Ta、Zrはいずれも非常に強力な窒化物、炭化物形成元素である。炭窒化物により、結晶粒を細かくする作用がある。しかし、添加量が多くなりすぎると、大きな塊状の炭窒化物を形成し、靭性劣化の要因となる。その為、2種類の合計で0.10%以下とする。
Total of Ta (tantalum) and Zr (zirconium): 0.10% or less Both Ta and Zr are very strong nitride and carbide forming elements. The carbonitride has an effect of making crystal grains fine. However, when the amount of addition is too large, a large massive carbonitride is formed, which causes deterioration of toughness. Therefore, the total of the two types is set to 0.10% or less.

Mg(マグネシウム):0.01%以下
Mgは強力な酸化物形成元素で、鋼中の酸素と反応して酸化物を形成する。そのため、酸化物系の介在物とし残留し、品質を低下させる可能性がある。よって、その上限を0.01%とする。
Mg (magnesium): 0.01% or less Mg is a strong oxide-forming element and reacts with oxygen in steel to form an oxide. Therefore, it may remain as oxide-based inclusions and degrade the quality. Therefore, the upper limit is set to 0.01%.

REM(希土類元素):0.010%以下
REMは、おもにLa、Ce、Prより構成されている。その強力な窒化物形成能より、凝固初期にN固定を行うことで、Nb、Vなどより形成される窒化物の形成を遅らせ、凝固組織中のMC炭化物を微細化させて、組織の均質化に寄与するため、上限を0.010%とする。
REM (rare earth element): 0.010% or less REM is mainly composed of La, Ce, and Pr. Due to its strong ability to form nitrides, N fixation at the early stage of solidification delays the formation of nitrides formed from Nb, V, etc., refines MC carbides in the solidified structure, and homogenizes the structure. , The upper limit is made 0.010%.

B(ホウ素):0.010%以下
Bは、結晶粒界の強度を増し、衝撃値の向上、熱間での靭性確保に寄与する。そのため、上限を0.010%とする。
B (boron): 0.010% or less B increases the strength of crystal grain boundaries, improves the impact value, and contributes to securing toughness during hot working. Therefore, the upper limit is made 0.010%.

Al(アルミニウム):0.01%以下
Alは強力な脱酸元素であり、広く溶鋼の精錬に用いられる。その為、不可避的に混入する。よって、その上限を0.01%とする。
Al (aluminum): 0.01% or less Al is a strong deoxidizing element and is widely used for refining molten steel. Therefore, it is inevitably mixed. Therefore, the upper limit is set to 0.01%.

O(酸素):0.01%以下
Oは、溶鋼中に含まれる元素で、不可避的に鋼中に含まれる。Oが高いと、Al、Si、Mgなどと反応し、酸化物系の介在物を形成する。そのため、上限を0.01%とする。
O (oxygen): 0.01% or less O is an element contained in molten steel and inevitably contained in steel. If O is high, it reacts with Al, Si, Mg and the like to form oxide-based inclusions. Therefore, the upper limit is made 0.01%.

N(窒素):0.02%以下
Nは、溶解中に溶鋼中へ固溶し、不可避的に存在する。その為、窒化物の形成などによる材料特性劣化を抑えるため、上限を0.02%とした。
N (nitrogen): 0.02% or less N dissolves in molten steel during melting and is inevitably present. Therefore, the upper limit is set to 0.02% in order to suppress the deterioration of the material properties due to the formation of nitride or the like.

次に、本発明の合金工具鋼では、下記(1)式を満たすよう設定することができる。
−0.2<ΔC<0.2・・・(1)式
ただし、ΔC=C−(0.06×Cr+0.063×Mo+0.033×W+0.2×V+0.1×Nb)
Next, the alloy tool steel of the present invention can be set so as to satisfy the following expression (1).
−0.2 <ΔC <0.2 (1) where ΔC = C− (0.06 × Cr + 0.063 × Mo + 0.033 × W + 0.2 × V + 0.1 × Nb)

(1)式は、従来より知られているSteven'sの式に、Nbを添加した場合形成されるであろうNbCの効果を取り入れた式である。
一般に、高速度工具鋼(ハイス)では、ΔCの大小により、固溶C量の目安としている。この値が大きければ、硬さを得やすいが靭性が低く、小さいと、硬さを確保しにくく、靭性が高い鋼種となっている。ここで、提案している材料は、Cr量が幾分高いが、Cr、Mo、W、Vを主とする炭化物形成元素にて構成されていることから、硬さ、靭性の指標および、適性C量を計算するための指標とした。
ここで、(1)式の値(ΔC量)が、小さすぎると、硬さ確保が困難であるため、ΔC量が−0.2以上とする。また、ΔC量が大きすぎると、靭性が著しく劣化するため、その上限を0.2とする。
Equation (1) is an equation that incorporates the effect of NbC that would be formed when Nb is added to the conventionally known Steven's equation.
In general, in high-speed tool steel (high-speed steel), the amount of solid solution C is used as a guide based on the magnitude of ΔC. If this value is large, hardness is easily obtained but the toughness is low. If the value is small, it is difficult to secure hardness and the steel type has high toughness. Here, the proposed material has a somewhat high Cr content, but is composed of carbide-forming elements mainly composed of Cr, Mo, W and V. It was used as an index for calculating the amount of C.
Here, if the value (ΔC amount) of the expression (1) is too small, it is difficult to secure hardness, so the ΔC amount is set to −0.2 or more. On the other hand, if the ΔC amount is too large, the toughness is significantly deteriorated, so the upper limit is set to 0.2.

次に、本発明の合金工具鋼では、下記(2)式で定義されるLcが1.0以上2.0以下(好ましくは1.5以上2.0以下)となるよう設定することができる。
Lc=(8.8×Mo+5.9×W+50×V+40×Nb)/(6×Cr)・・・(2)式
Next, in the alloy tool steel of the present invention, Lc defined by the following equation (2) can be set to be 1.0 or more and 2.0 or less (preferably 1.5 or more and 2.0 or less). .
Lc = (8.8 × Mo + 5.9 × W + 50 × V + 40 × Nb) / (6 × Cr) (2)

Lc値について説明する。ここで、新たに示したLc値に関する式((2)式)は、炭化物形成元素であるCr,Mo,W,V,Nbについてそのバランスについて検討した結果である。
(2)式の分子は、Mo,W,V,Nbなど比較的安定した炭化物を形成する元素の添加量より、比較的安定な炭化物(MC、MC)量を大まかに示したものである。このような安定な炭化物は、冷間ダイス鋼の焼入れ温度である1100℃以下で固溶処理しても炭化物の固溶が不十分である。その結果、マトリックスへのCおよび2次析出元素の固溶が不十分で、熱処理後に十分な硬さ確保が困難となる。他方、(2)式の分母は、Cr系炭化物の量を大まかに示した式である。Cr系の炭化物は、冷間ダイス鋼で主に利用され、1100℃以下での焼入れ時に十分固溶することが確認されている。そこで、Cr系炭化物量とその他の硬質な炭化物量の比を取ることで、比較的、低温での焼入れが可能な鋼種はその値が小さくなり、逆に高温焼入れを主に利用される鋼種は大きくなっている。
この値が、1.0を下回ると、相対的にCr系炭化物がほとんど全てとなり、Mo、Wなどによる2次硬化元素の固溶が不十分で十分な硬さを得ることが困難である場合や、相対的に多量の炭化物を含有し、その靭性が著しく劣化する。他方、この値が2.0を上回ると、Mo、W系炭化物が増加し、1000℃程度の低温での焼入れに不向きな鋼種となる。
その為、Lc値の下限を1.0以下とし、上限を2.0以上とする。さらに望ましくは、下限を1.5以上とすることで、2次硬化による硬度確保が容易になる。
The Lc value will be described. Here, the equation (equation (2)) regarding the Lc value newly shown is a result of examining the balance of the carbide forming elements Cr, Mo, W, V, and Nb.
The numerator of the formula (2) roughly indicates the amount of relatively stable carbide (M 6 C, MC) rather than the amount of addition of an element that forms a relatively stable carbide such as Mo, W, V, and Nb. is there. Even if such a stable carbide is subjected to a solid solution treatment at a quenching temperature of cold die steel of 1100 ° C. or less, the solid solution of the carbide is insufficient. As a result, the solid solution of C and secondary precipitation elements in the matrix is insufficient, and it is difficult to secure sufficient hardness after heat treatment. On the other hand, the denominator of the equation (2) is an equation that roughly indicates the amount of the Cr-based carbide. Cr-based carbides are mainly used in cold die steel, and it has been confirmed that they sufficiently dissolve during quenching at 1100 ° C. or lower. Therefore, by taking the ratio of the amount of Cr-based carbide to the amount of other hard carbides, the value of the steel type that can be hardened at a relatively low temperature becomes smaller, and conversely, the steel type mainly used for high-temperature quenching is It is getting bigger.
When this value is less than 1.0, the Cr-based carbide becomes relatively almost all, and the solid solution of the secondary hardening element by Mo, W, etc. is insufficient and it is difficult to obtain sufficient hardness. Also, it contains a relatively large amount of carbide, and its toughness is significantly deteriorated. On the other hand, when this value exceeds 2.0, Mo and W-based carbides increase, and the steel type is not suitable for quenching at a low temperature of about 1000 ° C.
Therefore, the lower limit of the Lc value is set to 1.0 or less, and the upper limit is set to 2.0 or more. More desirably, by setting the lower limit to 1.5 or more, it is easy to secure hardness by secondary curing.

次に、本発明の合金工具鋼(特にはマトリックスハイス)においては、
C:0.50〜0.80%、Si:0.10〜2.00%、Mn:0.10〜1.00%、P:0.10%以下、S:0.015%以下、Cu:0.25%以下、Ni:0.25%以下、Cr:4.50〜6.00%、MoとWの1種又は2種をMo:0.05〜5.00%、W:5.00%以下の範囲内で2Mo+Wで2.00〜10.00%、V:0.05〜1.00%、Al:0.01%以下、O:0.01%以下及びN:0.02%以下を含有し、更に任意成分としてCo:0〜3.00%、Nb:0〜0.5%、Ti:0〜0.1%、B:0〜0.01%、Ta:0〜0.1%、Zr:0〜0.1%、Pb:0〜1.0%、Bi:0〜1.0%、Ca:0〜0.1%、Te:0〜0.1%、Se:0〜0.1%、REM0〜0.01%及びMg:0〜0.01%のうちの1種または2種以上含有し、下記式1及び式2を満たし、残部がFe及び不可避不純物からなるものとすることもできる。
式1・・・−0.2<ΔC<0.2
ただし、ΔC=C−(0.06×Cr+0.063×Mo+0.033×W+0.2×V+0.1×Nb)
式2・・・1.0<Lc<2.0
ただし、Lc=(8.8×Mo+5.9×W+50×V+40×Nb)/(6×Cr)
Next, in the alloy tool steel of the present invention (particularly, matrix high-speed steel),
C: 0.50 to 0.80%, Si: 0.10 to 2.00%, Mn: 0.10 to 1.00%, P: 0.10% or less, S: 0.015% or less, Cu : 0.25% or less, Ni: 0.25% or less, Cr: 4.50 to 6.00%, one or two of Mo and W are Mo: 0.05 to 5.00%, W: 5 2.00 to 10.00% at 2Mo + W within the range of 0.000% or less, V: 0.05 to 1.00%, Al: 0.01% or less, O: 0.01% or less, and N: 0. 0% to 3.00%, Nb: 0 to 0.5%, Ti: 0 to 0.1%, B: 0 to 0.01%, Ta: 0 -0.1%, Zr: 0-0.1%, Pb: 0-1.0%, Bi: 0-1.0%, Ca: 0-0.1%, Te: 0-0.1% , Se: 0-0.1%, REM 0-0.0 % And Mg: containing 0 to 0.01% of one or more of, satisfies the following formula 1 and formula 2, the balance may be made of Fe and unavoidable impurities.
Formula 1 ...- 0.2 <[Delta] C <0.2
Where ΔC = C− (0.06 × Cr + 0.063 × Mo + 0.033 × W + 0.2 × V + 0.1 × Nb)
Equation 2 ... 1.0 <Lc <2.0
Here, Lc = (8.8 × Mo + 5.9 × W + 50 × V + 40 × Nb) / (6 × Cr)

以上の本発明の合金工具鋼は、金型に好適に適用できる。また、そのような金型の金型表面には、硬質皮膜処理を施すことができる。硬質皮膜処理には、例えば公知のCVD、PVD、TD処理、浸炭処理、窒化処理を適用することができる。   The alloy tool steel of the present invention described above can be suitably applied to a mold. The surface of such a mold can be subjected to hard coating treatment. For the hard coating treatment, for example, known CVD, PVD, TD treatment, carburizing treatment, and nitriding treatment can be applied.

(第一実施例)
下記表1に示す成分組成の本発明例及び表2に示す比較例の鋼を150kgの真空誘導炉で溶製したのち造塊し、ソーキング処理(1230℃×10hr以上)を実施した後、鍛練比が8Sになるように鍛伸した。このようにして製造した材料から硬さ試験片、10Rシャルピー試験片、大越式摩耗試験機用試験片、下記熱処理曲がり試験片を作製し、図1に示す熱処理パターン並びに表3及び表4に示す温度で焼入れ及び焼戻しを実施した。これらの試験片を用いて下記の方法で硬さ、衝撃値、耐摩耗性、熱処理曲がり試験を実施し、その結果を表3及び表4に示すとともに、この表3及び4の結果を熱処理硬さ−衝撃値、熱処理硬さ−耐摩耗性、焼入れ温度−熱処理曲がり指数、衝撃値−耐摩耗性の関係を図2〜5に示す。
(First embodiment)
The steel of the present invention example having the component composition shown in Table 1 and the comparative example shown in Table 2 were melted in a 150 kg vacuum induction furnace, then ingoted, subjected to a soaking treatment (at 1230 ° C. × 10 hr or more), and then forged. Forging was performed so that the ratio became 8S. A hardness test piece, a 10R Charpy test piece, a test piece for an Ogoshi abrasion tester, and a heat treatment bending test piece described below were prepared from the material thus manufactured, and the heat treatment pattern shown in FIG. 1 and the heat treatment patterns shown in Tables 3 and 4 were shown. Quenching and tempering were performed at the temperature. Using these test pieces, hardness, impact value, abrasion resistance, and heat treatment bending test were performed by the following methods, and the results are shown in Tables 3 and 4, and the results of Tables 3 and 4 were subjected to heat treatment. FIGS. 2 to 5 show the relations of hardness, impact value, heat treatment hardness, wear resistance, quenching temperature, heat treatment bending index, and impact value, wear resistance.

Figure 2004169177
Figure 2004169177

Figure 2004169177
Figure 2004169177

硬さ試験は、上記試験片についてロックウェル硬度計を用いてCスケールで測定した。
衝撃試験は、上記試験片についてシャルピー衝撃試験機を用いて実施した。
耐摩耗試験は、上記試験片について大越式摩耗試験機を用いて常温にて、滑り速度:2.85m/sec、最終荷重:6.95kgf、滑り距離:400m、相手材料SCM415(25HRC)の条件で実施し、耐摩耗性を評価した。
熱処理曲がり試験は、φ10mmの丸棒の試験片を50mm離れた支点上に置き、中央部の曲がり(たわみ)を測定し、その大きさをSKH51(比較例q)を1として相対値で表した。
In the hardness test, the test pieces were measured on a C scale using a Rockwell hardness tester.
The impact test was performed on the test piece using a Charpy impact tester.
The abrasion resistance test was carried out at room temperature using an Ogoshi type abrasion tester on the above test piece under the conditions of a sliding speed of 2.85 m / sec, a final load of 6.95 kgf, a sliding distance of 400 m and a mating material SCM415 (25HRC). And the abrasion resistance was evaluated.
In the heat treatment bending test, a test piece of a φ10 mm round bar was placed on a fulcrum separated by 50 mm, the bending (bending) at the center was measured, and the size was expressed as a relative value with SKH51 (Comparative Example q) as 1. .

Figure 2004169177
Figure 2004169177

Figure 2004169177
Figure 2004169177

表3及び表4の結果によると、本発明例は、1030℃又は1040℃で焼入れをし、530〜590℃で焼戻しをしたにも係わらず、硬さが55.1〜64.3HRCであった。また耐摩耗性を評価する摩耗量9.48×10−7〜1.20×10−6mm/kgf、10Rシャルピー衝撃値が59〜180で、熱処理曲がり係数が0.52〜0.66であった。
これらの結果を従来のマトリックスハイス(a〜f)と比較すると、焼入れ温度が100℃低いにも係わらず硬さは同程度かやや低い程度であり、耐摩耗性は同程度であるが、シャルピー衝撃値はかなり高く、また熱処理曲がりは焼入れ温度が低いためにかなり小さくなっていた。
According to the results in Tables 3 and 4, the hardness of the sample of the present invention was 55.1 to 64.3HRC despite quenching at 1030 ° C or 1040 ° C and tempering at 530 to 590 ° C. Was. Further, the wear amount for evaluating wear resistance is 9.48 × 10 −7 to 1.20 × 10 −6 mm 2 / kgf, the 10R Charpy impact value is 59 to 180, and the heat treatment bending coefficient is 0.52 to 0.66. Met.
When these results are compared with the conventional matrix high-speed steels (a to f), the hardness is the same or slightly lower even though the quenching temperature is lower by 100 ° C., and the abrasion resistance is the same. The impact value was quite high, and the heat treatment bend was quite small due to the low quenching temperature.

さらに、熱間ダイス鋼(g〜j)と比較すると、シャルピー衝撃値が低くなっているが、耐摩耗性及び熱処理曲がりは同程度であり、硬さが5HRC以上高くなっていた。硬さを必要とする熱間ダイス用として使用できることが分かる。
また、冷間ダイス鋼(k〜p)と比較すると、硬さ、摩耗性および熱処理曲がりは同程度であるが、シャルピー衝撃値は大幅に高くなっていた。
また、高速度鋼(q〜s)と比較すると、硬さはやや低いが、シャルピー衝撃値はかなり高くなっており、また熱処理曲がりは焼入れ温度が低いためにかなり小さくなっていた。
Furthermore, when compared with the hot die steels (g to j), the Charpy impact value was lower, but the abrasion resistance and the heat treatment bending were almost the same, and the hardness was higher by 5 HRC or more. It can be seen that it can be used for hot dies requiring hardness.
Further, as compared with the cold die steels (k to p), the hardness, the abrasion and the heat treatment bending were almost the same, but the Charpy impact value was significantly higher.
Also, as compared with high-speed steels (q to s), the hardness was slightly lower, but the Charpy impact value was considerably higher, and the heat treatment bending was considerably smaller due to the lower quenching temperature.

図2によると、本発明例は、同一硬さレベルで比較すると従来のマトリックスハイスに比べて高い衝撃値を有していることが分かる。
さらに、図3によると、本発明例は、熱間ダイス鋼に比べて優れた耐摩耗性を有していることが分かる。
また、図4によると、本発明例は、焼入れ温度を低くすることができるため、熱処理による曲がりを低く抑えられることが分かる。
また、図5によると、本発明例は、同一摩耗性レベルで比較した場合、従来のマトリックス鋼に比べて高い衝撃値を有していることが分かる。
According to FIG. 2, it can be seen that the example of the present invention has a higher impact value than the conventional matrix high-speed steel when compared at the same hardness level.
Further, according to FIG. 3, it can be seen that the example of the present invention has better wear resistance than hot die steel.
Also, according to FIG. 4, it can be seen that in the example of the present invention, the quenching temperature can be lowered, so that the bending due to the heat treatment can be suppressed low.
Also, according to FIG. 5, it can be seen that the present invention example has a higher impact value than the conventional matrix steel when compared at the same wear level.

(第二実施例)
下記表6に示す成分組成の本発明例及び表5に示す比較例の鋼の試験片を、上記第一実施例と同様に作成した。そして、図1に示す熱処理パターン並びに表7及び表8に示す温度で焼入れ及び焼戻しを実施した。これらの試験片を用いて下記の方法で硬さ、衝撃値、耐摩耗性、熱処理曲がり試験を実施し、その結果を表7及び表8に示すとともに、この表7及び8の結果を熱処理硬さ−衝撃値、熱処理硬さ−耐摩耗性、焼入れ温度−熱処理曲がり指数、衝撃値−耐摩耗性の関係を図6〜9に示す。
(Second embodiment)
Test pieces of steels of the present invention having the component compositions shown in Table 6 below and steels of Comparative Examples shown in Table 5 were prepared in the same manner as in the first example. Then, quenching and tempering were performed at the heat treatment pattern shown in FIG. 1 and at the temperatures shown in Tables 7 and 8. Using these test pieces, hardness, impact value, abrasion resistance, and heat treatment bending test were performed by the following methods, and the results are shown in Tables 7 and 8, and the results of Tables 7 and 8 were subjected to heat treatment. FIGS. 6 to 9 show the relationship between the hardness, the impact value, the heat treatment hardness, the wear resistance, the quenching temperature, the heat treatment bending index, and the impact value, the wear resistance.

表5に示すように、高速度工具鋼(q〜s)はWeq及びV添加量が多い。冷間ダイス鋼(k〜p)はCr添加量が多く、比較的高Cである。熱間ダイス鋼(g〜j)は、比較的Weqが低く、C量も低い。   As shown in Table 5, high speed tool steels (q to s) have large amounts of Weq and V. Cold die steels (k to p) have a large amount of added Cr and a relatively high C. Hot die steels (g to j) have relatively low Weq and low C content.

Figure 2004169177
Figure 2004169177

Figure 2004169177
Figure 2004169177

試験片に対し、硬さ試験、衝撃試験、耐摩耗試験及び熱処理曲がり試験を行った。なお、これらの試験方法及び条件は上記第一実施例と同じである。そして第二実施例では、さらに軟化抵抗を測定した。軟化抵抗は、焼入れ焼戻し後の硬さより、650℃×1hr保持した後の硬さの差(硬さの低下量)によって評価した。   The test pieces were subjected to a hardness test, an impact test, a wear resistance test, and a heat treatment bending test. These test methods and conditions are the same as in the first embodiment. In the second embodiment, the softening resistance was further measured. The softening resistance was evaluated from the hardness after quenching and tempering by the difference in hardness after holding at 650 ° C. × 1 hr (the amount of decrease in hardness).

Figure 2004169177
Figure 2004169177

Figure 2004169177
Figure 2004169177

表7に比較例の試験結果を、表8に本発明例の試験結果を示す。本発明例は、1000℃〜1080℃で焼入れをし、520〜600℃で焼戻しをしたにも係わらず、硬さがHRC55.1〜65.1であった。また耐摩耗性を評価する摩耗量9.94×10−8〜6.39×10−7mm/kgf、10Rシャルピー衝撃値が27〜164で、熱処理曲がり係数が0.44〜0.78で、硬度低下量がHRC2.3〜12.4あった。これらの試験結果について、図6に硬さと衝撃値の関係、図7に硬さと耐摩耗性の関係、図8に衝撃値と耐摩耗性のバランス、図9に焼入れ温度と熱処理曲がりの関係を示す。いずれの試験においても、既存鋼と同等以上の特性を示している。 Table 7 shows the test results of the comparative examples, and Table 8 shows the test results of the present invention examples. In the examples of the present invention, the hardness was HRC55.1 to 65.1, despite quenching at 1000 to 1080C and tempering at 520 to 600C. In addition, the wear amount for evaluating wear resistance is 9.94 × 10 −8 to 6.39 × 10 −7 mm 2 / kgf, the 10R Charpy impact value is 27 to 164, and the heat treatment bending coefficient is 0.44 to 0.78. And the hardness reduction amount was HRC 2.3 to 12.4. 6 shows the relationship between hardness and impact value, FIG. 7 shows the relationship between hardness and wear resistance, FIG. 8 shows the balance between impact value and wear resistance, and FIG. 9 shows the relationship between quenching temperature and heat treatment bending. Show. In each of the tests, the properties are equal to or higher than those of the existing steel.

本発明の合金工具鋼は、上記構成にしたことにより、次のような優れた効果を奏する。
(1)比較的低温の1000℃〜1100℃で焼入れを実施することができるので、熱処理チャンスが増加し、また低温で焼入れをすることができるため、熱処理費用を低下することができる。
(2)焼入れ温度を低温にすることができるため、熱処理による変形が小さくなるので、熱処理後の変形を修正するための作業量が少なくなる。
The alloy tool steel of the present invention has the following excellent effects by adopting the above configuration.
(1) Since quenching can be performed at a relatively low temperature of 1000 ° C. to 1100 ° C., the chance of heat treatment increases, and quenching can be performed at a low temperature, so that heat treatment costs can be reduced.
(2) Since the quenching temperature can be lowered, the deformation due to the heat treatment is reduced, so that the amount of work for correcting the deformation after the heat treatment is reduced.

実施例の本発明例及び比較例の鋼の熱処理パターンを説明するための図である。It is a figure for explaining the heat processing pattern of the example of the present invention of an example, and steel of a comparative example. 実施例の本発明例及び比較例の鋼の熱処理硬さと10Rシャルピー衝撃値の関係を示すグラフである。It is a graph which shows the relationship between the heat processing hardness of the steel of the present invention example of an Example, and a comparative example, and 10R Charpy impact value. 実施例の本発明例及び比較例の鋼の耐摩耗性と熱処理硬さとの関係を示すグラフである。It is a graph which shows the relationship between the abrasion resistance and the heat treatment hardness of the steel of this invention example of an Example, and a comparative example. 実施例の本発明例及び比較例の鋼の熱処理曲がり指数と焼入れ温度との関係を示すグラフである。It is a graph which shows the relationship between the heat treatment bending index and the quenching temperature of the steel of this invention example of an Example, and the steel of a comparative example. 実施例の本発明例及び比較例の鋼の10Rシャルピー衝撃値と耐摩耗性との関係を示すグラフである。It is a graph which shows the relationship between 10R Charpy impact value and abrasion resistance of steel of the present invention example of an example, and a comparative example. 実施例の本発明例及び比較例の鋼の熱処理硬さと10Rシャルピー衝撃値の関係を示すグラフである。It is a graph which shows the relationship between the heat processing hardness of the steel of the present invention example of an Example, and a comparative example, and 10R Charpy impact value. 実施例の本発明例及び比較例の鋼の耐摩耗性と熱処理硬さとの関係を示すグラフである。It is a graph which shows the relationship between the abrasion resistance and the heat treatment hardness of the steel of this invention example of an Example, and a comparative example. 実施例の本発明例及び比較例の鋼の熱処理曲がり指数と焼入れ温度との関係を示すグラフである。It is a graph which shows the relationship between the heat treatment bending index and the quenching temperature of the steel of this invention example of an Example, and the steel of a comparative example. 実施例の本発明例及び比較例の鋼の10Rシャルピー衝撃値と耐摩耗性との関係を示すグラフである。It is a graph which shows the relationship between 10R Charpy impact value and abrasion resistance of steel of the present invention example of an example, and a comparative example.

Claims (12)

焼鈍し状態でM23型炭化物が2〜5vol%生成する組成を有し(ただし、M
はFe,Cr,Mo,W,V,Nbより選ばれる1種又は2種以上)、かつMC型炭化物及びMC型炭化物の少なくともいずれかが分散析出した焼入れ焼戻し組織を有してなり、かつロックウェルCスケール硬さがHRC55以上HRC66以下であることを特徴とする合金工具鋼。
M 23 C 6 type carbide in annealed state has a composition that generates 2~5vol% (however, M
Is one or two or more selected from Fe, Cr, Mo, W, V, and Nb), and has a quenched and tempered structure in which at least one of MC-type carbide and M 6 C-type carbide is dispersed and precipitated; An alloy tool steel having a Rockwell C scale hardness of HRC55 or more and HRC66 or less.
質量%で、Fe:79.135〜93.75%、C:0.50〜0.80%、Si:0.10〜2.00%、Mn:0.10〜1.00%、P:0.050%以下、S:0.015%以下、Cu:1.00%以下、Ni:1.00%以下、Cr:4.50〜6.00%、Mo:0.05〜5.00%、W:5.00%以下、V:0.05〜1.00%、Nb:0.50%以下を含有し、かつ
2×Mo(%)+W(%)が2以上10以下であることを特徴とする請求項1に記載の合金工具鋼。
In mass%, Fe: 79.135 to 93.75%, C: 0.50 to 0.80%, Si: 0.10 to 2.00%, Mn: 0.10 to 1.00%, P: 0.050% or less, S: 0.015% or less, Cu: 1.00% or less, Ni: 1.00% or less, Cr: 4.50 to 6.00%, Mo: 0.05 to 5.00 %, W: 5.00% or less, V: 0.05 to 1.00%, Nb: 0.50% or less, and 2 × Mo (%) + W (%) is 2 or more and 10 or less. The alloy tool steel according to claim 1, wherein:
Coを8.00%以下含有することを特徴とする請求項2に記載の合金工具鋼。   The alloy tool steel according to claim 2, containing 8.00% or less of Co. Ti:0.10%以下、Ca,Te,Seの合計:0.10%以下、Pb,Biの合計:1.00%以下、Ta,Zrの合計:0.10%以下、Mg:0.01%以下、REM:0.010%以下、B:0.010%以下、Al:0.01%以下、O:0.01%以下、N:0.02%以下を含有することを特徴とする請求項2または3に記載の合金工具鋼。   Ti: 0.10% or less, Ca, Te, Se: 0.10% or less, Pb, Bi: 1.00% or less, Ta, Zr: 0.10% or less, Mg: 0. 01% or less, REM: 0.010% or less, B: 0.010% or less, Al: 0.01% or less, O: 0.01% or less, N: 0.02% or less. The alloy tool steel according to claim 2 or 3, wherein 下記(1)式を満たすことを特徴とする請求項2ないし4のいずれか1項に記載の合金工具鋼。
−0.2<ΔC<0.2・・・(1)式
ただし、ΔC=C−(0.06×Cr+0.063×Mo+0.033×W+0.2×V+0.1×Nb)
The alloy tool steel according to any one of claims 2 to 4, wherein the following formula (1) is satisfied.
−0.2 <ΔC <0.2 (1) where ΔC = C− (0.06 × Cr + 0.063 × Mo + 0.033 × W + 0.2 × V + 0.1 × Nb)
下記(2)式で定義されるLcが1.0以上2.0以下であることを特徴とする請求項2ないし5のいずれか1項に記載の合金工具鋼。
Lc=(8.8×Mo+5.9×W+50×V+40×Nb)/(6×Cr)・・・(2)式
The alloy tool steel according to any one of claims 2 to 5, wherein Lc defined by the following formula (2) is 1.0 or more and 2.0 or less.
Lc = (8.8 × Mo + 5.9 × W + 50 × V + 40 × Nb) / (6 × Cr) (2)
前記Lcが1.5以上2.0以下であることを特徴とする請求項6に記載の合金工具鋼。   The said Lc is 1.5 or more and 2.0 or less, The alloy tool steel of Claim 6 characterized by the above-mentioned. 前記Cr含有量が5.00〜6.00%、かつ前記2Mo(%)+W(%)が4以上8以下であることを特徴とする請求項2ないし7のいずれか1項に記載の合金工具鋼   The alloy according to any one of claims 2 to 7, wherein the Cr content is 5.00 to 6.00%, and the 2Mo (%) + W (%) is 4 or more and 8 or less. Tool steel 質量%で、C:0.50〜0.80%、Si:0.10〜2.00%、Mn:0.10〜1.00%、P:0.05%以下、S:0.015%以下、Cu:0.25%以下、Ni:1.00%以下、Cr:4.50〜6.00%、MoとWの1種又は2種をMo:0.05〜5.00%、W:5.00%以下の範囲内で2Mo+Wで2.00〜10.00%、V:0.05〜1.00%、Al:0.01%以下、O:0.01%以下及びN:0.02%以下を含有し、更にCo:0〜8.00%、Nb:0〜0.5%、Ti:0〜0.1%、B:0〜0.01%、Ta:0〜0.1%、Zr:0〜0.1%、Pb:0〜1.0%、Bi:0〜1.0%、Ca:0〜0.1%、Te:0〜0.1%、Se:0〜0.1%、REM:0〜0.01%及びMg:0〜0.01%のうちの1種または2種以上含有し、下記式1及び式2を満たし、残部がFe及び不可避不純物からなることを特徴とする合金工具鋼。
式1・・・−0.2<ΔC<0.2
ただし、ΔC=C−(0.06×Cr+0.063×Mo+0.033×W+0.2×V+0.1×Nb)
式2・・・1.0<Lc<2.0
ただし、Lc=(8.8×Mo+5.9×W+50×V+40×Nb)/(6×Cr)
In mass%, C: 0.50 to 0.80%, Si: 0.10 to 2.00%, Mn: 0.10 to 1.00%, P: 0.05% or less, S: 0.015 % Or less, Cu: 0.25% or less, Ni: 1.00% or less, Cr: 4.50 to 6.00%, and one or two types of Mo and W: Mo: 0.05 to 5.00%. , W: 2.00-10.00% at 2Mo + W within the range of 5.00% or less, V: 0.05-1.00%, Al: 0.01% or less, O: 0.01% or less, and N: 0.02% or less, Co: 0 to 8.00%, Nb: 0 to 0.5%, Ti: 0 to 0.1%, B: 0 to 0.01%, Ta: 0 to 0.1%, Zr: 0 to 0.1%, Pb: 0 to 1.0%, Bi: 0 to 1.0%, Ca: 0 to 0.1%, Te: 0 to 0.1% %, Se: 0 to 0.1%, REM: 0 to 0.01 And Mg: containing 0 to 0.01% of one or more of, satisfies the following formula 1 and formula 2, alloy tool steel balance being Fe and unavoidable impurities.
Formula 1 ...- 0.2 <[Delta] C <0.2
Where ΔC = C− (0.06 × Cr + 0.063 × Mo + 0.033 × W + 0.2 × V + 0.1 × Nb)
Equation 2 ... 1.0 <Lc <2.0
Here, Lc = (8.8 × Mo + 5.9 × W + 50 × V + 40 × Nb) / (6 × Cr)
請求項1ないし9のいずれか1項に記載の合金工具鋼の製造方法であって、950℃以上1100℃以下の温度で焼入れを行い、500℃以上700℃未満の温度で焼戻しを行うことを特徴とする合金工具鋼の製造方法。   The method for producing an alloy tool steel according to any one of claims 1 to 9, wherein the quenching is performed at a temperature of 950 ° C or more and 1100 ° C or less, and the tempering is performed at a temperature of 500 ° C or more and less than 700 ° C. A method for producing alloy tool steel. 請求項1ないし9のいずれか1項に記載の合金工具鋼にて構成されてなることを特徴とする金型。   A mold comprising the alloy tool steel according to any one of claims 1 to 9. 金型表面に硬質皮膜処理が施されてなることを特徴とする請求項11に記載の金型。   The mold according to claim 11, wherein the surface of the mold is subjected to a hard coating treatment.
JP2003346050A 2002-11-06 2003-10-03 Alloy tool steel, its manufacturing method, and die using it Pending JP2004169177A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003346050A JP2004169177A (en) 2002-11-06 2003-10-03 Alloy tool steel, its manufacturing method, and die using it
CNB200310103821XA CN100357476C (en) 2002-11-06 2003-11-06 Alloy tool steel and its producing method and mold using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002322956 2002-11-06
JP2003346050A JP2004169177A (en) 2002-11-06 2003-10-03 Alloy tool steel, its manufacturing method, and die using it

Publications (1)

Publication Number Publication Date
JP2004169177A true JP2004169177A (en) 2004-06-17

Family

ID=32716002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346050A Pending JP2004169177A (en) 2002-11-06 2003-10-03 Alloy tool steel, its manufacturing method, and die using it

Country Status (2)

Country Link
JP (1) JP2004169177A (en)
CN (1) CN100357476C (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193790A (en) * 2005-01-14 2006-07-27 Daido Steel Co Ltd Cold working tool steel
JP2007009251A (en) * 2005-06-29 2007-01-18 Sanyo Special Steel Co Ltd Matrix high-speed steel suitable for nitriding treatment
JP2007038250A (en) * 2005-08-02 2007-02-15 Honda Motor Co Ltd Die for forging and producing method therefor
JP2009534536A (en) * 2006-04-24 2009-09-24 ビラレス メタルズ ソシエダッド アノニマ High speed steel for saw blade
EP2196553A1 (en) 2008-12-05 2010-06-16 Böhler Edelstahl GmbH & Co KG Steel alloy for machine components
CN102242316A (en) * 2011-06-29 2011-11-16 江苏环立板带轧辊有限公司 H13 die steel and preparation method thereof
JP2013213256A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Matrix high-speed steel with high strength
CN103667613A (en) * 2013-12-09 2014-03-26 常熟市永达化工设备厂 Heat treatment method for preventing deformation of rolled steel
CN103981455A (en) * 2014-05-09 2014-08-13 南安市国高建材科技有限公司 Ultrahigh strength die steel with good corrosion resistance and toughness
CN105296842A (en) * 2015-11-30 2016-02-03 刘春� Low-cobalt tool alloy steel
JP2016060961A (en) * 2014-09-22 2016-04-25 山陽特殊製鋼株式会社 High-speed tool steel having high toughness and softening resistance
JP2016074968A (en) * 2014-06-19 2016-05-12 大同特殊鋼株式会社 Cold tool steel
EP2679698A4 (en) * 2011-02-21 2017-01-04 Hitachi Metals, Ltd. Cold-work tool steel exhibiting superior machinability
CN106312485A (en) * 2016-11-09 2017-01-11 安徽联盟模具工业股份有限公司 High-precision long-service-life bending machine lower die manufacturing method
KR101711889B1 (en) * 2015-10-14 2017-03-08 한국기계연구원 Alloy tool steels having excellent wear resistance in cold-working
CN106978564A (en) * 2017-03-30 2017-07-25 钢铁研究总院 A kind of precipitation hardening type plastic die steel and preparation method thereof
CN107937827A (en) * 2017-11-24 2018-04-20 攀钢集团攀枝花钢铁研究院有限公司 Improve the production method of steel polishing performance
JP2018154884A (en) * 2017-03-20 2018-10-04 愛知製鋼株式会社 Cold tool steel
EP3050986B1 (en) 2013-09-27 2019-07-31 Hitachi Metals, Ltd. High-speed-tool steel and method for producing same
CN111235481A (en) * 2020-01-21 2020-06-05 广东达济科技有限公司 Casting alloy for plastic mold and preparation method thereof

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317417C (en) * 2005-05-17 2007-05-23 上海大学 Alloy gray iron material for vehicle covering mould and its preparation method
CN100469936C (en) * 2006-12-08 2009-03-18 钢铁研究总院 High-performance low-alloy niobium-contained high-speed steel
CN101392354B (en) * 2008-10-24 2010-09-08 宁波禾顺新材料有限公司 High alloy cold-work die steel
CN101935813A (en) * 2010-07-31 2011-01-05 莆田市城厢区星华电子模具有限公司 Heat treatment method of upper and lower dies of die
CN101962738B (en) * 2010-11-10 2012-10-17 常州机械刀片有限公司 Superfine carbide high-alloy tool steel shear-steel splicing mechanical blade
CN102703652B (en) * 2012-01-19 2014-01-08 宁波市阳光汽车配件有限公司 Heat treatment process of hot-work-die steel for aluminum die-casting mould
JP6160611B2 (en) * 2012-03-28 2017-07-12 日立金属株式会社 Manufacturing method of steel for mold, steel material for mold, manufacturing method of pre-hardened material for mold, and pre-hardened material for mold
CN102886440A (en) * 2012-09-28 2013-01-23 蚌埠市昊业滤清器有限公司 Flanging mould of special mould for trimming formed shell
CN103834864B (en) * 2012-11-22 2016-06-22 周章龙 A kind of 9Cr2BAlN alloy tool steel
CN103834869A (en) * 2012-11-22 2014-06-04 应振强 Novel 5Cr3MnSiMo1VBN impact resistance tool steel
CN103710625B (en) * 2013-12-20 2016-08-17 莱芜钢铁集团有限公司 A kind of high tougness die steel for plastics and production method thereof
CN104911468A (en) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 Cold rolling die
CN104004967B (en) * 2014-05-20 2017-01-25 滁州迪蒙德模具制造有限公司 Manufacturing method of metal mold
CN104404386B (en) * 2014-12-24 2016-08-24 宁波市鄞州商业精密铸造有限公司 A kind of ferroalloy preparation method
CN105177456B (en) * 2015-07-28 2017-03-22 宁波市镇海甬鼎紧固件制造有限公司 Corrosion-resistant bolt alloy material and manufacturing method of bolts
CN105177463B (en) * 2015-07-28 2017-03-22 宁波市镇海甬鼎紧固件制造有限公司 Delayed-fracture-resistant high-strength bolt alloy material and manufacturing method of bolts
CN105002413A (en) * 2015-08-05 2015-10-28 启东市佳宝金属制品有限公司 Super-heat-resisting alloy
CN105331878A (en) * 2015-09-29 2016-02-17 李文霞 Manufacturing method of centrifugal pump shell
CN105624541B (en) * 2015-12-30 2017-10-13 东北大学 A kind of method for improving cold work die steel as cast condition hot-working character
CN105568164A (en) * 2016-01-27 2016-05-11 太仓旺美模具有限公司 High-ductility and wear-resistant cold-working die steel
CN105861942B (en) * 2016-05-13 2017-11-03 如皋市宏茂重型锻压有限公司 A kind of cold work die steel and its preparation technology
FR3052789B1 (en) * 2016-06-17 2018-07-13 Aubert & Duval STEEL COMPOSITION
CN106191668A (en) * 2016-07-10 2016-12-07 程叙毅 A kind of exhaust valve seat loop material and preparation method
CN106191695A (en) * 2016-07-10 2016-12-07 程叙毅 A kind of antiwear heat resisting alloy material and preparation method
CN106834916A (en) * 2016-12-09 2017-06-13 安徽宏翔自动化科技有限公司 A kind of alloy of high-strength corrosion-resisting
CN106917045B (en) * 2017-03-07 2019-03-05 广西大学行健文理学院 Cast the manufacturing method of cold upsetting die of car
CN107177800A (en) * 2017-05-14 2017-09-19 合肥鼎鑫模具有限公司 A kind of CNC milling machine milling cutter high-speed tool steel and its manufacture method
CN107365948A (en) * 2017-09-07 2017-11-21 苏州浩焱精密模具有限公司 A kind of cold working die steel material and preparation method thereof
CN110699597A (en) * 2018-07-10 2020-01-17 中国科学院金属研究所 Hot work die steel and preparation method thereof
CN109097531A (en) * 2018-10-08 2018-12-28 河南精诚汽车零部件有限公司 A kind of heat treatment process of cold shearing mold
CN113355597A (en) * 2021-05-24 2021-09-07 如皋市宏茂重型锻压有限公司 High-toughness high-wear-resistance cold-work die steel and manufacturing process thereof
CN115491582B (en) * 2021-06-17 2023-11-14 宝武特种冶金有限公司 Wear-resistant mold steel for injection molding of glass fiber plastic and manufacturing method thereof
CN113462971A (en) * 2021-06-21 2021-10-01 山东钢铁股份有限公司 Hot-working die large round billet and preparation method thereof
CN114250422B (en) * 2021-12-31 2022-09-30 安徽哈特三维科技有限公司 Die steel with good toughness and high thermal conductivity and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123861A (en) * 1982-01-18 1983-07-23 Daido Steel Co Ltd Hot working tool steel
JPH07109021B2 (en) * 1985-12-23 1995-11-22 日立金属株式会社 Tool steel for hot working
JPS6439356A (en) * 1987-08-06 1989-02-09 Hitachi Metals Ltd High-speed tool steel
JP2636816B2 (en) * 1995-09-08 1997-07-30 大同特殊鋼株式会社 Alloy tool steel
JPH11229031A (en) * 1998-02-13 1999-08-24 Hitachi Metals Ltd Production of high speed tool steel tool
JP2002167644A (en) * 2000-11-30 2002-06-11 Daido Steel Co Ltd Cold tool steel having constant deformation on treatment and method for producing cold tool using the steel
JP2003268499A (en) * 2002-03-08 2003-09-25 Daido Steel Co Ltd High-speed tool steel quenchable at low temperature

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193790A (en) * 2005-01-14 2006-07-27 Daido Steel Co Ltd Cold working tool steel
JP4738912B2 (en) * 2005-06-29 2011-08-03 山陽特殊製鋼株式会社 Matrix high-speed steel suitable for nitriding
JP2007009251A (en) * 2005-06-29 2007-01-18 Sanyo Special Steel Co Ltd Matrix high-speed steel suitable for nitriding treatment
JP2007038250A (en) * 2005-08-02 2007-02-15 Honda Motor Co Ltd Die for forging and producing method therefor
JP2009534536A (en) * 2006-04-24 2009-09-24 ビラレス メタルズ ソシエダッド アノニマ High speed steel for saw blade
EP2196553A1 (en) 2008-12-05 2010-06-16 Böhler Edelstahl GmbH & Co KG Steel alloy for machine components
US9328405B2 (en) 2008-12-05 2016-05-03 Boehler Edelstahl Gmbh & Co Kg Steel alloy for machine components
US20100147423A1 (en) * 2008-12-05 2010-06-17 Boehler Edelstahl Gmbh & Co. Kg Steel alloy for machine components
AU2009240807B2 (en) * 2008-12-05 2011-05-19 Bohler Edelstahl Gmbh & Co Kg Steel alloy for machine components
EP2679698A4 (en) * 2011-02-21 2017-01-04 Hitachi Metals, Ltd. Cold-work tool steel exhibiting superior machinability
CN102242316A (en) * 2011-06-29 2011-11-16 江苏环立板带轧辊有限公司 H13 die steel and preparation method thereof
JP2013213256A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Matrix high-speed steel with high strength
EP3050986B1 (en) 2013-09-27 2019-07-31 Hitachi Metals, Ltd. High-speed-tool steel and method for producing same
CN103667613A (en) * 2013-12-09 2014-03-26 常熟市永达化工设备厂 Heat treatment method for preventing deformation of rolled steel
CN103981455B (en) * 2014-05-09 2016-04-06 南安市国高建材科技有限公司 A kind of superstrength die steel with good corrosion resistance and toughness
CN103981455A (en) * 2014-05-09 2014-08-13 南安市国高建材科技有限公司 Ultrahigh strength die steel with good corrosion resistance and toughness
JP2016074968A (en) * 2014-06-19 2016-05-12 大同特殊鋼株式会社 Cold tool steel
JP2016060961A (en) * 2014-09-22 2016-04-25 山陽特殊製鋼株式会社 High-speed tool steel having high toughness and softening resistance
KR101711889B1 (en) * 2015-10-14 2017-03-08 한국기계연구원 Alloy tool steels having excellent wear resistance in cold-working
CN105296842A (en) * 2015-11-30 2016-02-03 刘春� Low-cobalt tool alloy steel
CN106312485A (en) * 2016-11-09 2017-01-11 安徽联盟模具工业股份有限公司 High-precision long-service-life bending machine lower die manufacturing method
JP2018154884A (en) * 2017-03-20 2018-10-04 愛知製鋼株式会社 Cold tool steel
CN106978564A (en) * 2017-03-30 2017-07-25 钢铁研究总院 A kind of precipitation hardening type plastic die steel and preparation method thereof
CN107937827A (en) * 2017-11-24 2018-04-20 攀钢集团攀枝花钢铁研究院有限公司 Improve the production method of steel polishing performance
CN111235481A (en) * 2020-01-21 2020-06-05 广东达济科技有限公司 Casting alloy for plastic mold and preparation method thereof

Also Published As

Publication number Publication date
CN1511969A (en) 2004-07-14
CN100357476C (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP2004169177A (en) Alloy tool steel, its manufacturing method, and die using it
RU2369659C2 (en) Steel of high mechanical strength and wear resistance
JP6850890B2 (en) High hardness wear resistant steel and its manufacturing method
CN100500909C (en) Alloy tool steel
JP5385554B2 (en) Steel for heat treatment
JP6032881B2 (en) Hot mold steel
EP2138597A1 (en) Hot-worked steel material having excellent machinability and impact value
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP6803987B2 (en) High hardness wear resistant steel and its manufacturing method
JP2007009321A (en) Steel for plastic molding die
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
US5476556A (en) Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
KR100836699B1 (en) Die steel
CN114829636A (en) Martensitic stainless steel for high hardness-high corrosion resistance applications having excellent cold workability and method for producing same
JP4316361B2 (en) Cooled and annealed bainite steel parts and method for manufacturing the same
JP2007308784A (en) Alloy steel
WO2004059023A1 (en) Cold die steel excellent in characteristic of suppressing dimensional change
JP3954751B2 (en) Steel with excellent forgeability and machinability
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
KR20160010930A (en) (High wear-resistant cold work tool steels with enhanced impact toughness
US20050205168A1 (en) Crankshaft
KR20020001933A (en) A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof
JP2001279383A (en) High temperature carburizing steel excellent in high temperature carburizability, and hot forged member for high temperature carburizing
JP3395642B2 (en) Coarse-grained case hardened steel material, surface-hardened part excellent in strength and toughness, and method for producing the same
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060825

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080618

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081010