JP2013213256A - Matrix high-speed steel with high strength - Google Patents

Matrix high-speed steel with high strength Download PDF

Info

Publication number
JP2013213256A
JP2013213256A JP2012083767A JP2012083767A JP2013213256A JP 2013213256 A JP2013213256 A JP 2013213256A JP 2012083767 A JP2012083767 A JP 2012083767A JP 2012083767 A JP2012083767 A JP 2012083767A JP 2013213256 A JP2013213256 A JP 2013213256A
Authority
JP
Japan
Prior art keywords
less
amount
steel
toughness
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012083767A
Other languages
Japanese (ja)
Other versions
JP6083014B2 (en
Inventor
Yukio Tate
幸生 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2012083767A priority Critical patent/JP6083014B2/en
Publication of JP2013213256A publication Critical patent/JP2013213256A/en
Application granted granted Critical
Publication of JP6083014B2 publication Critical patent/JP6083014B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a die steel capable of retaining softening resistance and wear resistance in a high-temperature environment by optimizing the amounts of alloy elements added.SOLUTION: A matrix high-speed steel with high strength comprises, by mass%, 0.70-0.89% C, 0.30-0.80% Si, 0.45-0.95% Mn, 3.00-6.00% Cr, ≥2.00% but <4.00% Mo, ≤5.00% W, 0.40-2.00% V and ≤0.0300% N, preferably ≤0.0120% N, and the balance being Fe and unavoidable impurities, wherein Mo and W satisfy the relation: 6.00%<2Mo+W<9.00% within the ranges and an alloy element satisfying a ΔC of -0.03 to 0.20 and a K value of ≥1.67 is contained, Ti content in the unavoidable impurities is ≤0.005%, preferably ≤0.003%. The steel shows hardness of 64 HRC or more when a steel is quenched at 1,100-1,180°C and tempered within 500-580°C.

Description

本発明は、冷間鍛造、温間鍛造、熱間鍛造、熱間押出などの金型、ダイカストの金型やスリーブなどの部材に用いる高強度のマトリックスハイスに関する。   The present invention relates to a high-strength matrix high speed steel used for members such as cold forging, warm forging, hot forging, hot extrusion and other molds, die casting molds and sleeves.

従来、冷間鍛造金型や、比較的加工温度が低い温間鍛造金型や、熱間鍛造金型などの中でも、被加工材との接触時間や摺動(すなわち成形)距離が大きく、金型への負荷が大きい場合には、マトリックスハイスが多く適用されている。マトリックスハイスは、例えばJIS−SKH51などの高速度工具鋼の基地(すなわちマトリックス)組成を参考にした成分設計により、高速度工具鋼と比較して高価な合金元素の添加量を低減し、高い強度と靭性を兼備した工具鋼である(例えば、特許文献1または特許文献2参照。)。   Conventionally, among cold forging dies, warm forging dies with relatively low processing temperatures, and hot forging dies, the contact time and sliding (ie, molding) distance with the workpiece are large, When the load on the mold is large, many matrix high speeds are applied. Matrix HSS has a high strength because it reduces the amount of expensive alloying elements compared to high-speed tool steel by component design based on the base (ie matrix) composition of high-speed tool steel such as JIS-SKH51. And tool steel having both toughness (see, for example, Patent Document 1 or Patent Document 2).

しかし、この特許文献1には、ΔCおよびK値の考慮がなされておらず、強度および耐摩耗性が不足する場合がある。特許文献1の実施例に示される成分系は、実際にΔCが本願発明の下限を外れており、本願発明の特長の一つである高硬度が得られていない。さらに、特許文献2の発明の実施例に示された発明例の鋼はいずれもC添加量およびΔCが本願発明の下限値を外れており、強度および耐摩耗性が十分でない。   However, in this Patent Document 1, ΔC and K value are not taken into consideration, and strength and wear resistance may be insufficient. In the component system shown in the example of Patent Document 1, ΔC actually deviates from the lower limit of the present invention, and high hardness which is one of the features of the present invention is not obtained. Furthermore, in the steels of the inventive examples shown in the examples of the invention of Patent Document 2, the C addition amount and ΔC are outside the lower limits of the present invention, and the strength and wear resistance are not sufficient.

さらに、別の従来技術として、マトリックスハイスと称される高速度工具鋼が開示されている(例えば、特許文献3または特許文献4参照。)。しかし、これらは何れもΔCおよびK値の考慮がなされていない。その結果、特許文献3の実施例ではΔCが本願発明の下限値を外れ、十分な硬さが得られず、強度および耐摩耗性が不足する場合がある。さらに、特許文献4の実施例では、K値が本願発明の範囲すなわち下限値を外れているため、高温環境下での軟化遅効性が不足する場合がある。   Furthermore, as another prior art, a high-speed tool steel called matrix high speed is disclosed (for example, refer to Patent Document 3 or Patent Document 4). However, neither of these takes account of the ΔC and K values. As a result, in the example of Patent Document 3, ΔC deviates from the lower limit of the present invention, sufficient hardness cannot be obtained, and strength and wear resistance may be insufficient. Furthermore, in the example of Patent Document 4, since the K value is out of the range of the present invention, that is, the lower limit value, the softening delay effect under a high temperature environment may be insufficient.

特開2004−307963号公報JP 2004-307963 A 特開2007−9551号公報Japanese Patent Laid-Open No. 2007-9551 特開2004−285444号公報JP 2004-285444 A 特開2004−169177号公報JP 2004-169177 A

本願発明が解決しようとする課題は、合金元素添加量の最適化により、特に、炭化物形成元素の添加量に対する炭素量を検討し、十分な硬度、強度と靭性を兼備し、かつ、炭化物形成元素の中でも、Mo、W、VおよびNbの添加量とCrの添加量に関する考慮をすることにより高温環境下での軟化抵抗性および耐摩耗性の維持が可能な金型鋼を提供することである。   The problem to be solved by the present invention is to optimize the addition amount of the alloying element, in particular, to examine the carbon amount relative to the addition amount of the carbide forming element, have sufficient hardness, strength and toughness, and the carbide forming element Among them, it is to provide a mold steel capable of maintaining softening resistance and wear resistance in a high temperature environment by considering the addition amount of Mo, W, V and Nb and the addition amount of Cr.

上記の課題を解決するための本発明の手段は、請求項1の発明では、質量%で、C:0.70〜0.89%、Si:0.30〜0.80%、Mn:0.45〜0.95%、Cr:3.00〜6.00%、Mo:2.00%以上かつ4.00%未満、W:5.00%以下、V:0.40〜2.00%、N:0.0300%以下、好ましくはN:0.0120%以下を有し、MoおよびWは上記の範囲内で、6.00%<2Mo+W<9.00%を満足し、ΔC:−0.03〜0.20、K値:1.67以上を満足する合金元素を含有し、残部Feおよび不可避不純物であり、該不可避不純物中のTi:0.005%以下、望ましくは0.003%以下である鋼を1100〜1180℃で焼入れを行い、500〜580℃の範囲で焼戻した時の硬さが64HRC以上であることを特徴とする高強度マトリックスハイスである。
ただし、ΔC=C−Ceq
eq=0.06×%C+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb、
K値=1.05×%Mo+0.55×%W+3.33×%V+1.67×%Nb−%Crである。
ここで、Cは質量%を示し、%元素は各合金元素の質量%を示す。
The means of the present invention for solving the above-mentioned problems is that, in the invention of claim 1, in mass%, C: 0.70 to 0.89%, Si: 0.30 to 0.80%, Mn: 0 .45 to 0.95%, Cr: 3.00 to 6.00%, Mo: 2.00% or more and less than 4.00%, W: 5.00% or less, V: 0.40 to 2.00 %, N: 0.0300% or less, preferably N: 0.0120% or less, and Mo and W satisfy 6.00% <2Mo + W <9.00% within the above range, and ΔC: An alloy element satisfying −0.03 to 0.20 and a K value of 1.67 or more is contained, and the balance is Fe and inevitable impurities. Ti in the inevitable impurities is 0.005% or less, preferably 0. Hardness when steel which is less than 003% is quenched at 1100-1180 ° C. and tempered in the range of 500-580 ° C. There is a high strength matrix HSS, characterized in that at least 64 HRC.
Where ΔC = C−C eq ,
C eq = 0.06 ×% C + 0.063 ×% Mo + 0.033 ×% W + 0.2 ×% V + 0.1 ×% Nb
K value = 1.05 ×% Mo + 0.55 ×% W + 3.33 ×% V + 1.67 ×% Nb−% Cr.
Here, C represents mass%, and the% element represents mass% of each alloy element.

請求項2の手段では、質量%でC:0.70〜0.89%、Si:0.30〜0.80%、Mn:0.45〜0.95%、Cr:3.00〜6.00%、Mo:2.00%以上かつ4.00%未満、W:5.00%以下、V:0.40〜2.00%、N:0.0300%以下、好ましくはN:0.0120%以下を有し、さらに、Ni:2.00%以下、Nb:1.00%以下、Co:6.00%以下のうち1種または2種以上を有し、MoおよびWは上記の範囲内で、6.00%<2Mo+W<9.00%を満足し、ΔC:−0.03〜0.20、K値:1.67以上を満足する合金元素を含有し、残部Feおよび不純物であり、該不可避不純物中のTi:0.005%以下、望ましくは0.003%以下である鋼を1100〜1180℃で焼入れを行い、500〜580℃の範囲で焼き戻した時の硬さが64HRC以上であることを特徴とする高強度マトリックスハイスである。
ただし、ΔC=C−Ceq
eq=0.06×%C+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb、
K値=1.05×%Mo+0.55×%W+3.33×%V+1.67×%Nb−%Crである。
ここで、Cは質量%を示し、%元素は各合金元素の質量%を示す。
In the means of claim 2, C: 0.70 to 0.89%, Si: 0.30 to 0.80%, Mn: 0.45 to 0.95%, Cr: 3.00 to 6% by mass% 0.000%, Mo: 2.00% or more and less than 4.00%, W: 5.00% or less, V: 0.40 to 2.00%, N: 0.0300% or less, preferably N: 0 0.012% or less, Ni: 2.00% or less, Nb: 1.00% or less, Co: 6.00% or less, and one or more of Mo and W are the above. In this range, the alloy elements satisfying 6.00% <2Mo + W <9.00%, ΔC: −0.03 to 0.20, and K value: 1.67 or more are contained, and the balance Fe and Steel which is an impurity and Ti in the inevitable impurity: 0.005% or less, preferably 0.003% or less is 1100 to 1180 ° C. Perform hardening, high strength matrix HSS the hardness when tempered in the range of 500 to 580 ° C. is characterized in that at least 64 HRC.
Where ΔC = C−C eq ,
C eq = 0.06 ×% C + 0.063 ×% Mo + 0.033 ×% W + 0.2 ×% V + 0.1 ×% Nb
K value = 1.05 ×% Mo + 0.55 ×% W + 3.33 ×% V + 1.67 ×% Nb−% Cr.
Here, C represents mass%, and the% element represents mass% of each alloy element.

本願発明の手段の成分元素の限定理由を説明する。なお、%は質量%である。   The reason for limiting the component elements of the means of the present invention will be described. In addition,% is the mass%.

C:0.70〜0.89%
Cは、十分な焼入性を確保し、炭化物を形成させることで耐摩耗性や高温強度を得るための元素である。Cが0.70%より少ないと、十分な高温強度および耐摩耗性が得られない。一方、Cが0.89%より多いと、凝固偏析を助長し靱性を阻害する。そこで、Cは0.70〜0.89%とする。
C: 0.70 to 0.89%
C is an element for securing sufficient hardenability and obtaining wear resistance and high-temperature strength by forming carbides. When C is less than 0.70%, sufficient high-temperature strength and wear resistance cannot be obtained. On the other hand, when C is more than 0.89%, solidification segregation is promoted and toughness is inhibited. Therefore, C is set to 0.70 to 0.89%.

Si:0.30〜0.80%
Siは、製鋼での脱酸効果を得るためと焼入性の確保のために必要な元素である。Siが0.30%より少ないとこれらの効果は得られない。一方、Siが0.80%より多いと靱性を低下させる。そこで、Siは0.30〜0.80%とする。
Si: 0.30 to 0.80%
Si is an element necessary for obtaining a deoxidizing effect in steelmaking and for ensuring hardenability. If Si is less than 0.30%, these effects cannot be obtained. On the other hand, if the Si content exceeds 0.80%, the toughness is lowered. Therefore, Si is set to 0.30 to 0.80%.

Mn:0.45〜0.95%
Mnは、焼入性の確保のために必要な元素である。Mnが0.45%より少ないと焼入性の確保は不十分である。一方、Mnが0.95%よりも過剰になると、鋼の加工性を低下させる。そこで、Mnは0.45〜0.95%とする。
Mn: 0.45 to 0.95%
Mn is an element necessary for ensuring hardenability. If Mn is less than 0.45%, the hardenability cannot be ensured sufficiently. On the other hand, when Mn becomes more than 0.95%, the workability of steel is lowered. Therefore, Mn is set to 0.45 to 0.95%.

Cr:3.00〜6.00%
Crは、焼入性を改善する元素である。Crが3.00%未満では、焼入性の改善は不十分である。一方、Crが6.00%よりも多いと、焼入焼戻し時にCr系の炭化物が過多に形成され、高温強度および軟化抵抗性を低下させる。そこで、Crは3.00〜6.00%とする。
Cr: 3.00 to 6.00%
Cr is an element that improves hardenability. If Cr is less than 3.00%, the improvement of hardenability is insufficient. On the other hand, if the Cr content is more than 6.00%, excessive Cr-based carbides are formed during quenching and tempering, and the high-temperature strength and softening resistance are lowered. Therefore, Cr is set to 3.00 to 6.00%.

Mo:2.00%以上で、4.00%未満
Moは、焼入性、二次硬化、耐摩耗性および高温強度に寄与する元素である。また、鋼の焼入れ時に未固溶となった微細な炭化物が結晶粒の粗大化を抑制する。Moが2.00%よりも少ないと、これらの効果は得られない。一方、Moを4.00%以上に添加しても、これらの効果は飽和するばかりか、偏析が助長されて、炭化物が粗大凝集することにより靱性を低下させ、また、コスト高となる。そこで、Moは2.00%以上で、4.00%未満とする。
Mo: 2.00% or more and less than 4.00% Mo is an element that contributes to hardenability, secondary hardening, wear resistance, and high temperature strength. In addition, fine carbides that have not been dissolved at the time of quenching of steel suppress the coarsening of crystal grains. If Mo is less than 2.00%, these effects cannot be obtained. On the other hand, even if Mo is added to 4.00% or more, these effects are not only saturated, but also segregation is promoted, and the carbides are coarsely aggregated to reduce toughness and increase costs. Therefore, Mo is 2.00% or more and less than 4.00%.

W:5.00%以下
Wは、Moと同様に、焼入性、二次硬化、耐摩耗性、および高温強度に寄与する元素である。また、鋼の焼入れ時に未固溶となった微細な炭化物が結晶粒の粗大化を抑制する。Wが5.00%より多いと、これらの効果は飽和して得られず、しかも、偏析を助長して、炭化物が粗大凝集することにより靱性を低下させ、また、コスト高となる。そこで、Wは5.00%以下とする。
W: 5.00% or less W, like Mo, is an element that contributes to hardenability, secondary hardening, wear resistance, and high-temperature strength. In addition, fine carbides that have not been dissolved at the time of quenching of steel suppress the coarsening of crystal grains. When W is more than 5.00%, these effects are not obtained in a saturated manner, and further, segregation is promoted, and the toughness is reduced due to coarse agglomeration of the carbide, and the cost is increased. Therefore, W is set to 5.00% or less.

MoおよびWは上記の範囲内で、6.00%<2Mo+W<9.00%
WはMoと同等の効果を得られる元素であるが、同等の効果を得るためには、質量%で、Moの2倍の量が必要である。2Mo+Wが6.00%以下であると、焼入性、二次硬化、耐摩耗性および高温強度が得られず、また、微細な炭化物が結晶粒の粗大化を抑制する効果が得られない。一方、2Mo+Wが9.00%以上であっても、上記の効果は飽和して得られず、しかも、偏析を助長して、炭化物が粗大凝集することにより靱性を低下させ、また、コスト高となる。そこで、MoおよびWは上記の範囲内で、6.00%<2Mo+W<9.00%とする。
Mo and W are within the above range, 6.00% <2Mo + W <9.00%
W is an element that can obtain the same effect as Mo, but in order to obtain the same effect, it is mass% and needs twice the amount of Mo. When 2Mo + W is 6.00% or less, hardenability, secondary hardening, wear resistance and high-temperature strength cannot be obtained, and fine carbides cannot obtain an effect of suppressing coarsening of crystal grains. On the other hand, even if 2Mo + W is 9.00% or more, the above effect cannot be obtained by saturation, and further, segregation is promoted, and the toughness is reduced due to coarse aggregation of carbides. Become. Therefore, Mo and W are within the above range, and 6.00% <2Mo + W <9.00%.

V:0.40〜2.00%
Vは、焼戻し時に微細で硬質なMC型の炭化物、窒化物、炭窒化物を析出し、高温強度や耐摩耗性に寄与する。また、焼入れ時には微細な炭化物および炭窒化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。Vが0.40%より少ないと上記の効果は得られない。一方、Vが2.00%よりも多いと、凝固時に粗大な炭化物、窒化物、炭窒化物を晶出し、靱性を阻害する。また、コストが嵩むこととなる。そこで、Vは0.40〜2.00%とする。
V: 0.40 to 2.00%
V precipitates fine and hard MC-type carbides, nitrides, and carbonitrides during tempering, and contributes to high-temperature strength and wear resistance. Further, during the quenching, fine carbides and carbonitrides suppress the coarsening of crystal grains and suppress the decrease in toughness. If V is less than 0.40%, the above effect cannot be obtained. On the other hand, when V is more than 2.00%, coarse carbides, nitrides, and carbonitrides are crystallized during solidification, thereby inhibiting toughness. Moreover, cost will increase. Therefore, V is set to 0.40 to 2.00%.

N:0.0300%以下、望ましくはN:0.0120%以下
Nは、V、Nbと結合しMC型の窒化物および/または炭窒化物を形成し、硬度および耐摩耗性に寄与する。それらのMC型の窒化物および/または炭窒化物は、焼入時に結晶粒粗大化を抑制し、靭性を改善する。ただし、0.0300%より多すぎると、凝固の過程で、より高温でのV、Nb、Tiとの結合を助長するため、晶出のMC型の窒化物および/または炭窒化物が粗大化し、逆に靭性を阻害する。そこで、Nは0.0300%以下、望ましくは、0.0120%以下とする。
N: 0.0300% or less, desirably N: 0.0120% or less N combines with V and Nb to form MC type nitrides and / or carbonitrides, and contributes to hardness and wear resistance. Those MC-type nitrides and / or carbonitrides suppress grain coarsening during quenching and improve toughness. However, if it is more than 0.0300%, the bonding of V, Nb, and Ti at higher temperatures is promoted in the solidification process, so that the crystallized MC type nitride and / or carbonitride becomes coarse. On the contrary, it inhibits toughness. Therefore, N is 0.0300% or less, preferably 0.0120% or less.

不可避不純物中のTi:0.005%以下、望ましくは0.003%
不可避不純物中のTiは、0.005%より多いと、凝固時にVやNbよりも高温からMC型の炭化物、窒化物、炭窒化物を生成し、それを核としてVおよび/またはNbのMC型の炭化物、窒化物、炭窒化物が粗大に成長するため、靱性を阻害する。また、VやNbがMC型の炭化物、窒化物、炭窒化物として消費され、5μm以下の微細なMC型の炭化物、窒化物、炭窒化物が減少し、焼入時の結晶粒の粗大化を抑制する効果が減少する。そこで、不可避不純物中のTiは0.005%以下、望ましくは0.003%とする。
Ti in inevitable impurities: 0.005% or less, desirably 0.003%
When Ti in the inevitable impurities is more than 0.005%, MC type carbides, nitrides and carbonitrides are generated at higher temperatures than V and Nb at the time of solidification, and V and / or Nb MCs are formed using these as nuclei. The type of carbides, nitrides, and carbonitrides grows coarsely, impairing toughness. In addition, V and Nb are consumed as MC type carbides, nitrides, carbonitrides, and fine MC type carbides, nitrides, carbonitrides of 5 μm or less are reduced, resulting in coarsening of crystal grains during quenching. The effect of suppressing is reduced. Therefore, Ti in the inevitable impurities is 0.005% or less, preferably 0.003%.

ΔC:−0.03〜0.20
ΔCは、十分な焼入焼戻硬さを得るために必要な炭化物を存在させるために、−0.03以上とする。しかし、ΔCが0.20を超えると靱性が悪化する。そこで、ΔCは−0.03〜0.20とする。
ΔC: −0.03 to 0.20
ΔC is set to −0.03 or more so that carbides necessary for obtaining sufficient quenching and tempering hardness are present. However, when ΔC exceeds 0.20, toughness deteriorates. Therefore, ΔC is set to −0.03 to 0.20.

K値:1.67以上
K値を1.67以上とする理由は、焼戻軟化抵抗性、高温軟化抵抗性を高めるMo、W、V、Nbの炭化物および/または炭窒化物を有効に析出させるためには、これらの元素とCrの添加量のバランスが重要である。K値が1.67よりも小さくなると、Cr、Feを主体とするM73やM236炭化物に混入するMo、W、V、Nbが多くなり、Mo、W、V、Nbを主体とする炭化物および/または炭窒化物の量が少なくなる。そこで、K値は1.67以上とする。
K value: 1.67 or more The reason why the K value is 1.67 or more is to effectively precipitate Mo, W, V, and Nb carbides and / or carbonitrides that improve temper softening resistance and high temperature softening resistance. Therefore, it is important to balance the amount of these elements and Cr added. When the K value is smaller than 1.67, Mo, W, V, and Nb mixed in M 7 C 3 and M 23 C 6 carbides mainly composed of Cr and Fe are increased, and Mo, W, V, and Nb are reduced. The amount of the main carbide and / or carbonitride is reduced. Therefore, the K value is 1.67 or more.

本願発明では、上記のΔCおよびK値の効果を同時に満足するものとする。
ただし、ΔC=C−Ceq
eq=0.06×%C+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb、
K値=1.05×%Mo+0.55×%W+3.33×%V+1.67×%Nb−%Crである。
ここで、Cは質量%を示し、%元素は各合金元素の質量%を示す。
In the present invention, the above-described effects of ΔC and K value are satisfied at the same time.
Where ΔC = C−C eq ,
C eq = 0.06 ×% C + 0.063 ×% Mo + 0.033 ×% W + 0.2 ×% V + 0.1 ×% Nb
K value = 1.05 ×% Mo + 0.55 ×% W + 3.33 ×% V + 1.67 ×% Nb−% Cr.
Here, C represents mass%, and the% element represents mass% of each alloy element.

Ni:2.00%以下、Nb:1.00%以下、Co:6.00%以下の1種または2種以上
Niは、焼入性と靱性を改善するが過多に添加すると高温強度および被削性を阻害する。そこで、Niは2.00%以下とする。
Nbは、Vと同様の効果を得られる元素であるが、1.00%より多すぎると、凝固時に粗大な炭化物、窒化物、炭窒化物を晶出し、靱性を阻害する。そこで、Nbは1.00%以下とする。
Coは、高温での炭化物の凝集粗大化を抑制し、高温軟化抵抗性を向上させる。しかし6.00を超えて過多に添加すると、靱性や耐ヒートチェック性を低化させ、かつ、コストを上昇させる。そこで、Co:6.00%以下とする。
なお、これらの元素は、必要とする効果に応じてこれ等の1種または2種以上とする。
One or more of Ni: 2.00% or less, Nb: 1.00% or less, Co: 6.00% or less Ni improves hardenability and toughness. Impairs machinability. Therefore, Ni is made 2.00% or less.
Nb is an element that can obtain the same effect as V. However, if it is more than 1.00%, coarse carbides, nitrides, and carbonitrides are crystallized during solidification to inhibit toughness. Therefore, Nb is made 1.00% or less.
Co suppresses the agglomeration and coarsening of carbides at high temperatures and improves high-temperature softening resistance. However, if it is added excessively exceeding 6.00, the toughness and heat check resistance are lowered, and the cost is increased. Therefore, Co is set to 6.00% or less.
In addition, these elements are 1 type, or 2 or more types of these according to the effect required.

本発明は、合金の添加量を最適化して上記の手段としたことで、高い焼入焼戻硬さ、軟化量の少ない優れた高温強度および高い靱性を具備した合金が高価な元素の添加量を極力抑制して得られ、かつ、加工性に優れているので製造不良率も低く、鋼材費用および金型寿命の双方において優れたマトリックスハイスを得ることができた。   The present invention optimizes the addition amount of the alloy and adopts the above means, so that the addition amount of the expensive element is an alloy having high quenching and tempering hardness, excellent high-temperature strength with little softening amount and high toughness. As a result, the manufacturing defect rate is low, and an excellent matrix high speed can be obtained in both the steel material cost and the mold life.

質量%で、表1に示す本発明例および比較例に挙げた成分を含有し、残部がFeと不可避不純物からなる組成の鋼を、1ton真空溶解炉を用いて溶製した後、インゴットに造塊し、これらのインゴットを1200℃で15時間保持して均質化熱処理を施した後、鍛錬成形比が凡そ6Sとなる直径160mmに熱間鍛造して鋼材を製造した。   A steel having the composition of the present invention and the comparative example shown in Table 1 in mass% and the balance consisting of Fe and inevitable impurities is melted using a 1 ton vacuum melting furnace, and then formed into an ingot. These ingots were agglomerated and subjected to homogenization heat treatment at 1200 ° C. for 15 hours, and then hot forged to a diameter of 160 mm where the forging ratio was about 6S to produce a steel material.

Figure 2013213256
Figure 2013213256

注1:表1において、残部はFeと不可避不純物である。また、”−”は無添加または不可避不純物として混入する程度の量である
注2:表における下線は、本発明の範囲外を示す。
表1における※Aの、Ceqは、Cr、Mo、W、VおよびNbが平衡状態で安定な炭化物の形成において、各合金元素に対応する必要な算出した値である。
eq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nbの式で表され、「%元素」は、各合金元素の添加量を意味する。
表1における※Bの、ΔC(=C−Ceq)は、各鋼材に合金化されたC(炭素)量とCeqとの差を示す。
本願発明では、−0.030<ΔC<0.200を適性範囲とする。
表1における※Cの、K値=1.05×%Mo+0.55×%W+3.33×%V+1.67×%Nb−%Crの式で表され、「%元素」は、各合金元素の添加量を意味する。
Note 1: In Table 1, the balance is Fe and inevitable impurities. In addition, “-” is an amount that is not added or mixed as an unavoidable impurity. Note 2: The underline in the table indicates outside the scope of the present invention.
C eq of * A in Table 1 is a necessary calculated value corresponding to each alloy element in the formation of a stable carbide when Cr, Mo, W, V and Nb are in an equilibrium state.
C eq = 0.06 ×% Cr + 0.063 ×% Mo + 0.033 ×% W + 0.2 ×% V + 0.1 ×% Nb The expression “% element” means the amount of each alloy element added. .
ΔC (= C−C eq ) of * B in Table 1 indicates the difference between the amount of C (carbon) alloyed with each steel material and C eq .
In the present invention, −0.030 <ΔC <0.200 is set as an appropriate range.
In Table 1, * C, K value = 1.05 ×% Mo + 0.55 ×% W + 3.33 ×% V + 1.67 ×% Nb−% Cr is represented by the formula, “% element” Means the amount added.

K値は、焼入焼戻し時に安定となる炭化物組成を適正化するための指標である。焼戻軟化抵抗性、高温軟化抵抗性を高めるMo、W、V、Nbの炭化物および/または炭窒化物を有効に析出させるためには、これらの元素とCrの添加量のバランスが重要である。K値が1.67よりも小さくなると、Cr、Feを主体とするM73やM236炭化物に混入するMo、W、V、Nbが多くなり、Mo、W、V、Nbを主体とする炭化物および/または炭窒化物の量が少なくなるため、K値≧1.67とする。 The K value is an index for optimizing a carbide composition that is stable during quenching and tempering. In order to effectively precipitate carbides and / or carbonitrides of Mo, W, V, and Nb that enhance temper softening resistance and high temperature softening resistance, it is important to balance these elements and the amount of Cr added. . When the K value is smaller than 1.67, Mo, W, V, and Nb mixed in M 7 C 3 and M 23 C 6 carbides mainly composed of Cr and Fe are increased, and Mo, W, V, and Nb are reduced. Since the amount of main carbide and / or carbonitride is reduced, K value ≧ 1.67.

上記で製造した表1に示す成分元素および残部Feと不可避不純物を含有する本発明例および比較例の鋼材を1120℃、および1140℃に加熱して焼入焼戻あるいは焼入後に調質した結果を表2に示す。   Results of tempering after quenching and tempering or quenching by heating the steel materials of the present invention examples and comparative examples containing the component elements shown in Table 1 and the balance Fe and inevitable impurities to 1120 ° C and 1140 ° C. Is shown in Table 2.

Figure 2013213256
Figure 2013213256

表2における※について、以下に説明する。
※1)焼入焼戻硬さ
焼入れは、各鋼材の中周部より割り出した25mm×25mm×25mmのブロックを用いて、各温度のソルトバス(塩浴)にて3分間均熱保持後に攪拌している50℃の油に投入する油冷により実施した。その後、表3中の各温度で60分保持後に空冷する焼戻しを3回繰り返した。各試料を中断して得られた面を測定面として、測定面の熱影響層および反対面の表面にあるスケール層を平面研磨機にて除去し、平行精度を高めた後、ロックウェル硬度計にて測定した。
* In Table 2 will be described below.
* 1) Hardening and tempering hardness Quenching is performed by holding a soaking bath for 3 minutes in a salt bath (salt bath) at each temperature using a 25mm x 25mm x 25mm block indexed from the middle part of each steel. It was carried out by oil cooling that was put into 50 ° C. oil. Then, the tempering which air-cools after hold | maintaining for 60 minutes at each temperature in Table 3 was repeated 3 times. Using the surface obtained by suspending each sample as the measurement surface, the heat-affected layer on the measurement surface and the scale layer on the opposite surface were removed with a flat polishing machine to improve parallel accuracy, and then the Rockwell hardness tester Measured with

※3)高温特性は、各鋼材の中周部から各辺25mmのブロック状供試材を割出し、焼入焼戻し硬さ試験片と同様に1140℃での焼入れを実施後に、64〜66HRCに調質(供試材の表面にあるスケール層を除去した後、ロックウェル硬度計にて測定し初期硬さとする。ただし、比較例で64HRCが得られない鋼材は、その最高焼入焼戻し硬さに調質した。)し、該供試材を600℃にて50時間保持し、これらの鋼材を空冷した後、再び鋼材の表面にあるスケール層を除去した後、ロックウェル硬度計にて測定し(※2の値)、初期硬さとの差、即ち軟化量(硬度低下度)であるΔHRCにより評価した。   * 3) For high temperature characteristics, block-shaped specimens with sides of 25 mm are indexed from the middle part of each steel material, and after quenching at 1140 ° C. in the same manner as the quenching and tempering hardness test pieces, the temperature is changed to 64 to 66 HRC. Tempering (After removing the scale layer on the surface of the test material, the initial hardness is measured with a Rockwell hardness meter. However, the steel material for which 64 HRC cannot be obtained in the comparative example has its highest quenching and tempering hardness. The specimen was held at 600 ° C. for 50 hours, and after cooling these steels with air, the scale layer on the surface of the steel was removed again, and then measured with a Rockwell hardness meter. (Value of * 2), and evaluated by ΔHRC which is a difference from initial hardness, that is, softening amount (hardness reduction degree).

※4)靭性は、シャルピー衝撃試験により破壊に要したエネルギーで評価した。これらに用いた試験片は、直径160mm鍛造材の中心部の圧延方向と垂直方向から採取した。さらに、これらの試験片は、焼入焼戻しにより63〜66HRCに調質し、ノッチ半径10mm、深さ2mmのCノッチを圧延方向に垂直となる面に加工したものである。   * 4) Toughness was evaluated by the energy required for fracture by Charpy impact test. The test pieces used for these were taken from the direction perpendicular to the rolling direction at the center of the forged material having a diameter of 160 mm. Furthermore, these test pieces were tempered to 63 to 66 HRC by quenching and tempering, and a C notch having a notch radius of 10 mm and a depth of 2 mm was processed into a surface perpendicular to the rolling direction.

※5)加工性の評価は、熱間での圧縮試験により評価した。各鋼材の焼なまし材の中心部より、φ8mm×12mmの円柱試験片を割出し、種々の温度に加熱した状態で、数種類の加工速度および加工率で圧縮を行い、試験片の割れ発生頻度による総合判断により評価した。   * 5) Workability was evaluated by a hot compression test. A φ8mm x 12mm cylindrical test piece is indexed from the center of the annealed steel material, and compressed at several processing speeds and processing rates in a state heated to various temperatures. It was evaluated based on comprehensive judgment.

表1および表2における比較例の各記号の鋼材についての説明
a1は、Si添加量が本発明の範囲より少なすぎるため、焼入性が若干不足し、また、脱酸効果も不十分になることから非金属介在物も粗大かつ大きくなりやすくなり、結果として靭性が低下する。
Description of steel materials of each symbol in Comparative Examples in Tables 1 and 2 Since a1 has a Si addition amount that is too much less than the range of the present invention, the hardenability is slightly insufficient and the deoxidation effect is also insufficient. For this reason, non-metallic inclusions are also likely to be coarse and large, resulting in a decrease in toughness.

a2は、Si添加量が本発明の範囲より多すぎるため、基地組織の延性が低下し、靭性が劣る。   Since a2 has too much Si addition amount than the range of this invention, the ductility of a base structure falls and toughness is inferior.

b1は、Mn添加量が本発明の範囲より少なく、焼入性が不足することで、靭性が低下する。   As for b1, the amount of Mn added is less than the range of the present invention, and the toughness is lowered due to insufficient hardenability.

b2は、Mn添加量が本発明の範囲より過多のため、熱間加工性が悪化する。   In b2, since the amount of Mn added is excessive from the range of the present invention, the hot workability deteriorates.

c1は、C添加量が本発明の範囲より少なすぎるため、目的とする64HRC以上の硬さが得られない。また、高温強度も若干劣る。   As for c1, since the addition amount of C is too smaller than the range of the present invention, the intended hardness of 64 HRC or more cannot be obtained. Also, the high temperature strength is slightly inferior.

c2は、C添加量が本発明の範囲より多いため、偏析を助長し靭性を低下させ、熱間加工性も低下する。   Since c2 has more C addition amount than the range of this invention, segregation is promoted, toughness is reduced, and hot workability is also reduced.

d1は、Cr添加量が本発明の範囲より少ないため、二次硬化量が減少し、目的とする64HRC以上の硬さが得られない。また、十分な焼入性が得られないため、靭性が低下する。   Since d1 has a Cr addition amount less than the range of the present invention, the secondary hardening amount is reduced, and the desired hardness of 64 HRC or more cannot be obtained. Moreover, since sufficient hardenability is not obtained, toughness falls.

d2は、Cr添加量が本発明の範囲より多すぎるため、高温強度に有効な炭化物量が少なくなり、軟化抵抗性が低下する。   Since d2 has too much Cr addition amount than the range of this invention, the carbide | carbonized_material amount effective for high temperature strength decreases, and softening resistance falls.

e1は、Mo添加量が本発明の範囲より少なく、焼戻時に析出する炭化物量が少ないため、目的とする64HRC以上の硬さが得られないばかりか、十分な高温強度が得られない。   In e1, since the amount of Mo added is less than the range of the present invention and the amount of carbide precipitated during tempering is small, not only the intended hardness of 64 HRC or more cannot be obtained, but also sufficient high-temperature strength cannot be obtained.

e2は、Mo添加量が本発明の範囲より多すぎるため、炭化物の粗大凝集が生じて靭性を低下させる。適正量を超えて添加しても、高温強度は飽和する。   Since e2 has too much Mo addition amount than the range of the present invention, coarse agglomeration of carbide occurs and lowers toughness. Even if added in excess of the proper amount, the high temperature strength is saturated.

e3は、ΔCが本発明の範囲より小さすぎる、すなわち、鋼材中のC量が不足しているので、焼戻時に析出する炭化物量が不十分で、目的とする64HRC以上の硬さが得られず、また高温環境下での軟化量が大きくなる。   For e3, ΔC is too smaller than the range of the present invention, that is, the amount of C in the steel material is insufficient, so the amount of carbides precipitated during tempering is insufficient, and the desired hardness of 64 HRC or more is obtained. In addition, the amount of softening in a high temperature environment increases.

e4は、2Mo+Wが本発明の範囲より小さく、目的とする64HRC以上の硬さが得られない。   As for e4, 2Mo + W is smaller than the range of the present invention, and the desired hardness of 64 HRC or more cannot be obtained.

e5は、2Mo+Wが本発明の範囲より過剰であるため、炭化物の粗大凝集が生じて靭性が低い。適正量を超えて添加しても、高温強度は飽和する。   In e5, since 2Mo + W is excessive from the range of the present invention, coarse agglomeration of carbides occurs and toughness is low. Even if added in excess of the proper amount, the high temperature strength is saturated.

f1は、K値が本発明の範囲より小さく、高温強度(軟化量の低減・抑制)に有効な炭化物の形成量が不足することから、軟化量が大きくなる。   Since f1 has a K value smaller than the range of the present invention, and the amount of carbide formation effective for high-temperature strength (reduction / suppression of softening amount) is insufficient, the softening amount increases.

g1は、上記と同様で、K値が本発明の範囲より小さく、高温強度(軟化量の低減・抑制)に有効な炭化物の形成量が不足することから、軟化量が大きくなる。   Since g1 is the same as described above, the K value is smaller than the range of the present invention, and the amount of carbide formation effective for high-temperature strength (reduction / suppression of softening amount) is insufficient, so the softening amount increases.

h1は、V添加量が本発明の範囲より少ないため、64HRC以上の硬さが得られない。また、高温強度も若干劣る。   Since h1 has a V addition amount smaller than the range of the present invention, a hardness of 64 HRC or more cannot be obtained. Also, the high temperature strength is slightly inferior.

h2は、V添加量が本発明の範囲より過剰で、凝固時に粗大な炭窒化物および/または窒化物を晶出し、靭性を阻害する。   h2 has an excess amount of V added in the range of the present invention, and crystallizes coarse carbonitrides and / or nitrides during solidification and inhibits toughness.

a3は、Ti含有量が本発明の範囲より多すぎ、凝固時に高温からMC型炭化物、窒化物、炭窒化物を形成し、それを核としてV炭化物、窒化物、炭窒化物が粗大晶出し、靭性が劣化する。   a3 has a Ti content that is more than the range of the present invention, and forms MC type carbide, nitride and carbonitride from high temperature during solidification, and V carbide, nitride and carbonitride appear as coarse crystals with this as the nucleus. , Toughness deteriorates.

d3は、Ti含有量が本発明の範囲より多すぎ、凝固時に高温からMC型炭化物、窒化物、炭窒化物を形成し、それを核としてV炭化物、窒化物、炭窒化物が粗大晶出し、靭性が劣化する。   d3 has a Ti content that is more than the range of the present invention, and forms MC type carbide, nitride, carbonitride from high temperature at the time of solidification. , Toughness deteriorates.

b3は、N添加量が本発明の範囲より多すぎ、粗大なMC型炭化物、窒化物、炭窒化物が形成されたため靭性が劣る。   The amount of N added is too much in the range of the present invention, and b3 has poor toughness because coarse MC-type carbides, nitrides, and carbonitrides are formed.

f3は、N添加量が本発明の範囲より多すぎ、粗大なMC型炭化物、窒化物、炭窒化物が形成されたため靭性が劣る。   The amount of N added is too much in the range of the present invention, and f3 has poor toughness because coarse MC-type carbides, nitrides, and carbonitrides are formed.

これらの比較例に対し、本発明例はいずれも、高い焼入焼戻し硬さ、優れた高温強度(軟化量の小さいこと)、高い靭性を兼備している。また、高価な合金元素の添加量を極力抑えつつ、鋼材の製造過程における熱間加工性にも配慮したことで製造不良率を低減させることも含め、鋼材費用および金型寿命の双方の観点から、需要家の金型費用を低減することができ、優れたマトリックスハイスを提供することが可能となった。   In contrast to these comparative examples, all of the inventive examples have high quenching and tempering hardness, excellent high temperature strength (small softening amount), and high toughness. In addition, from the viewpoint of both steel cost and mold life, including reducing the manufacturing defect rate by considering the hot workability in the manufacturing process of steel materials while suppressing the amount of expensive alloying elements added as much as possible. This makes it possible to reduce mold costs for customers and provide excellent matrix high speed steel.

Claims (2)

質量%で、C:0.70〜0.89%、Si:0.30〜0.80%、Mn:0.45〜0.95%、Cr:3.00〜6.00%、Mo:2.00%以上かつ4.00%未満、W:5.00%以下、V:0.40〜2.00%、N:0.0300%以下、好ましくはN:0.0120%以下を有し、MoおよびWは上記の範囲内で、6.00%<2Mo+W<9.00%を満足し、ΔC:−0.03〜0.20、K値:1.67以上を満足する合金元素を含有し、残部Feおよび不可避不純物であり、該不可避不純物中のTi:0.005%以下である鋼を1100〜1180℃で焼入れを行い、500〜580℃の範囲で焼戻した時の硬さが64HRC以上であることを特徴とする高強度マトリックスハイス。
ただし、上記において、ΔC=C−Ceq
eq=0.06×%C+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb、
K値=1.05×%Mo+0.55×%W+3.33×%V+1.67×%Nb−%Crである。
ここで、Cは質量%を示し、%元素は各合金元素の質量%を示す。
In mass%, C: 0.70 to 0.89%, Si: 0.30 to 0.80%, Mn: 0.45 to 0.95%, Cr: 3.00 to 6.00%, Mo: 2.00% or more and less than 4.00%, W: 5.00% or less, V: 0.40 to 2.00%, N: 0.0300% or less, preferably N: 0.0120% or less Mo and W are alloy elements satisfying 6.00% <2Mo + W <9.00%, ΔC: −0.03 to 0.20, and K value: 1.67 or more within the above range. , Balance Fe and inevitable impurities, Ti: 0.005% or less of steel, which is hardened at 1100 to 1180 ° C. and tempered in the range of 500 to 580 ° C. A high-strength matrix HSS, characterized by having a HRC of 64 HRC or higher.
Where ΔC = C−C eq ,
C eq = 0.06 ×% C + 0.063 ×% Mo + 0.033 ×% W + 0.2 ×% V + 0.1 ×% Nb
K value = 1.05 ×% Mo + 0.55 ×% W + 3.33 ×% V + 1.67 ×% Nb−% Cr.
Here, C represents mass%, and the% element represents mass% of each alloy element.
質量%で、C:0.70〜0.89%、Si:0.30〜0.80%、Mn:0.45〜0.95%、Cr:3.00〜6.00%、Mo:2.00%以上かつ4.00%未満、W:5.00%以下、V:0.40〜2.00%、N:0.0300%以下、好ましくはN:0.0120%以下を有し、さらに、Ni:2.00%以下、Nb:1.00%以下、Co:6.00%以下のうち1種または2種以上を有し、MoおよびWは上記の範囲内で、6.00%<2Mo+W<9.00%を満足し、ΔC:−0.03〜0.20、K値:1.67以上を満足する合金元素を含有し、残部Feおよび不純物であり、該不可避不純物中のTi:0.005%以下である鋼を1100〜1180℃で焼入れを行い、500〜580℃の範囲で焼戻した時の硬さが64HRC以上であることを特徴とする高強度マトリックスハイス。
ただし、上記において、ΔC=C−Ceq
eq=0.06×%C+0.063×%Mo+0.033×%W+0.2×%V+0.1×%Nb、
K値=1.05×%Mo+0.55×%W+3.33×%V+1.67×%Nb−%Crである。
ここで、Cは質量%を示し、%元素は各合金元素の質量%を示す。
In mass%, C: 0.70 to 0.89%, Si: 0.30 to 0.80%, Mn: 0.45 to 0.95%, Cr: 3.00 to 6.00%, Mo: 2.00% or more and less than 4.00%, W: 5.00% or less, V: 0.40 to 2.00%, N: 0.0300% or less, preferably N: 0.0120% or less And Ni: 2.00% or less, Nb: 1.00% or less, and Co: 6.00% or less, and Mo and W are within the above ranges. 0.004% <2Mo + W <9.00% is satisfied, ΔC: −0.03 to 0.20, K value: 1.67 or more alloy elements are contained, and the balance is Fe and impurities. Ti in impurities: steel with 0.005% or less is quenched at 1100-1180 ° C and tempered in the range of 500-580 ° C High strength matrix HSS the hardness when it is characterized in that at least 64 HRC.
Where ΔC = C−C eq ,
C eq = 0.06 ×% C + 0.063 ×% Mo + 0.033 ×% W + 0.2 ×% V + 0.1 ×% Nb
K value = 1.05 ×% Mo + 0.55 ×% W + 3.33 ×% V + 1.67 ×% Nb−% Cr.
Here, C represents mass%, and the% element represents mass% of each alloy element.
JP2012083767A 2012-04-02 2012-04-02 High strength matrix high speed Expired - Fee Related JP6083014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083767A JP6083014B2 (en) 2012-04-02 2012-04-02 High strength matrix high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083767A JP6083014B2 (en) 2012-04-02 2012-04-02 High strength matrix high speed

Publications (2)

Publication Number Publication Date
JP2013213256A true JP2013213256A (en) 2013-10-17
JP6083014B2 JP6083014B2 (en) 2017-02-22

Family

ID=49586799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083767A Expired - Fee Related JP6083014B2 (en) 2012-04-02 2012-04-02 High strength matrix high speed

Country Status (1)

Country Link
JP (1) JP6083014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060961A (en) * 2014-09-22 2016-04-25 山陽特殊製鋼株式会社 High-speed tool steel having high toughness and softening resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011740B (en) * 2020-08-31 2021-11-02 天津钢研海德科技有限公司 High-toughness and high-hardness die steel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004169177A (en) * 2002-11-06 2004-06-17 Daido Steel Co Ltd Alloy tool steel, its manufacturing method, and die using it
JP2004285444A (en) * 2003-03-24 2004-10-14 Daido Steel Co Ltd Low-alloy high-speed tool steel showing stable toughness
JP2004323874A (en) * 2003-04-22 2004-11-18 Daido Steel Co Ltd Slitter blade and its manufacturing method
JP2005530041A (en) * 2002-06-13 2005-10-06 ウッデホルム トウリング アクテイエボラーグ Cold work steel and cold work tool
JP2007009251A (en) * 2005-06-29 2007-01-18 Sanyo Special Steel Co Ltd Matrix high-speed steel suitable for nitriding treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530041A (en) * 2002-06-13 2005-10-06 ウッデホルム トウリング アクテイエボラーグ Cold work steel and cold work tool
JP2004169177A (en) * 2002-11-06 2004-06-17 Daido Steel Co Ltd Alloy tool steel, its manufacturing method, and die using it
JP2004285444A (en) * 2003-03-24 2004-10-14 Daido Steel Co Ltd Low-alloy high-speed tool steel showing stable toughness
JP2004323874A (en) * 2003-04-22 2004-11-18 Daido Steel Co Ltd Slitter blade and its manufacturing method
JP2007009251A (en) * 2005-06-29 2007-01-18 Sanyo Special Steel Co Ltd Matrix high-speed steel suitable for nitriding treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060961A (en) * 2014-09-22 2016-04-25 山陽特殊製鋼株式会社 High-speed tool steel having high toughness and softening resistance

Also Published As

Publication number Publication date
JP6083014B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
US10774406B2 (en) Steel for mold and mold
CA3132062C (en) Hot-working die steel, heat treatment method thereof and hot- working die
JP6032881B2 (en) Hot mold steel
CN108220815B (en) Hot work die steel with high heat resistance and high impact toughness for hot forging and preparation method thereof
JP2013213255A (en) Hot working die steel
WO2018182480A1 (en) Hot work tool steel
JP5655366B2 (en) Bainite steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP2014177710A (en) Hardening method for steel
CN102953016B (en) A kind of 650HB grade wear-resisting steel plate and manufacture method thereof
JP2019085633A (en) Hot work tool steel having excellent thermal conductivity
JP4860774B1 (en) Cold work tool steel
JP2011195917A (en) Hot work tool steel excellent in toughness
JP6620490B2 (en) Age-hardening steel
JP2016060961A (en) High-speed tool steel having high toughness and softening resistance
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
EP3199656A1 (en) Cold tool material and method for manufacturing cold tool
JP6083014B2 (en) High strength matrix high speed
KR101657792B1 (en) Steel material for graphitization and graphite steel with excellent machinability
JP2018003146A (en) High hardness matrix high speed steel having excellent toughness and high temperature strength
JP2005336553A (en) Hot tool steel
JP2012201909A (en) Hot tool steel
WO2021095831A1 (en) Hot-work tool steel having exceptional high-temperature strength and toughness
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
CN109415793B (en) Steel for tool holder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6083014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees