JP2000265232A - Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture - Google Patents

Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture

Info

Publication number
JP2000265232A
JP2000265232A JP11069411A JP6941199A JP2000265232A JP 2000265232 A JP2000265232 A JP 2000265232A JP 11069411 A JP11069411 A JP 11069411A JP 6941199 A JP6941199 A JP 6941199A JP 2000265232 A JP2000265232 A JP 2000265232A
Authority
JP
Japan
Prior art keywords
aluminum alloy
forging
weight
hours
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11069411A
Other languages
Japanese (ja)
Other versions
JP3552577B2 (en
Inventor
Hajime Kamio
一 神尾
Kenji Tsuchiya
健二 土屋
Tatsu Yamada
達 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP06941199A priority Critical patent/JP3552577B2/en
Publication of JP2000265232A publication Critical patent/JP2000265232A/en
Application granted granted Critical
Publication of JP3552577B2 publication Critical patent/JP3552577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F2200/00Manufacturing
    • F02F2200/04Forging of engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy piston exhibiting excellent fatigue strength even in a temperature region as high as 200 to 250 deg.C. SOLUTION: After forging, this aluminum alloy piston has a composition containing 11-13% Si, 0.2-1.2% Fe, 3.5-4.5% Cu, 0.2-0.5% Mn, 0.3-1.0% Mg, 0.01-0.2% Ti, 0.0002-0.02% B, 0.005-0.02%s P, and Ca in an amount controlled to <=0.005%. The aluminum alloy piston has a forged structure in which Si and an intermetallic compound both crystallized out at the time of casting are uniformly dispersed, in 5-35 μm average grain size, in a matrix after forging and gas content is controlled to <=0.25 cc/100 g-Al. Further, the average number of inclusions is controlled to <=0.01 piece/cm2 by K10 value in a stage of an ingot, and forming is performed by forging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種内燃機関に使用さ
れ、高温疲労強度及び耐摩耗性に優れたアルミニウム合
金製ピストン及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piston made of an aluminum alloy which is used in various internal combustion engines and has excellent high-temperature fatigue strength and wear resistance, and a method for producing the piston.

【0002】[0002]

【従来技術及び問題点】2輪車に代表される車輌搭載用
のエンジンは、軽量性が要求されることからアルミニウ
ム合金製のエンジンが使用されている。エンジン部品で
あるシリンダケース,ピストン等は、高温強度及び耐熱
性に優れたアルミニウム合金を鋳造,鍛造等で製造して
いる。最近では、地球環境保護の観点から車輌の軽量化
及び燃費の改善が強く要求されている。そのため、エン
ジン部品に使用されるアルミニウム合金製ピストンとし
ても、より軽量で、より高温燃焼に耐える材質が望まれ
ている。要求特性を満足させる上では、薄肉化や品質安
定性の面から鍛造製ピストンが有望視されている。とこ
ろが、現在市場に出ている鍛造製ピストンは、200〜
250℃の高温域になると疲労強度が著しく低下する。
アルミニウム合金粉末を用いた粉末鍛造ピストンでは、
200〜250℃の高温域でも十分な高温強度を維持す
る。しかし、粉末鍛造材は、溶製材に比較すると材料費
が高く、鍛造成形性も悪いために複雑形状のピストンに
は加工できない。
2. Description of the Related Art As an engine mounted on a vehicle represented by a motorcycle, an engine made of an aluminum alloy is used because it is required to be lightweight. Cylinder cases, pistons, and the like, which are engine parts, are manufactured by casting, forging, or the like of an aluminum alloy having excellent high-temperature strength and heat resistance. Recently, there has been a strong demand for reducing the weight of vehicles and improving fuel efficiency from the viewpoint of protecting the global environment. Therefore, a material that is lighter and more resistant to high-temperature combustion is also desired for an aluminum alloy piston used for an engine component. In order to satisfy the required characteristics, forged pistons are expected to be promising in terms of thinning and quality stability. However, the forged pistons currently on the market are 200-
In the high temperature range of 250 ° C., the fatigue strength is significantly reduced.
In a powder forged piston using aluminum alloy powder,
Sufficient high-temperature strength is maintained even in a high-temperature range of 200 to 250 ° C. However, powder forgings cannot be processed into complex-shaped pistons because of their higher material costs compared to ingots and poor forgeability.

【0003】[0003]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、高温疲労強度に
有害な影響を及ぼす含有ガス量及び介在物を低減し、組
織的にも高融点晶出物を多量にマトリックスに均一分散
させることにより、200〜250℃の高温域において
も従来材に比較して優れた高温疲労強度をもち、鍛造性
にも優れたアルミニウム合金製ピストンを得ることを目
的とする。本発明のアルミニウム合金製ピストンは、そ
の目的を達成するため、鍛造後にSi:11〜13重量
%,Fe:0.2〜1.2重量%,Cu:3.5〜4.
5重量%,Mn:0.2〜0.5重量%,Mg:0.3
〜1.0重量%,Ti:0.01〜0.2重量%,B:
0.0002〜0.02重量%,P:0.005〜0.
02重量%を含み、Caを0.005重量%以下に規制
し、残部が実質的にAlの組成をもち、鋳造時に晶出し
たSi及び金属間化合物が鍛造後に平均粒径5〜35μ
mでマトリックスに均一分散し、ガス含有量が0.25
cc/100g−Al以下に規制された鍛造組織を持
ち、鋳塊段階で介在物平均個数がK10値で0.01個/
cm2 以下に規制されており、鍛造加工で成形されてい
ることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem. The present invention reduces the content of gas and inclusions which have a detrimental effect on the high-temperature fatigue strength, and provides a systematic method. In addition, by dispersing a large amount of the high melting point crystallized material uniformly in the matrix, it has excellent high-temperature fatigue strength compared to conventional materials even in the high temperature range of 200 to 250 ° C, and is excellent in forgeability. The aim is to get a piston. In order to achieve the object, the aluminum alloy piston of the present invention has, after forging, Si: 11 to 13% by weight, Fe: 0.2 to 1.2% by weight, Cu: 3.5 to 4.0.
5% by weight, Mn: 0.2-0.5% by weight, Mg: 0.3
To 1.0% by weight, Ti: 0.01 to 0.2% by weight, B:
0.0002-0.02% by weight, P: 0.005-0.
Contains 0.2% by weight, Ca is controlled to 0.005% by weight or less, and the balance substantially has a composition of Al, and Si and intermetallic compounds crystallized at the time of casting have an average particle size of 5 to 35 μm after forging.
m uniformly dispersed in the matrix, the gas content was 0.25
has been forged tissue restricted below cc / 100 g-Al, inclusions average number in the ingot stage 0.01 or at K 10 value /
cm 2 or less, and is characterized by being formed by forging.

【0004】このアルミニウム合金製ピストンは、成分
調整されたアルミニウム合金溶湯を微細化処理した後、
0.05〜0.20g/100g−AlのArガスを溶
湯温度750〜800℃のアルミニウム合金溶湯に0.
5〜1.5時間かけて吹き込んでアルミニウム合金溶湯
を脱ガスし、アルミニウム合金溶湯を750〜800℃
の温度域に45分以上保持して介在物を浮上分離させ、
脱滓した後、アルミニウム合金溶湯を鋳塊に連続鋳造
し、490〜510℃×3〜5時間の均質化処理を施
し、200℃/時以上の冷却速度で冷却し、冷却された
鋳塊を鍛造用スライスに切断し、400〜500℃に加
熱した後、所定形状に鍛造加工することにより製造され
る。490〜510℃×3〜5時間の溶体化処理を施し
た後、水焼入れし、160〜180℃×6〜10時間の
時効処理を鍛造品に施すとき、Mg2Si,Al2 Cu
等の析出により必要強度が付与される。また、鍛造後に
190〜200℃×5〜7時間の時効処理を施すことも
できる。
[0004] This aluminum alloy piston is made by refining the aluminum alloy melt whose components have been adjusted,
Ar gas of 0.05 to 0.20 g / 100 g-Al is added to a molten aluminum alloy having a molten metal temperature of 750 to 800 ° C.
The aluminum alloy melt is degassed by blowing over 5 to 1.5 hours, and the aluminum alloy melt is heated to 750 to 800 ° C.
Hold for at least 45 minutes in the temperature range of
After deslagging, the molten aluminum alloy is continuously cast into an ingot, subjected to a homogenization treatment of 490 to 510 ° C. × 3 to 5 hours, and cooled at a cooling rate of 200 ° C./hour or more. It is manufactured by cutting into slices for forging, heating to 400 to 500 ° C., and forging into a predetermined shape. After performing solution treatment at 490 to 510 ° C. × 3 to 5 hours, quenching with water, and performing aging treatment at 160 to 180 ° C. × 6 to 10 hours on the forged product, Mg 2 Si, Al 2 Cu
The required strength is imparted by the precipitation of the like. After forging, aging treatment at 190 to 200 ° C. for 5 to 7 hours can be performed.

【0005】[0005]

【作用】アルミニウム合金製ピストンの高温強度を上昇
させるためには、高温強度を向上させ、疲労破壊の核と
なる含有ガス及び介在物を少なくすることが必要であ
る。本発明では、鋳造時に晶出するFe,Cu,Si等
の金属間化合物及び初晶Siを鍛造によって適度なサイ
ズに制御し且つマトリックスに均一分散させることによ
り、マトリックスのアルミニウム固溶体の軟化を抑えな
がら高温強度を向上させている。また、初晶Siを適度
なサイズに制御し、微細な共晶Siをなるべく大きく晶
出させることにより、耐摩耗性を改善している。以下、
本発明で特定した各条件を説明する。
In order to increase the high-temperature strength of an aluminum alloy piston, it is necessary to improve the high-temperature strength and to reduce the content of gas and inclusions that are the core of fatigue fracture. In the present invention, the intermetallic compounds such as Fe, Cu, and Si, which are crystallized at the time of casting, and primary crystal Si are controlled to an appropriate size by forging and uniformly dispersed in the matrix, thereby suppressing the softening of the aluminum solid solution of the matrix. Improves high temperature strength. The wear resistance is improved by controlling the primary crystal Si to an appropriate size and crystallizing the fine eutectic Si as large as possible. Less than,
Each condition specified in the present invention will be described.

【0006】[鍛造後の成分・組成] Si:11〜13重量% 耐摩耗性,耐熱性に有効な合金成分であり、高温域にお
ける熱膨張係数を低下させる作用も呈する。また。時効
処理によってMg2 Siとして析出し、合金材料の機械
的強度を向上させる。しかし、Si含有量が13重量%
を超えると、連続鋳造時の冷却速度を100℃/秒以上
に早くしても粒径が50μmを超える粗大な初晶Siが
発生し易くなる。粗大な初晶Siは、鍛造で砕かれた後
でも依然として大きな形状として残るため疲労破壊の核
となり、室温及び高温域での機械的強度及び疲労強度を
低下させる原因となる。しかし、11重量%に満たない
Si含有量では、強度及び耐摩耗性が不足する。 Fe:0.2〜1.2重量% 融点の高いAl−Fe系又はAl−Fe−Si系の金属
間化合物は、合金材料が200℃を超える高温域に曝さ
れたとき、引張強さ及び疲労強度を高める作用を呈し、
Fe含有量0.2重量%以上で効果が顕著になる。しか
し、1.2重量%を超える多量のFeが含まれると、疲
労破壊の核となる粗大な金属間化合物の晶出を促進さ
せ、伸び,鍛造成形性,靭性に有害な影響を及ぼす。
[Component / composition after forging] Si: 11 to 13% by weight An alloy component effective for abrasion resistance and heat resistance, and also has a function of lowering the thermal expansion coefficient in a high temperature range. Also. Precipitates as Mg 2 Si by aging treatment and improves the mechanical strength of the alloy material. However, the Si content is 13% by weight.
If the cooling rate exceeds 100 ° C./sec or more during the continuous casting, coarse primary crystal Si having a particle size exceeding 50 μm tends to be generated. Coarse primary crystal Si remains in a large shape even after being crushed by forging and becomes a nucleus of fatigue fracture, which causes a decrease in mechanical strength and fatigue strength at room temperature and high temperature. However, if the Si content is less than 11% by weight, strength and wear resistance are insufficient. Fe: 0.2 to 1.2% by weight Al-Fe-based or Al-Fe-Si-based intermetallic compound having a high melting point has a high tensile strength and a low tensile strength when the alloy material is exposed to a high temperature region exceeding 200 ° C. Exhibits the effect of increasing fatigue strength,
The effect becomes significant when the Fe content is 0.2% by weight or more. However, when a large amount of Fe exceeding 1.2% by weight is contained, crystallization of a coarse intermetallic compound serving as a nucleus of fatigue fracture is promoted, which has a detrimental effect on elongation, forging formability, and toughness.

【0007】Cu:3.5〜4.5重量% マトリックスを固溶強化する合金成分であり、3.5重
量%以上の含有量でCuの添加効果が顕著になる。固溶
したCuは、時効処理によってAl2 Cuとして析出
し、合金材料の強度を向上させる作用も呈する。しか
し、Cuによる引張強さ向上効果は4.5重量%で飽和
する。鋳造時に晶出したAl2 Cuは、硬度が高いので
マトリックスに分散して高温強度を上昇させるが、4.
5重量%を超える過剰量のCuが含まれると、疲労破壊
の核となる粗大なAl2 Cuが晶出し易くなり、鍛造成
形性及び耐食性も低下する。 Mn:0.2〜0.5重量% Al−Mn系化合物として晶出し、耐熱性や耐摩耗性を
改善する作用を呈する。Al−Mn系化合物は、晶出時
に針状のAl−Fe系化合物に作用してAl−Fe−M
n系の塊状化合物に形態変化させ、靭性の低下を抑制す
る。このような作用・効果は、0.2重量%以上のMn
含有量で顕著になる。しかし、0.5重量%を超える過
剰量のMnが含まれると、Al−Si−Fe−Mn系の
粗大な化合物が晶出し、押出,鍛造等の塑性加工時に割
れを誘発させる原因となり、強度や伸びの低下にも繋が
る。粗大なAl−Si−Fe−Mn系化合物は、疲労破
壊の核となるので常温及び高温疲労強度にとっても有害
である。
Cu: 3.5-4.5% by weight An alloy component for solid solution strengthening of the matrix. When the content is 3.5% by weight or more, the effect of adding Cu becomes remarkable. The solid solution Cu precipitates as Al 2 Cu by the aging treatment, and also has an effect of improving the strength of the alloy material. However, the effect of improving the tensile strength by Cu is saturated at 4.5% by weight. 3. Al 2 Cu crystallized during casting has a high hardness and is dispersed in a matrix to increase the high-temperature strength.
When an excessive amount of Cu exceeding 5% by weight is included, coarse Al 2 Cu, which is a nucleus of fatigue fracture, tends to crystallize, and forgeability and corrosion resistance are also reduced. Mn: 0.2 to 0.5% by weight Crystallizes as an Al-Mn-based compound and exhibits an effect of improving heat resistance and wear resistance. The Al-Mn-based compound acts on the acicular Al-Fe-based compound at the time of crystallization to form Al-Fe-M.
It changes the form into an n-type bulk compound and suppresses a decrease in toughness. Such an operation and effect can be achieved by using Mn of 0.2% by weight or more.
It becomes remarkable in the content. However, if an excessive amount of Mn exceeding 0.5% by weight is contained, a coarse compound of the Al-Si-Fe-Mn system is crystallized, which causes cracks during plastic working such as extrusion and forging, and causes strength. And a decrease in growth. Coarse Al-Si-Fe-Mn compounds become nuclei for fatigue fracture and are therefore harmful to normal temperature and high temperature fatigue strength.

【0008】Mg:0.3〜1.0重量% 時効処理でMg2 Siとして析出し、合金材料の機械的
強度を上昇させる。強度向上効果は、0.3重量%以上
のMg含有量でみられ、Mg含有量の増量に応じて大き
くなる。しかし、1.0重量%を超える過剰量のMgが
含まれると、伸びの低下が著しく、塑性加工性も低下す
る。 Ti:0.01〜0.2重量% 鋳造結晶粒を微細化するため、Al−Ti−B合金とし
て添加される合金成分である。鋳造組織の微細化効果
は、0.01重量%以上のTi含有量で顕著になる。鋳
造結晶粒を微細化することにより、融点が高い金属間化
合物が網目状となって粒界に晶出する。網目状の金属間
化合物は、後続する鍛造加工によって細かく砕かれて分
散し、耐熱性及び高温疲労強度を向上させる。しかし、
0.2重量%を超える過剰量のTiを添加すると、Al
Ti3 の粗大な針状化合物が晶出して疲労破壊の核とな
り易く、強度及び伸びも低下する。
Mg: 0.3 to 1.0% by weight Precipitates as Mg 2 Si by aging treatment to increase the mechanical strength of the alloy material. The strength improving effect is observed at a Mg content of 0.3% by weight or more, and increases as the Mg content increases. However, when an excessive amount of Mg exceeding 1.0% by weight is contained, the elongation is significantly reduced and the plastic workability is also reduced. Ti: 0.01 to 0.2% by weight An alloy component added as an Al-Ti-B alloy for refining cast crystal grains. The effect of refining the cast structure becomes significant at a Ti content of 0.01% by weight or more. By refining the cast crystal grains, the intermetallic compound having a high melting point becomes a network and crystallizes at the grain boundaries. The network-like intermetallic compound is finely crushed and dispersed by the subsequent forging, and improves heat resistance and high-temperature fatigue strength. But,
When an excessive amount of Ti exceeding 0.2% by weight is added, Al
A coarse needle-like compound of Ti 3 is easily crystallized and becomes a nucleus of fatigue fracture, and the strength and elongation are also reduced.

【0009】B:0.0002〜0.02重量% 微細化剤として、Tiと共にアルミニウム合金溶湯に添
加される成分である。しかし、多量のBはTi,V等と
結合して疲労破壊の核となる粗大な金属間化合物を生成
し易いことから、本発明では微細化効果との兼ね合いで
B含有量を0.0002〜0.02重量%の範囲に設定
した。 P:0.005〜0.02重量% Si含有量13重量%以上の過共晶合金に添加される初
晶Siの微細化剤として従来から使用されてきた成分で
あるが、P添加により共晶Siの粒径が大きくなる傾向
が示される。初晶Siの微細化は、0.005重量%以
上のP含有量で顕著になる。初晶Si及び共晶Siのサ
イズに及ぼすPの影響を種々調査・研究したところ、S
i含有量11〜13重量%の亜共晶組成ではP添加によ
り初晶Siが微細化し、共晶Siが粗くなる結果、初晶
Siと共晶Siの粒径差が小さくなり、分布状態も均一
化されることを知見した。初晶Si及び共晶Siの均一
分散は、高温域における機械的強度,疲労強度,耐摩耗
性に有効である。しかし、P含有量が0.02重量%を
超えると、溶湯にPの酸化物が混入し、疲労強度に有害
な介在物が増加する傾向を示す。 Ca:0.005重量%以下 共晶Siを微細化する作用を呈する成分である。本発明
では、共晶Siを大きくして耐摩耗性に寄与させること
から、共晶Siの微細化に影響を与えないようにCa含
有量の上限を0.005重量%に規定した。また、Ca
含有量を低減しているので、初晶Siを微細化するPの
作用が効果的に発現される。
B: 0.0002 to 0.02% by weight A component added to the molten aluminum alloy together with Ti as a refining agent. However, since a large amount of B is likely to combine with Ti, V, etc. to form a coarse intermetallic compound serving as a nucleus of fatigue fracture, in the present invention, the B content is set to 0.0002 to 0.0002 in consideration of the fineness effect. It was set in the range of 0.02% by weight. P: 0.005 to 0.02% by weight A component conventionally used as a refiner of primary crystal Si added to a hypereutectic alloy having a Si content of 13% by weight or more. There is a tendency that the grain size of crystalline Si increases. The refinement of primary crystal Si becomes remarkable at a P content of 0.005% by weight or more. Various investigations and studies on the effect of P on the size of primary and eutectic Si revealed that S
In the hypoeutectic composition having an i content of 11 to 13% by weight, the addition of P makes the primary crystal Si finer and coarsens the eutectic Si, so that the particle size difference between the primary Si and the eutectic Si becomes smaller, and the distribution state also It was found that it was homogenized. Uniform dispersion of primary crystal Si and eutectic Si is effective for mechanical strength, fatigue strength and wear resistance in a high temperature range. However, if the P content exceeds 0.02% by weight, oxides of P are mixed in the molten metal and inclusions harmful to fatigue strength tend to increase. Ca: 0.005% by weight or less Ca is a component exhibiting an action of refining eutectic Si. In the present invention, since the eutectic Si is increased to contribute to wear resistance, the upper limit of the Ca content is set to 0.005% by weight so as not to affect the miniaturization of the eutectic Si. In addition, Ca
Since the content is reduced, the action of P for making primary crystal Si fine is effectively exhibited.

【0010】[脱ガス処理]鍛造加工されたアルミニウ
ム合金製ピストンが多量のガスを含有していると、ガス
起因のポロシティが鍛造によって潰されているとはい
え、200〜250℃の高温域で使用しているとき含有
ガスが一個所に集合して疲労クラックの核になり易い。
高温域で使用されるアルミニウム合金製ピストンの要求
特性を考慮すると、ガス含有量0.25cc/100g
−Al以下が有効であることが本発明者等による図1に
示す実験結果から判った。ガス含有量を下げるため、本
発明では、溶湯段階で溶融アルミニウム合金溶湯に粘性
を生じさせないArガスを吹き込むことにより十分脱ガ
スする。この点、N2 ガスは、溶湯の粘性を高くするの
で好ましくない。Arガスの吹込みに際しては、750
〜800℃の温度域にアルミニウム合金溶湯を維持する
ことが重要である。溶湯温度が750℃を下回ると溶湯
に粘性が生じ、吹き込まれたArガスが抜けにくくな
る。逆に800℃を超える溶湯温度では、炉の寿命が短
くなる。Arガス吹込みによる脱ガスとしては、脱ガス
ユニットを備えた鋳造設備を使用し、たとえば金型に至
る樋を流れる溶湯等に対し鋳造時に連続脱ガスする方式
も採用できる。Arガスの吹込みには、吹き込まれたA
rガスを微細な気泡として溶湯中に分散させるため、回
転ノズルを使用した噴射方式が好ましい。Arガスの微
細気泡は、溶湯に含有されているH等のガス成分を吸着
し、溶湯から浮上分離する。溶湯を効果的に脱ガスする
ため、0.05〜0.20g/100g−AlのArガ
スを0.5〜1.5時間かけて吹き込むことが必要であ
る。既定値未満のArガス量及び吹込み時間ではArガ
ス吹込みによる脱ガス効果が不充分であり、逆にArガ
ス量及び吹込み時間が既定値を超えても脱ガス効果が飽
和する。
[Degassing] When the forged aluminum alloy piston contains a large amount of gas, the porosity caused by the gas is crushed by forging, but the porosity caused by the gas is high in a high temperature range of 200 to 250 ° C. When used, the contained gas tends to gather at one location and become the core of fatigue cracks.
Considering the required characteristics of an aluminum alloy piston used in a high temperature range, the gas content is 0.25 cc / 100 g.
It was found from the experimental results shown in FIG. 1 by the present inventors that -Al and below are effective. In order to reduce the gas content, in the present invention, the molten aluminum alloy is sufficiently degassed by blowing Ar gas which does not cause viscosity in the molten aluminum alloy in the molten metal stage. In this regard, N 2 gas is not preferable because it increases the viscosity of the molten metal. When blowing Ar gas, 750
It is important to maintain the molten aluminum alloy in the temperature range of -800 ° C. When the temperature of the molten metal is lower than 750 ° C., the molten metal becomes viscous, and the blown Ar gas becomes difficult to escape. Conversely, at a melt temperature exceeding 800 ° C., the life of the furnace is shortened. As the degassing by blowing Ar gas, a method of using a casting facility equipped with a degassing unit, for example, a method of continuously degassing a molten metal or the like flowing through a gutter to a mold at the time of casting can also be adopted. Ar gas is blown into A
In order to disperse the r gas as fine bubbles in the molten metal, an injection method using a rotary nozzle is preferable. Fine bubbles of Ar gas adsorb gas components such as H contained in the molten metal and float and separate from the molten metal. In order to effectively degas the molten metal, it is necessary to blow Ar gas of 0.05 to 0.20 g / 100 g-Al over 0.5 to 1.5 hours. If the Ar gas amount and the blowing time are less than the predetermined values, the degassing effect due to the Ar gas blowing is insufficient. Conversely, if the Ar gas amount and the blowing time exceed the predetermined values, the degassing effect is saturated.

【0011】[溶湯の保持処理]脱ガス処理が終了した
溶湯を750〜800℃の温度域で45分以上保持する
とき、Al23 ,他の酸化物,レンガ屑,工具の保護
剤等の介在物が溶湯から浮上分離する。介在物は、溶湯
温度が高いほど溶湯から分離し易くなる。750℃未満
の溶湯温度では、溶湯の粘性が大きく、介在物が浮上し
にくい。また、45分に達しない保持時間では、介在物
の浮上が十分に進行しない。しかし、800℃を超える
溶湯温度では、炉壁耐火物の熱負荷が大きく、炉の寿命
が短くなる。保持炉で脱ガス・除滓された溶湯は、樋を
経て鋳型に注入される。樋を流れる溶湯を連続的に脱ガ
スし、フィルタ装置を通過させ、更に溶湯に浮遊してい
る介在物を堰,フィルタカートリッジ等でトラップする
とき、清浄度が一層高くなった溶湯が鋳型に注入され、
介在物の少ない鋳塊が得られる。
[Holding treatment of molten metal] When holding the degassed molten metal in a temperature range of 750 to 800 ° C. for 45 minutes or more, Al 2 O 3 , other oxides, brick debris, tool protective agent, etc. Inclusions float and separate from the molten metal. Inclusions tend to separate from the molten metal as the temperature of the molten metal increases. At a melt temperature of less than 750 ° C., the viscosity of the melt is large and inclusions are unlikely to float. If the holding time does not reach 45 minutes, the floating of the inclusions does not sufficiently proceed. However, at a melt temperature exceeding 800 ° C., the thermal load on the furnace wall refractory is large, and the life of the furnace is shortened. The molten metal that has been degassed and removed in the holding furnace is injected into the mold through a gutter. When the molten metal flowing through the gutter is continuously degassed, passed through the filter device, and inclusions floating in the molten metal are trapped by weirs, filter cartridges, etc., the molten metal with higher cleanliness is injected into the mold. And
An ingot with few inclusions can be obtained.

【0012】[鋳造]清浄化された溶湯は、鋳型内に注
入され、所定形状の鋳塊に連続鋳造される。鋳造方式と
しては、デンドライトアームスペーシングを小さく(好
ましくは50μm以下)するため溶湯の冷却速度を速め
た方式、具体的にはDC鋳造が採用される。DC鋳造
は、竪型鋳造又は横型鋳造の何れであっても良い。本発
明で使用するアルミニウム合金は、Ti,Bを微細化剤
として含んでいるので、微細な鋳造結晶粒をもつ鋳塊と
なる。しかし、本発明で規定した合金組成では鋳造組織
が柱状晶になりやすいため、微細化処理によって等軸晶
を可能な限り増加させることが好ましい。デンドライト
アームスペーシングが小さく鋳造結晶粒が微細なため、
融点の高いAl−Fe系,Al−Cu系,Al−Mn
系,Al−Si−Fe(Mn)系等の金属間化合物は、
網目状で細かく分散して鋳造結晶粒界及びデンドライト
アーム境界に晶出する。晶出した金属間化合物が後工程
の押出又は鍛造時に更に細かく砕かれてマトリックスに
分散するため、鍛造品の耐熱強度が向上する。
[Casting] The cleaned molten metal is poured into a mold and continuously cast into an ingot of a predetermined shape. As a casting method, a method in which the cooling rate of the molten metal is increased in order to reduce the dendrite arm spacing (preferably 50 μm or less), specifically, DC casting is employed. DC casting may be either vertical casting or horizontal casting. Since the aluminum alloy used in the present invention contains Ti and B as a refining agent, it becomes an ingot having fine cast crystal grains. However, in the alloy composition specified in the present invention, the cast structure is likely to be columnar, so that it is preferable to increase the number of equiaxed crystals as much as possible by the refinement treatment. Because the dendrite arm spacing is small and the cast crystal grains are fine,
Al-Fe, Al-Cu, Al-Mn with high melting point
Compounds such as Al-Si-Fe (Mn) -based compounds
It is finely dispersed in a network and crystallizes at the boundaries of the cast crystal grains and the boundaries of the dendrite arms. Since the crystallized intermetallic compound is further finely crushed and dispersed in the matrix at the time of extrusion or forging in the subsequent step, the heat resistance of the forged product is improved.

【0013】鋳塊は、脱ガス,保持処理により介在物を
低減したアルミニウム合金溶湯から得られたものである
ため、持ち込まれた介在物が極めて少なくなっている。
通常、鍛造品に混在する介在物は、0.1〜3mmの長
さをもち、10倍ルーペで鋳塊の破面を調査すると、黒
みがかって観察される。そこで、本発明者は、鋳塊の破
面を10倍ルーペで観察し、カウントされた介在物の個
数を単位面積当りに換算してK10値を求めた。そして、
10値と疲労強度との関係を調査したところ、K10値が
0.01個/cm2 以下になると、疲労強度が顕著に向
上することが判った。これに対し、K10値が0.01個
/cm2 を超えると、介在物が疲労クラックの核になり
やすく、ピストンに要求される高温疲労強度が得られな
い。鋳塊から押出工程を経て小径の丸棒を作り、丸棒か
ら切り出されたスライスを鍛造する。この場合には、最
終形態であるピストンの形状を考慮すると、直径100
〜400mmの鋳塊が使用される。或いは、鋳塊表面の
黒皮を面削で除去した後、押出工程を経ずに鋳塊からス
ライスを切り出し、鍛造することも可能である。この場
合には、直径50〜100mmの鋳塊が使用される。
[0013] Since the ingot is obtained from an aluminum alloy melt in which inclusions have been reduced by degassing and holding treatment, the amount of inclusions brought in is extremely small.
Usually, the inclusions mixed in the forged product have a length of 0.1 to 3 mm, and when the fracture surface of the ingot is inspected with a 10-fold loupe, it is observed to be blackish. Therefore, the present inventor has a fracture surface of the ingot was observed in 10-fold loupe was determined K 10 values in terms of the number of counted inclusions per unit area. And
When checking the relationship between the K 10 value and the fatigue strength, the K 10 value is 0.01 pieces / cm 2 or less, the fatigue strength is found to be significantly improved. In contrast, when K 10 value exceeds 0.01 pieces / cm 2, inclusions tends to be the nucleus of fatigue cracks, no high-temperature fatigue strength required for the piston is obtained. A small diameter round bar is made from the ingot through an extrusion process, and a slice cut out from the round bar is forged. In this case, considering the final shape of the piston, the diameter is 100 mm.
An ingot of ~ 400 mm is used. Alternatively, after removing black scale on the surface of the ingot by facing, it is also possible to cut out a slice from the ingot without going through an extrusion step and to forge. In this case, an ingot having a diameter of 50 to 100 mm is used.

【0014】[均質化処理]得られた鋳塊は、Si,M
g,Cuをマトリックスに十分固溶させて時効処理硬化
を上げるため、490〜510℃×3〜5時間で均質化
処理される。490℃未満の加熱温度や3時間に達しな
い加熱時間では、固溶化が十分に進行せず、Si,M
g,Cu等の有効量が時効処理時に不足しがちになる。
しかし、510℃を超える加熱温度では部分的に融解
(バーニング)する虞れがあり、5時間を超える長時間
加熱では時間に見合った効果の上昇が見られず経済的で
ない。均質化処理された鋳塊は、200℃/時以上の冷
却速度で冷却される。これにより、Si,Mg,Cuの
十分な量が固溶状態に維持され、時効処理時に強度付与
に有効な析出量が確保される。冷却速度が200℃/時
を下回ると、冷却過程でMg2 Si,Al2 Cu等が析
出し易く、Si,Mg,Cu等の有効量が時効処理時に
不足しがちになる。
[Homogenization Treatment] The obtained ingot is made of Si, M
In order to sufficiently dissolve g and Cu in the matrix to increase aging hardening, homogenization treatment is performed at 490 to 510 ° C for 3 to 5 hours. If the heating temperature is less than 490 ° C. or the heating time does not reach 3 hours, solid solution does not sufficiently proceed, and Si, M
Effective amounts such as g and Cu tend to be insufficient during the aging treatment.
However, if the heating temperature is higher than 510 ° C., there is a risk of partial melting (burning), and if the heating time is longer than 5 hours, the effect corresponding to the time is not increased and it is not economical. The homogenized ingot is cooled at a cooling rate of 200 ° C./hour or more. As a result, a sufficient amount of Si, Mg, and Cu is maintained in a solid solution state, and a precipitation amount effective for imparting strength during aging treatment is secured. When the cooling rate is lower than 200 ° C./hour, Mg 2 Si, Al 2 Cu and the like are liable to precipitate in the cooling process, and the effective amount of Si, Mg, Cu and the like tends to be insufficient during the aging treatment.

【0015】[鍛造]均質化処理が終了した直径100
〜400mmの鋳塊は、押出用ビレットに切断され、鍛
造用丸棒に押し出された後、所定のスライスに切り出さ
れる。直径が50〜100mmの鋳塊では、押出工程を
経ることなく、面削により鋳塊表面の黒皮を除去した
後、鍛造用スライスに切り出される。黒皮を除去するこ
となく、鋳塊から切り出したスライスを鍛造に用いるこ
とも可能である。この場合、鍛造方向に平行な雌型の内
面と雄型のポンチ部外面との間にメタル溜り部を設けた
金型(特開平10−118735号公報)を使用する
と、鍛造品への黒皮の混入が防止される。鍛造用スライ
スは、鍛造に先立って400〜500℃に加熱され、熱
間鍛造される。400〜500℃の温度域に鍛造用スラ
イスを加熱するとき、鍛造金型内でメタルのスムーズな
流動が促進され、鍛造時の圧力も冷間鍛造に比較して小
さくて済む。
[Forging] Diameter 100 after homogenization
An ingot of ~ 400 mm is cut into an extruded billet, extruded into a round bar for forging, and then cut into predetermined slices. Ingots with a diameter of 50 to 100 mm are cut into forging slices after removing black scale on the surface of the ingot by face milling without going through an extrusion step. A slice cut from the ingot can be used for forging without removing black scale. In this case, if a metal mold having a metal reservoir between an inner surface of a female mold parallel to a forging direction and an outer surface of a male punch (Japanese Patent Laid-Open No. Hei 10-118735) is used, black scale on a forged product is obtained. Contamination is prevented. The forging slice is heated to 400 to 500 ° C. and hot forged prior to forging. When the forging slice is heated to the temperature range of 400 to 500 ° C., the smooth flow of the metal in the forging die is promoted, and the pressure during forging can be smaller than that of cold forging.

【0016】加熱された鍛造用スライスを鍛造金型にセ
ットし、所定形状に鍛造加工する。鍛造により材料が練
り上げられ、製品に靭性が付与される。また、鋳造時に
生成した初晶Si,金属間化合物等の網目状晶出物が鍛
造により細かく砕かれてマトリックスに分散するので耐
熱性が向上する。なかでも、初晶Si及び金属間化合物
を鍛造により平均粒径5〜35μmに破砕してマトリッ
クスに均一分散させると、疲労破壊の核となる初晶Si
等の晶出物がなくなるので、常温及び高温疲労強度が改
善される。鍛造後の組織に平均粒径35μmを超える晶
出物が分布していると、疲労クラックの核になり易い。
鍛造により大きな初晶Siが平均粒径5〜35μmのサ
イズに砕かれることも、耐摩耗性の改善に有効である。
鍛造方式としては、固定したスライスにマンドレルを押
し付けてメタルをマンドレルに沿って流動させる後方押
出,固定したマンドレルにスライスを押し付けてメタル
をマンドレルに沿って流動させる前方押出の何れも採用
可能である。
The heated forging slice is set in a forging die and forged into a predetermined shape. The material is kneaded by forging to impart toughness to the product. In addition, network-like crystallized substances such as primary crystal Si and intermetallic compounds generated during casting are finely crushed by forging and dispersed in a matrix, so that heat resistance is improved. Above all, when primary crystal Si and intermetallic compounds are crushed by forging to an average particle size of 5 to 35 μm and uniformly dispersed in a matrix, primary crystal Si which becomes a nucleus of fatigue fracture is obtained.
Since the crystallized substances such as the above are eliminated, the ordinary temperature and high temperature fatigue strength are improved. If crystallized substances having an average grain size of more than 35 μm are distributed in the structure after forging, they tend to become fatigue crack nuclei.
Forging large primary crystal Si into a size having an average particle size of 5 to 35 μm by forging is also effective for improving wear resistance.
As the forging method, any of rear extrusion in which a mandrel is pressed against a fixed slice and metal flows along the mandrel, and front extrusion in which the slice is pressed against a fixed mandrel and metal flows along the mandrel can be used.

【0017】[熱処理]鍛造品は、ピストンとして要求
される機械的性質を付与するため、490〜510℃×
3〜5時間の溶体化処理を施した後、水焼入れし、16
0〜180℃×6〜10時間の時効処理される。溶体化
処理では、Mg,Si,Cu等をマトリックスに十分固
溶させる。水焼入れによりMg,Si,Cu等の固溶状
態を常温まで維持し、時効処理によってMg2 Si,A
2 Cu等として析出させ、所定の強度を付与する。ま
た、鍛造品を寸法変化防止のため溶体化処理せずに19
0〜200℃×5〜7時間の時効処理を施し、強度を付
与することもできる。時効処理された鍛造品は、必要個
所が機械加工され、製品ピストンに仕上げられる。
[Heat treatment] The forged product is provided at 490-510 ° C ×
After performing a solution treatment for 3 to 5 hours, water quenching is carried out.
Aging treatment is performed at 0 to 180 ° C for 6 to 10 hours. In the solution treatment, Mg, Si, Cu, and the like are sufficiently dissolved in the matrix. The solid solution state of Mg, Si, Cu, etc. is maintained at room temperature by water quenching, and Mg 2 Si, A
Precipitates as l 2 Cu or the like to give a predetermined strength. Also, the forged product is not solution-treated to prevent dimensional change.
Aging treatment at 0 to 200 ° C. for 5 to 7 hours can be performed to impart strength. The forged product that has been aged is machined at the required points and finished into a product piston.

【0018】[0018]

【実施例】所定組成に成分調整したアルミニウム合金溶
湯を770℃に維持し、溶湯に浸漬した回転ノズルから
0.1g/100g−AlのArガスを40分噴射させ
て脱ガスした。次いで、溶湯を760℃に60分間保持
して介在物を浮上分離した後、直径86mm,長さ5m
の鋳塊に竪型DC鋳造した。鋳塊に500℃×4時間の
均質化処理を施し、冷却速度250℃/時でファンによ
り強制空冷した。冷却後の鋳塊表面を厚さ2mm面削
し、長さ21mmの鍛造用スライスを切り出した。概略
を図2に示す後方押出方式の鍛造装置に鍛造用スライス
1をセットした。鍛造に先立って、鍛造用スライス1を
460℃に加熱すると共に、ポンチを備えた下型2及び
金型3を200〜250℃に加熱した。下型2上の鍛造
用スライス1に上方からマンドレル4を押し込み、35
0トンの加圧力を鍛造用スライス1に加えた。マンドレ
ル4の先端が鍛造用スライス1に食い込み、メタルが矢
印Fで示すようにマンドレル4に沿って上方に流れた。
マンドレル4を所定位置まで降下させた後、マンドレル
4を引き抜くと同時に下型2に内蔵したポンチを上昇さ
せ、直径84mm,高さ47mmのピストン形状をもつ
鍛造品を金型3から取り出した。このときの据込み率
は、ヘッド部で76%であった。
EXAMPLE An aluminum alloy melt whose composition was adjusted to a predetermined composition was maintained at 770 ° C., and degassing was performed by injecting 0.1 g / 100 g-Al Ar gas for 40 minutes from a rotary nozzle immersed in the melt. Next, the molten metal was kept at 760 ° C. for 60 minutes to float and separate inclusions, and then the diameter was 86 mm and the length was 5 m.
Was subjected to vertical DC casting. The ingot was subjected to a homogenization treatment at 500 ° C. for 4 hours, and was forcedly cooled by a fan at a cooling rate of 250 ° C./hour. The surface of the ingot after cooling was 2 mm thick, and a forging slice having a length of 21 mm was cut out. The slice 1 for forging was set in a forging device of a backward extrusion system schematically shown in FIG. Prior to forging, the forging slice 1 was heated to 460 ° C, and the lower mold 2 and the mold 3 equipped with a punch were heated to 200 to 250 ° C. The mandrel 4 is pushed into the forging slice 1 on the lower mold 2 from above, and 35
A pressure of 0 ton was applied to forging slice 1. The tip of the mandrel 4 cut into the forging slice 1 and the metal flowed upward along the mandrel 4 as shown by the arrow F.
After lowering the mandrel 4 to a predetermined position, the mandrel 4 was pulled out and at the same time the punch incorporated in the lower mold 2 was raised, and a forged product having a piston shape with a diameter of 84 mm and a height of 47 mm was taken out of the mold 3. The upsetting ratio at this time was 76% in the head portion.

【0019】鍛造品に500℃×4時間の溶体化処理を
施し、水焼入れし、170℃×8時間で時効処理した。
時効処理後の組織を観察し、ガス含有量を測定すると共
に、機械的性質を調査した。なお、ガス含有量は、時効
処理後の鍛造品からサンプルを切り出し、ランズレー法
で測定した。介在物に関しては、鍛造品をハンマーで破
断しずらかったので、鋳造棒から切り出したスライスを
ハンマーで割り、破面を10倍ルーペで観察して介在物
の個数をカウントし、K10値を求めた。観察面積は、両
破面合せて20cm2 とした。得られたピストンの組成
を表1に示す。表中、比較合金A,Bは初晶SiをPで
微細化しなかった例であり、そのうち比較合金Aは共晶
SiをSbで微細化した。表2には、時効処理後にミク
ロ組織を観察した結果,ガス含有量を示す。表3には、
引張強さ及び疲労強度の測定結果を示す。
The forged product was subjected to a solution treatment at 500 ° C. × 4 hours, water-quenched, and aged at 170 ° C. × 8 hours.
The structure after the aging treatment was observed, the gas content was measured, and the mechanical properties were investigated. The gas content was measured by a Lansley method by cutting out a sample from the forged product after the aging treatment. Regarding inclusions, since Zuraka' cutaway forging with a hammer, dividing the slices cut from the cast bar with a hammer, fracture and were observed at 10-fold loupe counts the number of inclusions, determine the K 10 value Was. The observation area was 20 cm 2 for both fracture surfaces. Table 1 shows the composition of the obtained piston. In the table, Comparative Alloys A and B are examples in which primary crystal Si was not refined with P, and Comparative Alloy A in which eutectic Si was refined with Sb. Table 2 shows the gas content as a result of observing the microstructure after the aging treatment. In Table 3,
The measurement results of tensile strength and fatigue strength are shown.

【0020】表3から明らかなように、本発明品C〜F
は、比較品A,Bに比べて高温での引張強さ及び疲労強
度が大きくなっている。比較品Aは現状の鍛造ピストン
に相当する組成をもつが、Pで初晶Siを微細化してい
ないため、初晶Siの平均粒径が表2に示すように大き
く、共晶SiはSbで微細化されているため小さかっ
た。その結果、大きな初晶Siが疲労クラックの核とな
って作用し、高温疲労強度が劣る表3の結果となって現
れたものと推察される。しかも、比較品AはCu及びF
eの含有量が少ないため、本発明品に比較して高温強度
が劣っている。比較品BはCu,Mn,Tiの含有量が
少ないため、高融点晶出物の量が少なく、高温強度が低
い値を示している。しかも、Cuが極端に少ないため共
晶点からのズレが小さく、従って初晶Siが少なく疲労
強度も劣っていた。これに対し、本発明品C〜Gは、常
温及び高温の何れにおいても優れた引張強さ及び疲労強
度を示した。この機械的性質を表2の晶出物測定結果と
照らし合わせるとき、鍛造後の初晶Si,共晶Si及び
金属間化合物を適正サイズに制御することが機械的強
度,疲労強度及び耐熱性の向上に有効なことが判る。
As is clear from Table 3, the products C to F of the present invention
Has a higher tensile strength and a higher fatigue strength at high temperatures than the comparative products A and B. Comparative product A has a composition corresponding to the current forged piston. However, since primary crystal Si is not refined by P, the average particle diameter of primary crystal Si is large as shown in Table 2, and eutectic Si is composed of Sb. It was small due to miniaturization. As a result, it is presumed that the large primary crystal Si acts as a nucleus of fatigue cracks and appears as a result of Table 3 inferior in high-temperature fatigue strength. Moreover, the comparative product A is Cu and F
Since the content of e is small, the high-temperature strength is inferior to the product of the present invention. The comparative product B has a low content of Cu, Mn, and Ti, so that the amount of the high-melting-point crystallized product is small and the high-temperature strength is low. In addition, the deviation from the eutectic point was small due to the extremely small amount of Cu, and thus the primary crystal Si was small and the fatigue strength was poor. On the other hand, the products C to G of the present invention exhibited excellent tensile strength and fatigue strength at both room temperature and high temperature. When this mechanical property is compared with the crystallized substance measurement results in Table 2, controlling the forged primary crystal Si, eutectic Si and intermetallic compound to an appropriate size requires mechanical strength, fatigue strength and heat resistance. It turns out that it is effective for improvement.

【0021】 [0021]

【0022】 [0022]

【0023】 [0023]

【0024】次いで、表1の組成Dをもつアルミニウム
合金溶湯を脱ガスした後、720℃と比較的低い温度に
15分の短時間で保持処理し、その他は同じ条件下でピ
ストンを製造した。得られたピストンは、ガス含有量が
0.20cc/100g−Alと少ないものの、介在物
個数がK10値で0.25個/cm2 と多かった。また、
高温疲労強度は、250℃で56MPa(107 サイク
ル)と低い値を示した。低い高温疲労強度は、多量の介
在物が疲労クラックの核として作用した結果と推察され
る。
Next, after degassing the molten aluminum alloy having the composition D shown in Table 1, the piston was manufactured at a relatively low temperature of 720 ° C. for a short time of 15 minutes, and a piston was manufactured under the same conditions as the other conditions. The resulting piston Although gas content is less and 0.20 cc / 100 g-Al, inclusions number was often 0.25 pieces / cm 2 at K 10 value. Also,
The high temperature fatigue strength showed a low value of 56 MPa (10 7 cycles) at 250 ° C. The low high-temperature fatigue strength is presumed to be the result of a large amount of inclusions acting as nuclei for fatigue cracks.

【0025】更に、表1の組成Eをもつアルミニウム合
金溶湯を760℃で15分脱ガスしたのみで、本発明品
と同じ条件下で介在物を除去し、ピストンを製造した。
得られたピストンのガス含有量は0.35cc/100
g−Alと多く、介在物個数はK10=0.003個/c
2 と小さな値を示した。高温疲労強度は、250℃で
59MPa(107 サイクル)と低い値を示した。低い
高温疲労強度は、ピストンに含有されている多量のガス
に原因があるものと推察される。各ピストンの耐摩耗性
を調査したところ、表4に示すように、本発明品C〜G
は、従来の比較品A,BとSi含有量が同じレベルであ
りながら、比較品A,Bよりも良好な耐摩耗性を示し
た。これは、比較品A,Bの共晶Siが平均粒径3.8
μm,4.2μmと小さいが、本発明品C〜GではP処
理により共晶Siの粒径を大きくし、比較的多量のF
e,Cuを含んでいるため、共晶SiやFe,Cu系の
晶出物が耐摩耗性の向上に寄与しているものと推察され
る。
Furthermore, a piston was manufactured by removing the inclusions under the same conditions as those of the product of the present invention by merely degassing the aluminum alloy melt having the composition E shown in Table 1 at 760 ° C. for 15 minutes.
The gas content of the obtained piston is 0.35 cc / 100.
g-Al, and the number of inclusions is K 10 = 0.003 / c
m 2 and showed a small value. The high temperature fatigue strength showed a low value of 59 MPa (10 7 cycles) at 250 ° C. The low high-temperature fatigue strength is presumed to be due to the large amount of gas contained in the piston. When the wear resistance of each piston was investigated, as shown in Table 4, the products C to G of the present invention were obtained.
Showed better abrasion resistance than the comparative products A and B, while the Si content was the same level as the conventional comparative products A and B. This is because the eutectic Si of the comparative products A and B has an average particle size of 3.8.
μm and 4.2 μm, but in the products C to G of the present invention, the grain size of eutectic Si is increased by the P treatment, and a relatively large amount of F
Since it contains e and Cu, it is presumed that eutectic Si and Fe, Cu-based crystallization contribute to the improvement of wear resistance.

【0026】 [0026]

【0027】[0027]

【発明の効果】以上に説明したように、本発明のアルミ
ニウム合金製ピストンは、成分・組成が特定された系に
おいて、鋳造時に晶出した初晶Si,共晶Si,金属間
化合物を適正サイズに制御して均一分散させた鍛造組織
にすると共に、ガス含有量及び介在物個数を低く抑えて
いる。これにより、常温及び高温共に優れた機械的強度
及び疲労強度を示し、軽量性を活かし且つ熱負荷が大き
くなる傾向にあるエンジン用のピストンとして使用され
る。
As described above, in the aluminum alloy piston of the present invention, the primary crystal Si, the eutectic Si, and the intermetallic compound crystallized at the time of casting in the system whose components and compositions are specified are appropriately sized. To a forged structure that is uniformly dispersed by controlling the gas content and the number of inclusions. Thereby, it exhibits excellent mechanical strength and fatigue strength at normal temperature and high temperature, and is used as a piston for an engine that tends to utilize a light weight and increase a thermal load.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 引張強さに及ぼすガス含有量の影響を表わし
たグラフ
FIG. 1 is a graph showing the effect of gas content on tensile strength.

【図2】 鍛造金型にセットしたスライスをピストンに
鍛造する説明図
FIG. 2 is an explanatory view of forging a slice set in a forging die into a piston.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 32/00 C22C 32/00 R C22F 1/043 C22F 1/043 F02F 3/00 F02F 3/00 G 302 302Z F16J 1/01 F16J 1/01 // C22C 1/02 503 C22C 1/02 503J C22F 1/00 603 C22F 1/00 603 630 630D 650 650D 651 651B 681 681 682 682 683 683 691 691B 691C 692 692A (72)発明者 山田 達 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 Fターム(参考) 3J044 AA01 AA02 BA04 BC02 DA09 EA01 EA04 4E014 NA08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 32/00 C22C 32/00 R C22F 1/043 C22F 1/043 F02F 3/00 F02F 3/00 G 302 302Z F16J 1/01 F16J 1/01 // C22C 1/02 503 C22C 1/02 503J C22F 1/00 603 C22F 1/00 603 630 630D 650 650D 651 651B 681 681 682 682 683 691 692 691 691 691 691 69 Inventor Tatsu Yamada 1-34-1 Kambara, Kambara-cho, Abara-gun, Shizuoka Prefecture F-term in Nippon Light Metal Co., Ltd. Group Technology Center (reference) 3J044 AA01 AA02 BA04 BC02 DA09 EA01 EA04 4E014 NA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鍛造後にSi:11〜13重量%,F
e:0.2〜1.2重量%,Cu:3.5〜4.5重量
%,Mn:0.2〜0.5重量%,Mg:0.3〜1.
0重量%,Ti:0.01〜0.2重量%,B:0.0
002〜0.02重量%,P:0.005〜0.02重
量%を含み、Caを0.005重量%以下に規制し、残
部が実質的にAlの組成をもち、鋳造時に晶出したSi
及び金属間化合物が鍛造後に平均粒径5〜35μmでマ
トリックスに均一分散し、ガス含有量が0.25cc/
100g−Al以下に規制された鍛造組織を持ち、鋳塊
段階で介在物平均個数がK10値で0.01個/cm2
下に規制されている、鍛造加工で成形された高温疲労強
度及び耐摩耗性に優れたアルミニウム合金製ピストン。
1. After forging, Si: 11 to 13% by weight, F
e: 0.2-1.2% by weight, Cu: 3.5-4.5% by weight, Mn: 0.2-0.5% by weight, Mg: 0.3-1.
0% by weight, Ti: 0.01 to 0.2% by weight, B: 0.0
002-0.02% by weight, P: 0.005-0.02% by weight, Ca is restricted to 0.005% by weight or less, and the balance substantially has a composition of Al, and crystallized during casting. Si
And the intermetallic compound is uniformly dispersed in the matrix with an average particle size of 5 to 35 μm after forging, and the gas content is 0.25 cc /
Has regulated forged tissue below 100 g-Al, inclusions average number in the ingot stage is regulated to 0.01 pieces / cm 2 or less at K 10 value, high-temperature fatigue strength molded by forging and Aluminum alloy piston with excellent wear resistance.
【請求項2】 鍛造後に請求項1記載の組成となるよう
に成分調整されたアルミニウム合金溶湯を微細化処理し
た後、0.05〜0.20g/100g−AlのArガ
スを溶湯温度750〜800℃のアルミニウム合金溶湯
に0.5〜1.5時間かけて吹き込んでアルミニウム合
金溶湯を脱ガスし、アルミニウム合金溶湯を750〜8
00℃の温度域に45分以上保持して介在物を浮上分離
させ、脱滓した後、アルミニウム合金溶湯を鋳塊に連続
鋳造し、490〜510℃×3〜5時間の均質化処理を
施し、200℃/時以上の冷却速度で冷却し、冷却され
た鋳塊を鍛造用スライスに切断し、400〜500℃に
加熱した後、所定形状に鍛造加工することを特徴とする
高温疲労強度及び耐摩耗性に優れたアルミニウム合金製
ピストンの製造方法。
2. After forging, the aluminum alloy melt whose composition is adjusted to have the composition described in claim 1 is refined, and then an Ar gas of 0.05 to 0.20 g / 100 g-Al is melted at a melt temperature of 750 to 750 g. The molten aluminum alloy is degassed by blowing into the molten aluminum alloy at 800 ° C. for 0.5 to 1.5 hours, and the molten aluminum alloy is heated to 750 to 8 hours.
The inclusions were floated and separated by holding at a temperature range of 00 ° C for 45 minutes or more, and after slag removal, the molten aluminum alloy was continuously cast into an ingot and subjected to homogenization treatment at 490 to 510 ° C for 3 to 5 hours. , Cooling at a cooling rate of 200 ° C./hour or more, cutting the cooled ingot into slices for forging, heating to 400 to 500 ° C., and forging into a predetermined shape; A method for manufacturing aluminum alloy pistons with excellent wear resistance.
【請求項3】 鍛造品に490〜510℃×3〜5時間
の溶体化処理を施した後、水焼入れし、160〜180
℃×6〜10時間の時効処理を施すことを特徴とする請
求項2記載の高温疲労強度及び耐摩耗性に優れたアルミ
ニウム合金製ピストンの製造方法。
3. After subjecting the forged product to a solution treatment at 490 to 510 ° C. for 3 to 5 hours, it is quenched with water and then subjected to 160 to 180.
3. The method for producing an aluminum alloy piston excellent in high temperature fatigue strength and wear resistance according to claim 2, wherein aging treatment is performed at 6 [deg.] C. for 6 to 10 hours.
【請求項4】 鍛造品に190〜200℃×5〜7時間
の時効処理を施すことを特徴とする請求項2記載の高温
疲労強度及び耐摩耗性に優れたアルミニウム合金製ピス
トンの製造方法。
4. The method for producing an aluminum alloy piston excellent in high-temperature fatigue strength and wear resistance according to claim 2, wherein the forged product is subjected to aging treatment at 190 to 200 ° C. for 5 to 7 hours.
JP06941199A 1999-03-16 1999-03-16 Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same Expired - Fee Related JP3552577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06941199A JP3552577B2 (en) 1999-03-16 1999-03-16 Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06941199A JP3552577B2 (en) 1999-03-16 1999-03-16 Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000265232A true JP2000265232A (en) 2000-09-26
JP3552577B2 JP3552577B2 (en) 2004-08-11

Family

ID=13401849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06941199A Expired - Fee Related JP3552577B2 (en) 1999-03-16 1999-03-16 Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3552577B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059195A1 (en) * 2003-12-18 2005-06-30 Showa Denko K.K. Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
FR2875816A1 (en) * 2004-09-23 2006-03-31 Pechiney Aviat Soc Par Actions Extruded rod used in the production of a forged piston in combustion engines is made from an aluminum alloy containing alloying additions of silicon, copper, magnesium, chromium, nickel and titanium
WO2007135838A1 (en) * 2006-05-18 2007-11-29 Kabushiki Kaisha Kobe Seiko Sho Process for producing aluminum alloy plate and aluminum alloy plate
WO2008123355A1 (en) * 2007-03-30 2008-10-16 Kabushiki Kaisha Kobe Seiko Sho Method for producing aluminum alloy thick plate and aluminum alloy thick plate
JP2009039785A (en) * 2002-07-22 2009-02-26 Showa Denko Kk Continuously cast aluminum alloy rod
JP2009090372A (en) * 2008-11-12 2009-04-30 Nippon Light Metal Co Ltd Method for manufacturing aluminum alloy plate
US7765977B2 (en) * 2004-02-27 2010-08-03 Yamaha Hatsudoki Kabushiki Kaisha Engine component part and method for producing the same
WO2011002082A1 (en) * 2009-07-03 2011-01-06 昭和電工株式会社 Process for production of roughly shaped material for engine piston
CN106378593A (en) * 2016-10-28 2017-02-08 安徽省恒泰动力科技有限公司 Piston processing method
US9657372B2 (en) 2012-12-25 2017-05-23 Nippon Light Metal Company, Ltd. Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined
KR101879219B1 (en) * 2016-08-09 2018-07-18 후성정공 주식회사 Piston manufacturing method for air conditioner
KR20190133820A (en) * 2018-05-24 2019-12-04 (주) 동양에이.케이코리아 Method for manufacturing aluminum-silicon alloy extruded material and aluminum-silicon alloy extruded material manufactured using the same
CN111778422A (en) * 2020-07-31 2020-10-16 江苏苏美达铝业有限公司 High-efficiency aluminum water degassing process method
CN116197625A (en) * 2023-04-28 2023-06-02 安徽巨盛石油钻采配件有限公司 Preparation process of high-pressure-resistant wear-resistant cylinder sleeve

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039785A (en) * 2002-07-22 2009-02-26 Showa Denko Kk Continuously cast aluminum alloy rod
JP4648968B2 (en) * 2002-07-22 2011-03-09 昭和電工株式会社 Method for producing aluminum alloy continuous casting rod
JP4644277B2 (en) * 2002-07-22 2011-03-02 昭和電工株式会社 Aluminum alloy continuous casting rod
JP2009061501A (en) * 2002-07-22 2009-03-26 Showa Denko Kk Method for manufacturing continuously cast aluminum alloy rod
US9272327B2 (en) 2003-12-18 2016-03-01 Showa Denko K.K. Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
WO2005059195A1 (en) * 2003-12-18 2005-06-30 Showa Denko K.K. Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
JP2009191367A (en) * 2003-12-18 2009-08-27 Showa Denko Kk Method for producing aluminum-alloy molded product
US8828157B2 (en) 2003-12-18 2014-09-09 Showa Denko K.K. Method for producing shaped article of aluminum alloy, shaped aluminum alloy article and production system
US7765977B2 (en) * 2004-02-27 2010-08-03 Yamaha Hatsudoki Kabushiki Kaisha Engine component part and method for producing the same
FR2875816A1 (en) * 2004-09-23 2006-03-31 Pechiney Aviat Soc Par Actions Extruded rod used in the production of a forged piston in combustion engines is made from an aluminum alloy containing alloying additions of silicon, copper, magnesium, chromium, nickel and titanium
WO2007135838A1 (en) * 2006-05-18 2007-11-29 Kabushiki Kaisha Kobe Seiko Sho Process for producing aluminum alloy plate and aluminum alloy plate
WO2008123355A1 (en) * 2007-03-30 2008-10-16 Kabushiki Kaisha Kobe Seiko Sho Method for producing aluminum alloy thick plate and aluminum alloy thick plate
KR101151563B1 (en) 2007-03-30 2012-05-30 가부시키가이샤 고베 세이코쇼 Method for producing aluminum alloy thick plate and aluminum alloy thick plate
KR101197952B1 (en) 2007-03-30 2012-11-05 가부시키가이샤 고베 세이코쇼 Method for producing aluminum alloy thick plate and aluminum alloy thick plate
TWI383053B (en) * 2007-03-30 2013-01-21 Kobe Steel Ltd Method for fabricating aluminum alloy thick plate and aluminum alloy thick plate
JP2009090372A (en) * 2008-11-12 2009-04-30 Nippon Light Metal Co Ltd Method for manufacturing aluminum alloy plate
WO2011002082A1 (en) * 2009-07-03 2011-01-06 昭和電工株式会社 Process for production of roughly shaped material for engine piston
EP2453034A4 (en) * 2009-07-03 2017-08-23 Showa Denko K.K. Process for production of roughly shaped material for engine piston
US9657372B2 (en) 2012-12-25 2017-05-23 Nippon Light Metal Company, Ltd. Manufacturing method of aluminum alloy in which Al—Fe—Si compound is refined
KR101879219B1 (en) * 2016-08-09 2018-07-18 후성정공 주식회사 Piston manufacturing method for air conditioner
CN106378593A (en) * 2016-10-28 2017-02-08 安徽省恒泰动力科技有限公司 Piston processing method
KR20190133820A (en) * 2018-05-24 2019-12-04 (주) 동양에이.케이코리아 Method for manufacturing aluminum-silicon alloy extruded material and aluminum-silicon alloy extruded material manufactured using the same
KR102076800B1 (en) 2018-05-24 2020-02-12 (주)동양에이.케이코리아 Method for manufacturing aluminum-silicon alloy extruded material and aluminum-silicon alloy extruded material manufactured using the same
CN111778422A (en) * 2020-07-31 2020-10-16 江苏苏美达铝业有限公司 High-efficiency aluminum water degassing process method
CN111778422B (en) * 2020-07-31 2021-06-08 江苏苏美达铝业有限公司 High-efficiency aluminum water degassing process method
CN116197625A (en) * 2023-04-28 2023-06-02 安徽巨盛石油钻采配件有限公司 Preparation process of high-pressure-resistant wear-resistant cylinder sleeve
CN116197625B (en) * 2023-04-28 2023-07-21 安徽巨盛石油钻采配件有限公司 Preparation process of high-pressure-resistant wear-resistant cylinder sleeve

Also Published As

Publication number Publication date
JP3552577B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
KR101148421B1 (en) Aluminum alloy forgings and process for production thereof
WO2013114928A1 (en) Forged aluminum alloy material and method for producing same
CA3001925A1 (en) Aluminum alloy
JP7182425B2 (en) Al-Mg-Si-based aluminum alloy extruded material and method for producing the same
JP2010528187A (en) Aluminum alloy formulations for reducing hot cracking susceptibility
JP3552577B2 (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance and method of manufacturing the same
EP2767608A1 (en) METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
KR101688358B1 (en) Aluminum alloy extruded material having excellent machinability and method for manufacturing same
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
WO2024142830A1 (en) Aluminum alloy forging material, aluminum alloy forged product, and method for manufacturing same
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability
JP7318275B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JP2024086591A (en) Aluminum alloy forging material, aluminum alloy forging product and its manufacturing method
JP2024086612A (en) Aluminum alloy forging material, aluminum alloy forging product and its manufacturing method
JP2024094251A (en) Aluminum alloy forging material, aluminum alloy forging product and its manufacturing method
JP2024093687A (en) Aluminum alloy forgings and their manufacturing method
JP2023077063A (en) FINING AGENT FOR HYPEREUTECTIC Al-Si ALLOY, PRODUCTION METHOD THEREOF, AND PRODUCTION METHOD OF HYPEREUTECTIC Al-Si ALLOY CASTING MATERIAL
JP2024086593A (en) Aluminum alloy forging material, aluminum alloy forging product and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees