JP2016060961A - High-speed tool steel having high toughness and softening resistance - Google Patents

High-speed tool steel having high toughness and softening resistance Download PDF

Info

Publication number
JP2016060961A
JP2016060961A JP2014192554A JP2014192554A JP2016060961A JP 2016060961 A JP2016060961 A JP 2016060961A JP 2014192554 A JP2014192554 A JP 2014192554A JP 2014192554 A JP2014192554 A JP 2014192554A JP 2016060961 A JP2016060961 A JP 2016060961A
Authority
JP
Japan
Prior art keywords
toughness
less
value
steel
softening resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014192554A
Other languages
Japanese (ja)
Other versions
JP6529234B2 (en
Inventor
祐太 島村
Yuta Shimamura
祐太 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014192554A priority Critical patent/JP6529234B2/en
Publication of JP2016060961A publication Critical patent/JP2016060961A/en
Application granted granted Critical
Publication of JP6529234B2 publication Critical patent/JP6529234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-steep tool steel having softening resistance by optimization of added amount of alloy elements in the steel and having, in particular, high toughness by considering added amount of Mo to added amounts of Cr, V, W, Nb.SOLUTION: There is provided the high-speed tool steel which contains, by mass%, C:0.60 to 0.75%, Si:0.10 to 2.50%, Mn:0.10 to 1.00%, Cr:3.00% to less than 5.00%, Mo:2.00 to 3.60%, W:3.00% or less with 2Mo+W:5.00 to 9.00%, V:0.50 to 2.00%, P:0.050% or less, S:0.030% or less, O:0.0100% or less, N:0.0400% or less and the balance Fe with inevitable impurities and in which ΔC is -0.1000 to 0.0600 and A value is 0.255 to 0.350.SELECTED DRAWING: None

Description

この発明は、冷間鍛造、温間鍛造、熱間鍛造、熱間押出、ダイカストなどの金型に好適な高い靭性と軟化抵抗性を有する高速度工具鋼に関する。   The present invention relates to a high-speed tool steel having high toughness and softening resistance suitable for dies such as cold forging, warm forging, hot forging, hot extrusion, and die casting.

硬度と耐磨耗性が得られる高速度工具鋼として、例えばJIS規格のSKH51がある。しかし、このSKH51は、Mo、V、Wといった合金元素が多く添加されているので、一次炭化物が増加し、靭性が低下する傾向にあった。この高速度工具鋼と同等の硬さを得つつ、靭性を高めた高速度工具鋼として、マトリクスハイス系の高速度工具鋼がある。このマトリクスハイス系の高速度工具鋼は、JIS−SKH51などの高速度工具鋼の基地(マトリクス)の組成を参考にしてMo、V、Wといった合金元素の含有量を低くした成分系からなり、高い強度と靭性を兼備した工具鋼が従来技術として知られている。   As a high-speed tool steel capable of obtaining hardness and wear resistance, for example, there is JIS standard SKH51. However, since SKH51 contains many alloying elements such as Mo, V, and W, the primary carbide tends to increase and the toughness tends to decrease. Matrix high-speed high-speed tool steel is known as a high-speed tool steel having high toughness while obtaining the same hardness as this high-speed tool steel. This matrix high speed high-speed tool steel is composed of a component system in which the content of alloy elements such as Mo, V, and W is reduced with reference to the composition of the matrix (matrix) of high-speed tool steel such as JIS-SKH51. Tool steel having both high strength and toughness is known as the prior art.

これらの従来技術の一つとして、切削工具および熱間・温間ないし冷間における鍛造、圧造、据込み、剪断等の各種工具に利用され高速度工具鋼、特に低温焼入れが可能な高速度工具鋼の発明が提案されている(例えば、特許文献1参照。)。しかし、この特許文献1の発明の実施例として示される成分系における(2Mo+W)の成分量の上限は20%と高いので、安定した靱性が得られない。   As one of these conventional technologies, high-speed tool steel, especially high-speed tools capable of low-temperature quenching, are used for cutting tools and various tools such as hot, warm or cold forging, forging, upsetting, and shearing. An invention of steel has been proposed (see, for example, Patent Document 1). However, since the upper limit of the component amount of (2Mo + W) in the component system shown as an example of the invention of Patent Document 1 is as high as 20%, stable toughness cannot be obtained.

さらに他の従来技術として、塑性加工用圧造工具などに使用される耐衝撃性および耐摩擦性に優れた低合金高速度工具鋼の発明が提案されている(例えば、特許文献2、特許文献3参照。)。また、C含有量などの合金元素の関係式を用いて、合金元素の添加量の最適化を図り、高温環境下での軟化抵抗および耐磨耗性の維持が可能な金型鋼の発明が提案されている(例えば、特許文献4参照。)。しかし、これらの文献は靱性を低下させる要因となるP、S、O、Nなどの不純物元素に関する考慮がなされておらず、安定した靱性が得られない。   Further, as another prior art, inventions of low alloy high speed tool steels having excellent impact resistance and friction resistance used for forging tools for plastic working have been proposed (for example, Patent Document 2 and Patent Document 3). reference.). In addition, by using the relational expression of alloy elements such as C content, optimization of the addition amount of alloy elements is proposed, and the invention of a mold steel capable of maintaining softening resistance and wear resistance in a high temperature environment is proposed. (For example, refer to Patent Document 4). However, these documents do not consider the impurity elements such as P, S, O, and N that cause the toughness to decrease, and stable toughness cannot be obtained.

さらに上記の特許文献1〜特許文献4の他に、マトリクスハイス系高速度工具鋼の靭性を考慮した発明が提案されている(例えば、特許文献5、特許文献6参照。)。しかし、特許文献5の発明はCr量が高いので、軟化抵抗性が不足する場合があり、また、各合金元素の炭化物に対するMo系炭化物の割合を考慮した値について考慮されておらず、靱性が低下する場合がある。また、特許文献6の発明は、各合金元素の炭化物に対するMo系炭化物の割合を考慮した値について考慮されておらず、さらに、この特許文献6の発明の実施例として示される成分系では、靱性と軟化抵抗性を同時に考慮したC、Mo、Wなどの成分検討がなされておらず、靱性や軟化抵抗性が不足する場合がある。   Furthermore, in addition to the above Patent Documents 1 to 4, inventions that take into account the toughness of matrix high-speed high-speed tool steel have been proposed (see, for example, Patent Document 5 and Patent Document 6). However, since the invention of Patent Document 5 has a high Cr content, the softening resistance may be insufficient, and the value considering the ratio of Mo-based carbide to the carbide of each alloy element is not considered, and the toughness is not considered. May decrease. In addition, the invention of Patent Document 6 does not consider the value considering the ratio of the Mo-based carbide to the carbide of each alloy element. Further, in the component system shown as an example of the invention of this Patent Document 6, In addition, there is a case where components such as C, Mo, and W considering the softening resistance at the same time have not been studied, and the toughness and the softening resistance may be insufficient.

特開2003−268499号公報JP 2003-268499 A 特開平1−108348号公報Japanese Patent Laid-Open No. 1-108348 特開平1−159349号公報JP-A-1-159349 特開2013−213256号公報JP 2013-213256 A 特開2004−285444号公報JP 2004-285444 A 特開2005−206913号公報JP-A-2005-206913

本発明が解決しようとする課題は、鋼中の合金元素添加量の最適化により、軟化抵抗性を兼備し、特にCr、V、W、Nbの添加量に対するMoの添加量を考慮することにより、靭性を高位で安定させることが可能な金型用の工具鋼を提供することである。   The problem to be solved by the present invention is to combine softening resistance by optimizing the addition amount of alloying elements in steel, and in particular, by considering the addition amount of Mo with respect to the addition amounts of Cr, V, W, and Nb. An object of the present invention is to provide tool steel for a mold that can stabilize toughness at a high level.

従来の技術として上述したような問題を解消するために、発明者は、鋭意開発を進めた結果、請求項に示す合金成分、C量−Ceq=ΔCからなる式およびA値=0.063×%Mo/Ceqからなる式を満たすことで、靭性および軟化抵抗性のバランスに優れた工具鋼が得られることを見出した。 In order to solve the above-described problems as the conventional technique, the inventor has intensively developed, and as a result, the alloy composition shown in the claims, the formula consisting of C amount-C eq = ΔC, and the A value = 0.063. It has been found that a tool steel excellent in the balance between toughness and softening resistance can be obtained by satisfying the formula consisting of ×% Mo / C eq .

すなわち、上記の課題を解決するための本発明の手段は、請求項1の手段では、質量%で、C:0.60〜0.75%、Si:0.10〜2.50%、Mn:0.10〜1.00%、Cr:3.00%〜5.00%未満、Mo:2.00〜3.60%、W:3.00%以下、ただし、2Mo+W:5.00〜9.00%、V:0.50〜2.00%、P:0.050%以下、S:0.030%以下、O:0.0100%以下、N:0.0400%以下を含有し、残部Feおよび不可避不純物からなり、ΔC:−0.1000〜0.0600であり、A値:0.255〜0.350であることを特徴とする高い靱性を有する高速度工具鋼である。
ここに、ΔC=C−Ceqであり、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2%V+0.1×%Nbである。Ceqは、主に添加した各合金元素が総て炭化物となる場合に必要なC量の目安として用いられている。
すなわち、ΔCは、鋼中のCと各合金元素量との関係から、固溶C量に関して考慮した値である。
さらに、A値=0.063×%Mo/Ceqであり、A値は、靱性と軟化抵抗性の両方の特性を兼備するために、各合金元素の炭化物に対するMo系炭化物の割合に関して考慮した値である。
That is, the means of the present invention for solving the above-mentioned problem is that in the means of claim 1, C: 0.60 to 0.75%, Si: 0.10 to 2.50%, Mn : 0.10 to 1.00%, Cr: 3.00% to less than 5.00%, Mo: 2.00 to 3.60%, W: 3.00% or less, provided that 2Mo + W: 5.00 9.00%, V: 0.50-2.00%, P: 0.050% or less, S: 0.030% or less, O: 0.0100% or less, N: 0.0400% or less Further, it is a high-speed tool steel having high toughness, characterized by consisting of the balance Fe and inevitable impurities, ΔC: −0.1000 to 0.0600, and A value: 0.255 to 0.350.
Here, ΔC = C−C eq and C eq = 0.06 ×% Cr + 0.063 ×% Mo + 0.033 ×% W + 0.2% V + 0.1 ×% Nb. C eq is mainly used as a measure of the amount of C required when all of the added alloy elements are all carbides.
That is, ΔC is a value that takes into account the amount of dissolved C from the relationship between C in steel and the amount of each alloying element.
Further, A value = 0.063 ×% Mo / C eq , and the A value was considered with respect to the ratio of the Mo-based carbide to the carbide of each alloy element in order to combine both toughness and softening resistance characteristics. Value.

請求項2の手段では、請求項1の手段の化学成分に加えて、質量%で、Nb:1.00%以下、Co:5.00%以下の1種または2種を含有し、残部Feおよび不可避不純物からなり、ΔC:−0.1000〜0.0600であり、A値:0.255〜0.350であることを特徴とする高い靱性を有する高速度工具鋼である。
ここに、ΔCはΔC=C−Ceqであり、CeqはCeq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2%V+0.1×%Nbである。Ceqは、主に添加した各合金元素が総て炭化物となる場合に必要なC量の目安として用いられている。
すなわち、ΔCは、鋼中のCと各合金元素量との関係から、固溶C量に関して考慮した値である。
さらに、A値はA値=0.063×%Mo/Ceqであり、A値は、靱性と軟化抵抗性の両方の特性を兼備するために、各合金元素の炭化物に対するMo系炭化物の割合に関して考慮した値である。
The means of claim 2 contains, in addition to the chemical components of the means of claim 1, one or two kinds of Nb: 1.00% or less and Co: 5.00% or less in mass%, with the balance being Fe. And high-speed tool steel having high toughness, characterized by comprising ΔC: −0.1000 to 0.0600 and A value: 0.255 to 0.350.
Here, ΔC is ΔC = C−C eq , and C eq is C eq = 0.06 ×% Cr + 0.063 ×% Mo + 0.033 ×% W + 0.2% V + 0.1 ×% Nb. C eq is mainly used as a measure of the amount of C required when all of the added alloy elements are all carbides.
That is, ΔC is a value that takes into account the amount of dissolved C from the relationship between C in steel and the amount of each alloying element.
Further, the A value is A value = 0.063 ×% Mo / C eq , and the A value is a ratio of the Mo-based carbide to the carbide of each alloy element in order to combine both characteristics of toughness and softening resistance. Is a value that is taken into consideration.

この発明は、冷間鍛造、温間鍛造、熱間鍛造、熱間押出、ダイカストなどの金型に好適な高い靱性を有する高速度工具鋼であり、鋼中の合金元素添加量の最適化によって、焼入れ後の靱性が高く、高温で長時間保持した場合の軟化量の小さい優れた軟化抵抗性を有し、かつ、靱性と軟化抵抗性のバランスに優れた高速度工具鋼である。   This invention is a high-speed tool steel having high toughness suitable for dies such as cold forging, warm forging, hot forging, hot extrusion, die casting and the like, and by optimizing the addition amount of alloying elements in the steel It is a high-speed tool steel that has high toughness after quenching, excellent softening resistance with a small softening amount when held at high temperature for a long time, and excellent balance between toughness and softening resistance.

本発明の実施するための形態に先立って、本願の請求項に係る発明の化学成分の限定理由並びにΔC(=C−Ceq)およびA値(=0.063%Mo/Ceq)について説明する。なお、以下の各化学成分における%は、質量%である。 Prior to the embodiments for carrying out the present invention, the reasons for limiting the chemical components of the claimed invention and ΔC (= C−C eq ) and A value (= 0.063% Mo / C eq ) will be described. To do. In addition,% in the following each chemical component is mass%.

C:0.60〜0.75%
Cは、十分な焼入れ性や焼入焼戻し硬さを確保し、炭化物を形成させることで耐摩耗性や高温強度を得るために必要な元素である。Cが0.60%より少なすぎると十分な硬さと高温強度と耐摩耗性が得られない。一方、Cが0.75%より多すぎると、鋼中での凝固偏析および炭化物偏析を助長し、靱性を阻害する。そこで、Cは0.60〜0.75%とする。
C: 0.60 to 0.75%
C is an element necessary for securing sufficient hardenability and quenching and tempering hardness and for obtaining wear resistance and high-temperature strength by forming carbides. When C is less than 0.60%, sufficient hardness, high temperature strength and wear resistance cannot be obtained. On the other hand, when C is more than 0.75%, solidification segregation and carbide segregation in steel are promoted, and toughness is inhibited. Therefore, C is set to 0.60 to 0.75%.

Si:0.10〜2.50%
Siは、製鋼での脱酸効果および焼入性の確保として必要な元素である。しかし、Siが0.10%より少ないと、製鋼での脱酸および焼入性の効果は得られない。一方、Siが2.50%より多すぎると、靱性を低下させる。そこで、Siは0.10〜2.50%とする。
Si: 0.10 to 2.50%
Si is an element necessary for ensuring the deoxidation effect and hardenability in steelmaking. However, if Si is less than 0.10%, the effects of deoxidation and hardenability in steelmaking cannot be obtained. On the other hand, if the Si content is more than 2.50%, the toughness is lowered. Therefore, Si is set to 0.10 to 2.50%.

Mn:0.10〜1.00%
Mnは、焼入性の確保として必要な元素である。しかし、Mnが0.10%より少ないと、焼入性の効果は得られない。一方、Mnが1.00%より多く含有されると、加工性を低下させる。そこで、Mnは0.10〜1.00%とする。
Mn: 0.10 to 1.00%
Mn is an element necessary for ensuring hardenability. However, if Mn is less than 0.10%, the effect of hardenability cannot be obtained. On the other hand, if Mn is contained in an amount of more than 1.00%, workability is lowered. Therefore, Mn is set to 0.10 to 1.00%.

Cr:3.00〜5.00%
Crは、焼入性を改善する元素である。しかし、Crが3.00%より少ないと、焼入
性は十分に改善されない。一方、Crが5.00%より多すぎると、焼入焼戻し時にCr系の炭化物の偏析を助長し、高温強度および軟化抵抗性を低下させる。そこで、Crは3.00〜5.00%とする。
Cr: 3.00 to 5.00%
Cr is an element that improves hardenability. However, if Cr is less than 3.00%, the hardenability is not sufficiently improved. On the other hand, when Cr is more than 5.00%, segregation of Cr-based carbides is promoted during quenching and tempering, and high temperature strength and softening resistance are lowered. Therefore, Cr is set to 3.00 to 5.00%.

Mo:2.00〜3.60%、W:3.00%以下、かつ、2Mo+W:5.00〜9.00%
MoおよびWは、ともに焼入性、焼戻し時の二次硬化、高温強度、軟化抵抗性に寄与する元素である。また、焼入れ時に未固溶の微細な炭化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。しかし、Moが2.00%より少なく、かつ2Mo+Wが5.00%より少ないと、焼入性、焼戻し時の二次硬化、高温強度、軟化抵抗性は得られず、焼入れ時に未固溶の微細な炭化物が結晶粒の粗大化が抑制できず、靱性の低下も抑制できない。一方、Moが3.60%より過剰に、Wが3.00%より過剰に、かつ2Mo+Wが9.00%より過剰に含有されると、凝固偏析を助長して粗大炭化物を晶出し、靱性を低下させる。特にMoはWと同等の効果を得るためには、MoはWの2倍の量を含有させる必要があるが、Moを過剰に含有させるとコストが嵩む。そこで、Moは2.00〜3.60%、Wは3.00%以下とし、かつ、2Mo+Wは5.00〜9.00%とする。
Mo: 2.00 to 3.60%, W: 3.00% or less, and 2Mo + W: 5.00 to 9.00%
Mo and W are elements that contribute to hardenability, secondary hardening during tempering, high-temperature strength, and softening resistance. In addition, fine carbides that are insoluble during quenching suppress the coarsening of crystal grains and suppress the decrease in toughness. However, if Mo is less than 2.00% and 2Mo + W is less than 5.00%, hardenability, secondary hardening at the time of tempering, high temperature strength, softening resistance cannot be obtained, and it is not dissolved at the time of quenching. Fine carbides cannot suppress the coarsening of crystal grains and cannot suppress the decrease in toughness. On the other hand, when Mo is contained in excess of 3.60%, W is contained in excess of 3.00%, and 2Mo + W is contained in excess of 9.00%, solidified segregation is promoted to crystallize coarse carbides, and toughness Reduce. In particular, Mo needs to contain twice the amount of W in order to obtain the same effect as W, but if Mo is contained excessively, the cost increases. Therefore, Mo is set to 2.00 to 3.60%, W is set to 3.00% or less, and 2Mo + W is set to 5.00 to 9.00%.

V:0.50〜2.00%
Vは、焼戻し時に微細で硬質なMC型の炭化物、窒化物、炭窒化物を析出し、高温強度や耐摩耗性に寄与する元素である。また、焼入れ時に未固溶の微細な炭化物や炭窒化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。しかし、Vが0.50%より少ないと高温強度や耐摩耗性が得られず、結晶粒の粗大化や靱性の低下が抑制できない。一方、Vが2.00%より多すぎると、凝固偏析を助長し、粗大な炭化物、窒化物、炭窒化物を晶出し、靱性を阻害する。そこで、Vは0.50〜2.00%とする。
V: 0.50 to 2.00%
V is an element that precipitates fine and hard MC-type carbides, nitrides, and carbonitrides during tempering and contributes to high-temperature strength and wear resistance. In addition, fine carbides and carbonitrides that are not dissolved at the time of quenching suppress coarsening of crystal grains and suppress a decrease in toughness. However, if V is less than 0.50%, high-temperature strength and wear resistance cannot be obtained, and coarsening of crystal grains and deterioration of toughness cannot be suppressed. On the other hand, if V is more than 2.00%, solidification segregation is promoted, coarse carbides, nitrides, carbonitrides are crystallized, and toughness is impaired. Therefore, V is set to 0.50 to 2.00%.

P:0.050%以下
Pは、不純物元素として不可避的に含有される元素である。ところで、Pが0.050%より多いと、結晶粒界へ偏析し、靱性を低下させる。そこで、Pは0.050%以下とする。
P: 0.050% or less P is an element inevitably contained as an impurity element. By the way, when P is more than 0.050%, it segregates to a grain boundary and lowers toughness. Therefore, P is set to 0.050% or less.

S:0.030%以下
Sは、不純物元素として不可避的に含有される元素である。ところで、Sが0.030%より多いと、硫化物を形成し、靱性および熱間加工性を低下させる。そこで、Sは0.030%以下とする。
S: 0.030% or less S is an element inevitably contained as an impurity element. By the way, when S is more than 0.030%, sulfide is formed, and toughness and hot workability are lowered. Therefore, S is set to 0.030% or less.

O:0.0100%以下
Oは、不純物元素として不可避的に含有される元素である。ところで、Oが0.0100%より多いと、酸化物を形成して破壊の起点となり、靱性や疲労強度を低下させる。そこで、Oは0.0100%以下とする。
O: 0.0100% or less O is an element inevitably contained as an impurity element. By the way, when O is more than 0.0100%, an oxide is formed and becomes a starting point of fracture, and toughness and fatigue strength are reduced. Therefore, O is set to 0.0100% or less.

N:0.0400%以下
Nは、V、Nb、Tiと結合して、MC型の窒化物や炭窒化物を形成し、硬度や耐摩耗性に寄与する。それらのMC型の窒化物や炭窒化物は、焼入れ時に結晶粒の粗大化を抑制し、靱性を改善する。ところで、Nが0.0400%より多すぎると、凝固過程で、より高温でのV、Nb、Tiとの結合を助長するため、晶出したMC型の窒化物や炭窒化物が粗大化し、逆に靱性を阻害する。そこで、Nは0.0400%以下とする。
N: 0.0400% or less N combines with V, Nb, and Ti to form MC-type nitrides and carbonitrides, and contributes to hardness and wear resistance. These MC type nitrides and carbonitrides suppress the coarsening of crystal grains during quenching and improve toughness. By the way, when N is more than 0.0400%, in order to promote the bonding with V, Nb, Ti at a higher temperature in the solidification process, the crystallized MC type nitride or carbonitride becomes coarse, Conversely, toughness is impaired. Therefore, N is set to 0.0400% or less.

Nb:1.00%以下
Nbは、Vと同様に、焼戻し時に微細で硬質なMC型の炭化物、窒化物、炭窒化物を析出し、高温強度や耐摩耗性に寄与する元素である。また、焼入れ時に未固溶となった微細な炭化物や炭窒化物が結晶粒の粗大化を抑制し、靱性の低下を抑制する。ところで、Nbが1.00%より多すぎると、凝固偏析を助長し、粗大な炭化物、窒化物、炭窒化物を晶出し、靱性を阻害する。そこで、Nbは1.00%以下とする。
Nb: 1.00% or less Nb, like V, is an element that precipitates fine and hard MC-type carbides, nitrides, and carbonitrides during tempering and contributes to high-temperature strength and wear resistance. Moreover, the fine carbide | carbonized_material and carbonitride which became insoluble at the time of quenching suppress the coarsening of a crystal grain, and suppress the fall of toughness. By the way, when Nb is more than 1.00%, solidification segregation is promoted, coarse carbides, nitrides, carbonitrides are crystallized, and toughness is inhibited. Therefore, Nb is made 1.00% or less.

Co:5.00%以下
Coは、基地を強化し高温強度を改善する元素で、高温での炭化物の凝集粗大化を抑制し、高温軟化抵抗性や硬さを上昇させる元素である。ところで、Coが5.00%より多く含有されると、靱性を劣化させるとともにコスト上昇の原因ともなる。そこで、Coは5.00%以下とする。
Co: 5.00% or less Co is an element that strengthens the matrix and improves high-temperature strength. It is an element that suppresses the coarsening of carbides at high temperatures and increases high-temperature softening resistance and hardness. By the way, when Co is contained more than 5.00%, toughness is deteriorated and cost is increased. Therefore, Co is set to 5.00% or less.

ΔC:−0.1000〜0.0600
ΔCはΔC=C−Ceqで定義される値である。このΔC値が、−0.1000未満であると、十分な焼入焼戻し硬さを得にくくなるばかりでなく、炭化物量が減少し、軟化抵抗性が低下する。一方、ΔCが0.0600を超えると、成分偏析や炭化物偏析を助長し、靱性が悪化する。そこで、ΔCは−0.1000〜0.0600とする。
ΔC: −0.1000 to 0.0600
ΔC is a value defined by ΔC = C−C eq . When this ΔC value is less than −0.1000, not only is it difficult to obtain sufficient quenching and tempering hardness, but also the amount of carbide is reduced and softening resistance is lowered. On the other hand, when ΔC exceeds 0.0600, component segregation and carbide segregation are promoted, and toughness deteriorates. Therefore, ΔC is set to −0.1000 to 0.0600.

A値:0.255〜0.350
A値はA値=0.063%Mo/Ceqで定義される値である。このA値が、0.255よりも小さな値になると、靱性と軟化抵抗性を高めるためにはMoとその他の元素との成分バランスが重要となる中において、焼入焼戻後の鋼材中に存在するMo系炭化物の割合が低下し、軟化抵抗性が低下する。一方、A値が0.350を超えると、Mo系炭化物の割合が過剰となり、炭化物偏析を助長し、靱性が低下する。そこで、A値は0.255〜0.350とする。
A value: 0.255-0.350
The A value is a value defined by A value = 0.063% Mo / C eq . When this A value is smaller than 0.255, in order to increase the toughness and softening resistance, the balance of components of Mo and other elements is important. In the steel after quenching and tempering, The ratio of the Mo type carbide | carbonized_material which falls exists and softening resistance falls. On the other hand, if the A value exceeds 0.350, the proportion of Mo-based carbide becomes excessive, promotes carbide segregation, and decreases toughness. Therefore, the A value is set to 0.255 to 0.350.

本願の発明の実施の形態について以下に記載する。
先ず、本願の発明の鋼の化学成分からなる鋳造材を真空アーク再溶解法(VAR)によって2次溶解して再凝固させる。この方法では、2次溶解により、再溶解後の凝固が短時間で行われるため、凝固偏析が起こりにくく、炭化物の局部的な凝集および偏析を抑えることが可能となる。なお、上記の真空アーク再溶解法(VAR)に代えてエレクトロスラグ炉再溶解法(ESR)で2次溶解を行うこともできる。
Embodiments of the present invention will be described below.
First, a cast material composed of the chemical components of the steel of the present invention is secondarily melted and resolidified by a vacuum arc remelting method (VAR). In this method, solidification after remelting is performed in a short time by secondary melting, so that solidification segregation hardly occurs and local agglomeration and segregation of carbides can be suppressed. In addition, it can replace with said vacuum arc remelting method (VAR), and can also perform secondary melting by an electroslag furnace remelting method (ESR).

次いで、上記の2次溶解して再凝固させた鋼を1000〜1200℃で10時間以上のソーキング処理を実施する。この製造方法は、鋼中に析出した粗大な炭化物を適性範囲の大きさにコントロールするために最適の製造方法である。このソーキング処理は、焼入れ温度よりも高温で、かつ、融点よりも低い温度で実施する必要がある。ソーキング処理を適性に行えば、形成された粗大な炭化物を小さくし、さらに炭化物の量を少なくして均一に分散させることが可能である。なお、ソーキング処理する温度と時間は成分によって適性値が異なる。   Next, the soaked secondary remelted steel is subjected to a soaking process at 1000 to 1200 ° C. for 10 hours or more. This production method is an optimum production method for controlling coarse carbides precipitated in the steel within a suitable range. This soaking process needs to be performed at a temperature higher than the quenching temperature and lower than the melting point. If the soaking process is appropriately performed, it is possible to reduce the amount of coarse carbide formed and further reduce the amount of carbide to uniformly disperse. It should be noted that suitability values of the soaking temperature and time vary depending on the components.

すなわち、本発明の実施の形態では、下記の表1の記号A〜Qに示す発明鋼と記号1〜17に示す比較鋼の、各化学成分の組成および残部Feおよび不可避不純物からなるインゴットを、1トン真空溶解炉を用いて溶製した後、造塊してインゴットとし、この得られたインゴットを1200℃で10時間以上のソーキング処理を行った後、熱間鍛造を行って、鍛練成形比が凡そ6Sとなる直径160mmの棒鋼に製造した。   That is, in the embodiment of the present invention, the ingot comprising the composition of each chemical component and the balance Fe and unavoidable impurities of the inventive steel shown in symbols A to Q in Table 1 and the comparative steel shown in symbols 1 to 17, After melting using a 1-ton vacuum melting furnace, ingots are formed into ingots, and the obtained ingots are subjected to a soaking treatment at 1200 ° C. for 10 hours or more, followed by hot forging to produce a forging ratio. Was manufactured as a steel bar having a diameter of 160 mm, which is approximately 6S.

Figure 2016060961
Figure 2016060961

表1において、成分組成中のNbおよびCoにおける「−」は無添加を表している。さらに数値に下線を有するものは本発明の請求項の範囲外であることを示している。   In Table 1, “-” in Nb and Co in the component composition represents no addition. Further, numerical values with an underline indicate that they are outside the scope of the claims of the present invention.

表1の記号A〜Qからなる発明鋼の成分組成からなる上記で製造した、直径160mmの棒鋼の鋼材の中心部より割り出した、縦25mm、横25mm、高さ25mmのブロックからなる試料を用いて、表2に記載の、実施例として、(1)の1180℃の焼入れ温度で10分間保持した後、および実施例として、(2)の1100℃の焼入れ温度で10分間保持した後、それぞれの試料を、攪拌している50℃の油に投入して焼入れを実施した。次いで、これらの焼入れした各ブロックからなる試料を、表2の(1)における焼戻温度および(2)における焼戻し温度にそれぞれ60分保持した後空冷する操作を、3回繰り返して行った。得られた各試料を切断し、切断面を測定面として、測定面の熱影響層およびその反対面の表面にあるスケール層を平面研磨機にて除去して、平行精度を高めた後、ロックウェル硬度計にて硬さを測定し、表2に硬さをHRCで示した。   A sample consisting of a block of 25 mm in length, 25 mm in width and 25 mm in height, calculated from the central part of a steel bar of 160 mm in diameter and made of the composition of the inventive steel consisting of symbols A to Q in Table 1 is used. As shown in Table 2, as an example, after holding for 10 minutes at the quenching temperature of 1180 ° C. of (1) and as an example, after holding for 10 minutes at the quenching temperature of 1100 ° C. of (2), The sample was put into 50 ° C. oil which was being stirred and quenched. Next, the operation of air-cooling was performed three times by holding the samples composed of these quenched blocks at the tempering temperature in (2) of Table 2 and the tempering temperature in (2) for 60 minutes, respectively. Cut each obtained sample, use the cut surface as the measurement surface, remove the heat-affected layer on the measurement surface and the scale layer on the opposite surface with a flat grinder to improve parallel accuracy, then lock The hardness was measured with a well hardness meter, and the hardness is shown in Table 2 as HRC.

表2における靭性は、シャルピー衝撃試験により評価を実施した。用いた試験片は、直径160mmの上記の熱間鍛造材の中心部の圧延方向から採取し、表2に記載の(1)の1180℃の焼入温度と焼戻温度、および(2)の1100℃の焼入温度と焼戻温度でそれぞれ焼入および焼戻しを実施した後、10RCノッチのシャルピー試験片にそれぞれ加工した。評価は(1)の実施例の最高硬さであるHRC63以上と、(2)の実施例のHRC58の2条件を選択して行った。ただし、比較鋼で63HRC以上が得られない鋼材は、その最高焼入焼戻し硬さに調質した。表2において、(1)の実施例の63HRC以上の硬さの場合、シャルピー衝撃値が25.0J/cm2以上であるときは○とし、25.0J/cm2未満であるときは×とした。また、(2)の実施例のHRC58の硬さの場合、シャルピー衝撃値が120.0J/cm2以上であるときは○とし、120.0J/cm2未満であるときは×とした。 The toughness in Table 2 was evaluated by a Charpy impact test. The test piece used was taken from the rolling direction of the central part of the hot forged material having a diameter of 160 mm, and the quenching temperature and tempering temperature of 1180 ° C. in (1) described in Table 2 and (2) After quenching and tempering at a quenching temperature and a tempering temperature of 1100 ° C., respectively, each was processed into a Charpy test piece having a 10RC notch. The evaluation was performed by selecting two conditions of HRC63 or higher which is the maximum hardness of the example of (1) and HRC58 of the example of (2). However, the steel material in which 63 HRC or more was not obtained with the comparative steel was tempered to its highest quenching and tempering hardness. In Table 2, in the case of the hardness of 63HRC or more in the example of (1), when the Charpy impact value is 25.0 J / cm 2 or more, ○, and when it is less than 25.0 J / cm 2 , × did. In the case of the hardness of HRC58 in the example of (2), the Charpy impact value was evaluated as ◯ when it was 120.0 J / cm 2 or more, and when it was less than 120.0 J / cm 2 , it was rated as x.

軟化抵抗性試験の方法を以下に示す。本発明鋼および比較鋼の各鋼材の中心部から、縦25mm、横25mm、高さ25mmのブロックからなる供試材を割出し、(1)の実施例の1180℃で焼入れを実施した後、焼戻しを行うことで、HRC63〜65に調質した。軟化抵抗性をみるために、これらの供試材を600℃にて50時間保持した後、これらの鋼材を空冷した。上記と同様に、鋼材の表面にあるスケール層を除去した後、ロックウェル硬度計にて各供試材の硬さを測定し、この硬さの値と1180℃焼入の初期硬さとの差、即ち軟化量(ΔHRC)により軟化抵抗性を評価した。ただし、比較鋼でHRC63以上が得られない鋼材は、その最高焼入焼戻し硬さに調質した。評価は、軟化量のΔHRCが20.0以下であるときは○とし、軟化量のΔHRCが20.0を超えるときは軟化量のΔHRCの数値に下線を付して×として表2に示した。   The method of the softening resistance test is shown below. From the central part of each steel material of the present invention steel and comparative steel, the test material consisting of blocks of 25 mm length, 25 mm width, 25 mm height was indexed, and after quenching at 1180 ° C. in the example of (1), By tempering, HRC 63-65 was tempered. In order to check the softening resistance, these test materials were held at 600 ° C. for 50 hours, and then these steel materials were air-cooled. Similarly to the above, after removing the scale layer on the surface of the steel material, the hardness of each test material was measured with a Rockwell hardness meter, and the difference between this hardness value and the initial hardness of 1180 ° C. quenching. That is, the softening resistance was evaluated by the softening amount (ΔHRC). However, the steel material in which HRC63 or more was not obtained with comparative steel was tempered to its highest quenching and tempering hardness. The evaluation is shown in Table 2 as ◯ when the softening amount ΔHRC is 20.0 or less, and when the softening amount ΔHRC exceeds 20.0, the numerical value of the softening amount ΔHRC is underlined and indicated as x. .

Figure 2016060961
Figure 2016060961

表1および表2の比較鋼について以下に説明する。   The comparative steels in Tables 1 and 2 will be described below.

比較鋼1は、Cが0.86%で請求項1のCの上限値の0.75%より高いため、硬さは(1)でHRC65.2、(2)でHRC58.4が得られるものの、偏析を助長するので、靱性が(1)で14.2J/cm2、(2)で35.2J/cm2と、いずれも本願で規定する値よりも低下しており、靱性はいずれも×である。 In Comparative Steel 1, C is 0.86%, which is higher than 0.75% of the upper limit value of C of Claim 1, and thus the hardness is (1) HRC65.2 and (2) HRC58.4. although, since promotes segregation, 14.2J / cm 2 in toughness (1), and lower than the value specified in the 35.2J / cm 2, both in the present application (2), any toughness Is also x.

比較鋼2は、Cが0.53%で請求項1のCの下限値の0.60%より低いため、硬さは(1)でHRC61.2、(2)でHRC56.8と十分な硬さが得られない。また、高温強度に有効な炭化物量が少なくなり、軟化抵抗性の軟化量のΔHRCが23.6で×ある。   In Comparative Steel 2, C is 0.53%, which is lower than 0.60% of the lower limit value of C of Claim 1, so that the hardness is sufficient as (1) HRC61.2 and (2) HRC56.8. Hardness cannot be obtained. Moreover, the amount of carbide effective for high-temperature strength decreases, and ΔHRC of the softening resistance softening amount is 23.6.

比較鋼3は、Moが4.30%で請求項1のMoの上限値の3.60%より高いため、A値は0.365で本願のA値の上限の0.350を超えることとなり、偏析を助長するので、靱性が(1)で23.1J/cm2、(2)で110.3J/cm2と、いずれも本願で規定する値よりも低下しており、靱性はいずれも×である。 In Comparative Steel 3, Mo is 4.30%, which is higher than the upper limit of 3.60% of Mo of Claim 1, and therefore the A value is 0.365, which exceeds the upper limit of 0.350 of the A value of the present application. since promotes segregation, 23.1J / cm 2 in toughness (1), and 110.3J / cm 2 (2), both are lower than the value specified in this application, both toughness X.

比較鋼4は、2Mo+Wが9.10で請求項1の2Mo+Wの上限値の9.00を超え、ΔCが0.1575で請求項1のΔCの上限値の0.0600を超えるため、偏析を助長するので、靱性が(1)で18.4J/cm2、(2)で70.2J/cm2と、いずれも本願で規定する値よりも低下しており、靱性はいずれも×である。 In Comparative Steel 4, since 2Mo + W is 9.10 and exceeds the upper limit of 9.00 of 2Mo + W of claim 1, and ΔC is 0.1575 and exceeds the upper limit of 0.0600 of ΔC of claim 1, segregation occurs. since promoting, 18.4J / cm 2 in toughness (1), and 70.2J / cm 2 (2), both are lower than the value specified in this application, both toughness is a × .

比較鋼5は、Moが1.85%で請求項1のMoの下限値の2.00%より低く、Wが0.51%であるので2Mo+Wが4.21と請求項1の2Mo+Wの下限値の5.00より低いため、高温強度に有効な炭化物量が少なくなって、軟化抵抗性が低下し、軟化量のΔHRCが22.7で評価基準の20.0を超えているので×である。   In Comparative Steel 5, Mo is 1.85%, which is lower than 2.00% of the lower limit value of Mo of Claim 1, and W is 0.51%, so 2Mo + W is 4.21, and the lower limit of 2Mo + W of Claim 1 Since the value is lower than 5.00, the amount of carbide effective for high-temperature strength is reduced, softening resistance is reduced, and ΔHRC of softening amount is 22.7, which exceeds the evaluation standard of 20.0. is there.

比較鋼6は、Crが5.04%で請求項1のCr上限値の5.00%より高いため、A値は0.242で請求項1の下限値の0.256より低く、高温強度に有効な炭化物量が少なくなって、軟化抵抗性が低下し、軟化量のΔHRCが23.2で評価基準の20.0を超えているので×である。   In Comparative Steel 6, Cr is 5.04%, which is higher than 5.00% of the upper limit value of Cr of claim 1, so the A value is 0.242, which is lower than the lower limit value of 0.256 of claim 1, and the high temperature strength. Since the effective amount of carbide is reduced, the softening resistance is lowered, and the ΔHRC of the softening amount is 23.2, which exceeds 20.0 of the evaluation standard, and therefore, x.

比較鋼7は、成分バランスが悪く、ΔCが−0.1068で請求項1のΔCの下限値の−0.1000より低いので、軟化抵抗性の軟化量のΔHRC20.6で評価基準の20.0を超えているので×である。   Since the comparative steel 7 has a poor component balance and ΔC is −0.1068, which is lower than the lower limit value of ΔC of −0.1000 of claim 1, the softening resistance softening amount ΔHRC 20.6 is 20. Since it exceeds 0, it is x.

比較鋼8は、Vが2.67%で請求項1のVの上限値の2.00%より高いため、硬さに有効な固溶Cが減少し、焼戻し時に析出する炭化物量が不十分なため、硬さが得にくく、高温強度に有効な炭化物量も少なくなるため、軟化抵抗性が低下し、軟化量のΔHRCが20.5で評価基準の20.0を超えているので×である。   In Comparative Steel 8, V is 2.67%, which is higher than 2.00% of the upper limit value of V in Claim 1, so that the solid solution C effective for hardness is reduced and the amount of carbides precipitated during tempering is insufficient. Therefore, it is difficult to obtain hardness, and the amount of carbide effective for high-temperature strength is reduced, so the softening resistance is reduced, and ΔHRC of softening amount is 20.5, which exceeds 20.0 of the evaluation standard. is there.

比較鋼9は、Vが0.44%で請求項1のVの下限値の0.50%より低いため、A値は0.390で本願のA値の上限の0.350を超えることとなり、靱性が(1)で23.9J/cm2、(2)で114.1J/cm2と、いずれも本願で規定する値よりも低下している。すなわち焼入れ時の未固溶炭化物が減少し、結晶粒の粗大化抑制能が低下することが一要因となり、靱性が(1)で23.4J/cm2、(2)で114.1J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 In comparative steel 9, V is 0.44%, which is lower than 0.50% of the lower limit value of V in claim 1, so the A value is 0.390, which exceeds the upper limit of 0.350 of the A value of the present application. , 23.9J / cm 2 in toughness (1), is lower than the value specified in the 114.1J / cm 2, both in the present application (2). That is, a decrease in the amount of insoluble carbides during quenching and a decrease in the coarsening suppression ability of crystal grains is one factor, and the toughness is (1) 23.4 J / cm 2 and (2) 114.1 J / cm. 2 and both are inferior to the toughness value specified in the present application, and thus the toughness is x.

比較鋼10は、Nbが1.37%で請求項2のNbの上限値の1.00%よりも高いため、硬さに有効な固溶Cが減少し、目標硬さが得にくく高温強度に有効な炭化物量も少なくなるため、軟化抵抗性が低下し、軟化量のΔHRCが23.3で評価基準の20.0を超えているので×である。   In Comparative Steel 10, Nb is 1.37%, which is higher than 1.00% of the upper limit value of Nb of Claim 2, so that the solid solution C effective for hardness is reduced, and it is difficult to obtain the target hardness at high temperature strength. Since the effective amount of carbide is also reduced, the softening resistance is lowered, and the ΔHRC of the softening amount is 23.3, which exceeds 20.0 of the evaluation standard, and is x.

比較鋼11は、Coが7.03%で請求項2のCoの上限値の5.00%を超えているので、基地組織の延性が低下し、靱性が(1)で22.5J/cm2、(2)で97.8J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 Since the comparative steel 11 has 7.0% Co, which exceeds 5.00% of the upper limit value of Co in claim 2, the ductility of the base structure is lowered, and the toughness is 22.5 J / cm at (1). 2 and (2) are 97.8 J / cm 2 , both of which are inferior to the toughness values specified in the present application, and thus the toughness is x.

比較鋼12は、Cr、Mo、W、V成分のバランスが悪く、A値が0.226で請求項1の下限値の0.256より低いため、高温強度に有効な炭化物量も少なくなり、軟化抵抗性が低下し、軟化量のΔHRCが21.0で評価基準の20.0を超えているため×である。   Comparative Steel 12 has a poor balance of Cr, Mo, W, and V components, and the A value is 0.226, which is lower than the lower limit value of 0.256 in Claim 1, so that the amount of carbide effective for high-temperature strength is also reduced. The softening resistance is lowered, and the ΔHRC of the softening amount is 21.0, which exceeds 20.0 of the evaluation standard, and is x.

比較鋼13は、Cr、Mo、W、V成分のバランスが悪く、A値が0.364で請求項1の上限値の0.350より高いため、偏析を助長し、靱性が(1)で23.7J/cm2、(2)で100.6J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 Comparative Steel 13 has a poor balance of Cr, Mo, W, and V components, and has an A value of 0.364, which is higher than the upper limit of 0.350 of Claim 1, and therefore promotes segregation and has a toughness of (1). 23.7J / cm 2, and 100.6J / cm 2 (2), since both are inferior toughness value defined by the present, both toughness is ×.

比較鋼14は、Sが0.041%で請求項1のSの上限値の0.030%より高く、硫化物を多量に形成し、靱性が(1)で21.4J/cm2、(2)で105.7J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 In the comparative steel 14, S is 0.041%, which is higher than 0.030% of the upper limit of S in claim 1, and a large amount of sulfide is formed, and the toughness is (1) 21.4 J / cm 2 ( In 2), 105.7 J / cm 2 , both of which are inferior to the toughness value specified in the present application, the toughness is x.

比較鋼15は、Oが0.0230%で請求項1のOの上限値の0.0100%より高いため、多量の酸化物を形成し、破壊の起点となり、靱性が(1)で20.0J/cm2、(2)で103.4J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 In Comparative Steel 15, O is 0.0230%, which is higher than 0.0100% of the upper limit value of O of Claim 1, so that a large amount of oxide is formed, which becomes a starting point of fracture, and the toughness is 20. 0 J / cm 2, and 103.4J / cm 2 (2), since both are inferior toughness value defined by the present, both toughness is ×.

比較鋼16は、Pが0.061%で請求項1のPの上限値の0.050%より高いので、Pが結晶粒界に偏析し、さらにNが0.049%で請求項1のNの上限値の0.0400%より高いので、炭窒化物の偏析を助長し、靱性が(1)で19.4J/cm2、(2)で87.6J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 In Comparative Steel 16, P is 0.061%, which is higher than 0.050% of the upper limit value of P in claim 1, so that P is segregated at the grain boundary, and N is 0.049%. is higher than 0.0400% of the upper limit of N, promotes segregation of carbonitrides, 19.4J / cm 2 in toughness (1), and 87.6J / cm 2 (2), both present Therefore, the toughness is x in all cases.

比較鋼17は、Siが2.78%で請求項1のSiの上限値の2.50%より多いので、基地組織の延性が低下し、靱性が(1)で24.1J/cm2、(2)で111.4J/cm2と、いずれも本願で規定する靱性値よりも劣っているので、靱性はいずれも×である。 Since the comparative steel 17 has 2.78% Si and more than 2.50% of the upper limit value of Si of Claim 1, the ductility of the base structure is lowered, and the toughness is (1) 24.1 J / cm 2 , In (2), 111.4 J / cm 2 , both of which are inferior to the toughness value specified in the present application, the toughness is x.

上記の比較鋼に比して、本発明鋼のA〜Qは、いずれも軟化抵抗性に優れ、軟化抵量のΔHRCが20.0以下でいずれも○であり、靱性が(1)で25.0J/cm2以上で、(2)で20.0J/cm2以上であり、いずれも高い靱性を兼備しており、靱性はいずれも○である。したがって、本発明鋼のA〜Qは高い靱性と軟化抵抗性を有する高速度工具鋼を提供することが可能である。 Compared to the above comparative steels, A to Q of the steels of the present invention are all excellent in softening resistance, ΔHRC of softening resistance is 20.0 or less, and all are ○, and the toughness is (1) 25 It is 0.0 J / cm 2 or more, and (2) is 20.0 J / cm 2 or more. Both have high toughness, and the toughness is all good. Therefore, A to Q of the steel of the present invention can provide a high-speed tool steel having high toughness and softening resistance.

Claims (2)

質量%で、C:0.60〜0.75%、Si:0.10〜2.50%、Mn:0.10〜1.00%、Cr:3.00%〜5.00%未満、Mo:2.00〜3.60%、W:3.00%以下、ただし、2Mo+W:5.00〜9.00%、V:0.50〜2.00%、P:0.050%以下、S:0.030%以下、O:0.0100%以下、N:0.0400%以下を含有し、残部Feおよび不可避不純物からなり、ΔC:−0.1000〜0.0600であり、A値:0.255〜0.350であることを特徴とする高い靱性と軟化抵抗性を有する高速度工具鋼。
ここに、ΔC=C−Ceq、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2%V+0.1×%Nb、A値=0.063×%Mo/Ceqである。
In mass%, C: 0.60 to 0.75%, Si: 0.10 to 2.50%, Mn: 0.10 to 1.00%, Cr: 3.00% to less than 5.00%, Mo: 2.00 to 3.60%, W: 3.00% or less, provided that 2Mo + W: 5.00 to 9.00%, V: 0.50 to 2.00%, P: 0.050% or less , S: 0.030% or less, O: 0.0100% or less, N: 0.0400% or less, consisting of the balance Fe and inevitable impurities, ΔC: −0.1000 to 0.0600, A Value: High-speed tool steel having high toughness and softening resistance, characterized by being from 0.255 to 0.350.
Here, ΔC = C−C eq , C eq = 0.06 ×% Cr + 0.063 ×% Mo + 0.033 ×% W + 0.2% V + 0.1 ×% Nb, A value = 0.063 ×% Mo / C eq .
請求項1に記載の化学成分に加えて、質量%で、Nb:1.00%以下、Co:5.00%以下の1種または2種を含有し、残部Feおよび不可避不純物からなり、ΔC:−0.1000〜0.0600であり、A値:0.255〜0.350であることを特徴とする高い靱性と軟化抵抗性を有する高速度工具鋼。
ここに、ΔC=C−Ceq、Ceq=0.06×%Cr+0.063×%Mo+0.033×%W+0.2%V+0.1×%Nb、A値=0.063×%Mo/Ceqである。
In addition to the chemical component according to claim 1, it contains one or two of Nb: 1.00% or less and Co: 5.00% or less in mass%, and consists of the balance Fe and inevitable impurities, and ΔC : High speed tool steel having high toughness and softening resistance, characterized in that -0.1000 to 0.0600 and A value: 0.255 to 0.350.
Here, ΔC = C−C eq , C eq = 0.06 ×% Cr + 0.063 ×% Mo + 0.033 ×% W + 0.2% V + 0.1 ×% Nb, A value = 0.063 ×% Mo / C eq .
JP2014192554A 2014-09-22 2014-09-22 High speed tool steel with high toughness and softening resistance Active JP6529234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014192554A JP6529234B2 (en) 2014-09-22 2014-09-22 High speed tool steel with high toughness and softening resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014192554A JP6529234B2 (en) 2014-09-22 2014-09-22 High speed tool steel with high toughness and softening resistance

Publications (2)

Publication Number Publication Date
JP2016060961A true JP2016060961A (en) 2016-04-25
JP6529234B2 JP6529234B2 (en) 2019-06-12

Family

ID=55797281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192554A Active JP6529234B2 (en) 2014-09-22 2014-09-22 High speed tool steel with high toughness and softening resistance

Country Status (1)

Country Link
JP (1) JP6529234B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246804A (en) * 2016-08-29 2016-12-21 宁波胜景传动科技有限公司 A kind of worm-gear speed reducer
CN109182926A (en) * 2018-09-30 2019-01-11 昆山奥马热工科技有限公司 A kind of heat treatment process of high-speed steel
WO2022157227A1 (en) * 2021-01-20 2022-07-28 Voestalpine Böhler Edelstahl Gmbh & Co. Kg Process for producing a tool steel as a carrier for pvd coatings and a tool steel
CN115917031A (en) * 2020-06-12 2023-04-04 尤迪霍尔姆斯有限责任公司 Hot-working tool steel
JP7372774B2 (en) 2019-07-24 2023-11-01 山陽特殊製鋼株式会社 high speed steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174555A (en) * 1982-04-02 1983-10-13 Nippon Koshuha Kogyo Kk Alloy tool steel
JPH01159349A (en) * 1987-09-24 1989-06-22 Hitachi Metals Ltd Low-alloy high-speed tool steel and its production
JPH03236445A (en) * 1989-12-12 1991-10-22 Hitachi Metals Ltd Cold tool steel
JP2004169177A (en) * 2002-11-06 2004-06-17 Daido Steel Co Ltd Alloy tool steel, its manufacturing method, and die using it
JP2007009251A (en) * 2005-06-29 2007-01-18 Sanyo Special Steel Co Ltd Matrix high-speed steel suitable for nitriding treatment
JP2013213256A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Matrix high-speed steel with high strength

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174555A (en) * 1982-04-02 1983-10-13 Nippon Koshuha Kogyo Kk Alloy tool steel
JPH01159349A (en) * 1987-09-24 1989-06-22 Hitachi Metals Ltd Low-alloy high-speed tool steel and its production
JPH03236445A (en) * 1989-12-12 1991-10-22 Hitachi Metals Ltd Cold tool steel
JP2004169177A (en) * 2002-11-06 2004-06-17 Daido Steel Co Ltd Alloy tool steel, its manufacturing method, and die using it
JP2007009251A (en) * 2005-06-29 2007-01-18 Sanyo Special Steel Co Ltd Matrix high-speed steel suitable for nitriding treatment
JP2013213256A (en) * 2012-04-02 2013-10-17 Sanyo Special Steel Co Ltd Matrix high-speed steel with high strength

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246804A (en) * 2016-08-29 2016-12-21 宁波胜景传动科技有限公司 A kind of worm-gear speed reducer
CN109182926A (en) * 2018-09-30 2019-01-11 昆山奥马热工科技有限公司 A kind of heat treatment process of high-speed steel
JP7372774B2 (en) 2019-07-24 2023-11-01 山陽特殊製鋼株式会社 high speed steel
CN115917031A (en) * 2020-06-12 2023-04-04 尤迪霍尔姆斯有限责任公司 Hot-working tool steel
WO2022157227A1 (en) * 2021-01-20 2022-07-28 Voestalpine Böhler Edelstahl Gmbh & Co. Kg Process for producing a tool steel as a carrier for pvd coatings and a tool steel

Also Published As

Publication number Publication date
JP6529234B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6032881B2 (en) Hot mold steel
JP6714334B2 (en) Hot work tool steel with excellent thermal conductivity and toughness
JP2013213255A (en) Hot working die steel
WO2018182480A1 (en) Hot work tool steel
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP5929963B2 (en) Hardening method of steel
JP5655366B2 (en) Bainite steel
JP6529234B2 (en) High speed tool steel with high toughness and softening resistance
TWI447237B (en) Hot work tool steel with superior toughness and method for manufacturing the same
JP4860774B1 (en) Cold work tool steel
JP6620490B2 (en) Age-hardening steel
JP2021017623A (en) Tool steel for hot work, excellent in thermal conductivity
JP2021031695A (en) Hot work-tool steel excellent in toughness
JP6797465B2 (en) High hardness matrix highs with excellent toughness and high temperature strength
JP5680461B2 (en) Hot work tool steel
JP6788520B2 (en) Hot tool steel with excellent toughness and softening resistance
JP2005336553A (en) Hot tool steel
JP6903507B2 (en) Hot tool steel with excellent hardenability and toughness
JP6772915B2 (en) Cold tool steel
CZ20032755A3 (en) Tool steel, process for producing parts of such steel and a steel part obtained in such a manner
JP6083014B2 (en) High strength matrix high speed
JP2021011618A (en) Hot work tool steel having excellent thermal conductivity
JPH09227990A (en) Hot tool steel excellent in high temperature strength and fracture toughness
JP5907416B2 (en) Method for producing hot work tool steel with excellent toughness
JP2000345290A (en) Hot roll for copper and copper alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190514

R150 Certificate of patent or registration of utility model

Ref document number: 6529234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250