JP7392330B2 - Mold steel and molds - Google Patents

Mold steel and molds Download PDF

Info

Publication number
JP7392330B2
JP7392330B2 JP2019155011A JP2019155011A JP7392330B2 JP 7392330 B2 JP7392330 B2 JP 7392330B2 JP 2019155011 A JP2019155011 A JP 2019155011A JP 2019155011 A JP2019155011 A JP 2019155011A JP 7392330 B2 JP7392330 B2 JP 7392330B2
Authority
JP
Japan
Prior art keywords
steel
mold
impact value
molds
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019155011A
Other languages
Japanese (ja)
Other versions
JP2020063508A (en
Inventor
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to TW108136975A priority Critical patent/TWI706849B/en
Priority to US16/598,733 priority patent/US11377718B2/en
Priority to EP19202539.3A priority patent/EP3636791B1/en
Priority to KR1020190126369A priority patent/KR102280084B1/en
Priority to CN201910968069.6A priority patent/CN111041343A/en
Publication of JP2020063508A publication Critical patent/JP2020063508A/en
Application granted granted Critical
Publication of JP7392330B2 publication Critical patent/JP7392330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Description

この発明は、プラスチックの射出成形等に用いる金型に適用して好適な金型用鋼及び金型に関する。 The present invention relates to a mold steel and a mold suitable for application to molds used for plastic injection molding and the like.

例えば、プラスチック製品を射出成形する金型(金型の一部を構成する部品も含む)は、溶解→精錬→鋳造→均質化熱処理→熱間加工→焼準→焼鈍(焼戻し)→焼入れ・焼戻し→切削加工→鏡面研磨、の工程を経て製造される。金型用の材料には様々な特性が求められるが、特にプラスチック製品を射出成形する金型に用いられる材料には鏡面研磨性の高いことが求められる。また、金型が放置されても錆びないだけの耐食性と、使用中に割れ難い高衝撃値が求められる。 For example, a mold for injection molding a plastic product (including parts that make up a part of the mold) is made by melting → refining → casting → homogenization heat treatment → hot working → normalizing → annealing (tempering) → quenching/tempering. It is manufactured through the following steps: → Cutting → Mirror polishing. Materials for molds are required to have various properties, and materials used in molds for injection molding plastic products are particularly required to have high mirror polishability. In addition, the mold must have enough corrosion resistance that it will not rust even if it is left unused, and a high impact value that will prevent it from breaking during use.

(鏡面研磨性について)
金型は表面の形状や性状(表面粗さや模様パターン)を製品に転写する役割を負う。その中でも、製品の表面に滑らかさが求められる場合は、表面を滑らかに磨き上げておく必要がある。これを鏡面研磨という。
(About mirror polishability)
The mold plays the role of transferring the surface shape and properties (surface roughness and pattern) to the product. Among these, if the surface of the product is required to be smooth, it is necessary to polish the surface smoothly. This is called mirror polishing.

鏡面研磨性を悪くする要因の1つに「ピンホール」がある。ピンホールとは、研磨した金型の表面に発生する小さな穴や傷である。ピンホールの発生した金型をそのまま使うと、製品の表面にピンホールの部分が転写されて表面品質が悪くなり、商品価値を失う。従って、鏡面研磨においてはピンホールを発生させてはならない。 One of the factors that worsens mirror polishability is "pinholes." Pinholes are small holes or scratches that occur on the polished surface of a mold. If a mold with pinholes is used as is, the pinholes will be transferred to the surface of the product, resulting in poor surface quality and loss of commercial value. Therefore, pinholes must not be generated during mirror polishing.

ピンホールには、研磨の砥粒が刺さったもの(研磨起因)と、鋼材内部の異物が脱落したもの(鋼材起因)の2種類がある。鋼材起因のピンホールを減らすため、異物(炭化物や酸化物や窒化物)の少ない金型用鋼が求められる。鋼材の精錬や鋳造においては、このような異物を減らす工夫が凝らされている。また、金型の硬さが低いとピンホールが発生しやすいため、ある程度以上の硬さを確保できる化学成分(特に、C)の調整も必須となる。しかし、C量が多すぎると異物となる炭化物も増えるため、硬さとのバランス取りが難しい。 There are two types of pinholes: pinholes caused by abrasive particles from polishing (due to polishing) and pinholes caused by foreign matter inside the steel material falling out (caused by steel). In order to reduce pinholes caused by steel, mold steel with fewer foreign substances (carbides, oxides, and nitrides) is required. In the refining and casting of steel materials, efforts are being made to reduce such foreign substances. Furthermore, if the hardness of the mold is low, pinholes are likely to occur, so it is essential to adjust the chemical components (especially C) to ensure a certain level of hardness. However, if the amount of C is too large, the amount of carbides that become foreign substances will also increase, making it difficult to balance this with hardness.

(耐食性について)
鏡面研磨した金型を使い始めるまでの期間、あるいは生産の中断期間のように放置される期間があると、金型表面に錆が発生することがある。錆の発生した金型をそのまま使うと、製品の表面に錆の部分が転写されて表面品質が悪くなり、商品価値を失う。そこで、錆びた金型は再研磨が必要であるが、この研磨に要する費用と工数は莫大である。金型には、放置されても錆びないだけの耐食性が必要である。
(About corrosion resistance)
If a mirror-polished mold is left unused for a period of time, such as before it is used or during production interruptions, rust may develop on the mold surface. If a mold with rust is used as is, the rust will be transferred to the surface of the product, resulting in poor surface quality and loss of commercial value. Therefore, it is necessary to re-polish the rusted mold, but the cost and man-hours required for this polishing are enormous. Molds need to have enough corrosion resistance that they will not rust even if left unused.

金型の耐食性はCr量でほぼ決まる。射出成形金型には、Cr量が0.2~3%の鋼が使われていることが多い。低Cr鋼は耐食性が非常に低いため、このような鋼の金型は放置されると錆びやすい。そこで、5%Crダイス鋼(SKD61など)を用いる場合もあるが、5%Cr鋼では高温湿潤な環境下での耐食性が不足する。十分な耐食性を確保したい場合は、金型にステンレス鋼(12%≦Cr)が用いられる。例えば、SUS420J2やSUS630といった高価な鋼である。しかし多くの場合、Cr量12%以上の高い耐食性は不要である。ステンレス鋼を使えば、過度の耐食性に高い費用を払うことになる。 The corrosion resistance of a mold is almost determined by the amount of Cr. Steel with a Cr content of 0.2 to 3% is often used in injection molds. Since low Cr steel has very low corrosion resistance, molds made of such steel are likely to rust if left unattended. Therefore, 5% Cr die steel (such as SKD61) is sometimes used, but 5% Cr steel lacks corrosion resistance in a high temperature and humid environment. If sufficient corrosion resistance is desired, stainless steel (12%≦Cr) is used for the mold. For example, it is an expensive steel such as SUS420J2 or SUS630. However, in many cases, high corrosion resistance with a Cr content of 12% or more is not necessary. With stainless steel, you pay more for excessive corrosion resistance.

このように、Cr量が5%では不足だが12%以上では過多である。高硬度を得るためにC量が高い8~17%Cr鋼もあるが、このような鋼は炭化物が非常に多くなり、鏡面研磨性や衝撃値が下がる弊害もある。また、C量の高いステンレス鋼は炭化物としてCrを消費するため、Cr量から期待されるほど耐食性も高くない。 As described above, a Cr content of 5% is insufficient, but a Cr content of 12% or more is excessive. There is also 8-17% Cr steel with a high C content to obtain high hardness, but such steel has a large amount of carbides, which has the disadvantage of reducing mirror polishability and impact value. Furthermore, since stainless steel with a high C content consumes Cr as carbide, its corrosion resistance is not as high as expected from the Cr content.

(衝撃値について)
金型には、射出成形中に割れないことも求められる。この理由は、割れた金型の交換による生産中断、新たに金型を製作することによる製造コストの上昇を避けるためである。衝撃値が高くなると、射出成形中に金型が割れる危険性は低下する。そこで、鋼材成分や焼入れ方法の適正化によって金型の高衝撃値化が図られている。室温(21~27℃)における衝撃値(Uノッチ、ノッチ底半径1mm、ノッチ下高さ8mm)が50J/cm2以上だと、金型が射出成形中に割れる危険性は非常に低くなる。ところが、射出成形金型の衝撃値は38HRCで10~80J/cm2であることが多い。このため、割れの危険性を安定して充分に下げることができていない。なお、ここで衝撃値とは、吸収エネルギー[J]を試験片の断面積[0.8cm2]で除した値である。
(About impact value)
The mold is also required to not crack during injection molding. The reason for this is to avoid production interruption due to replacement of broken molds and increase in manufacturing costs due to manufacturing new molds. The higher the impact value, the lower the risk of the mold cracking during injection molding. Therefore, efforts are being made to increase the impact value of molds by optimizing the steel composition and quenching method. If the impact value (U notch, notch bottom radius 1 mm, notch bottom height 8 mm) at room temperature (21 to 27° C.) is 50 J/cm 2 or more, the risk of the mold cracking during injection molding becomes extremely low. However, the impact value of injection molds is often 10 to 80 J/cm 2 at 38 HRC. For this reason, it has not been possible to stably and sufficiently lower the risk of cracking. Note that the impact value here is the value obtained by dividing the absorbed energy [J] by the cross-sectional area [0.8 cm 2 ] of the test piece.

以上のように、鏡面研磨性が良く、5%Cr鋼と12%Cr鋼の中間の耐食性を有し、高衝撃値という金型用鋼は未だ開発されていない。このため、表面を綺麗に磨くことができ、使用しない期間中の保管においても錆び難く、使用中に割れ難い、という金型を安く入手することに苦慮していた。 As described above, mold steel with good mirror polishability, corrosion resistance between 5% Cr steel and 12% Cr steel, and high impact value has not yet been developed. For this reason, it has been difficult to obtain molds at low prices that can have surfaces that can be polished well, are resistant to rust even when stored during periods of non-use, and are resistant to cracking during use.

なお、下記特許文献1には、金型用鋼材において、ピンホール生成の原因となる酸化物を改質し小型化するように合金成分をバランスさせ、磨き性および被削性を改善させた点が開示されている。しかしながら、これを具体化した引用文献1に記載の実施例における成分組成は、本発明の金型用鋼に比べ、低C且つ高Alであり、本発明とは異なっている。 In addition, Patent Document 1 below describes a method of improving polishability and machinability by modifying oxides that cause pinhole formation and balancing the alloy components so as to reduce the size of steel materials for molds. is disclosed. However, the component composition in the example described in Cited Document 1 that embodies this is lower in C and higher in Al than the mold steel of the present invention, and is different from the present invention.

特開2004-91840号公報Japanese Patent Application Publication No. 2004-91840

本発明は以上のような事情を背景とし、所定の硬さに調質された後に、良好な鏡面研磨性と、5%Cr鋼と12%Cr鋼の中間の耐食性を有し、更に高衝撃値な金型用鋼及び金型を提供することを目的としてなされたものである。 Against the background of the above-mentioned circumstances, the present invention has been developed to have good mirror polishability and corrosion resistance intermediate between 5% Cr steel and 12% Cr steel after being tempered to a predetermined hardness, as well as high impact steel. This was done with the aim of providing mold steel and molds of high value.

而して請求項1は、金型用鋼に関するもので、質量%で0.045≦C≦0.090,0.01≦Si≦0.50,0.10≦Mn≦0.60,0.80≦Ni≦1.10,6.60≦Cr≦8.60,0.01≦Mo≦0.70,0.001≦V≦0.200,0.007≦Al≦0.150,0.0002≦N≦0.0500を含有し、残部がFe及び不可避的不純物の組成を有することを特徴とする。 Accordingly, claim 1 relates to steel for molds, and in mass %, 0.045≦C≦0.090, 0.01≦Si≦0.50, 0.10≦Mn≦0.60, 0 .80≦Ni≦1.10, 6.60≦Cr≦8.60, 0.01≦Mo≦0.70, 0.001≦V≦0.200, 0.007≦Al≦0.150, 0 0.0002≦N≦0.0500, with the remainder being Fe and unavoidable impurities.

なお、金型用鋼において、下記に示す成分が下記範囲で不可避的不純物として含まれ得る。
P≦0.10,S≦0.008,Cu≦0.30,W≦0.30,O≦0.05,Co≦0.30,Nb≦0.004,Ta≦0.004,Ti≦0.004,Zr≦0.004,B≦0.0001,Ca≦0.0005,Se≦0.03,Te≦0.005,Bi≦0.01,Pb≦0.03,Mg≦0.02,REM≦0.10などである。
In addition, in the steel for molds, the components shown below may be contained as unavoidable impurities within the following ranges.
P≦0.10, S≦0.008, Cu≦0.30, W≦0.30, O≦0.05, Co≦0.30, Nb≦0.004, Ta≦0.004, Ti≦ 0.004, Zr≦0.004, B≦0.0001, Ca≦0.0005, Se≦0.03, Te≦0.005, Bi≦0.01, Pb≦0.03, Mg≦0. 02, REM≦0.10, etc.

請求項2のものは、請求項1において、質量%で0.30<Cu≦0.58を更に含有することを特徴とする。 A second aspect of the present invention is characterized in that, in the first aspect, it further contains 0.30<Cu≦ 0.58 in mass%.

請求項3のものは、請求項1,2の何れかにおいて、質量%で0.30<W≦4.00,0.30<Co≦3.00の少なくとも1種を更に含有することを特徴とする。 The product according to claim 3 is characterized in that, in either claim 1 or 2, it further contains at least one of the following in terms of mass%: 0.30<W≦4.00, 0.30<Co≦3.00. shall be.

請求項4のものは、請求項1~3の何れかにおいて、質量%で0.004<Nb≦0.200,0.004<Ta≦0.200,0.004<Ti≦0.200,0.004<Zr≦0.200の少なくとも1種を更に含有することを特徴とする。 In claim 4, in any one of claims 1 to 3, mass% is 0.004<Nb≦0.200, 0.004<Ta≦0.200, 0.004<Ti≦0.200, It is characterized by further containing at least one member satisfying the relationship 0.004<Zr≦0.200.

請求項5のものは、請求項1~4の何れかにおいて、質量%で0.0001<B≦0.0050を更に含有することを特徴とする。 A fifth aspect of the invention is characterized in that, in any one of claims 1 to 4, it further contains 0.0001<B≦0.0050 in mass%.

請求項6のものは、請求項1~5の何れかにおいて、質量%で0.008<S≦0.050,0.0005<Ca≦0.2000,0.03<Se≦0.50,0.005<Te≦0.100,0.01<Bi≦0.50,0.03<Pb≦0.50の少なくとも1種を更に含有することを特徴とする。 According to claim 6, in any one of claims 1 to 5, mass% is 0.008<S≦0.050, 0.0005<Ca≦0.2000, 0.03<Se≦0.50, It is characterized by further containing at least one of the following: 0.005<Te≦0.100, 0.01<Bi≦0.50, 0.03<Pb≦0.50.

請求項7は、金型に関するものであって、請求項1~6の何れかに記載の鋼から成り、硬さが32~44HRCであることを特徴とする。
なお、本発明において「金型」には金型本体はもとより、これに組み付けられて使用されるピン等の金型部品も含まれる。更に、本発明の鋼からなる金型で、表面処理やシボ加工が施されたものも含まれる。
Claim 7 relates to a mold, which is made of the steel according to any one of Claims 1 to 6, and has a hardness of 32 to 44 HRC.
In the present invention, the term "mold" includes not only the mold body, but also mold parts such as pins that are assembled into the mold body. Furthermore, molds made of the steel of the present invention that have been subjected to surface treatment or texturing are also included.

本発明者は、上記課題を解決するため、鏡面研磨性、耐食性および衝撃値に及ぼす鋼材成分の影響を調査した結果、C-Si-Mn-Ni-Cr-Mo-V-Al-Nの調整で所望の特性が得られることを見出した。本発明はこのような知見の下になされたもので、極低Cで且つ略7~8%のCrを含有させて耐食性を効果的に高めるとともに、特に、衝撃値に高位安定化におけるAl量の重要性を見出し、Al量を特定の範囲(0.007~0.150%)に規定した点に特徴を有するものである。かかる本発明の金型用鋼によれば、所定の硬さに調質された後に、良好な鏡面研磨性と、5%Cr鋼と12%Cr鋼の中間の耐食性を有し、更に高衝撃値を実現することができる。また、鏡面研磨性が要求される樹脂成形用金型に用いられていた従来の鋼と比較して安価である。 In order to solve the above problems, the present inventor investigated the influence of steel components on mirror polishability, corrosion resistance, and impact value, and found that the adjustment of C-Si-Mn-Ni-Cr-Mo-V-Al-N It has been found that the desired properties can be obtained. The present invention was made based on this knowledge, and it effectively increases corrosion resistance by containing extremely low C and approximately 7 to 8% Cr, and in particular, improves the amount of Al in stabilizing the impact value to a high level. It is characterized by the fact that the importance of Al has been discovered and the amount of Al has been defined within a specific range (0.007 to 0.150%). According to the mold steel of the present invention, after being tempered to a predetermined hardness, it has good mirror polishability and corrosion resistance between 5% Cr steel and 12% Cr steel, and also has high impact resistance. value can be realized. Furthermore, it is cheaper than conventional steel used in resin molding molds that require mirror polishability.

また、本発明の鋼から成り、硬さを32~44HRCに調整された本発明の金型によれば、焼入れ・焼戻し処理後のプリハードン状態で切削および研磨の加工が可能となるため、製造工程の簡略化が実現できる。また、金型使用時においては、樹脂成形時の摩耗や割れの発生が抑制され、金型の寿命を高めることができる。一方、金型が一定期間放置された場合でも金型表面は錆びにくいため、低Cr鋼から成る金型の場合に行われていた再研磨を廃止もしくは軽減することができる。 In addition, according to the mold of the present invention made of the steel of the present invention and whose hardness is adjusted to 32 to 44 HRC, cutting and polishing processes can be performed in the pre-hardened state after quenching and tempering. can be simplified. Further, when using a mold, wear and cracking during resin molding can be suppressed, and the life of the mold can be extended. On the other hand, even if the mold is left unused for a certain period of time, the surface of the mold is less likely to rust, making it possible to eliminate or reduce the need for re-polishing, which is required for molds made of low Cr steel.

以上のような本発明の金型用鋼および金型は、樹脂(プラスチックやビニール)の射出成形やブロー成形、ゴムの成形や加工、炭素繊維強化プラスチックの成形や加工等の用途に用いて好適である。 The mold steel and mold of the present invention as described above are suitable for use in injection molding and blow molding of resins (plastics and vinyl), molding and processing of rubber, molding and processing of carbon fiber reinforced plastics, etc. It is.

次に本発明における各化学成分の限定理由を以下に説明する。なお、各化学成分の値は何れも質量%である。
「請求項1の化学成分について」
0.045≦C≦0.090
諸特性のバランスを取るため、C量の範囲を非常に狭く規定したことが本発明の特徴の1つである。C<0.045では、焼入れ時の未固溶炭化物が減少し、結晶粒が粗大化しやすい。焼戻し温度が高い場合や、粉末の積層造形に適用した場合に32HRC以上を得ることが難しい。C<0.045では、デルタフェライトが析出して鏡面研磨性や衝撃値に悪影響を及ぼす。またマルテンサイト変態点が高くなり粗大な焼入れ組織となるため、衝撃値が低下する。
一方、0.090<Cでは、溶接性が低下する。また熱伝導率の低下も大きい。硬さの焼戻し温度依存性が顕在化し、焼戻し硬さの調整が難しくなる。また、炭化物が増え、鏡面研磨性に悪影響を及ぼす。
Next, the reasons for limiting each chemical component in the present invention will be explained below. In addition, all the values of each chemical component are mass %.
“Regarding the chemical components of claim 1”
0.045≦C≦0.090
One of the features of the present invention is that the range of the amount of C is defined very narrowly in order to balance various properties. When C<0.045, undissolved carbides during quenching decrease and crystal grains tend to become coarse. It is difficult to obtain HRC of 32 or more when the tempering temperature is high or when applied to powder additive manufacturing. When C<0.045, delta ferrite precipitates, which adversely affects mirror polishability and impact value. In addition, the martensitic transformation point becomes high, resulting in a coarse quenched structure, resulting in a decrease in impact value.
On the other hand, when 0.090<C, weldability decreases. Also, the thermal conductivity decreases significantly. The dependence of hardness on tempering temperature becomes obvious, making it difficult to adjust tempering hardness. In addition, carbides increase, which adversely affects mirror polishability.

0.01≦Si≦0.50
Si<0.01では、機械加工時の被削性が著しく劣化する。焼入れ時の未固溶炭化物がVCである場合、その量が減少して結晶粒が粗大化しやすい。焼戻し温度が高い場合に32HRC以上を安定して得にくい。
一方、0.50<Siでは、熱伝導率の低下が大きい。デルタフェライトが析出して鏡面研磨性や衝撃値に悪影響を及ぼす。
好ましいSiの範囲は、0.05≦Si≦0.46であり、より好ましくは0.10≦Si≦0.42である。
0.01≦Si≦0.50
When Si<0.01, machinability during machining is significantly degraded. If the undissolved carbide during quenching is VC, its amount decreases and crystal grains tend to become coarse. When the tempering temperature is high, it is difficult to stably obtain HRC of 32 HRC or higher.
On the other hand, when 0.50<Si, the thermal conductivity decreases significantly. Delta ferrite precipitates and adversely affects mirror polishability and impact value.
The preferred range of Si is 0.05≦Si≦0.46, more preferably 0.10≦Si≦0.42.

0.10≦Mn≦0.60
Mn<0.10では、焼入れ性が不足し、フェライトの混入による硬さ不足を招く。また焼入れ性が不足し、ベイナイトの混入による靭性の低下を招く。マルテンサイト変態点が高くなり粗大な焼入れ組織となるため、衝撃値が低下する。特に室温以下での衝撃値が低下する。
一方、0.60<Mnでは、焼鈍性が非常に劣化し、軟質化させる熱処理が複雑かつ長時間となって製造コストを増加させる。また熱伝導率の低下も大きい。焼戻し温度が高い場合に、室温での衝撃値が低下する(SiやPが高い場合に顕著である)。
好ましいMnの範囲は、0.15≦Mn≦0.55であり、より好ましくは0.20≦Mn≦0.50である。
0.10≦Mn≦0.60
When Mn<0.10, hardenability is insufficient and hardness is insufficient due to the inclusion of ferrite. In addition, hardenability is insufficient and toughness is reduced due to the inclusion of bainite. Since the martensitic transformation point becomes high and a coarse quenched structure is formed, the impact value decreases. In particular, the impact value at temperatures below room temperature decreases.
On the other hand, when 0.60<Mn, the annealing property deteriorates significantly, and the heat treatment for softening becomes complicated and takes a long time, increasing the manufacturing cost. Also, the thermal conductivity decreases significantly. When the tempering temperature is high, the impact value at room temperature decreases (this is noticeable when Si and P are high).
A preferable range of Mn is 0.15≦Mn≦0.55, more preferably 0.20≦Mn≦0.50.

0.80≦Ni≦1.10
Ni<0.80では、焼入れ性が不足し、フェライトの混入による硬さ不足を招く。また焼入れ性が不足し、ベイナイトの混入による靭性の低下を招く。マルテンサイト変態点が高くなり粗大な焼入れ組織となるため、衝撃値が低下する。特に室温以下での衝撃値が低下する。Alとの化合物の析出による硬さ上昇の効果が小さい。
一方、1.10<Niでは、焼鈍性が非常に劣化し、軟質化させる熱処理が複雑かつ長時間となって製造コストを増加させる。熱伝導率の低下も大きい。またコスト上昇が大きい。
好ましいNiの範囲は、0.84≦Ni≦1.08であり、より好ましくは0.88≦Ni≦1.06である。
0.80≦Ni≦1.10
When Ni<0.80, hardenability is insufficient and hardness is insufficient due to the inclusion of ferrite. In addition, hardenability is insufficient and toughness is reduced due to the inclusion of bainite. Since the martensitic transformation point becomes high and a coarse quenched structure is formed, the impact value decreases. In particular, the impact value at temperatures below room temperature decreases. The effect of increasing hardness due to precipitation of compounds with Al is small.
On the other hand, when 1.10<Ni, the annealing property deteriorates significantly, and the heat treatment for softening becomes complicated and takes a long time, increasing the manufacturing cost. The decrease in thermal conductivity is also large. Also, the cost will increase significantly.
A preferable range of Ni is 0.84≦Ni≦1.08, more preferably 0.88≦Ni≦1.06.

6.60≦Cr≦8.60
Cr<6.60では、2次硬化量が不足し、32HRC以上を安定して得にくい。高温強度が低くなる。焼入れ性が不足し、ベイナイトの混入による靭性の低下を招く。マルテンサイト変態点が高くなり粗大な焼入れ組織となるため、衝撃値が低下する。耐食性が悪くなるため、金型を放置した際に錆びやすい。また、金型内部の水冷孔が顕著に錆び、そこからの割れを誘発する。
一方、8.60<Crでは、熱伝導率の低下が大きい。硬さの焼戻し温度依存性が顕在化し、焼戻し硬さの調整が難しくなる。デルタフェライトが析出して鏡面研磨性や衝撃値に悪影響を及ぼす。
好ましいCrの範囲は、7.20≦Cr≦8.40であり、より好ましくは7.80≦Cr≦8.20である。
6.60≦Cr≦8.60
When Cr<6.60, the amount of secondary hardening is insufficient and it is difficult to stably obtain HRC of 32 HRC or more. High temperature strength decreases. Hardenability is insufficient, leading to a decrease in toughness due to the inclusion of bainite. Since the martensitic transformation point becomes high and a coarse quenched structure is formed, the impact value decreases. Corrosion resistance deteriorates, so molds are prone to rust when left unused. In addition, the water cooling holes inside the mold become noticeably rusted, leading to cracks.
On the other hand, when 8.60<Cr, the thermal conductivity decreases significantly. The dependence of hardness on tempering temperature becomes obvious, making it difficult to adjust tempering hardness. Delta ferrite precipitates and adversely affects mirror polishability and impact value.
The preferred range of Cr is 7.20≦Cr≦8.40, more preferably 7.80≦Cr≦8.20.

0.01≦Mo≦0.70
Mo<0.01では、焼入れ性が不足することから、フェライトが析出し、鏡面研磨性や衝撃値に悪影響を及ぼす。2次硬化の寄与が小さく、焼戻し温度が高い場合に32HRC以上を安定して得ることが困難となる。高温強度が不足する。耐食性を改善する効果に乏しい。
一方、0.70<Moでは、焼鈍性が非常に低下し、軟質化させる熱処理が複雑かつ長時間になって製造コストを増加させる。また、破壊靭性が低下し金型が割れやすくなる。また、素材コストの上昇が顕著となる。
好ましいMoの範囲は、0.10≦Mo≦0.65であり、より好ましくは0.20≦Mo≦0.60である。
0.01≦Mo≦0.70
When Mo<0.01, ferrite precipitates due to insufficient hardenability, which adversely affects mirror polishability and impact value. When the contribution of secondary hardening is small and the tempering temperature is high, it becomes difficult to stably obtain HRC of 32 or more. High temperature strength is insufficient. Poor effect on improving corrosion resistance.
On the other hand, when 0.70<Mo, the annealing properties are greatly reduced, and the heat treatment for softening becomes complicated and takes a long time, increasing the manufacturing cost. Moreover, the fracture toughness decreases, making the mold more likely to crack. In addition, material costs will rise significantly.
The preferred range of Mo is 0.10≦Mo≦0.65, more preferably 0.20≦Mo≦0.60.

0.001≦V≦0.200
V<0.001では、窒化物や炭窒化物が少なくなるため、焼入れ時に結晶粒の粗大化を抑制する効果に乏しく、粗粒化による衝撃値の低下を招く。2次硬化の寄与が小さく、焼戻し温度が高い場合に32HRC以上を安定して得ることが困難となる。
一方、0.200<Vでは、多量のVと結合するのに十分なC量がないため、過添加は実益がなく、コスト増を招くのみである。C量が請求項の上限に近い場合には、粗大な窒化物や炭窒化物が増加し、それが亀裂の起点となるため衝撃値が低下する。
好ましいVの範囲は、0.008≦V≦0.180であり、より好ましくは0.015≦V≦0.150である。
0.001≦V≦0.200
When V<0.001, the amount of nitrides and carbonitrides decreases, so the effect of suppressing coarsening of crystal grains during quenching is poor, leading to a decrease in impact value due to coarsening of grains. When the contribution of secondary hardening is small and the tempering temperature is high, it becomes difficult to stably obtain HRC of 32 or more.
On the other hand, when 0.200<V, there is not enough C to combine with a large amount of V, so there is no practical benefit to adding too much, and only increases costs. When the amount of C is close to the upper limit specified in the claims, coarse nitrides and carbonitrides increase and serve as starting points for cracks, resulting in a decrease in impact value.
A preferable range of V is 0.008≦V≦0.180, more preferably 0.015≦V≦0.150.

0.007≦Al≦0.150
Al量の範囲を狭く規定したことが本発明の特徴の1つである。Al<0.007を回避する最大の理由は、衝撃値の高位安定化である。Al量が過少であると衝撃値が著しく低くなる。また、AlNが少なくなるため焼入れ時の結晶粒の粗大化を抑制する効果に乏しく、粗粒化による衝撃値の低下を招く。
一方、0.150<Alでは、AlNが過度に増え粗大化するため、破壊の起点が増えて衝撃値が50J/cm2未満となる。また鏡面研磨時に脱落する大きな異物が増えてピンホールができやすい。また、熱伝導率の低下が大きい。
好ましいAlの範囲は、0.050<Al≦0.150であり、より好ましくは0.050<Al≦0.120である。
0.007≦Al≦0.150
One of the features of the present invention is that the range of Al content is narrowly defined. The biggest reason to avoid Al<0.007 is to stabilize the impact value at a high level. If the amount of Al is too small, the impact value will be significantly low. Furthermore, since the amount of AlN is reduced, the effect of suppressing coarsening of crystal grains during quenching is poor, resulting in a decrease in impact value due to coarsening of grains.
On the other hand, when 0.150<Al, AlN increases excessively and becomes coarse, so the number of starting points for fracture increases and the impact value becomes less than 50 J/cm 2 . Also, the number of large foreign particles that fall off during mirror polishing increases, making pinholes more likely to occur. In addition, the thermal conductivity decreases significantly.
A preferable range of Al is 0.050<Al≦0.150, more preferably 0.050<Al≦0.120.

従来、樹脂(プラスチックやビニール)の射出成形やブロー成形、ゴムの成形や加工、炭素繊維強化プラスチックの成形や加工に使われる金型用鋼は、Alが少ない方が良いと考えられていた。この理由は、Al量が過多であると酸化物や窒化物が多量に生成し、鏡面研磨性や衝撃値を低下させるためである。ところが、特殊な成分系である本発明の鋼においては、Al量が過少であると衝撃値が著しく低くなるという特異な現象が発現する。この発見を基に、本発明ではAl量を狭い範囲で規定している。 Conventionally, it has been thought that mold steel used for injection molding and blow molding of resins (plastics and vinyl), molding and processing of rubber, and molding and processing of carbon fiber reinforced plastics should contain less Al. The reason for this is that if the amount of Al is too large, a large amount of oxides and nitrides will be generated, which will reduce the mirror polishability and impact value. However, in the steel of the present invention, which has a special composition system, a peculiar phenomenon occurs in that if the amount of Al is too small, the impact value becomes extremely low. Based on this discovery, the amount of Al is defined within a narrow range in the present invention.

図1は、24℃での衝撃値(Uノッチ、ノッチ底半径1mm、ノッチ下高さ8mm)に及ぼすAl量の影響を示す。0.060C-0.30Si-0.35Mn-0.95Ni-7.95Cr-0.45Mo-0.10V-0.012Nの鋼を基本成分として、Al量を変化させた。これらの鋼を870℃から焼入れ、焼戻しで36.5HRCに調質した。図1(A)に示すように、Al=0.003では、衝撃値は14~27J/cm2と非常に低い。Al=0.007では、バラつきは目立つものの50J/cm2をほぼ確保できる。また、過度にAlが多い場合には、図1(B)に示すように、介在物の増加によって衝撃値は減少に転じる。このようなデータから、0.007≦Al≦0.150を請求範囲とした。また、0.050<Al≦0.150とすれば、衝撃値を安定して50J/cm2以上とすることができる。 FIG. 1 shows the effect of the amount of Al on the impact value at 24° C. (U notch, notch bottom radius 1 mm, notch bottom height 8 mm). The amount of Al was varied using steel of 0.060C-0.30Si-0.35Mn-0.95Ni-7.95Cr-0.45Mo-0.10V-0.012N as the basic components. These steels were quenched from 870°C and tempered to 36.5HRC. As shown in FIG. 1(A), when Al=0.003, the impact value is very low at 14 to 27 J/cm 2 . When Al=0.007, 50 J/cm 2 can be almost ensured, although the variation is noticeable. Furthermore, if there is too much Al, the impact value starts to decrease due to an increase in inclusions, as shown in FIG. 1(B). Based on such data, the claimed range is 0.007≦Al≦0.150. Further, if 0.050<Al≦0.150, the impact value can be stably set to 50 J/cm 2 or more.

図2は、Al量を変化させた場合の鋼材の組織を示した顕微鏡写真の図である。0.063C-0.29Si-0.31Mn-0.96Ni-7.98Cr-0.45Mo-0.088V-0.0274Nの鋼を基本成分として、Al量を変化させた。これらの鋼を870℃から焼入れ、焼戻しで36.5HRCに調質した。同図に示すように、Al=0.056では、Al=0.008よりも結晶粒が微細であることが分かる。結晶粒が微細であれば、鏡面研磨で滑らかな表面を得ることができる。
即ち、衝撃値および鏡面研磨性を考慮した好ましいAlの範囲は、0.050<Al≦0.150である。
FIG. 2 is a diagram of micrographs showing the structure of steel materials when the amount of Al is changed. The amount of Al was changed using steel of 0.063C-0.29Si-0.31Mn-0.96Ni-7.98Cr-0.45Mo-0.088V-0.0274N as the basic component. These steels were quenched from 870°C and tempered to 36.5HRC. As shown in the figure, it can be seen that when Al=0.056, the crystal grains are finer than when Al=0.008. If the crystal grains are fine, a smooth surface can be obtained by mirror polishing.
That is, the preferable range of Al in consideration of impact value and mirror polishability is 0.050<Al≦0.150.

0.0002≦N≦0.0500
N<0.0002では、AlNが少なくなるため、焼入れ時の結晶粒の粗大化を抑制する効果に乏しく、粗粒化による衝撃値の低下を招く。
0.0500<Nでは、N添加に要する精錬の時間とコストが増加し、素材コストの上昇を招く。粗大なAlNが増加し、それが亀裂の起点となるため衝撃値が低下する。また、粗大なAlNは鏡面研磨性も低下させる。
好ましいNの範囲は、0.0010≦N≦0.0400であり、より好ましくは0.0020≦N≦0.0300である。
0.0002≦N≦0.0500
When N<0.0002, the amount of AlN decreases, so the effect of suppressing coarsening of crystal grains during hardening is poor, and the coarsening of grains causes a decrease in impact value.
When 0.0500<N, the refining time and cost required for N addition increase, leading to an increase in material cost. The impact value decreases because coarse AlN increases and becomes the starting point for cracks. Moreover, coarse AlN also reduces mirror polishability.
A preferable range of N is 0.0010≦N≦0.0400, more preferably 0.0020≦N≦0.0300.

「請求項2の化学成分について」
0.30<Cu≦0.58
低Cである本発明鋼は、結晶粒界の移動を抑制する炭化物も少ないため、焼入れ時の結晶粒が粗大化しやすい。そこでsolute drag効果に優れるCuを添加し、焼入れ時の粗粒化を防止することが有効である。本発明鋼は、Mn-Ni-Crが少ない場合には焼入れ性がやや不足するが、Cuは焼入れ性を高める効果もある。また、本発明は2次硬化に寄与するC-Mo-Vといった元素が少ないため、焼戻し硬さも極端に高くならないが、Cuの析出硬化を利用して焼戻し硬さをかなり高めることができる。
一方、Cuが過多では、コスト増や熱間加工時の割れが問題となる。
“Regarding the chemical components of claim 2”
0.30<Cu≦ 0.58
The steel of the present invention, which has a low C content, has few carbides that suppress the movement of grain boundaries, so the grains tend to become coarse during quenching. Therefore, it is effective to add Cu, which has an excellent solute drag effect, to prevent grain coarsening during hardening. In the steel of the present invention, hardenability is somewhat insufficient when Mn--Ni--Cr is small, but Cu also has the effect of increasing hardenability. Further, in the present invention, since there are few elements such as C--Mo--V that contribute to secondary hardening, the tempering hardness does not become extremely high, but the tempering hardness can be considerably increased by utilizing precipitation hardening of Cu.
On the other hand, if Cu is too large, there will be problems such as increased cost and cracking during hot working.

「請求項3の化学成分について」
工具鋼としてはMoやVが少ない本発明鋼は、高温強度があまり高くない。高温強度の確保には、WやCoの選択的な添加が有効である。Wは炭化物の析出や固溶によって強度を上げる。Coは母材への固溶によって強度を上げると同時に、炭化物形態の変化を介して析出硬化にも寄与する。また、これらの元素はsolute drag効果によって焼入れ時のオーステナイト結晶粒の成長を抑制する効果もある。具体的には、
0.30<W≦4.00
0.30<Co≦3.00
の少なくとも1種(1元素)を含有させれば良い。
いずれの元素も所定量を越えると特性の飽和と著しいコスト増を招く。
“Regarding the chemical components of claim 3”
As a tool steel, the steel of the present invention, which contains less Mo and V, does not have very high high temperature strength. Selective addition of W and Co is effective in ensuring high-temperature strength. W increases strength through precipitation of carbides and solid solution. Co increases the strength by solid solution in the base metal, and at the same time contributes to precipitation hardening through a change in carbide morphology. Furthermore, these elements also have the effect of suppressing the growth of austenite crystal grains during quenching due to the solute drag effect. in particular,
0.30<W≦4.00
0.30<Co≦3.00
What is necessary is to contain at least one kind (one element) of the following.
Exceeding a predetermined amount of either element results in saturation of properties and significant cost increase.

「請求項4の化学成分について」
焼入れ時のオーステナイト結晶粒の成長を抑制するには、Nb-Ta-Ti-Zrの選択的な添加も有効である。これらの元素との結合によって生成した炭化物や窒化物や炭窒化物が結晶粒界の移動を抑制する。具体的には、
0.004<Nb≦0.200
0.004<Ta≦0.200
0.004<Ti≦0.200
0.004<Zr≦0.200
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えると炭化物や窒化物や酸化物が過度に生成し、それが金型の破壊起点となる。
“Regarding the chemical components of claim 4”
Selective addition of Nb-Ta-Ti-Zr is also effective in suppressing the growth of austenite crystal grains during hardening. Carbides, nitrides, and carbonitrides generated by bonding with these elements suppress movement of grain boundaries. in particular,
0.004<Nb≦0.200
0.004<Ta≦0.200
0.004<Ti≦0.200
0.004<Zr≦0.200
It is sufficient to contain at least one of the following.
When any of the elements exceeds a predetermined amount, carbides, nitrides, and oxides are excessively produced, which becomes a starting point for mold failure.

「請求項5の化学成分について」
Bには、焼入れ性向上と粒界強化の効果がある。この結果、衝撃値が高位安定化する。具体的には、
0.0001<B≦0.0050
を含有させれば良い。
なお、添加したBがBNを形成すると、B添加の本来の目的を果たせない。そこで、BよりもNとの親和力が強い元素で窒化物を形成させてNを固定し、BとNを結合させなければ良い。そのような元素の例としては、Nb、Ta、Ti、Zrが挙げられる。これらの元素は不純物レベルで存在してもNを固定する効果がある。
また、B添加は被削性の改善にも有効である。被削性を改善する場合にはBNを形成させれば良い。BNは性質が黒鉛に類似しており、切削抵抗を下げると同時に切屑破砕性を改善する。なお、B、FeとBの化合物、BNなどが鋼中に共存していても良い。その場合は、鋼中にBがどのような状態であるかによって、焼入れ性や衝撃値や被削性などが改善される。
“Regarding the chemical components of claim 5”
B has the effect of improving hardenability and strengthening grain boundaries. As a result, the impact value is stabilized at a high level. in particular,
0.0001<B≦0.0050
It is sufficient if it contains.
Note that if the added B forms BN, the original purpose of B addition cannot be achieved. Therefore, it is preferable to form a nitride with an element that has a stronger affinity for N than for B, fix N, and avoid combining B and N. Examples of such elements include Nb, Ta, Ti, and Zr. These elements have the effect of fixing N even if they are present at an impurity level.
Additionally, B addition is effective in improving machinability. In order to improve machinability, BN may be formed. BN has properties similar to graphite and reduces cutting resistance while improving chip breakability. Note that B, a compound of Fe and B, BN, etc. may coexist in the steel. In that case, hardenability, impact value, machinability, etc. are improved depending on the state of B in the steel.

「請求項6の化学成分について」
被削性の改善には、S-Ca-Se-Te-Bi-Pbを選択的に添加することも有効である。具体的には、
0.008<S≦0.050
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
の少なくとも1種を含有させれば良い。
いずれの元素も、所定量を越えると熱間加工性や衝撃値が大きく低下する。
“Regarding the chemical components of claim 6”
It is also effective to selectively add S-Ca-Se-Te-Bi-Pb to improve machinability. in particular,
0.008<S≦0.050
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
It is sufficient to contain at least one of the following.
When any of the elements exceeds a predetermined amount, hot workability and impact value are significantly reduced.

以上のような本発明によれば、所定の硬さに調質された後に、良好な鏡面研磨性と、5%Cr鋼と12%Cr鋼の中間の耐食性を有し、更に高衝撃値な金型用鋼及び金型を提供することができる。 According to the present invention as described above, after being tempered to a predetermined hardness, it has good mirror polishability and corrosion resistance between 5% Cr steel and 12% Cr steel, and also has a high impact value. We can provide mold steel and molds.

Al量と衝撃値との関係を示した図である。FIG. 3 is a diagram showing the relationship between Al content and impact value. Al量を変化させた場合の鋼材の組織を示した顕微鏡写真の図である。It is a figure of the micrograph which showed the structure of the steel material when changing the amount of Al.

表1に示す発明鋼および比較鋼(計22鋼種)について、鏡面研磨性・耐食性・衝撃値を評価する試験を行った。
なお、比較鋼1は市販品であり、樹脂(プラスチックやビニール)の射出成形やブロー成形に汎用的に用いられる金型用鋼である。比較鋼2は、5Cr系ダイス鋼のJIS SKD61である。比較鋼3は、高強度ステンレス鋼のJIS SUS420J2である。比較鋼4は、高強度ステンレス鋼であり、JIS SUS630として知られている。これら比較鋼は、少なくとも4種の主要元素において本発明の請求範囲を外れている。
Tests were conducted to evaluate the mirror polishability, corrosion resistance, and impact value of the invention steel and comparative steel (22 steel types in total) shown in Table 1.
Note that Comparative Steel 1 is a commercially available product, and is a mold steel commonly used for injection molding and blow molding of resins (plastics and vinyl). Comparative steel 2 is JIS SKD61, which is a 5Cr die steel. Comparative steel 3 is JIS SUS420J2, which is a high-strength stainless steel. Comparative steel 4 is a high-strength stainless steel known as JIS SUS630. These comparative steels fall outside the claimed scope of the present invention in at least four major elements.

Figure 0007392330000001
Figure 0007392330000001

表1に示す22鋼種をそれぞれ150kgのインゴットに鋳込み、鋼塊を製造した。この鋼塊に1240℃で24時間の均質化処理を施した後、鋼塊を熱間鍛造によって60mm×45mmの矩形断面の棒状に成形し、この棒鋼を100℃以下まで冷却した。引き続き、棒鋼を1020℃に加熱して100℃以下まで冷却する焼ならしを行なった。さらに、棒鋼には焼戻しを施した。焼戻し条件は、比較鋼1と比較鋼4が600℃で12時間保持、その他の鋼は680℃で8時間保持である。この焼戻し材から各種の試験片を作製した。 Each of the 22 steel types shown in Table 1 was cast into a 150 kg ingot to produce a steel ingot. After homogenizing the steel ingot at 1240°C for 24 hours, the steel ingot was hot forged into a bar with a rectangular cross section of 60 mm x 45 mm, and the steel bar was cooled to 100°C or lower. Subsequently, the steel bar was normalized by heating it to 1020°C and cooling it to 100°C or less. Furthermore, the steel bar was tempered. The tempering conditions were that Comparative Steel 1 and Comparative Steel 4 were held at 600°C for 12 hours, and the other steels were held at 680°C for 8 hours. Various test pieces were prepared from this tempered material.

<鏡面研磨性についての評価>
焼戻し材から、51mm×31mm×101mmの板を切り出し、真空中での焼入れ焼戻し処理によって36~38HRCに調質した。焼入れ温度は、発明鋼18種と比較鋼1が870℃、比較鋼2と比較鋼3が1030℃、比較鋼4が1050℃である。各焼入れ温度で1時間保持した後、6barの窒素ガス冷却により焼入れを行なった。焼戻しとしては、500~650℃で3時間保持する処理を複数回おこなった。
焼戻し後の板を研削加工で50mm×30mm×100mmとし、50mm×100mmの面の表面粗さは▽▽▽Gとした。
<Evaluation of mirror polishability>
A plate of 51 mm x 31 mm x 101 mm was cut out from the tempered material and tempered to 36 to 38 HRC by quenching and tempering in a vacuum. The quenching temperature was 870°C for Inventive Steel Type 18 and Comparative Steel 1, 1030°C for Comparative Steel 2 and Comparative Steel 3, and 1050°C for Comparative Steel 4. After holding each quenching temperature for 1 hour, quenching was performed by cooling with nitrogen gas at 6 bar. For tempering, a process of holding at 500 to 650°C for 3 hours was performed multiple times.
The plate after tempering was ground to a size of 50 mm x 30 mm x 100 mm, and the surface roughness of the 50 mm x 100 mm surface was set to ▽▽▽G.

鏡面研磨性の評価として、50mm×100mmの面を砥粒の番手を上げて研磨してゆき、最終的に#8000の番手で鏡面に仕上げた。研磨面を目視観察し、ピンホールの有無を以下の基準に従い評価した。
異物(炭化物、酸化物、窒化物)の脱落によるピンホールがなければ「S」、ピンホールが1~2か所であれば「A」、ピンホールが3か所以上であれば「B」。
As an evaluation of mirror polishability, a 50 mm x 100 mm surface was polished with increasing abrasive grain count, and finally a mirror finish was obtained with #8000 grit. The polished surface was visually observed and the presence or absence of pinholes was evaluated according to the following criteria.
"S" if there are no pinholes due to falling foreign substances (carbides, oxides, nitrides), "A" if there are 1 or 2 pinholes, "B" if there are 3 or more pinholes .

評価の結果は、発明鋼12種と比較鋼1と比較鋼4が「S」、比較鋼2が「A」、比較鋼3が「B」であった。比較鋼2よりも比較鋼3の方が、ピンホールが多い理由は、粗大なCr系炭化物やアルミナ(Al23)が多いためである。 The evaluation results were "S" for 12 types of invention steel, comparative steel 1, and comparative steel 4, "A" for comparative steel 2, and "B" for comparative steel 3. The reason why Comparative Steel 3 has more pinholes than Comparative Steel 2 is because there are more coarse Cr-based carbides and alumina (Al 2 O 3 ).

以上より、発明鋼の鏡面研磨性は、樹脂(プラスチックやビニール)の射出成形やブロー成形の金型に汎用的に用いられる比較鋼1と同等であることが確認できた。発明鋼は非常に優れた鏡面研磨性を有している。また、比較鋼2と比較鋼3にピンホールが発生しやすいとの市場評価も、この実験によって裏付けられた。 From the above, it was confirmed that the mirror polishability of the invented steel was equivalent to that of Comparative Steel 1, which is commonly used in molds for injection molding and blow molding of resins (plastics and vinyl). The invented steel has excellent mirror polishability. Furthermore, the market evaluation that pinholes are likely to occur in Comparative Steel 2 and Comparative Steel 3 was also supported by this experiment.

<耐食性についての評価>
焼戻し材から、41mm×26mm×13mmの板を切り出し、真空中での焼入れ焼戻しによって36~38HRCに調質した。焼入れ焼戻し条件は、鏡面研磨性の試験片と同様である。焼戻し後の板を研削加工で40mm×25mm×12mmとし、6面すべてを研磨して鏡面状態に仕上げた。
<Evaluation of corrosion resistance>
A plate of 41 mm x 26 mm x 13 mm was cut out from the tempered material and tempered to 36 to 38 HRC by quenching and tempering in a vacuum. The quenching and tempering conditions are the same as those for the mirror polishing test piece. The plate after tempering was ground to a size of 40 mm x 25 mm x 12 mm, and all six sides were polished to a mirror finish.

耐食性は湿潤試験で評価した。温度50℃で湿度98%の環境中に鏡面研磨した試験片を40時間静置し、錆の発生状況を比較し、以下の基準に従い評価した。
錆びた箇所がなければ「S」、1~3か所であれば「A」、4~10か所であれば「B」、10か所を超えていれば「C」。
Corrosion resistance was evaluated by a wet test. A mirror-polished test piece was left standing in an environment with a temperature of 50° C. and a humidity of 98% for 40 hours, and the occurrence of rust was compared and evaluated according to the following criteria.
If there are no rusted spots, give an "S", if there are 1 to 3 rusty spots, get a "A", if there are 4 to 10 spots, get a "B", and if there are more than 10 spots, get a "C".

耐食性の結果は、比較鋼4が「S」、発明鋼18種と比較鋼3は「A」、比較鋼2は「B」、比較鋼1は「C」であった。発明鋼は、低Cの17%Crステンレス鋼(比較鋼4)には及ばないものの、高Cの12%Crステンレス鋼(比較鋼3)と同等である。また、発明鋼は5%Crダイス鋼(比較鋼2)よりも優れている。以上より、発明鋼の耐食性は5%Cr鋼と12%Cr鋼の間に位置し、かなりステンレス鋼に近いことが確認できた。 The corrosion resistance results were "S" for Comparative Steel 4, "A" for Invention Steel 18 and Comparative Steel 3, "B" for Comparative Steel 2, and "C" for Comparative Steel 1. Although the invention steel is not as good as the low C 17% Cr stainless steel (Comparative Steel 4), it is equivalent to the high C 12% Cr stainless steel (Comparative Steel 3). Furthermore, the invention steel is superior to the 5% Cr die steel (comparative steel 2). From the above, it was confirmed that the corrosion resistance of the invented steel is between 5% Cr steel and 12% Cr steel, and is quite close to that of stainless steel.

<衝撃値についての評価>
焼戻し材から、11mm×11mm×55mmの角棒を切り出し、真空中での焼入れ焼戻しによって36~38HRCに調質した。焼入れ焼戻し条件は、鏡面研磨性の試験片と同様である。焼戻し後の角棒から、10mm×10mm×55mmの衝撃試験片を切り出した。ノッチ形状はU字、ノッチ底半径1mm、ノッチ下高さ8mmである。試験は室温(21~27℃)でおこない、吸収エネルギーを断面積の0.8cm2で割って衝撃値とし、以下の基準に従い評価した。
衝撃値が100J/cm2を超えていれば「S」、50J/cm2を超え100J/cm2以下であれば「A」、50J/cm2以下であれば「B」。
<Evaluation of impact value>
A square bar measuring 11 mm x 11 mm x 55 mm was cut out from the tempered material and tempered to 36 to 38 HRC by quenching and tempering in a vacuum. The quenching and tempering conditions are the same as those for the mirror polishing test piece. An impact test piece measuring 10 mm x 10 mm x 55 mm was cut out from the square bar after tempering. The notch shape is U-shaped, the radius of the bottom of the notch is 1 mm, and the height below the notch is 8 mm. The test was conducted at room temperature (21-27°C), and the impact value was determined by dividing the absorbed energy by the cross-sectional area of 0.8 cm 2 and evaluated according to the following criteria.
If the impact value exceeds 100 J/cm 2 , it is ``S'', if it exceeds 50 J/cm 2 but not more than 100 J/cm 2 , it is ``A'', and if it is 50 J/cm 2 or less, it is rated ``B''.

衝撃値の結果は、発明鋼12種が「S」、比較鋼2と比較鋼4は「A」、比較鋼1と比較鋼3は「B」であった。比較鋼1はNiとAlの金属間化合物を析出するタイプで脆い。比較鋼3は粗大な炭化物が多いために衝撃値が低い。
以上より、発明鋼の衝撃値は、樹脂(プラスチックやビニール)の射出成形やブロー成形の金型に汎用的に用いられる比較鋼1よりも更に高いことが確認できた。
The impact value results were "S" for Invention Steel Type 12, "A" for Comparative Steel 2 and Comparative Steel 4, and "B" for Comparative Steel 1 and Comparative Steel 3. Comparative steel 1 is a type that precipitates intermetallic compounds of Ni and Al and is brittle. Comparative Steel 3 has a low impact value because it has many coarse carbides.
From the above, it was confirmed that the impact value of the invented steel was even higher than that of Comparative Steel 1, which is commonly used in molds for injection molding and blow molding of resins (plastics and vinyl).

<特性のまとめ>
得られた結果を下記表2に総括して示す。なお、表2で示すコストは、樹脂(プラスチックやビニール)の射出成形やブロー成形の金型に汎用的に用いられる比較鋼1を基準の「A」とし、それよりも安いものを「S」、比較鋼1より高いものを「B」と評価した。
<Summary of characteristics>
The results obtained are summarized in Table 2 below. The costs shown in Table 2 are based on Comparative Steel 1, which is commonly used for molds for injection molding and blow molding of resins (plastics and vinyl), as "A", and those cheaper than that as "S". , those higher than Comparative Steel 1 were evaluated as "B".

Figure 0007392330000002
Figure 0007392330000002

表2に示すように、発明鋼は「S」と「A」であり、「B」以下はない。一方で、比較鋼には「B」や「C」が含まれる。以上より発明鋼においては、鏡面研磨性に優れ、耐食性が高く、衝撃値が高いことを確認した。また、発明鋼は、Cu、Ni、Alといった高価な元素の添加量が少なく抑えられており、コストを上昇させることなく上記の優れた特性を実現させていることが分かる。 As shown in Table 2, the invention steels are "S" and "A", and there are no steels below "B". On the other hand, comparative steels include "B" and "C". From the above, it was confirmed that the invented steel has excellent mirror polishability, high corrosion resistance, and high impact value. Furthermore, it can be seen that the inventive steel has a low additive amount of expensive elements such as Cu, Ni, and Al, and achieves the above-mentioned excellent properties without increasing cost.

以上、本発明の実施例を詳述したがこれはあくまで一例示である。例えば、本発明の鋼及び金型は、ショットピーニング,窒化処理,PVD処理,CVD処理,PCVD処理,メッキ処理,DLCコーティング処理などの表面改質処理と組み合わせて使用することも有効である。本発明の金型(部品を含む)の表面に、機械加工や腐食によって特定の模様(凹凸)を設けるシボ加工を追加することも本発明の付加価値を高める手法として有効である。また、本発明の鋼を棒状や線状として、金型や部品の溶接補修材として使用することも可能である。あるいは、本発明の鋼を板や粉末として、それらの積層造形によって金型や部品を製造することも可能である等、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。 Although the embodiments of the present invention have been described in detail above, this is merely an example. For example, it is also effective to use the steel and mold of the present invention in combination with surface modification treatments such as shot peening, nitriding treatment, PVD treatment, CVD treatment, PCVD treatment, plating treatment, and DLC coating treatment. It is also effective as a method to increase the added value of the present invention to add texture processing to provide a specific pattern (irregularities) on the surface of the mold (including parts) of the present invention by machining or corrosion. Further, the steel of the present invention can be made into a bar or wire shape and used as a welding repair material for molds and parts. Alternatively, the present invention can be implemented with various modifications without departing from its spirit, such as making the steel of the present invention into plates or powder and manufacturing molds and parts by additive manufacturing. It is.

Claims (7)

質量%で
0.045≦C≦0.090
0.01≦Si≦0.50
0.10≦Mn≦0.60
0.80≦Ni≦1.10
6.60≦Cr≦8.60
0.01≦Mo≦0.70
0.001≦V≦0.200
0.007≦Al≦0.150
0.0002≦N≦0.0500
を含有し、残部がFe及び不可避的不純物の組成を有することを特徴とする金型用鋼。
Mass%: 0.045≦C≦0.090
0.01≦Si≦0.50
0.10≦Mn≦0.60
0.80≦Ni≦1.10
6.60≦Cr≦8.60
0.01≦Mo≦0.70
0.001≦V≦0.200
0.007≦Al≦0.150
0.0002≦N≦0.0500
Steel for molds, characterized in that the remainder has a composition of Fe and unavoidable impurities.
請求項1において、質量%で
0.30<Cu≦0.58
を更に含有することを特徴とする金型用鋼。
In claim 1, 0.30<Cu≦ 0.58 in mass%
Steel for molds, further comprising:
請求項1,2の何れかにおいて、質量%で
0.30<W≦4.00
0.30<Co≦3.00
の少なくとも1種を更に含有することを特徴とする金型用鋼。
In either of claims 1 and 2, 0.30<W≦4.00 in mass%
0.30<Co≦3.00
A steel for molds, further comprising at least one of the above.
請求項1~3の何れかにおいて、質量%で
0.004<Nb≦0.200
0.004<Ta≦0.200
0.004<Ti≦0.200
0.004<Zr≦0.200
の少なくとも1種を更に含有することを特徴とする金型用鋼。
In any one of claims 1 to 3, 0.004<Nb≦0.200 in mass%
0.004<Ta≦0.200
0.004<Ti≦0.200
0.004<Zr≦0.200
A steel for molds, further comprising at least one of the above.
請求項1~4の何れかにおいて、質量%で
0.0001<B≦0.0050
を更に含有することを特徴とする金型用鋼。
In any one of claims 1 to 4, 0.0001<B≦0.0050 in mass%
Steel for molds, further comprising:
請求項1~5の何れかにおいて、質量%で
0.008<S≦0.050
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
の少なくとも1種を更に含有することを特徴とする金型用鋼。
In any one of claims 1 to 5, 0.008<S≦0.050 in mass%
0.0005<Ca≦0.2000
0.03<Se≦0.50
0.005<Te≦0.100
0.01<Bi≦0.50
0.03<Pb≦0.50
A steel for molds, further comprising at least one of the above.
請求項1~6の何れかに記載の鋼から成り、硬さが32~44HRCであることを特徴とする金型。 A mold made of the steel according to any one of claims 1 to 6, characterized in that it has a hardness of 32 to 44 HRC.
JP2019155011A 2018-10-12 2019-08-27 Mold steel and molds Active JP7392330B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW108136975A TWI706849B (en) 2018-10-12 2019-10-09 Steel for mold
US16/598,733 US11377718B2 (en) 2018-10-12 2019-10-10 Steel for mold
EP19202539.3A EP3636791B1 (en) 2018-10-12 2019-10-10 Steel for mold
KR1020190126369A KR102280084B1 (en) 2018-10-12 2019-10-11 Steel for mold
CN201910968069.6A CN111041343A (en) 2018-10-12 2019-10-12 Steel for mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018193634 2018-10-12
JP2018193634 2018-10-12

Publications (2)

Publication Number Publication Date
JP2020063508A JP2020063508A (en) 2020-04-23
JP7392330B2 true JP7392330B2 (en) 2023-12-06

Family

ID=70386870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019155011A Active JP7392330B2 (en) 2018-10-12 2019-08-27 Mold steel and molds

Country Status (3)

Country Link
JP (1) JP7392330B2 (en)
KR (1) KR102280084B1 (en)
TW (1) TWI706849B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022083627A (en) 2020-11-25 2022-06-06 大同特殊鋼株式会社 Steel for mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024510A (en) 2008-07-22 2010-02-04 Daido Steel Co Ltd Steel for plastic molding die having excellent temperature controllability
JP2013177669A (en) 2012-01-31 2013-09-09 Daido Steel Co Ltd Steel for forming die having excellent thermal conductivity, mirror polishability, weatherability, toughness, and machinability
WO2015156303A1 (en) 2014-04-11 2015-10-15 新日鐵住金株式会社 Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351766B2 (en) * 1999-02-12 2002-12-03 日立金属株式会社 High strength steel for molds with excellent machinability
JP2004091840A (en) 2002-08-30 2004-03-25 Hitachi Metals Ltd Steel for metal mold with excellent machinability and polishability
JP2007009321A (en) * 2005-06-02 2007-01-18 Daido Steel Co Ltd Steel for plastic molding die
JP2008274398A (en) * 2007-03-31 2008-11-13 Daido Steel Co Ltd Austenitic free-cutting stainless steel
CN103774047B (en) * 2012-10-20 2017-03-01 大同特殊钢株式会社 There is the mould steel of excellent thermal conductance, mirror polishability and toughness
TWI500781B (en) * 2013-02-28 2015-09-21 Hitachi Metals Ltd Steel for mold and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024510A (en) 2008-07-22 2010-02-04 Daido Steel Co Ltd Steel for plastic molding die having excellent temperature controllability
JP2013177669A (en) 2012-01-31 2013-09-09 Daido Steel Co Ltd Steel for forming die having excellent thermal conductivity, mirror polishability, weatherability, toughness, and machinability
WO2015156303A1 (en) 2014-04-11 2015-10-15 新日鐵住金株式会社 Corrosion-proof steel material, production method therefor, method for corrosion proofing steel material, and ballast tank

Also Published As

Publication number Publication date
TWI706849B (en) 2020-10-11
KR20200041809A (en) 2020-04-22
KR102280084B1 (en) 2021-07-20
TW202023783A (en) 2020-07-01
JP2020063508A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP5412851B2 (en) Steel for plastic molds and plastic molds
EP3135777B1 (en) Steel for mold and mold
EP2722406B1 (en) Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
EP3348660B1 (en) Steel for molds and molding tool
CN107177774B (en) Steel for mold and mold
KR20060125467A (en) Steel for a plastic molding die
KR20070090750A (en) Prehardened steel excellent in machinability and toughness, and process for producing same
KR100836699B1 (en) Die steel
JP2016017200A (en) Die steel and warm/hot-working die
KR102242475B1 (en) Steel for mold
EP3550051B1 (en) Steel for mold, mold, use of a steel for manufacturing a mold, and a process of manufacturing a mold
JP6191118B2 (en) Mold steel with excellent thermal conductivity, mirror polishability and toughness
JP6459539B2 (en) Mold steel and mold
JP7392330B2 (en) Mold steel and molds
US11377718B2 (en) Steel for mold
JP6866692B2 (en) Mold steel and mold
JP2004277818A (en) Free cutting steel for metal mold for molding plastic
JP2020070473A (en) Steel for mold, and mold
JP5776959B2 (en) Die steel with excellent hot workability
JPH07278737A (en) Preharden steel for plastic molding and its production
JP2001220646A (en) Prehardened steel for plastic molding die
JPH03122252A (en) Steel for metal mold and metal mold
JP2021038443A (en) Die steel and die
JP2016069661A (en) Steel for mold and mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7392330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150