WO2011102402A1 - Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same - Google Patents

Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same Download PDF

Info

Publication number
WO2011102402A1
WO2011102402A1 PCT/JP2011/053327 JP2011053327W WO2011102402A1 WO 2011102402 A1 WO2011102402 A1 WO 2011102402A1 JP 2011053327 W JP2011053327 W JP 2011053327W WO 2011102402 A1 WO2011102402 A1 WO 2011102402A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
molds
mold
mass
Prior art date
Application number
PCT/JP2011/053327
Other languages
French (fr)
Japanese (ja)
Inventor
隆一朗 菅野
英司 中津
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to DE112011100602T priority Critical patent/DE112011100602T5/en
Priority to CN2011800101149A priority patent/CN102770566A/en
Priority to JP2012500635A priority patent/JP5668942B2/en
Publication of WO2011102402A1 publication Critical patent/WO2011102402A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a mold for plastic molding, for example, and relates to a mold steel that is most suitable for mold parts such as a nest that constitutes a cavity portion and a holder that holds the nest, and a manufacturing method thereof.
  • the steel for molds of Patent Document 1 whose structure is mainly controlled by lower bainite is excellent in machinability. And in this improvement of machinability, the lower bainite of the prehardened structure after tempering (quenching and tempering) by mutual adjustment of Ni and Cu greatly contributes.
  • the processing area for the mold steel increases, and the mold carving depth also increases. Therefore, in the steel for mold before processing, for example, if the residual stress introduced at the time of quenching is distributed remarkably and non-uniformly, the residual stress is partially released at the time of die engraving. There is a concern that processing distortion may occur in the mold. Therefore, in order to suppress this processing strain, it is effective to reduce the residual stress in the mold steel.
  • an object of the present invention is to provide excellent machinability, particularly ⁇ 5 mm or less, because even a die steel with a large cross-sectional dimension can maintain a uniform lower bainite structure and reduce residual stress. It is intended to provide a die steel that achieves a hole workability that can cope with small-diameter hole machining and a reduction in machining strain.
  • the present inventor examined a method capable of compensating a sufficient and uniform lower bainite structure even when the cooling rate during quenching described above is slow. And even if residual stress that may cause processing strain is introduced during the quenching, a method that can efficiently reduce the residual stress later was studied. As a result, it was found that these techniques can be achieved together by improving the component composition based on the component composition of the mold steel of Patent Document 1, and reached the mold steel of the present invention.
  • the present invention is, in mass%, C: 0.15 to 0.30%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.6 to 1.5%, Cr: 1 More than 0.0 to 2.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2% or less, V: 0.03 to 0.15%, Cu: 0.1 to 0.5% Less than, S: 0.05% or less, Al is controlled to 0.1% or less, N is controlled to 0.06% or less, O is controlled to 0.005% or less, and the balance is composed of Fe and inevitable impurities.
  • the composition is expressed by mass%.
  • Formula 1 [% Ni] +1.2 [% Cu] has a value of 0.70 to 1.80, and the cross-sectional structure is 50% by area of the lower bainite.
  • the steel for molds is excellent in hole workability and processing strain suppression, characterized by having a hardness of 34 to 45 HRC.
  • the mold steel of the present invention has the following composition by mass%: (1) C: 0.17 to 0.25%, Cr: 1.2 to 1.8%, (2) Ni: 0.00. 6 to 1.2%, Cu: 0.1 to 0.45%, (3) Formula 1: 1 of [% Ni] +1.2 [% Cu] is 1.10 to 1.60 It is preferable to satisfy one or more conditions.
  • the mold steel of the present invention preferably has the above (Mo + 1 / 2W) of 0.2 to 1.0%, or more preferably S of 0.005 to 0.05%.
  • the composition of the steel is expressed by the formula 2 expressed by mass%: 60 [% C] +1.5 [% Si] + [% Ni] +6 [% Cr] +2 [% Mo + 1/2% W (single or composite)]
  • the value of +20 [% V] +0.2 [% Cu] is preferably 16.20 to 38.10.
  • the present invention is characterized in that a steel having the above composition is quenched and tempered at 570 ° C. or higher, thereby adjusting the cross-sectional structure to 50 area% or lower of the lower bainite and the hardness to 34 to 45 HRC.
  • This is a method for producing steel for molds excellent in suppressing hole workability and processing strain.
  • the cooling rate in the range from 450 ° C. to 400 ° C. is preferably 3 ° C./min or more.
  • the heating temperature is preferably 850 to 1050 ° C.
  • the structure and the tempering properties described later are optimized by an appropriate combination of the component composition, in particular, mutual adjustment of C, Cr, Ni, and Cu, so that it has high hardness and excellent toughness.
  • the mold steel that has both machinability and ability to suppress processing strain and can be easily applied to a large mold.
  • the feature of the present invention is that for the steel for molds of Patent Document 1 excellent in bainite hardenability, the readjustment of the constituent element species, in particular, the relationship between the amounts of C, Cr, Ni, and Cu has been reviewed.
  • the present inventors have found an optimum component composition that can improve the lower bainite uniformity of the structure and can cope with the reduction of residual stress that the structure can have.
  • the mold steel of the present invention is assumed to be so-called pre-hardened steel which is supplied with a predetermined tempered hardness and is used after being engraved and polished after being tempered.
  • the tempered hardness is adjusted by a series of heat treatments by quenching and generally tempering at 550 ° C. or higher, which includes high hardness for obtaining a mirror finish and high toughness and From the viewpoint of achieving both low hardness for obtaining machinability (tool life), it is preferably in the range of 34 to 45 HRC.
  • tissue of this invention steel is controlled to a lower bainite in the hardening process. That is, in order to achieve both excellent toughness and machinability, the structure mainly composed of lower bainite, which is also adopted in the steel for molds of Patent Document 1, is adopted in the present invention.
  • the lower bainite occupying the entire structure is 50 area% or more in the cross-sectional structure. Preferably it is 60 area% or more, More preferably, it is 70 area% or more.
  • FIG. 1 is a photomicrograph showing an example of a cross-sectional structure of the steel of the present invention, and FIG. 2 is a schematic diagram thereof. In the case of FIG. 1, the area ratio of the lower bainite in the cross-sectional structure is 85%.
  • the lower bainite hardenability is excellent, for example, even if it is quenching with slow cooling speeds, such as direct quenching by air cooling, sufficient amount of lower bainite. It is possible to get However, as the mold steel size increases, the cooling rate during quenching becomes further slower, and if the lower bainite becomes non-uniform, it leads to a decrease in machinability as described above. It is. Therefore, in the present invention, the lower bainite uniformity of the steel of the present invention could be improved by reviewing the component composition of the steel for molds of Patent Document 1 as described below.
  • the present invention has excellent temper softening resistance that can maintain the hardness of 34 to 45 HRC with good reproducibility even when heated at least 570 ° C., preferably 580 ° C.
  • C 0.15-0.30% C is necessary to keep the quenched structure in a lower bainite structure with good machinability (if it is too low, it will lead to precipitation of ferrite), and in tempering, it will be strengthened by the precipitation of Cr, Mo (W), V carbides. Is a basic additive element. And it is an element required only for providing the temper softening resistance which is the characteristic of this invention. Therefore, it is important that C is 0.15% by mass or more. If the amount is too large, the base is martensite-organized and excessive carbides are formed to reduce the machinability, so the amount is 0.30% by mass (hereinafter simply referred to as%) or less. Preferably, the content is 0.17% or more and / or 0.25% or less.
  • Si 1.0% or less Si is an element that enhances the corrosion resistance to the atmosphere when using the mold, but if it is too much, it will lead to the formation of ferrite, so 1.0% or less. Further, when Si is reduced, the anisotropy of the mechanical properties is reduced, and stripe segregation is reduced to obtain excellent mirror workability. Therefore, the Si content is preferably 0.6% or less. In addition, in providing said corrosion resistance, it is preferable to add 0.1% or more, further 0.2% or more.
  • Mn 2.0% or less Mn is an element that enhances the lower bainite hardenability and suppresses the formation of ferrite to impart moderate quenching and tempering hardness.
  • the amount is too large, the heat treatment management for maintaining the lower bainite structure becomes severe, and martensitic transformation is promoted.
  • the machinability is lowered by increasing the viscosity of the base, the content is made 2.0% or less.
  • Ni is an element that enhances the lower bainite hardenability of the steel of the present invention and suppresses the formation of ferrite. And it is an important element which controls a structure
  • ⁇ Cr more than 1.0 to 2.0% Cr is added to precipitate and agglomerate fine carbides during the tempering treatment and form the strength of the steel of the present invention.
  • the corrosion resistance of the steel of the present invention is enhanced to suppress rusting during polishing or during mold storage.
  • it has the effect of increasing the hardness of the nitrided layer. Therefore, it adds exceeding 1.0%.
  • the amount is too large, the effect of refining the lower bainite structure promotes martensitic transformation, increases the base viscosity, and reduces machinability.
  • it is important to make it 2.0% or less. Preferably it is 1.2% or more and / or 1.8% or less.
  • Mo and W are single or composite (Mo + 1 / 2W): 1.2% or less Mo and / or W precipitate and agglomerate fine carbides during the tempering treatment, and improve the strength of the steel of the present invention.
  • Mo and W are partly dissolved in the oxide film on the mold surface, thereby improving the corrosion resistance against corrosive gas generated from, for example, plastic during use of the mold.
  • (Mo + 1 / 2W) is set to 1.2% or less. And preferably it is 0.2% or more and / or 1.0% or less. More preferably, it is 0.3% or more and / or 0.9% or less.
  • V 0.03-0.15% V increases the resistance to temper softening and suppresses the coarsening of crystal grains, thereby contributing to the improvement of toughness.
  • at least 0.03% or more is required, but if it is too much, the machinability is reduced, so the content was made 0.15% or less.
  • Cu 0.1 to less than 0.5%
  • Cu precipitates or agglomerates the Fe—Cu solid solution in the tempering treatment of the steel of the present invention as in the steel for molds of Patent Document 1.
  • tissue is controlled to a lower bainite by adjustment of the appropriate addition amount with Ni mentioned above.
  • the steel of the present invention is imparted with excellent machinability.
  • Cu also has an effect of providing excellent corrosion resistance. However, if the amount is too large, in addition to lowering hot workability, it also works on the martensitic transformation of the structure, which in turn reduces machinability.
  • the Cu content is greatly related to the non-uniformity of the lower bainite, which is the subject of the present invention. That is, in the process of bainite transformation by quenching, if the cooling rate at that time becomes slow, transformation to upper bainite occurs at a relatively high temperature, and therefore Cu precipitates at the interface between the transformed region of upper bainite and untransformed austenite. . Thereby, since the transformation to the upper bainite further proceeds around the Cu precipitate, it becomes difficult to obtain a uniform lower bainite. And since precipitation of this Cu is accelerated
  • the Cu of the steel of the present invention is 0.1 to less than 0.5%. Preferably it is 0.25% or more and / or 0.45% or less.
  • S 0.05% or less S is present in the structure as MnS of non-metallic inclusions, and has a great effect on improving the machinability.
  • MnS the presence of a large amount of MnS becomes a factor that degrades the performance of the mold itself, such as promoting mechanical properties, particularly toughness anisotropy. Therefore, S of the steel of the present invention that has excellent toughness, machinability and hardness, and also achieves excellent polishing finish needs to be limited to 0.05% or less.
  • the content is preferably 0.005% or more, more preferably 0.01% or more.
  • Al is usually used as a deoxidizing element at the time of melting, but in the steel of the present invention in a state after tempering, Al2O3 present in the steel has mirror surface workability. Since it decreases, it is necessary to regulate to 0.1% or less. Preferably it is 0.05% or less. And it is more preferably 0.01% or less, and still more preferably 0.005% or less.
  • N 0.06% or less
  • N is an element that forms nitrides in steel. If the nitride is excessively formed, the toughness, machinability and polishability of the mold are significantly deteriorated. Therefore, it is preferable to regulate N in steel low, and in the present invention, it is specified to be 0.06% or less. Preferably it is 0.02% or less, More preferably, it is 0.015% or less.
  • O is an element that forms an oxide in steel, and causes a significant deterioration in cold plastic workability and polishability.
  • the upper limit of O is set to 0.005%.
  • the regulation is controlled to a lower level, for example, 0.001% or less. Therefore, there is no particular requirement for the low amount management of the O amount itself. Therefore, exceeding 0.001% is sufficiently acceptable.
  • Formula 1 The value of [% Ni] +1.2 [% Cu] is 0.70 to 1.80 In the steel of the present invention, even if the content of Cu is reduced in order to reduce non-uniformity of the lower bainite, the value of the following formula 1: [% Ni] +1.2 [% Cu] by mass% is reduced to 0. If it is secured to .70 to 1.80, a sufficient amount of the lower bainite structure itself can be realized, and the machinability, toughness and hardness can be combined at a high level. That is, if the value of Formula 1 is less than 0.70, ferrite and upper bainite are likely to be generated. If the equivalent value is greater than 1.80, excessively refined lower bainite and martensite are likely to be generated. Preferably it is 1.10 or more and / or 1.60 or less.
  • the value according to the above formula 1 is controlled to 0.70 or more, and further
  • the cooling range from 450 ° C. to 400 ° C. during quenching is preferably a cooling rate of 3 ° C./min or more.
  • the mold steel of the present invention has a component composition in which upper bainite is more easily generated than the mold steel of Patent Document 1 by reducing the amount of Cu.
  • the component composition has a quenching characteristic in which a bainite nose is located in a range of 450 to 400 ° C. in an isothermal transformation diagram.
  • the above temperature range is allowed to pass at a high cooling rate, so that the formation of upper bainite can be suppressed even in the mold steel having a Cu amount of 0.1%. . And it becomes easier to achieve the amount of lower bainite of 60 area% or more, further 70 area% or more by this quenching.
  • the heating temperature during quenching is preferably 850 to 1050 ° C. at which sufficient austenitization can be achieved.
  • Formula 2 60 [% C] +1.5 [% Si] + [% Ni] +6 [% Cr] +2 [% Mo + 1/2% W (single or combined)] + 20 [% V] +0.2 [%
  • the value of Cu] is 16.20 to 38.10.
  • the range of 16.20 to 38.10 is acceptable for the value of compound)) + 20 [% V] +0.2 [% Cu].
  • a range of 23.00 or more and / or 28.00 or less is more preferable.
  • toughness improving elements and machinability improving elements can be added as long as the above-described effects are not impaired.
  • Nb 0.5% or less (preferably 0.01% or more and / or 0.1% or less)
  • Ti 0.15% or less (preferably 0.01% or more)
  • Zr 0.15% or less (preferably 0.01% or more)
  • Any one or more of Ta: 0.15% or less (preferably 0.01% or more) can be added.
  • Zr 0.2% or less (preferably 0.003% or more), Ca: 0.01% or less (preferably 0.0005% or more), Pb: 0.2% or less (preferably 0.03% or more), Se: 0.2% or less (preferably 0.03% or more), Te: 0.15% or less (preferably 0.01% or more), Bi: 0.2% or less (preferably 0.01% or more), In: 0.5% or less (preferably 0.005% or more), Any one or more of Ce: 0.1% or less (preferably 0.01% or more) can be added.
  • Y, La, Nd, Sm, and other REM (rare earth) elements may be contained in total of 0.3% or less (preferably 0.0005% or more).
  • the mold steel of the present invention is excellent in suppressing processing strain, which can maintain a hardness of 34 to 45 HRC even when the tempering temperature during tempering is 570 ° C. or higher.
  • the above tempering temperature is preferably 650 ° C. or lower in order to more reliably maintain a hardness of 34 HRC or higher.
  • Table 1 shows the chemical composition of the steel of the present invention and the comparative steel.
  • Sample No. which is a comparative steel.
  • Nos. 11 to 15 are steels for metal molds disclosed in Patent Document 1.
  • Sample No. 10 is a sample No. 10 of the steel of the present invention.
  • 3 is a mold steel having the same composition as that of No. 3.
  • Quenching is performed by pressurized gas cooling, and the time required for cooling from the quenching temperature (900 ° C.) to the intermediate temperature (450 ° C.) between the quenching temperature and room temperature (20 ° C.) is expressed as “half-cooling time ( When it is defined as “semi-cooled ** minutes”, it was cooled in about half-cooled 150 minutes as a part corresponding to a part where the cooling rate becomes slow like the center part of a large-sized steel material.
  • the cooling rate in the range of 450 to 400 ° C. is the sample No. All were controlled at 3 ° C./min or more except that 10 was set to about 1 ° C./min.
  • the sample temperature was measured by a thermocouple attached in the vicinity of the center of the sample.
  • the target hardness was 37 to 41 HRC, and the mixture was heated for 2 hours at an appropriate temperature in the range of 550 ° C. to 650 ° C. and then air-cooled (at this time, the hardness of sample No. 10 was significantly lower than 37 HRC).
  • each sample after tempering was subjected to the following drilling test to evaluate their machinability. That is, drilling was performed with a JIS-SKH51 high-speed steel ⁇ 1 mm drill under the conditions of cutting speed: 20 m / min, feed rate: 31.83 mm / min, and drilling hole depth: 10 mm. The number of holes until the drill broke was defined as the tool life, and the value was measured.
  • the hardness of the drill incident surface and the microstructure observation of the sample subjected to the drilling test were performed.
  • Microscopic observation is performed by finishing the drill incident surface to a mirror surface by buffing 1 ⁇ m abrasive grains, and then observing each sample surface corroded with a mixed solution of 10% nitric acid and 90% ethyl alcohol with an optical microscope with a magnification of 400 times. Then, the area ratio of the lower bainite occupying the surface was measured by photographing.
  • Nos. 1 to 8 maintain a predetermined high hardness even by tempering at 570 ° C. or higher, specifically 580 ° C. or higher.
  • the sample No. C added with the amount of C exceeding 0.25%.
  • No. 8 is tempered at 620 ° C. and maintains a hardness of 37.0 HRC and is excellent in temper softening resistance.
  • sample no. Sample Nos. 1 to 7 have excellent toughness and a high C content.
  • No. 8 while ensuring sufficient toughness, their machinability (hole workability) is the same as the sample No. 1 of Patent Document 1. It is improved from 11-15.
  • sample no. 10 is a steel for molds which satisfies the component composition of the present invention, but whose structure is mainly upper bainite.
  • Sample No. No. 10 has a lower hardness than other samples, and has a high Charpy impact value. However, the machinability of the present invention is not achieved.
  • FIG. 3 is a summary of the results of drill life (number of holes) with respect to the amount of Cu in Table 2.
  • the steel for molds satisfying the composition of the present invention has an improved drill life.
  • the drill life is shorter than other samples having a hardness of about 37 HRC despite the low hardness.
  • the steel of the present invention has excellent machinability that is not found in conventional pre-hardened steel for plastic molding. In addition to low processing strain, it is suitable for products that require precision processing because it reduces the number of man-hours required for processing the product and it is difficult for cracks to occur due to thermal stress associated with processing. Become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is steel for molds that has excellent cuttability, that particularly allows small-diameter holes to be formed therein, and in which deformation due to processing has been reduced. Also provided is a method for producing the steel for molds. The disclosed steel for molds has a composition comprising, in mass%: 0.15-0.30% of C; 1.0% or less of Si; 2.0% or less of Mn; 0.6-1.5% of Ni; greater than 1.0% to 2.0% of Cr; 1.2% or less of Mo or W alone, or Mo+1/2W in combination; 0.03-0.15% of V; 0.1% to less than 0.5% of Cu; 0.05% or less of S; 0.1% or less of Al; 0.06% or less of N; 0.005% or less of O; and Fe and inevitable impurities as the remainder. In said steel, the value found from formula (1), [%Ni]+1.2[%Cu], is from 0.70 to 1.80 in mass%, and the sectional structure includes 50 area% or more of lower bainite. The steel has a hardness of 34 to 45 HRC. The disclosed method for producing the steel for molds involves adjusting said sectional structure and said hardness by quenching and by tempering at 570°C or higher.

Description

孔加工性および加工歪の抑制に優れた金型用鋼およびその製造方法Die steel excellent in hole workability and suppression of machining strain and method for producing the same
 本発明は、例えばプラスチックの成形用金型に係り、そのキャビティ部などを構成する入れ子や、入れ子を保持するホルダなどの金型部品に最適な金型用鋼と、その製造方法に関する。 The present invention relates to a mold for plastic molding, for example, and relates to a mold steel that is most suitable for mold parts such as a nest that constitutes a cavity portion and a holder that holds the nest, and a manufacturing method thereof.
 従来、プラスチック等を成形する金型においては、それを構成する金型用鋼には、
(1)鏡面仕上性が良く、ピンホールやその他微細ピットの発生傾向が小さいこと、
(2)シボ加工性が良いこと、
(3)耐食、耐発錆性が良いこと、
(4)強度、耐摩耗性、靭性が良いこと、
(5)被切削性が良いこと、
などが要求される。
Conventionally, in a mold for molding plastics, etc.,
(1) Good mirror finish and low tendency to generate pinholes and other fine pits.
(2) Good texture processing,
(3) Good corrosion resistance and rust resistance,
(4) Good strength, wear resistance, toughness,
(5) Good machinability,
Etc. are required.
 なかでも、優れた被切削性、すなわち切削工具寿命の向上は、近年の金型作製コストの削減要求にとって重要な改善特性である。そこで本願出願人は、上記の被切削性の向上を目的として、Cr、Mo(1/2W)、Cu、およびVの最適調整による析出強化を採用した低C-Mn-Ni-Cr-Mo(W)-V-Cu-Fe系の金型用鋼を開発した(特許文献1参照)。 Among these, excellent machinability, that is, improvement of the cutting tool life, is an important improvement characteristic for the recent demand for reduction in mold production cost. Accordingly, the applicant of the present application has adopted a low C—Mn—Ni—Cr—Mo (adopting precipitation strengthening by optimum adjustment of Cr, Mo (1/2 W), Cu, and V for the purpose of improving the machinability. W) -V-Cu-Fe-based mold steel was developed (see Patent Document 1).
特許第4269293号公報Japanese Patent No. 4269293
 組織を下部ベイナイト主体に制御した特許文献1の金型用鋼は、被切削性に優れるものである。そして、この被切削性の向上には、NiとCuの相互調整による調質(焼入れ焼戻し)後のプリハードン組織の下部ベイナイト化が大きく寄与している。 The steel for molds of Patent Document 1 whose structure is mainly controlled by lower bainite is excellent in machinability. And in this improvement of machinability, the lower bainite of the prehardened structure after tempering (quenching and tempering) by mutual adjustment of Ni and Cu greatly contributes.
 ところで、近年は金型の大型化に伴って、これに用いられる鋼材にも断面寸法の非常に大きなものが必要とされている。そして、この金型用鋼の大寸法化は、焼入れ時の冷却速度を遅くする一要因となる。そこで、冷却速度の低下は下部ベイナイトの形成を阻害するところ、特許文献1の金型用鋼は下部ベイナイト焼入性に優れることから、例えば熱間加工後の直接焼入れといった冷却速度が遅い焼入れであっても、十分量の下部ベイナイトを得ることができる。 By the way, in recent years, with the increase in size of the mold, the steel material used for this is required to have a very large cross-sectional dimension. And the increase in size of the mold steel is one factor that slows the cooling rate during quenching. Therefore, the lowering of the cooling rate hinders the formation of lower bainite, and the steel for molds of Patent Document 1 is excellent in lower bainite hardenability. For example, quenching with a slow cooling rate such as direct quenching after hot working is performed. Even so, a sufficient amount of lower bainite can be obtained.
 しかしながら、下部ベイナイト焼入性に優れる特許文献1の金型用鋼であっても、上記の冷却速度の低下に係っては、十分な量の下部ベイナイトが均一に形成されないと(偏って形成されると)、金型用鋼の靱性や被切削性を低下させることとなる。各種の切削加工のなかでも、特にドリル等による孔加工は、それがφ5mm以下の小径孔加工ともなると、下部ベイナイトが不均一な金型用鋼では加工時に生成される切屑の排出がスムーズに行われず、工具の短寿命化の要因となる。 However, even in the steel for molds of Patent Document 1 which is excellent in lower bainite hardenability, a sufficient amount of lower bainite is not formed uniformly even if the cooling rate is decreased (the formation is unevenly formed). If so, the toughness and machinability of the mold steel will be reduced. Among various types of cutting, drilling with drills, etc., especially when drilling with a small diameter of φ5 mm or less, allows smooth discharge of chips generated during machining in mold steel with non-uniform lower bainite. As a result, the tool life is shortened.
 また、金型の大型化に伴っては、金型用鋼への加工面積は広くなり、その型彫り深さも大きくなってくる。よって、加工前の金型用鋼中には、例えば上記の焼入れ時に導入された残留応力が顕著かつ不均一に分布していると、型彫り時にその残留応力が部分的に開放されることで、金型には加工歪が生じることが懸念される。したがって、この加工歪を抑制するには、金型用鋼中の残留応力を低減しておくことが有効となる。 Also, with the increase in size of the mold, the processing area for the mold steel increases, and the mold carving depth also increases. Therefore, in the steel for mold before processing, for example, if the residual stress introduced at the time of quenching is distributed remarkably and non-uniformly, the residual stress is partially released at the time of die engraving. There is a concern that processing distortion may occur in the mold. Therefore, in order to suppress this processing strain, it is effective to reduce the residual stress in the mold steel.
 そこで本発明の目的は、断面寸法の大きな金型用鋼であっても、下部ベイナイト組織を均一に維持でき、しかも残留応力の低減が可能であることから、優れた被切削性、特にφ5mm以下の小径孔加工にも対応し得る孔加工性と、加工歪の低減を達成した金型用鋼を提供することである。 Accordingly, an object of the present invention is to provide excellent machinability, particularly φ5 mm or less, because even a die steel with a large cross-sectional dimension can maintain a uniform lower bainite structure and reduce residual stress. It is intended to provide a die steel that achieves a hole workability that can cope with small-diameter hole machining and a reduction in machining strain.
 最初に、優れた被切削性と靭性を維持するためには、本発明者は、上記した焼入れ時の冷却速度が遅くなっても十分量かつ均一な下部ベイナイト組織が補償できる手法を検討した。そして、上記の焼入れ時には加工歪が懸念される程の残留応力が導入されたとしても、後にはそれを効率よく低減できる手法を検討した。その結果、これらの手法は、特許文献1の金型用鋼が有する成分組成を基にして、それを改良することで共に達成できることを見いだし、本発明の金型用鋼に到達した。 First, in order to maintain excellent machinability and toughness, the present inventor examined a method capable of compensating a sufficient and uniform lower bainite structure even when the cooling rate during quenching described above is slow. And even if residual stress that may cause processing strain is introduced during the quenching, a method that can efficiently reduce the residual stress later was studied. As a result, it was found that these techniques can be achieved together by improving the component composition based on the component composition of the mold steel of Patent Document 1, and reached the mold steel of the present invention.
 すなわち本発明は、質量%で、C:0.15~0.30%、Si:1.0%以下、Mn:2.0%以下、Ni:0.6~1.5%、Cr:1.0超~2.0%、MoとWは単独または複合で(Mo+1/2W):1.2%以下、V:0.03~0.15%、Cu:0.1~0.5%未満、S:0.05%以下を含有し、Alは0.1%以下、Nは0.06%以下、Oは0.005%以下に規制され、残部はFeおよび不可避的不純物からなる組成の鋼であって、該組成は質量%で示される式1:[%Ni]+1.2[%Cu]の値が0.70~1.80であり、断面組織は下部ベイナイトを50面積%以上とし、硬さが34~45HRCであることを特徴とする孔加工性および加工歪の抑制に優れた金型用鋼である。 That is, the present invention is, in mass%, C: 0.15 to 0.30%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.6 to 1.5%, Cr: 1 More than 0.0 to 2.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2% or less, V: 0.03 to 0.15%, Cu: 0.1 to 0.5% Less than, S: 0.05% or less, Al is controlled to 0.1% or less, N is controlled to 0.06% or less, O is controlled to 0.005% or less, and the balance is composed of Fe and inevitable impurities. The composition is expressed by mass%. Formula 1: [% Ni] +1.2 [% Cu] has a value of 0.70 to 1.80, and the cross-sectional structure is 50% by area of the lower bainite. As described above, the steel for molds is excellent in hole workability and processing strain suppression, characterized by having a hardness of 34 to 45 HRC.
 さらに本発明の金型用鋼は、上記の質量%による組成が、(1)C:0.17~0.25%、Cr:1.2~1.8%、(2)Ni:0.6~1.2%、Cu:0.1~0.45%、(3)式1:[%Ni]+1.2[%Cu]の値が1.10~1.60、のうちの1つ以上の条件を満たすことが好ましい。 Furthermore, the mold steel of the present invention has the following composition by mass%: (1) C: 0.17 to 0.25%, Cr: 1.2 to 1.8%, (2) Ni: 0.00. 6 to 1.2%, Cu: 0.1 to 0.45%, (3) Formula 1: 1 of [% Ni] +1.2 [% Cu] is 1.10 to 1.60 It is preferable to satisfy one or more conditions.
 また、本発明の金型用鋼は、上記の(Mo+1/2W)が0.2~1.0%、あるいはさらにSが0.005~0.05%であることが好ましい。そして鋼の組成は、質量%で示される式2:60[%C]+1.5[%Si]+[%Ni]+6[%Cr]+2[%Mo+1/2%W(単独または複合)]+20[%V]+0.2[%Cu]の値が16.20~38.10であることが好ましい。 Further, the mold steel of the present invention preferably has the above (Mo + 1 / 2W) of 0.2 to 1.0%, or more preferably S of 0.005 to 0.05%. And the composition of the steel is expressed by the formula 2 expressed by mass%: 60 [% C] +1.5 [% Si] + [% Ni] +6 [% Cr] +2 [% Mo + 1/2% W (single or composite)] The value of +20 [% V] +0.2 [% Cu] is preferably 16.20 to 38.10.
 そして本発明は、上記の組成を有する鋼に、焼入れと570℃以上の焼戻しを行うことで、その断面組織を下部ベイナイト50面積%以上、硬さを34~45HRCに調整することを特徴とする孔加工性および加工歪の抑制に優れた金型用鋼の製造方法である。焼入れは、450℃から400℃までの範囲の冷却速度を3℃/分以上とすることが好ましい。あるいはさらに、その加熱温度を850~1050℃とすることが好ましい。 The present invention is characterized in that a steel having the above composition is quenched and tempered at 570 ° C. or higher, thereby adjusting the cross-sectional structure to 50 area% or lower of the lower bainite and the hardness to 34 to 45 HRC. This is a method for producing steel for molds excellent in suppressing hole workability and processing strain. In the quenching, the cooling rate in the range from 450 ° C. to 400 ° C. is preferably 3 ° C./min or more. Alternatively, the heating temperature is preferably 850 to 1050 ° C.
 本発明であれば、成分組成の適切な組合せ、特にはC、Cr、Ni、Cuの相互調整によって、その組織と後述する焼戻し特性が最適化されているので、高硬度でかつ優れた靭性と、被切削性および加工歪の抑制能を兼備し、大型の金型にも適用が容易な金型用鋼を提供できる。 According to the present invention, the structure and the tempering properties described later are optimized by an appropriate combination of the component composition, in particular, mutual adjustment of C, Cr, Ni, and Cu, so that it has high hardness and excellent toughness. In addition, it is possible to provide a mold steel that has both machinability and ability to suppress processing strain and can be easily applied to a large mold.
本発明鋼の断面組織の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the cross-sectional structure of this invention steel. 図1の顕微鏡写真の模式図である。It is a schematic diagram of the micrograph of FIG. 実施例で行った本発明鋼および比較鋼のCu量に対するドリル寿命を示した図であり、本発明の効果の一例を説明する図である。It is the figure which showed the drill life with respect to Cu amount of this invention steel and comparative steel which were performed in the Example, and is a figure explaining an example of the effect of this invention.
 本発明の特徴は、ベイナイト焼入性に優れた特許文献1の金型用鋼に対して、その構成元素種の再調整、特にC、Cr、Ni、Cu量の関係を見直したことで、組織の下部ベイナイト均一性を向上することができ、しかも該組織が有し得る残留応力の低減にも対応できる最適な成分組成を見いだしたことである。 The feature of the present invention is that for the steel for molds of Patent Document 1 excellent in bainite hardenability, the readjustment of the constituent element species, in particular, the relationship between the amounts of C, Cr, Ni, and Cu has been reviewed. The present inventors have found an optimum component composition that can improve the lower bainite uniformity of the structure and can cope with the reduction of residual stress that the structure can have.
 本発明の金型用鋼は、所定の調質硬さで供給され、その調質状態のままで型彫加工の後、研磨仕上げを施して使用される、いわゆるプリハードン鋼を想定している。そして、その調質硬さは、焼入れと、一般的には550℃以上の焼戻しによる一連の熱処理で調整されるところ、これには鏡面仕上げ性を得るための高硬度と、一方では高い靭性および被切削性(工具寿命)を得るための低硬度を両立させる観点から、34~45HRCの範囲であることが好ましい。 The mold steel of the present invention is assumed to be so-called pre-hardened steel which is supplied with a predetermined tempered hardness and is used after being engraved and polished after being tempered. And the tempered hardness is adjusted by a series of heat treatments by quenching and generally tempering at 550 ° C. or higher, which includes high hardness for obtaining a mirror finish and high toughness and From the viewpoint of achieving both low hardness for obtaining machinability (tool life), it is preferably in the range of 34 to 45 HRC.
 そして、上記の熱処理においては、その焼入れ工程にて、本発明鋼の組織を下部ベイナイトに制御する。つまり、優れた靱性と被切削性の両立を図る上では、特許文献1の金型用鋼でも採用した下部ベイナイトが主体の組織を、本発明でも採用するものである。このとき、全組織に占める下部ベイナイトは、その断面組織にて50面積%以上とする。好ましくは60面積%以上、更に好ましくは70面積%以上である。図1は本発明鋼の断面組織の一例を示す顕微鏡写真であり、図2はその模式図である。図1の場合、その断面組織中に占める下部ベイナイトの面積率は85%である。 And in said heat processing, the structure | tissue of this invention steel is controlled to a lower bainite in the hardening process. That is, in order to achieve both excellent toughness and machinability, the structure mainly composed of lower bainite, which is also adopted in the steel for molds of Patent Document 1, is adopted in the present invention. At this time, the lower bainite occupying the entire structure is 50 area% or more in the cross-sectional structure. Preferably it is 60 area% or more, More preferably, it is 70 area% or more. FIG. 1 is a photomicrograph showing an example of a cross-sectional structure of the steel of the present invention, and FIG. 2 is a schematic diagram thereof. In the case of FIG. 1, the area ratio of the lower bainite in the cross-sectional structure is 85%.
 ここで、特許文献1の金型用鋼であっても、その下部ベイナイト焼入性は優れたものであり、例えば空冷による直接焼入れといった冷却速度の遅い焼入れであっても、十分量の下部ベイナイトを得ることは可能である。しかし、金型用鋼の大寸法化に伴っては、焼入れ時の冷却速度が更に遅くなることで、下部ベイナイトが不均一となれば、それが被切削性の低下に繋がることは上記の通りである。そこで本発明では、特許文献1の金型用鋼の成分組成を下述の通り見直すことで、本発明鋼の下部ベイナイト均一性を向上させることができた。 Here, even if it is steel for metal mold | die of patent document 1, the lower bainite hardenability is excellent, for example, even if it is quenching with slow cooling speeds, such as direct quenching by air cooling, sufficient amount of lower bainite. It is possible to get However, as the mold steel size increases, the cooling rate during quenching becomes further slower, and if the lower bainite becomes non-uniform, it leads to a decrease in machinability as described above. It is. Therefore, in the present invention, the lower bainite uniformity of the steel of the present invention could be improved by reviewing the component composition of the steel for molds of Patent Document 1 as described below.
 そして、上記の焼入れでは組織を下部ベイナイトに調整できたとしても、これと同時には鋼材中に不均一な残留応力が導入されれば、それは金型加工時の加工歪の発生に繋がり得る。そこで、この加工歪の抑制には、鋼材中の残留応力を低減しておくことが効果的であるところ、それは焼入れ時に導入される残留応力自体を低減するのではなくて、その導入された後の残留応力を有効的に除去できる手法を検討した。つまりこれが、焼入れ後に実施する焼戻し工程の利用であって、この際の加熱・保持中に残留応力を低減または除去できれば、金型用鋼の大寸法化に伴う加工歪の発生を抑えることができる。 And even if the structure can be adjusted to the lower bainite by the above quenching, if a non-uniform residual stress is introduced into the steel at the same time, it can lead to the generation of processing strain during the die processing. Therefore, in order to suppress this processing strain, it is effective to reduce the residual stress in the steel material, but it does not reduce the residual stress itself introduced at the time of quenching, but after the introduction. We studied a method that can effectively remove residual stress in steel. In other words, this is the use of a tempering process performed after quenching, and if the residual stress can be reduced or removed during heating and holding at this time, it is possible to suppress the occurrence of processing strain accompanying the increase in size of the mold steel. .
 しかし、金型の使用硬さを維持するためには、その金型用鋼に適用されている一般的な焼戻し温度が550℃の辺りから設定されていることに対し、上記の残留応力を除去するのに有効な加熱・保持温度は低くても570℃、そして顕著な該除去効果を発揮するためには580℃以上、更には600℃にも及ぶ高温域である。つまり、残留応力を除去するための焼戻し温度の単純な昇温化は、一方では金型用鋼の軟化に繋がる。したがって本発明は、優れた下部ベイナイト均一性に合せて、低くても570℃、好ましくは580℃以上の加熱でも34~45HRCの硬さを再現性よく維持できる焼戻し軟化抵抗性にも優れた(高温での焼戻し処理を可能とした)金型用鋼を目指した。そして、特許文献1の金型用鋼の成分組成を下述の通り見直すことで、この達成に至った。以下、本発明鋼の成分限定の理由について述べる。 However, in order to maintain the working hardness of the mold, the above-mentioned residual stress is removed while the general tempering temperature applied to the mold steel is set from around 550 ° C. The effective heating / holding temperature is 570 ° C. at the lowest, and a high temperature range of 580 ° C. or more and even 600 ° C. is required to exhibit the remarkable removal effect. That is, a simple increase in the tempering temperature for removing the residual stress, on the other hand, leads to softening of the mold steel. Therefore, the present invention has excellent temper softening resistance that can maintain the hardness of 34 to 45 HRC with good reproducibility even when heated at least 570 ° C., preferably 580 ° C. or more, in accordance with excellent lower bainite uniformity ( Aimed at steel for molds that can be tempered at high temperature. And it came to this achievement by reviewing the component composition of the steel for metal mold | die of patent document 1 as follows. Hereinafter, the reason for limiting the components of the steel of the present invention will be described.
・C:0.15~0.30%
 Cは、焼入れ組織を被切削性の良好な下部ベイナイト組織に保ち(低すぎるとフェライトの析出を招く)、かつ焼戻しにおいてはCr、Mo(W)、V炭化物の析出による強化をもたらすために必要な基本的添加元素である。そして、本発明の特徴である焼戻し軟化抵抗を付与するためにこそ必要な元素である。よってCは0.15質量%以上とすることが重要である。多すぎると基地をマルテンサイト組織化し、かつ過度の炭化物を形成して被切削性を低下させるので、0.30質量%(以下、単に%と表記)以下とする。好ましくは、0.17%以上および/または0.25%以下とする。
・ C: 0.15-0.30%
C is necessary to keep the quenched structure in a lower bainite structure with good machinability (if it is too low, it will lead to precipitation of ferrite), and in tempering, it will be strengthened by the precipitation of Cr, Mo (W), V carbides. Is a basic additive element. And it is an element required only for providing the temper softening resistance which is the characteristic of this invention. Therefore, it is important that C is 0.15% by mass or more. If the amount is too large, the base is martensite-organized and excessive carbides are formed to reduce the machinability, so the amount is 0.30% by mass (hereinafter simply referred to as%) or less. Preferably, the content is 0.17% or more and / or 0.25% or less.
・Si:1.0%以下
 Siは、金型使用時の雰囲気に対する耐食性を高める元素であるが、多すぎるとフェライトの生成をまねくので1.0%以下とする。また、Siを低減すると機械的特性の異方性が軽減され、また縞状偏析が低減されて、優れた鏡面加工性が得られるため、好ましくは0.6%以下とする。なお、上記の耐食性を付与するにおいては0.1%以上、さらには0.2%以上の添加を行うことが好ましい。
Si: 1.0% or less Si is an element that enhances the corrosion resistance to the atmosphere when using the mold, but if it is too much, it will lead to the formation of ferrite, so 1.0% or less. Further, when Si is reduced, the anisotropy of the mechanical properties is reduced, and stripe segregation is reduced to obtain excellent mirror workability. Therefore, the Si content is preferably 0.6% or less. In addition, in providing said corrosion resistance, it is preferable to add 0.1% or more, further 0.2% or more.
・Mn:2.0%以下
 Mnは、下部ベイナイト焼入性を高め、またフェライトの生成を抑制して、適度の焼入れ焼戻し硬さを付与する元素である。しかし多すぎると、下部ベイナイト組織を維持するための熱処理管理が厳しくなり、マルテンサイト変態化を促進させる。また基地の粘さを上げて被切削性を低下させるので2.0%以下とする。なお、上記の焼入性を付与するにおいては1.0%以上、さらには1.2%以上の添加を行うことが好ましい。
Mn: 2.0% or less Mn is an element that enhances the lower bainite hardenability and suppresses the formation of ferrite to impart moderate quenching and tempering hardness. However, if the amount is too large, the heat treatment management for maintaining the lower bainite structure becomes severe, and martensitic transformation is promoted. Moreover, since the machinability is lowered by increasing the viscosity of the base, the content is made 2.0% or less. In addition, in providing said hardenability, it is preferable to add 1.0% or more, and also 1.2% or more.
・Ni:0.6~1.5%
 Niは、本発明鋼の下部ベイナイト焼入性を高め、またフェライトの生成を抑制する元素である。そして、後述するCuとの適切な添加量の調整により、組織を下部ベイナイトに制御する重要な元素であって、これは本発明鋼に優れた被切削性を付与する。しかし多すぎると、下部ベイナイト組織を過度に微細化させ、マルテンサイト変態化を促進し、基地の粘さを上げて被切削性を低下させる。よってNiは0.6~1.5%とする。好ましくは1.2%以下とする。
・ Ni: 0.6-1.5%
Ni is an element that enhances the lower bainite hardenability of the steel of the present invention and suppresses the formation of ferrite. And it is an important element which controls a structure | tissue to lower bainite by adjustment of the appropriate addition amount with Cu mentioned later, and this provides the machinability excellent in this invention steel. However, if the amount is too large, the lower bainite structure is excessively refined, the martensitic transformation is promoted, the base viscosity is increased, and the machinability is lowered. Therefore, Ni is set to 0.6 to 1.5%. Preferably it is 1.2% or less.
・Cr:1.0超~2.0%
 Crは、焼戻し処理時に微細炭化物を析出、凝集させ、本発明鋼の強度を形成するために添加される。また本発明鋼の耐食性を高めて、研磨加工時あるいは金型保管時の発錆を抑制する。さらに窒化処理を行う場合には、窒化層の硬さを高める効果を有する。よって1.0%を超えて添加する。しかし多すぎると、下部ベイナイト組織を微細化させる作用から、マルテンサイト変態化を促進し、基地の粘さを上げて被切削性を低下させる。そして、本発明の特徴である焼戻し軟化抵抗を小さくすることから、2.0%以下とすることが重要である。好ましくは1.2%以上および/または1.8%以下である。
・ Cr: more than 1.0 to 2.0%
Cr is added to precipitate and agglomerate fine carbides during the tempering treatment and form the strength of the steel of the present invention. In addition, the corrosion resistance of the steel of the present invention is enhanced to suppress rusting during polishing or during mold storage. Further, when nitriding is performed, it has the effect of increasing the hardness of the nitrided layer. Therefore, it adds exceeding 1.0%. However, if the amount is too large, the effect of refining the lower bainite structure promotes martensitic transformation, increases the base viscosity, and reduces machinability. And, in order to reduce the temper softening resistance, which is a feature of the present invention, it is important to make it 2.0% or less. Preferably it is 1.2% or more and / or 1.8% or less.
・MoとWは単独または複合で(Mo+1/2W):1.2%以下
 Moおよび/またはWは、焼戻し処理時に微細炭化物を析出、凝集させて、本発明鋼の強度を向上する。そして、本発明の特徴とする鋼材中の残留応力の低減と、さらには金型に窒化処理を施して使用する場合も考慮すれば、焼入れ焼戻しにおける軟化抵抗を大きくするための有用元素である。さらにMoやWは、その一部が金型表面の酸化皮膜中に一部固溶することで、金型使用中の、例えばプラスチックから発生する腐食性ガスに対しての耐食性を向上する作用効果もある。しかし、多すぎると被切削性の低下を招くので、(Mo+1/2W)で1.2%以下とした。そして、好ましくは0.2%以上および/または1.0%以下である。さらに好ましくは0.3%以上および/または0.9%以下である。
Mo and W are single or composite (Mo + 1 / 2W): 1.2% or less Mo and / or W precipitate and agglomerate fine carbides during the tempering treatment, and improve the strength of the steel of the present invention. In consideration of the reduction of residual stress in the steel material, which is a feature of the present invention, and the case where the mold is subjected to nitriding treatment, it is a useful element for increasing the softening resistance in quenching and tempering. Furthermore, Mo and W are partly dissolved in the oxide film on the mold surface, thereby improving the corrosion resistance against corrosive gas generated from, for example, plastic during use of the mold. There is also. However, if the amount is too large, the machinability is deteriorated. Therefore, (Mo + 1 / 2W) is set to 1.2% or less. And preferably it is 0.2% or more and / or 1.0% or less. More preferably, it is 0.3% or more and / or 0.9% or less.
・V:0.03~0.15%
 Vは、焼戻し軟化抵抗を高めるとともに、結晶粒の粗大化を抑制して、靭性の向上に寄与する。また、硬質の炭化物を微細に形成して、耐摩耗性を向上させる効果がある。このためには少なくとも0.03%以上を必要とするが、多すぎると被切削性の低下を招くので0.15%以下とした。好ましくは0.05%以上および/または0.12%以下である。
・ V: 0.03-0.15%
V increases the resistance to temper softening and suppresses the coarsening of crystal grains, thereby contributing to the improvement of toughness. In addition, there is an effect of improving the wear resistance by forming hard carbide finely. For this purpose, at least 0.03% or more is required, but if it is too much, the machinability is reduced, so the content was made 0.15% or less. Preferably they are 0.05% or more and / or 0.12% or less.
・Cu:0.1~0.5%未満
 Cuは、特許文献1の金型用鋼に同様、本発明鋼の焼戻し処理においてもFe-Cu固溶体を析出または凝集させる。そして、上述したNiとの適切な添加量の調整により、組織を下部ベイナイトに制御する。これら固溶体の析出または凝固と、下部ベイナイトへの組織制御とが相まって、本発明鋼には優れた被切削性が付与される。またCuは、優れた耐食性をもたらす効果もある。しかし多すぎると、熱間加工性を低下させることに加えて、組織のマルテンサイト変態化にも働いて、かえって被切削性を低下させる。
Cu: 0.1 to less than 0.5% Cu precipitates or agglomerates the Fe—Cu solid solution in the tempering treatment of the steel of the present invention as in the steel for molds of Patent Document 1. And a structure | tissue is controlled to a lower bainite by adjustment of the appropriate addition amount with Ni mentioned above. Combined with the precipitation or solidification of these solid solutions and the structure control of the lower bainite, the steel of the present invention is imparted with excellent machinability. Cu also has an effect of providing excellent corrosion resistance. However, if the amount is too large, in addition to lowering hot workability, it also works on the martensitic transformation of the structure, which in turn reduces machinability.
 そして特筆すべきは、本発明の課題とする下部ベイナイトの不均一性には、このCuの含有量が大きく関わっていることである。すなわち、焼入れによるベイナイト変態の過程では、その時の冷却速度が遅くなると、比較的高温で上部ベイナイトへの変態が生じるため、この上部ベイナイトに変態した領域と未変態オーステナイトの界面にはCuが析出する。これにより、Cu析出物の周辺では、さらに上部ベイナイトへの変態が進行するため、均一な下部ベイナイトを得ることが困難になる。そして、このCuの析出は、鋼中のCu含有量が多くなるほど促進されるので、これが下部ベイナイトの不均一化を助長している。そこで、この知見に基づいてCuの含有量を見直したところ、後述のNiとの関係式を調整することで、Cuは0.5%未満としても、組織を下部ベイナイトに制御できることを見いだした。よって本発明鋼のCuは0.1~0.5%未満である。好ましくは0.25%以上および/または0.45%以下である。 And it should be noted that the Cu content is greatly related to the non-uniformity of the lower bainite, which is the subject of the present invention. That is, in the process of bainite transformation by quenching, if the cooling rate at that time becomes slow, transformation to upper bainite occurs at a relatively high temperature, and therefore Cu precipitates at the interface between the transformed region of upper bainite and untransformed austenite. . Thereby, since the transformation to the upper bainite further proceeds around the Cu precipitate, it becomes difficult to obtain a uniform lower bainite. And since precipitation of this Cu is accelerated | stimulated, so that Cu content in steel increases, this promotes the nonuniformity of a lower bainite. Then, when the content of Cu was reviewed based on this knowledge, it was found that the structure could be controlled to lower bainite even if Cu was less than 0.5% by adjusting the relational expression with Ni described later. Therefore, the Cu of the steel of the present invention is 0.1 to less than 0.5%. Preferably it is 0.25% or more and / or 0.45% or less.
・S:0.05%以下
 Sは、非金属介在物のMnSとして組織中に存在させることで、被切削性の向上に大きな効果がある。しかし、多量のMnSの存在は、機械的特性、特に靭性の異方性を助長するなど、金型自体の性能を低下させる要因ともなる。よって、優れた靭性および被切削性と硬さを有し、かつ優れた研磨仕上性をも達成する本発明鋼のSは、0.05%以下に限定する必要がある。なお、被切削性の向上のためには、0.005%以上、更には0.01%以上の含有が好ましい。
S: 0.05% or less S is present in the structure as MnS of non-metallic inclusions, and has a great effect on improving the machinability. However, the presence of a large amount of MnS becomes a factor that degrades the performance of the mold itself, such as promoting mechanical properties, particularly toughness anisotropy. Therefore, S of the steel of the present invention that has excellent toughness, machinability and hardness, and also achieves excellent polishing finish needs to be limited to 0.05% or less. In order to improve machinability, the content is preferably 0.005% or more, more preferably 0.01% or more.
・Al:0.1%以下
 Alは、通常、溶製時の脱酸元素として用いられるが、調質後の状態にある本発明鋼においては、その鋼中に存在するAl2O3が鏡面加工性を低下させるので、0.1%以下に規制する必要がある。好ましくは0.05%以下である。そして、より好ましくは0.01%以下、そして更に好ましくは0.005%以下である。
-Al: 0.1% or less Al is usually used as a deoxidizing element at the time of melting, but in the steel of the present invention in a state after tempering, Al2O3 present in the steel has mirror surface workability. Since it decreases, it is necessary to regulate to 0.1% or less. Preferably it is 0.05% or less. And it is more preferably 0.01% or less, and still more preferably 0.005% or less.
・N:0.06%以下
 Nは、鋼中に窒化物を形成する元素である。窒化物は過多に形成されると、金型の靭性や被削性、磨き性を著しく劣化する。したがって、鋼中のNを低く規制することは好ましく、本発明では0.06%以下に規定する。好ましくは0.02%以下、更に好ましくは0.015%以下である。
N: 0.06% or less N is an element that forms nitrides in steel. If the nitride is excessively formed, the toughness, machinability and polishability of the mold are significantly deteriorated. Therefore, it is preferable to regulate N in steel low, and in the present invention, it is specified to be 0.06% or less. Preferably it is 0.02% or less, More preferably, it is 0.015% or less.
・O:0.005%以下
 O(酸素)は、鋼中に酸化物を形成する元素であり、冷間塑性加工性や磨き性を著しく劣化させる要因となる。特に本発明においては、上記のAl2O3の形成を抑えることが重要であるから、Oの上限は0.005%とする。好ましくは0.003%以下である。なお、磨き性の向上にとっては、更に低く、例えば0.001%以下にまで規制管理することも望ましい条件ではあるが、Al2O3の低減を狙う本発明においては既に低量管理のされたAlに加えて、O量そのものの低量管理までは特に厳しく求めない。よって、0.001%を超えることは十分に許容されるものでもある。
O: 0.005% or less O (oxygen) is an element that forms an oxide in steel, and causes a significant deterioration in cold plastic workability and polishability. In particular, in the present invention, since it is important to suppress the formation of the Al2O3, the upper limit of O is set to 0.005%. Preferably it is 0.003% or less. In order to improve the polishability, it is also a desirable condition that the regulation is controlled to a lower level, for example, 0.001% or less. Therefore, there is no particular requirement for the low amount management of the O amount itself. Therefore, exceeding 0.001% is sufficiently acceptable.
・式1:[%Ni]+1.2[%Cu]の値が0.70~1.80
 そして、本発明鋼においては、下部ベイナイトの不均一を低減するためにCuの含有量を低めたとしても、質量%による次式1:[%Ni]+1.2[%Cu]の値を0.70~1.80に確保すれば、十分量の下部ベイナイト組織自体の実現と、被切削性および靭性と硬さを高いレベルで兼備させることができる。つまり、式1の値が0.70未満ではフェライトや上部ベイナイトが生成しやすい。そして同値が1.80より大きいと、過度に微細化された下部ベイナイトやマルテンサイトが生成しやすい。好ましくは1.10以上および/または1.60以下である。
Formula 1: The value of [% Ni] +1.2 [% Cu] is 0.70 to 1.80
In the steel of the present invention, even if the content of Cu is reduced in order to reduce non-uniformity of the lower bainite, the value of the following formula 1: [% Ni] +1.2 [% Cu] by mass% is reduced to 0. If it is secured to .70 to 1.80, a sufficient amount of the lower bainite structure itself can be realized, and the machinability, toughness and hardness can be combined at a high level. That is, if the value of Formula 1 is less than 0.70, ferrite and upper bainite are likely to be generated. If the equivalent value is greater than 1.80, excessively refined lower bainite and martensite are likely to be generated. Preferably it is 1.10 or more and / or 1.60 or less.
 ここで、上部ベイナイトの生成をより確実に抑えて、組織中の下部ベイナイトの面積率を50%以上とするためには、上記の式1による値を0.70以上に管理した上で、更に焼入れ時における450℃から400℃までの冷却範囲を3℃/分以上の冷却速度とすることが好ましい。本発明の金型用鋼は、Cu量を低めたことで、特許文献1の金型用鋼より上部ベイナイトが生成されやすい成分組成となっている。一方で、その成分組成は、等温変態線図において450~400℃の範囲にベイナイトノーズが位置した焼入れ特性を有している。そこで、本発明の金型用鋼の焼入れ時には、上記の温度範囲は速い冷却速度で通過させることで、Cu量が0.1%の金型用鋼でも上部ベイナイトの生成を抑制することができる。そして、この焼入れによって、60面積%以上、更には70面積%以上の下部ベイナイト量を達成することも、より容易となる。なお、焼入れ時の加熱温度は、十分なオーステナイト化が達成できる850~1050℃とすることが好ましい。 Here, in order to more reliably suppress the formation of the upper bainite and to set the area ratio of the lower bainite in the structure to 50% or more, the value according to the above formula 1 is controlled to 0.70 or more, and further The cooling range from 450 ° C. to 400 ° C. during quenching is preferably a cooling rate of 3 ° C./min or more. The mold steel of the present invention has a component composition in which upper bainite is more easily generated than the mold steel of Patent Document 1 by reducing the amount of Cu. On the other hand, the component composition has a quenching characteristic in which a bainite nose is located in a range of 450 to 400 ° C. in an isothermal transformation diagram. Therefore, at the time of quenching the mold steel of the present invention, the above temperature range is allowed to pass at a high cooling rate, so that the formation of upper bainite can be suppressed even in the mold steel having a Cu amount of 0.1%. . And it becomes easier to achieve the amount of lower bainite of 60 area% or more, further 70 area% or more by this quenching. The heating temperature during quenching is preferably 850 to 1050 ° C. at which sufficient austenitization can be achieved.
・式2:60[%C]+1.5[%Si]+[%Ni]+6[%Cr]+2[%Mo+1/2%W(単独または複合)]+20[%V]+0.2[%Cu]の値が16.20~38.10
 また、本発明鋼の場合、特許文献1でも導入した次式2:60[%C]+1.5[%Si]+[%Ni]+6[%Cr]+2[%Mo+1/2%W(単独または複合)]+20[%V]+0.2[%Cu]の値は、16.20~38.10の範囲が許容される。しかしながら、高硬度かつ優れた靭性と被切削性を達成するためには、21.00以上および/または28.70以下の範囲を満たすことが好ましい。23.00以上および/または28.00以下の範囲がより好ましい。
Formula 2: 60 [% C] +1.5 [% Si] + [% Ni] +6 [% Cr] +2 [% Mo + 1/2% W (single or combined)] + 20 [% V] +0.2 [% The value of Cu] is 16.20 to 38.10.
In the case of the steel of the present invention, the following formula 2: 60 [% C] +1.5 [% Si] + [% Ni] +6 [% Cr] +2 [% Mo + 1/2% W (independent) introduced in Patent Document 1 Alternatively, the range of 16.20 to 38.10 is acceptable for the value of compound)) + 20 [% V] +0.2 [% Cu]. However, in order to achieve high hardness and excellent toughness and machinability, it is preferable to satisfy the range of 21.00 or more and / or 28.70 or less. A range of 23.00 or more and / or 28.00 or less is more preferable.
 本発明においては、上述の作用効果を損なわない範囲として、更なる靭性改善元素や被切削性改善元素の添加が可能である。例えば、靱性改善元素としては、
 Nb:0.5%以下(好ましくは0.01%以上および/または0.1%以下)、
 Ti:0.15%以下(好ましくは0.01%以上)、
 Zr:0.15%以下(好ましくは0.01%以上)、
 Ta:0.15%以下(好ましくは0.01%以上)のうちの、いずれか1種以上を添加することができる。被削性改善元素としては、
 Zr:0.2%以下(好ましくは0.003%以上)、
 Ca:0.01%以下(好ましくは0.0005%以上)、
 Pb:0.2%以下(好ましくは0.03%以上)、
 Se:0.2%以下(好ましくは0.03%以上)、
 Te:0.15%以下(好ましくは0.01%以上)、
 Bi:0.2%以下(好ましくは0.01%以上)、
 In:0.5%以下(好ましくは0.005%以上)、
 Ce:0.1%以下(好ましくは0.01%以上)のうちの、いずれか1種以上を添加することができる。更には、Y、La、Nd、Smおよびその他のREM(希土類)元素を、全体で0.3%以下(好ましくは0.0005%以上)含有させることもできる。
In the present invention, further toughness improving elements and machinability improving elements can be added as long as the above-described effects are not impaired. For example, as a toughness improving element,
Nb: 0.5% or less (preferably 0.01% or more and / or 0.1% or less),
Ti: 0.15% or less (preferably 0.01% or more),
Zr: 0.15% or less (preferably 0.01% or more),
Any one or more of Ta: 0.15% or less (preferably 0.01% or more) can be added. As a machinability improving element,
Zr: 0.2% or less (preferably 0.003% or more),
Ca: 0.01% or less (preferably 0.0005% or more),
Pb: 0.2% or less (preferably 0.03% or more),
Se: 0.2% or less (preferably 0.03% or more),
Te: 0.15% or less (preferably 0.01% or more),
Bi: 0.2% or less (preferably 0.01% or more),
In: 0.5% or less (preferably 0.005% or more),
Any one or more of Ce: 0.1% or less (preferably 0.01% or more) can be added. Furthermore, Y, La, Nd, Sm, and other REM (rare earth) elements may be contained in total of 0.3% or less (preferably 0.0005% or more).
 本発明の金型用鋼は、調質時の焼戻し温度を570℃以上の高温にしても34~45HRCの硬さを維持できる、加工歪の抑制に優れたものである。ただし、34HRC以上の硬さをより確実に維持する上では、上記の焼戻し温度は650℃以下とすることが好ましい。 The mold steel of the present invention is excellent in suppressing processing strain, which can maintain a hardness of 34 to 45 HRC even when the tempering temperature during tempering is 570 ° C. or higher. However, the above tempering temperature is preferably 650 ° C. or lower in order to more reliably maintain a hardness of 34 HRC or higher.
 表1に本発明鋼および比較鋼の化学成分を示す。なお、比較鋼である試料No.11~15は特許文献1の金型用鋼である。試料No.10は、本発明鋼の試料No.3と同じ成分組成の金型用鋼である。 Table 1 shows the chemical composition of the steel of the present invention and the comparative steel. Sample No. which is a comparative steel. Nos. 11 to 15 are steels for metal molds disclosed in Patent Document 1. Sample No. 10 is a sample No. 10 of the steel of the present invention. 3 is a mold steel having the same composition as that of No. 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これらによる試料の作製については、まず真空誘導溶解炉にて10kgずつ溶製した鋼塊に1250℃で5時間の均質化熱処理を施した後、1100℃で熱間鍛造することで30mm厚さ×60mm幅の鋼材を作製した。次に860℃で焼なまし処理したのち、900℃で焼入れ処理した。焼入れは加圧ガス冷却にて行い、焼入温度(900℃)から焼入温度と室温(20℃)との中間の温度(450℃)までを冷却するのに要する時間を「半冷時間(半冷**分と表す)」と定義した場合、大型サイズの鋼材の中心部のように冷却速度が遅くなる部分に対応するものとして半冷150分程度で冷却した。そして、450~400℃の範囲の冷却速度は、試料No.10を1℃/分程度とした以外は、全て3℃/分以上に制御した。試料の温度は、その中心近傍に取り付けた熱電対によって、試料の中心温度を測定した。焼戻しは、狙い硬さを37~41HRCとし、550℃から650℃の範囲の適正温度で2時間加熱後、空冷した(このとき、試料No.10の硬さは37HRCを大きく下回った)。 Regarding the preparation of samples by these, first, a steel ingot melted 10 kg at a time in a vacuum induction melting furnace was subjected to homogenization heat treatment at 1250 ° C. for 5 hours, and then hot forged at 1100 ° C. to obtain a thickness of 30 mm × A steel material having a width of 60 mm was produced. Next, after annealing at 860 ° C., quenching was performed at 900 ° C. Quenching is performed by pressurized gas cooling, and the time required for cooling from the quenching temperature (900 ° C.) to the intermediate temperature (450 ° C.) between the quenching temperature and room temperature (20 ° C.) is expressed as “half-cooling time ( When it is defined as “semi-cooled ** minutes”, it was cooled in about half-cooled 150 minutes as a part corresponding to a part where the cooling rate becomes slow like the center part of a large-sized steel material. The cooling rate in the range of 450 to 400 ° C. is the sample No. All were controlled at 3 ° C./min or more except that 10 was set to about 1 ° C./min. The sample temperature was measured by a thermocouple attached in the vicinity of the center of the sample. In tempering, the target hardness was 37 to 41 HRC, and the mixture was heated for 2 hours at an appropriate temperature in the range of 550 ° C. to 650 ° C. and then air-cooled (at this time, the hardness of sample No. 10 was significantly lower than 37 HRC).
 そして、調質後の各試料に対しては、以下のドリル加工試験を実施することで、それらの被切削性を評価した。すなわち、JIS-SKH51高速度鋼製のφ1mmドリルにて、切削速度:20m/min、送り速度:31.83mm/min、加工孔深さ:10mmの条件での穿孔加工を実施した。そして、ドリルが折損するまでの孔数を工具寿命として定義し、その値を計測した。 And each sample after tempering was subjected to the following drilling test to evaluate their machinability. That is, drilling was performed with a JIS-SKH51 high-speed steel φ1 mm drill under the conditions of cutting speed: 20 m / min, feed rate: 31.83 mm / min, and drilling hole depth: 10 mm. The number of holes until the drill broke was defined as the tool life, and the value was measured.
 その後、ドリル加工試験を行った試料の、そのドリル入射面の硬さ測定とミクロ組織観察を行った。ミクロ組織観察は、ドリル入射面を1μm砥粒のバフ研磨により鏡面に仕上げた後、10%硝酸、90%エチルアルコールの混合溶液で腐食した各試料面を、倍率400倍の光学顕微鏡にて観察し、撮影することで、該面に占める下部ベイナイトの面積率を測定した。 Thereafter, the hardness of the drill incident surface and the microstructure observation of the sample subjected to the drilling test were performed. Microscopic observation is performed by finishing the drill incident surface to a mirror surface by buffing 1 μm abrasive grains, and then observing each sample surface corroded with a mixed solution of 10% nitric acid and 90% ethyl alcohol with an optical microscope with a magnification of 400 times. Then, the area ratio of the lower bainite occupying the surface was measured by photographing.
 また、靭性の評価は、2mmUノッチ試験片(JIS3号試験片)を用いてのシャルピー衝撃試験を実施して、室温でのシャルピー衝撃値を測定した。以上の結果を、表2に示す。 Moreover, the evaluation of toughness was carried out by conducting a Charpy impact test using a 2 mm U notch test piece (JIS No. 3 test piece) and measuring the Charpy impact value at room temperature. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明鋼の成分組成を満たす試料No.1~8は、570℃以上、具体的には580℃以上の焼戻しによっても所定の高硬度を維持している。特にC量を0.25%を超えて添加した試料No.8は620℃の焼戻しで37.0HRCの硬さを維持しており、焼戻し軟化抵抗に優れる。そして、試料No.1~7は優れた靭性を有し、C量の高い試料No.8であっても十分な靭性を確保しつつ、それらの被切削性(孔加工性)は特許文献1の試料No.11~15より向上している。 Specimen No. satisfying the composition of the steel of the present invention. Nos. 1 to 8 maintain a predetermined high hardness even by tempering at 570 ° C. or higher, specifically 580 ° C. or higher. In particular, the sample No. C added with the amount of C exceeding 0.25%. No. 8 is tempered at 620 ° C. and maintains a hardness of 37.0 HRC and is excellent in temper softening resistance. And sample no. Sample Nos. 1 to 7 have excellent toughness and a high C content. No. 8 while ensuring sufficient toughness, their machinability (hole workability) is the same as the sample No. 1 of Patent Document 1. It is improved from 11-15.
 式1の値が高い試料No.9は、組織中の下部ベイナイトが微細化され、靭性には優れるものの、本発明の被切削性は達成されない。そして、試料No.10は、本発明の成分組成を満たすが、組織が上部ベイナイト主体の金型用鋼である。試料No.10は他の試料に比べて硬さが低く、シャルピー衝撃値は高い値となっている。しかし、本発明の被切削性は達成されない。 Sample No. with a high value of Equation 1 In No. 9, the lower bainite in the structure is refined and excellent in toughness, but the machinability of the present invention is not achieved. And sample no. 10 is a steel for molds which satisfies the component composition of the present invention, but whose structure is mainly upper bainite. Sample No. No. 10 has a lower hardness than other samples, and has a high Charpy impact value. However, the machinability of the present invention is not achieved.
 図3は、表2のCu量に対するドリル寿命(孔数)の結果を整理したものである。図3の通り、本発明の成分組成を満たした金型用鋼は、そのドリル寿命が向上している。そして、図3には参考として載せている試料No.10は、組織が上部ベイナイト主体であるため、低硬度であるにもかかわらず、硬さが37HRC程度の他の試料よりもドリル寿命が短い。 FIG. 3 is a summary of the results of drill life (number of holes) with respect to the amount of Cu in Table 2. As shown in FIG. 3, the steel for molds satisfying the composition of the present invention has an improved drill life. And in FIG. No. 10, because the structure is mainly upper bainite, the drill life is shorter than other samples having a hardness of about 37 HRC despite the low hardness.
 本発明鋼は、従来のプラスチック成形用プリハードン鋼にはない優れた被切削性を有する。そして、加工歪も少ないことに加えては、その製品への加工における工数の低減、さらには加工に伴う熱応力によっても割れが発生し難いことから、精密加工を求められる製品に適したものとなる。 The steel of the present invention has excellent machinability that is not found in conventional pre-hardened steel for plastic molding. In addition to low processing strain, it is suitable for products that require precision processing because it reduces the number of man-hours required for processing the product and it is difficult for cracks to occur due to thermal stress associated with processing. Become.

Claims (10)

  1.  質量%で、C:0.15~0.30%、Si:1.0%以下、Mn:2.0%以下、Ni:0.6~1.5%、Cr:1.0超~2.0%、MoとWは単独または複合で(Mo+1/2W):1.2%以下、V:0.03~0.15%、Cu:0.1~0.5%未満、S:0.05%以下を含有し、Alは0.1%以下、Nは0.06%以下、Oは0.005%以下に規制され、残部はFeおよび不可避的不純物からなる組成の鋼であって、該組成は質量%で示される式1:[%Ni]+1.2[%Cu]の値が0.70~1.80であり、断面組織は下部ベイナイトを50面積%以上とし、硬さが34~45HRCであることを特徴とする孔加工性および加工歪の抑制に優れた金型用鋼。 In mass%, C: 0.15 to 0.30%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.6 to 1.5%, Cr: more than 1.0 to 2 0.0%, Mo and W alone or in combination (Mo + 1 / 2W): 1.2% or less, V: 0.03 to 0.15%, Cu: 0.1 to less than 0.5%, S: 0 .05% or less, Al is 0.1% or less, N is 0.06% or less, O is controlled to 0.005% or less, and the balance is a steel composed of Fe and inevitable impurities. The composition is expressed by mass%. Formula 1: The value of [% Ni] +1.2 [% Cu] is 0.70 to 1.80, and the cross-sectional structure is such that the lower bainite is 50 area% or more and the hardness is Is a steel for molds excellent in hole workability and processing strain suppression, characterized in that is 34 to 45 HRC.
  2.  質量%で、C:0.17~0.25%、Cr:1.2~1.8%であることを特徴とする請求項1に記載の孔加工性および加工歪の抑制に優れた金型用鋼。 2. The gold excellent in hole workability and processing strain suppression according to claim 1, characterized in that C: 0.17 to 0.25% and Cr: 1.2 to 1.8% in mass%. Mold steel.
  3.  質量%で、Ni:0.6~1.2%、Cu:0.1~0.45%であることを特徴とする請求項1または2に記載の孔加工性および加工歪の抑制に優れた金型用鋼。 3. It is excellent in suppressing hole workability and processing strain according to claim 1 or 2, characterized in that Ni: 0.6 to 1.2% and Cu: 0.1 to 0.45% by mass%. Mold steel.
  4.  質量%で示される式1:[%Ni]+1.2[%Cu]の値が1.10~1.60であることを特徴とする請求項1ないし3のいずれかに記載の孔加工性および加工歪の抑制に優れた金型用鋼。 4. The hole workability according to claim 1, wherein the value of the formula 1: [% Ni] +1.2 [% Cu] expressed by mass% is 1.10 to 1.60. Die steel excellent in suppressing processing strain.
  5.  質量%で、MoとWは単独または複合で(Mo+1/2W):0.2~1.0%であることを特徴とする請求項1ないし4のいずれかに記載の孔加工性および加工歪の抑制に優れた金型用鋼。 The hole workability and work strain according to any one of claims 1 to 4, characterized in that Mo and W are individually or in combination of (Mo + 1 / 2W): 0.2 to 1.0% by mass%. Steel for molds with excellent suppression of corrosion.
  6.  質量%で、S:0.005~0.05%であることを特徴とする請求項1ないし5のいずれかに記載の孔加工性および加工歪の抑制に優れた金型用鋼。 The mold steel excellent in suppression of hole workability and processing strain according to any one of claims 1 to 5, wherein S is 0.005 to 0.05% by mass%.
  7.  鋼の組成は、質量%で示される式2:60[%C]+1.5[%Si]+[%Ni]+6[%Cr]+2[%Mo+1/2%W(単独または複合)]+20[%V]+0.2[%Cu]の値が16.20~38.10であることを特徴とする請求項1ないし6のいずれかに記載の孔加工性および加工歪の抑制に優れた金型用鋼。 The composition of the steel is expressed by mass%: formula 2: 60 [% C] +1.5 [% Si] + [% Ni] +6 [% Cr] +2 [% Mo + 1/2% W (single or compound)] + 20 The excellent hole workability and processing strain suppression according to any one of claims 1 to 6, wherein the value of [% V] + 0.2 [% Cu] is 16.20 to 38.10. Steel for molds.
  8.  請求項1ないし7のいずれかに記載の金型用鋼の製造方法であって、該組成を有する鋼に、焼入れと570℃以上の焼戻しを行うことで、断面組織を下部ベイナイト50面積%以上、硬さを34~45HRCに調整することを特徴とする孔加工性および加工歪の抑制に優れた金型用鋼の製造方法。 The method for manufacturing a steel for a mold according to any one of claims 1 to 7, wherein the steel having the composition is quenched and tempered at 570 ° C or higher so that the cross-sectional structure is lower than 50 area% of lower bainite. A method for producing a steel for molds, which is excellent in suppressing hole workability and processing strain, characterized by adjusting the hardness to 34 to 45 HRC.
  9.  焼入れは、450℃から400℃までの範囲の冷却速度を3℃/分以上とすることを特徴とする請求項8に記載の孔加工性および加工歪の抑制に優れた金型用鋼の製造方法。 The production of mold steel excellent in hole workability and work strain suppression according to claim 8, wherein the quenching is performed at a cooling rate in a range from 450 ° C to 400 ° C of 3 ° C / min or more. Method.
  10.  焼入れは、加熱温度を850~1050℃とすることを特徴とする請求項8または9に記載の孔加工性および加工歪の抑制に優れた金型用鋼の製造方法。 10. The method for producing steel for molds according to claim 8 or 9, wherein the quenching is performed at a heating temperature of 850 to 1050 ° C., and excellent in hole workability and processing strain suppression.
PCT/JP2011/053327 2010-02-18 2011-02-17 Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same WO2011102402A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011100602T DE112011100602T5 (en) 2010-02-18 2011-02-17 Steel for molds with excellent hole forming capability and reduced process deformation, as well as methods for its production
CN2011800101149A CN102770566A (en) 2010-02-18 2011-02-17 Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same
JP2012500635A JP5668942B2 (en) 2010-02-18 2011-02-17 Die steel excellent in hole workability and suppression of machining strain and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033322 2010-02-18
JP2010-033322 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102402A1 true WO2011102402A1 (en) 2011-08-25

Family

ID=44482988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053327 WO2011102402A1 (en) 2010-02-18 2011-02-17 Steel for molds with excellent hole processability and reduced processing deformation, and method for producing same

Country Status (5)

Country Link
JP (1) JP5668942B2 (en)
KR (1) KR20120106900A (en)
CN (1) CN102770566A (en)
DE (1) DE112011100602T5 (en)
WO (1) WO2011102402A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150144233A1 (en) * 2013-11-27 2015-05-28 Doosan Heavy Industries & Construction Co., Ltd. Hybrid mold steel and manufacturing method thereof
EP2644717A3 (en) * 2012-03-30 2017-05-31 Buderus Edelstahl Gmbh Raw material for plastic molds or plastic mold
CN106916922A (en) * 2017-04-06 2017-07-04 重庆派斯克刀具制造股份有限公司 A kind of new techniques of temper after high-speed steel quenching

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115523A (en) * 1989-09-28 1991-05-16 Kobe Steel Ltd Production of directly quenched type prehardened steel
JP2008056982A (en) * 2006-08-30 2008-03-13 Daido Steel Co Ltd Die steel having excellent thermal fatigue property
JP2008308753A (en) * 2007-06-18 2008-12-25 Japan Steel Works Ltd:The Steel for mold for molding plastic having excellent specularity
JP2009256797A (en) * 2008-03-28 2009-11-05 Hitachi Metals Ltd Steel for die having excellent machinability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269293A (en) 1991-02-25 1992-09-25 Nichibei Kaihatsu:Kk Transverse blind capable of being lowered automatically
FR2745587B1 (en) * 1996-03-01 1998-04-30 Creusot Loire STEEL FOR USE IN PARTICULAR FOR THE MANUFACTURE OF MOLDS FOR INJECTION OF PLASTIC MATERIAL
KR100836699B1 (en) * 2005-10-27 2008-06-10 히타치 긴조쿠 가부시키가이샤 Die steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115523A (en) * 1989-09-28 1991-05-16 Kobe Steel Ltd Production of directly quenched type prehardened steel
JP2008056982A (en) * 2006-08-30 2008-03-13 Daido Steel Co Ltd Die steel having excellent thermal fatigue property
JP2008308753A (en) * 2007-06-18 2008-12-25 Japan Steel Works Ltd:The Steel for mold for molding plastic having excellent specularity
JP2009256797A (en) * 2008-03-28 2009-11-05 Hitachi Metals Ltd Steel for die having excellent machinability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644717A3 (en) * 2012-03-30 2017-05-31 Buderus Edelstahl Gmbh Raw material for plastic molds or plastic mold
US20150144233A1 (en) * 2013-11-27 2015-05-28 Doosan Heavy Industries & Construction Co., Ltd. Hybrid mold steel and manufacturing method thereof
CN106916922A (en) * 2017-04-06 2017-07-04 重庆派斯克刀具制造股份有限公司 A kind of new techniques of temper after high-speed steel quenching
CN106916922B (en) * 2017-04-06 2018-06-19 重庆派斯克刀具制造股份有限公司 A kind of quenched new techniques of temper of high-speed steel

Also Published As

Publication number Publication date
JP5668942B2 (en) 2015-02-12
JPWO2011102402A1 (en) 2013-06-17
CN102770566A (en) 2012-11-07
KR20120106900A (en) 2012-09-26
DE112011100602T5 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP5655986B2 (en) Steel wire rod or bar
JP5114689B2 (en) Case-hardened steel and method for producing the same
US10774406B2 (en) Steel for mold and mold
JP6226086B2 (en) Rolled steel bar or wire rod for cold forging parts
JP2013213255A (en) Hot working die steel
JPWO2008123159A1 (en) Precipitation hardening type martensitic stainless cast steel with excellent machinability and manufacturing method thereof
KR20060125467A (en) Steel for a plastic molding die
JP2007197784A (en) Alloy steel
WO2016080308A1 (en) Rolled steel bar or rolled wire material for cold-forged component
KR20180072778A (en) Steel, carburizing steel parts and manufacturing method of carburizing steel parts
JP2009299189A (en) High carbon steel sheet for precision blanking
JP4269293B2 (en) Steel for mold
JP4860774B1 (en) Cold work tool steel
JP5376302B2 (en) Die steel with excellent machinability
JP5668942B2 (en) Die steel excellent in hole workability and suppression of machining strain and method for producing the same
JP4488228B2 (en) Induction hardening steel
JP2005133153A (en) Steel for case hardening superior in cold forgeability and grain coarsening resistance during case hardening treatment, and manufacturing method therefor
CN115386789B (en) Steel material and steel product using the same
JP2005336553A (en) Hot tool steel
KR101758467B1 (en) Metallic Mold and Method for Manufacturing the Metallic Mold
JP2007162138A (en) Steel sheet for nitriding treatment and its production method
JP5565696B2 (en) Die steel excellent in hole workability and method for producing the same
JP5151662B2 (en) Method of manufacturing steel for soft nitriding
JP7010320B2 (en) Rough material for vacuum carburizing and its manufacturing method
JP2001234278A (en) Cold tool steel excellent in machinability

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010114.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744688

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500635

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127021683

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011100602

Country of ref document: DE

Ref document number: 1120111006020

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744688

Country of ref document: EP

Kind code of ref document: A1