WO2013114928A1 - Forged aluminum alloy material and method for producing same - Google Patents

Forged aluminum alloy material and method for producing same Download PDF

Info

Publication number
WO2013114928A1
WO2013114928A1 PCT/JP2013/050314 JP2013050314W WO2013114928A1 WO 2013114928 A1 WO2013114928 A1 WO 2013114928A1 JP 2013050314 W JP2013050314 W JP 2013050314W WO 2013114928 A1 WO2013114928 A1 WO 2013114928A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
forging
mass
alloy
proof stress
Prior art date
Application number
PCT/JP2013/050314
Other languages
French (fr)
Japanese (ja)
Inventor
稲垣 佳也
雅是 堀
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48904972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013114928(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201380004213.5A priority Critical patent/CN103975085B/en
Priority to US14/370,605 priority patent/US20140367001A1/en
Priority to EP13744215.8A priority patent/EP2811042B1/en
Publication of WO2013114928A1 publication Critical patent/WO2013114928A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the present invention relates to an aluminum alloy forged material suitably used for a strength member such as a transport aircraft, in particular, an automobile underbody member, and a manufacturing method thereof.
  • aluminum alloy castings and aluminum alloy forgings are used as structural materials for transport aircraft from the viewpoint of reducing manufacturing costs and processing into complex shaped parts.
  • aluminum alloy forgings are mainly used for strength members that require higher strength and mechanical properties such as high toughness, such as automobile underbody members such as upper arms and lower arms.
  • These aluminum alloy forgings are subjected to homogenization heat treatment of the aluminum alloy cast material, followed by hot forging such as mechanical forging and hydraulic forging, and then solution hardening and artificial age hardening (hereinafter, simply referred to as aging treatment). It is manufactured after tempering treatment.
  • an extruded material obtained by extruding the cast material after homogenizing heat treatment may be used.
  • Patent Document 1 Mg: 0.6 to 1.8% by mass, Si: 0.8 to 1.8% by mass Cu: 0.2-1.0% by mass, the mass ratio of Si / Mg is 1 or more, Mn: 0.1-0.6% by mass, Cr: 0.1-0.2%
  • An aluminum alloy forging material comprising one or more of mass% and Zr: 0.1 to 0.2 mass%, consisting of the balance aluminum and unavoidable impurities, the thickness of the thinnest part being 30 mm or less,
  • An aluminum alloy forging material was proposed in which the electrical conductivity measured on the surface of the aluminum alloy forging material after the artificial age hardening treatment was 41.0 to 42.5 IACS% and the 0.2% proof stress was 350 MPa or more.
  • the aluminum alloy forging described in Patent Document 1 has a high strength of 0.2% proof stress of 360 MPa or more when mass-producing an aluminum alloy forging having a thin portion with a thickness of 10 mm or less.
  • a tough material with high toughness cannot be obtained stably.
  • the present invention is an aluminum alloy forging material which contains Si in excess, increases the content of elements for increasing the strength such as Cu and Mn, increases the strength, and reduces the thickness.
  • the present invention also aims to provide an aluminum alloy forged material that can stably obtain high strength and high toughness, and a method for producing the same.
  • the forged aluminum alloy of the present invention has Mg: 0.60 to 1.80 mass%, Si: 0.80 to 1.80 mass%, Cu: 0.20 to 1.00 mass%. %, Fe: 0.05 to 0.40 mass%, Ti: 0.001 to 0.15 mass%, B: 1 to 500 ppm, Mn: 0.10 to 0.60 mass%, Cr: An aluminum alloy forging comprising one or more of 0.10 to 0.40 mass% and Zr: 0.10 to 0.20 mass%, the balance being made of an aluminum alloy consisting of Al and inevitable impurities The electrical conductivity at 20 ° C.
  • Mg, Si, Cu, Fe, Ti, B are included in a predetermined amount
  • a strengthening element such as Mn is included in a predetermined amount
  • 0.2% proof stress and Charpy impact value are equal to or greater than a predetermined value.
  • the mass ratio of Si / Mg of the said aluminum alloy is 1 or more in the aluminum alloy forging material of this invention. According to the said structure, the 0.2% yield strength of an aluminum alloy forging material further improves.
  • the aluminum alloy forged material of the present invention preferably has a hydrogen gas concentration of 0.25 ml / 100 g Al or less. According to the said structure, when the hydrogen gas concentration is below a predetermined value, forge defects, such as bubbles caused by hydrogen, are eliminated. As a result, since the starting point of fracture is reduced, the Charpy impact value of the aluminum alloy forged material is improved.
  • the manufacturing method of the aluminum alloy forging according to the present invention includes a melting step of melting the aluminum alloy to form a molten metal, and a casting step of casting the molten metal at a cooling rate of 10 ° C./sec or more to form an ingot.
  • the ingot is subjected to a homogenization heat treatment at a heating rate of 5 ° C./min or less and a holding temperature of 450 to 550 ° C., and the ingot subjected to the homogenization heat treatment is used as a forging material, and the forging material is started.
  • the present inventors have increased the content of Cu, Mn, and the like by excessively containing Si, increasing the 0.2% proof stress to 360 MPa or more, and reducing the thickness of the forging material for strength members. It was found that the conductivity measured on the surface of the aluminum alloy forging (hereinafter also referred to as surface conductivity) more closely correlates with the 0.2% proof stress of the forging.
  • the electrical conductivity of the aluminum alloy material surface represents the structural state of the aluminum alloy material, and the fact that it closely correlates with the 0.2% proof stress of the aluminum alloy material itself. It is known. However, in a normal 6000 series aluminum alloy forged material, the relationship between the electrical conductivity of the aluminum alloy forged material surface and the 0.2% proof stress is a gentle linear shape. And in such a correlation, unless the electrical conductivity of the aluminum alloy forging material surface changes so much, the influence of the electrical conductivity on the 0.2% proof stress of the aluminum alloy forging material is relatively small.
  • the conductivity width on the surface of the aluminum alloy forged material due to the range or variation of the manufacturing conditions Variations more sensitively affect the 0.2% yield strength of the forging.
  • the 0.2% proof stress of the product forging material varies widely within the range of normally acceptable manufacturing conditions and the range of variation, and the forging material having a 0.2% proof stress of 360 MPa or more is stable. It leads to not being obtained.
  • the conductivity of the aluminum alloy forging material surface is set to 42.5 IACS% and 46.0 IACS% or less, thereby guaranteeing 0.2% proof stress of the Al alloy forging material of 360 MPa or more. And can be obtained stably.
  • the manufacturing conditions are such that the conductivity of the aluminum alloy forging surface exceeds 42.5 IACS% and 46.0 IAC% or less, a forging material having a 0.2% proof stress of 360 MPa or more can be stably produced. Obtainable.
  • corrosion resistance is maintained even in the case of an aluminum alloy forging material that contains Si in excess, increases the strength of elements such as Cu and Mn, increases the strength, and reduces the thickness.
  • an aluminum alloy forged material that can stably obtain high strength and high toughness, and a method for producing the same. Therefore, it has a great industrial value in that the use of the aluminum alloy forging material for transportation equipment can be expanded.
  • the test piece used for the measurement of a Charpy impact value is shown, (a) is a side view, (b) is a front view, (c) is an enlarged view of the notch part of (b).
  • the test piece used for a stress corrosion cracking test is shown, (a) is a side view and (b) is a front view.
  • the aluminum alloy forging material (hereinafter referred to as Al alloy forging material) of the present invention will be described.
  • the electrical conductivity at 20 ° C. of the surface of the Al alloy forged material after the artificial age hardening treatment described later is 42
  • the range is more than 5IACS% and less than 46.0IACS%.
  • the conductivity of the Al alloy forged material shows the same tendency as the conductivity of the surface not only in the conductivity of the Al alloy forged material surface but also in the Al alloy forged material (including the center).
  • the conductivity of the Al alloy forging material surface is selected because it is easy to measure the surface conductivity.
  • the Al alloy forged material whose electrical conductivity is to be measured is obtained by mechanically polishing the surface of the Al alloy forged material after the artificial age hardening treatment by about 0.05 to 0.1 mm, or after etching about several ⁇ m, and then adjusting the conductivity of the surface. For example, it is measured by an eddy current type conductivity measuring device (GE Inspection Technologies Japan Hocking AUTOSIGMA 3000DL). The device, probe, standard piece, and measurement object (Al alloy forging material) are left in the same inspection area so that the temperature is the same. Before the inspection, the temperature of the Al alloy forging material is the ambient temperature ⁇ 1 ° C. Confirm that there is by measuring with a contact thermometer.
  • the electrical conductivity of the present invention a measured value or a converted value when the temperature of the Al alloy forging is 20 ° C. is used. In the following, “conductivity at 20 ° C.” is referred to as “conductivity”.
  • the electrical conductivity of the Al alloy forging material surface represents the total amount of each alloy element of the Al alloy and the overall state of the structure such as the dispersed state and crystal grain size. Moreover, in addition to these material factors, the metallurgical state of the culmination that takes into account all the factors of the manufacturing conditions is shown.
  • each of the individual Al alloys Even if the rough conditions such as the alloying element amount, the holding temperature of the homogenization heat treatment, and the hot forging start temperature coincide, the conductivity of the Al alloy forging material surface is not always the same.
  • the influencing factors on the electrical conductivity of the surface of the Al alloy forged material after artificial age hardening treatment include the cooling rate during casting and the increase during homogenization heat treatment of the ingot. Temperature rate, holding time and cooling rate, types of hot forging machines such as mechanical forging and hydraulic forging and the number of forgings, processing rate distribution and forging end temperature conditions at each forging, solution treatment, quenching, It is a finer level such as temperature and time conditions for artificial age hardening treatment.
  • the 0.2% proof stress of the Al alloy forged material is 360 MPa or more, and the Charpy impact value is 6 J / cm 2 or more. (0.2% proof stress: 360 MPa or more and Charpy impact value: 6 J / cm 2 )
  • the Al alloy forging material has high strength and high toughness. It can be used as a structural material or a part of a transport device such as an automobile or a ship.
  • the chemical component composition in the Al alloy forging material of the present invention will be described.
  • the chemical component composition of the Al alloy forging of the present invention is made of an Al—Mg—Si (6000) Al alloy, and is used for structural materials or parts of transportation equipment such as automobiles and ships, and has high strength, high toughness and resistance. It is specified to guarantee high durability such as stress corrosion cracking.
  • the chemical component composition of the Al alloy forging material of the present invention is one of the major factors that define the electrical conductivity of the forging material surface.
  • the chemical composition of the Al alloy forging of the present invention is Mg: 0.60 to 1.80 mass%, Si: 0.80 to 1.80 mass%, Cu: 0.20 to 1.00 mass %, Fe: 0.05 to 0.40 mass%, Ti: 0.001 to 0.15 mass%, B: 1 to 500 ppm, Mn: 0.10 to 0.60 mass%, Cr: One or two or more of 0.10 to 0.40 mass% and Zr: 0.10 to 0.20 mass% are included, and the balance is made of Al and inevitable impurities.
  • the chemical component composition of the Al alloy forged material of the present invention is not limited to the component standards such as JIS of 6000 series Al alloy, and further improvement of the characteristics is possible as long as the various characteristics of the present invention are not impaired. Changes in the component composition such as appropriately including other elements for adding other characteristics are allowed as appropriate. Further, inevitable impurities inevitably mixed from the melting raw material scrap or the like are allowed because they do not impair the quality of the forging material of the present invention.
  • Mg is an essential element for precipitating as Mg 2 Si ( ⁇ ′ phase) together with Si by artificial age hardening and imparting a high 0.2% proof stress to the Al alloy forging.
  • the Mg content is less than 0.60% by mass, the age-hardening amount decreases, and the Charpy impact value (hereinafter referred to as toughness) and corrosion resistance, which are important for the Al alloy forging material, are decreased.
  • the content exceeds 1.80% by mass, the 0.2% proof stress becomes too high, which hinders the forgeability of the ingot.
  • the Mg content is in the range of 0.60 to 1.80 mass%.
  • Si 0.80 to 1.80 mass%
  • Si is an essential element for precipitating as Mg 2 Si ( ⁇ ′ phase) by artificial age hardening and imparting a high 0.2% proof stress to the Al alloy forging.
  • the Si content is less than 0.80% by mass, the age hardening amount decreases, the 0.2% proof stress of the Al alloy forging material decreases, and the corrosion resistance decreases.
  • the content exceeds 1.80% by mass, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment.
  • excessive Si is excessive, and the average particle diameter of Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates existing on the grain boundaries is not reduced.
  • the average distance between each other cannot be increased.
  • the corrosion resistance and toughness of the Al alloy forging are reduced.
  • workability is also hindered, for example, the elongation of the aluminum alloy forging is reduced.
  • the Si content is in the range of 0.80 to 1.80 mass%.
  • Cu 0.20 to 1.00% by mass
  • Cu contributes to improvement of 0.2% proof stress by solid solution strengthening, and has the effect of remarkably accelerating the age hardening of the Al alloy forging during the artificial age hardening treatment. If the Cu content is less than 0.20% by mass, these effects cannot be expected, and the 0.2% yield strength decreases. In order to stably obtain these effects, the Cu content is preferably set to 0.30% by mass or more. On the other hand, when the Cu content exceeds 1.00% by mass, the susceptibility to stress corrosion cracking and intergranular corrosion of the structure of the Al alloy forging is remarkably increased, and the corrosion resistance of the Al alloy forging is lowered.
  • the Cu content is in the range of 0.20 to 1.00% by mass, preferably 0.30 to 1.00% by mass.
  • Fe is an element added to improve the toughness of the Al alloy forging.
  • Fe is Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (Fe, Mn) Al 6 , or coarse Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates are formed. These crystal precipitates become a starting point of fracture, and deteriorate toughness and fatigue characteristics.
  • the Fe content exceeds 0.40 mass%, more strictly 0.35 mass%, the Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates present on the grain boundaries The average particle size increases and the average interval between crystal precipitates decreases. As a result, toughness decreases.
  • the Fe content is less than 0.05% by mass, cracks during casting, abnormal structures, and the like occur. Therefore, the Fe content is 0.05 to 0.40 mass%. More preferably, it is 0.05 to 0.35% by mass.
  • Ti 0.001 to 0.15 mass%
  • Ti is an element added to refine crystal grains of an ingot and improve workability during extrusion, rolling, and forging.
  • the Ti content is less than 0.001% by mass, the effect of improving workability cannot be obtained.
  • the Ti content exceeds 0.15% by mass, coarse crystal precipitates are formed and the workability is lowered. Therefore, when Ti is contained, the content of Ti is in the range of 0.001 to 0.15 mass%.
  • B 1 to 500 ppm
  • B is an element added to refine crystal grains of the ingot and improve workability during extrusion, rolling, and forging.
  • B is less than 1 ppm, this effect cannot be obtained.
  • the content exceeds 500 ppm, coarse crystal precipitates are formed, and the workability is lowered. Therefore, when B is included, the B content is in the range of 1 to 500 ppm.
  • the aluminum alloy of the present invention contains one or more of Mn, Cr, and Zr, and the content of elements when contained is within the above range. If the content of Mn, Cr and Zr is too small, the above effect cannot be expected. On the other hand, the excessive content of these elements is coarse Al—Fe—Si— (Mn, Cr, Zr) during melting and casting. It is easy to produce intermetallic compounds and crystal precipitates of the system, and serves as a starting point of fracture, causing a decrease in at least one of the electrical conductivity, 0.2% proof stress, toughness, and corrosion resistance of the Al alloy forged material. Therefore, each of these elements is one or two in the range of Mn: 0.10 to 0.60 mass%, Cr: 0.10 to 0.40 mass%, and Zr: 0.10 to 0.20 mass%. Add more than seeds.
  • the inevitable impurities elements such as Zn, Be, and V can be assumed, but any of them is allowed to be contained at a level that does not impair the characteristics of the present invention. Specifically, the elements of these inevitable impurities are required to have a content of each element of 0.05% by mass or less and a total content of 0.15% by mass or less.
  • the aluminum alloy of the present invention preferably has a mass ratio of Si / Mg of 1 or more.
  • the 0.2% proof stress is further improved by setting the mass ratio of Si / Mg to 1 or more.
  • the mass ratio of Si / Mg is less than 1, a further improvement effect of 0.2% proof stress cannot be obtained.
  • the Al alloy forging material of this invention prescribe
  • Hydrogen (H 2 ) is prone to forging defects such as bubbles caused by hydrogen, particularly when the degree of processing of the Al alloy forging material is small, and is a starting point of fracture, so that toughness and fatigue characteristics are likely to deteriorate.
  • the content of hydrogen is as low as possible with 0.25 ml / 100 g Al or less.
  • the manufacturing method of the present invention includes a melting step, a casting step, a homogenizing heat treatment step, a forging step, and a tempering step.
  • the control of the electrical conductivity of the surface of the Al alloy forged material to a range of more than 42.5 IACS% and less than 46.0 IACS%, 0.2% proof stress and Except for control of toughness it can be produced by conventional methods.
  • the conditions of each process which improves the characteristic of Al alloy forging material, such as making the said electric conductivity into the range are demonstrated.
  • the melting step is a step of melting the Al alloy having the chemical component composition to form a molten metal.
  • the casting step is a step of casting the molten metal adjusted to the chemical component composition into an ingot. Then, a normal melt casting method such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), or a hot top casting method is appropriately selected for casting.
  • a normal melt casting method such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), or a hot top casting method is appropriately selected for casting.
  • the shape of the ingot includes ingots such as round bars and slab shapes, and is not particularly limited.
  • the crystal grains of the ingot are refined, and the average grain size of the Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates existing on the grain boundaries is reduced, so that the average of crystal precipitates is reduced.
  • the molten metal is cooled at a cooling rate of 10 ° C./sec or more to form an ingot. If the cooling rate is slow, the average particle size of the Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates existing on the grain boundary cannot be reduced, and the average interval between the crystal precipitates is increased. Can not do it. As a result, the 0.2% yield strength of the Al alloy forged material after the artificial age hardening treatment is lowered.
  • the cooling rate of a molten metal be an average cooling rate from liquidus temperature to solidus temperature.
  • the homogenization heat treatment step is a step of subjecting the ingot to a predetermined homogenization heat treatment. Then, the ingot is subjected to a homogenization heat treatment at a heating rate of 5 ° C./min or less and a holding temperature of 450 to 550 ° C.
  • the holding temperature exceeds 550 ° C. and is too high, the (Fe, Mn, Cr, Zr) 3 SiAl 12 -based dispersed particles themselves become coarse and the number of dispersed particles themselves is insufficient. Further, a relatively large number of fine dispersed particles cannot be dispersed in the crystal grains, so that the crystal grains cannot be refined. As a result, the 0.2% yield strength of the Al alloy forged material after the artificial age hardening treatment is lowered.
  • the holding temperature is too low as less than 450 ° C.
  • the number of (Fe, Mn, Cr, Zr) 3 SiAl 12 -based dispersed particles deposited decreases and the number of dispersed particles themselves is insufficient.
  • Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates cannot be sufficiently dissolved, and exist on the grain boundaries of the structure of the Al alloy forged material after the tempering step described later.
  • the average particle size of Mg 2 Si or Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates cannot be reduced, and it is difficult to increase the average interval between these crystal precipitates.
  • the electrical conductivity of the surface of the Al alloy forged material after the artificial age hardening treatment cannot be controlled to a range exceeding 42.5 IACS% and 46.0 IACS% (hereinafter referred to as the present invention range).
  • the rate of temperature increase to the holding temperature is slowed to 5 ° C./min or less.
  • the holding time at the holding temperature is preferably 2 hours or more.
  • an air furnace, an induction heating furnace, a glass stone furnace, or the like is appropriately used for the homogenization heat treatment.
  • the heating rate of the ingot is the average heating rate from room temperature to the holding temperature.
  • the forging process is a process in which the ingot subjected to the homogenization heat treatment is used as a forging material and hot forging is performed on the ingot by mechanical forging, hydraulic forging, or the like.
  • the starting temperature of hot forging of the forging material is set to 460 to 540 ° C.
  • the starting temperature is less than 460 ° C.
  • the ratio of the subgrain structure in the forged structure is reduced, and the grain boundaries in the forged structure are reduced, so that the precipitation of Mg 2 Si is suppressed.
  • the electrical conductivity of the surface of the Al alloy forged material after the artificial age hardening treatment cannot be controlled within the range of the present invention, and the 0.2% yield strength decreases.
  • the starting temperature exceeds 540 ° C. part of the structure may melt due to processing heat generated during forging, and the conductivity cannot be controlled within the range of the present invention, and the 0.2% proof stress and corrosion resistance are reduced. To do.
  • the end temperature for hot forging of the forging material is preferably 350 to 540 ° C. from the viewpoint of bringing the conductivity into the range of the present invention. Furthermore, in order to eliminate the cast structure remaining in the Al alloy forging material and to further improve the 0.2% proof stress and toughness, as the forging material, the ingot is subjected to homogenization heat treatment, extruded or rolled. Also good. And, in order to set the forging material hot forging end temperature to 350-540 ° C, it is necessary to devise such as reheating before hot forging or using a mold that can be kept at high temperature. is there.
  • the hot forging is preferably performed by the mechanical forging method, and the number of forgings is also performed within 3 times. Is preferred.
  • the shape of the Al alloy forged material includes a near net shape (near net shape) close to the final product shape, and is not particularly limited.
  • the tempering step is a step of performing solution treatment and artificial age hardening treatment after the forging step in order to obtain the required 0.2% proof stress, toughness and corrosion resistance of the Al alloy forged material.
  • the tempering process includes T6 (artificial age hardening treatment for obtaining the maximum strength after solution treatment at 520 to 570 ° C.), T7 (artificial age hardening for obtaining the maximum strength after the solution treatment). Excessive aging treatment exceeding the treatment conditions), T8 (artificial age hardening treatment to obtain the maximum strength by performing cold working after the solution treatment) and the like.
  • the solution treatment is performed at a holding temperature of 520 to 570 ° C. If the holding temperature is too low, solutionization is insufficient, Mg 2 Si is not sufficiently dissolved, the conductivity cannot be controlled within the range of the present invention, and the 0.2% yield strength is reduced. On the other hand, if the holding temperature is too high, local melting and coarsening of crystal grains occur, and the 0.2% proof stress decreases.
  • the holding time and the heating rate in the solution treatment are a holding time of 20 minutes to 20 hours and a heating rate of 100 ° C./hr or more in order to guarantee 0.2% proof stress.
  • the rate of temperature rise of the Al alloy forging is the average rate of temperature rise from the temperature at the time of solution treatment to the arrival of the holding temperature.
  • the quenching treatment is preferably performed by cooling into water or hot water, and the cooling rate is preferably 40 ° C./sec or more in order to prevent deterioration of toughness and fatigue characteristics.
  • an air furnace, an induction heating furnace, a glass stone furnace, or the like is appropriately used for the solution treatment.
  • the artificial age hardening treatment greatly affects the electrical conductivity of the surface of the Al alloy forged material after the artificial age hardening treatment. For this reason, in consideration of the manufacturing history so far, the conductivity is kept within the range of the present invention to obtain the required 0.2% proof stress, and other conditions for obtaining the required toughness and corrosion resistance are selected. There is a need. In this respect, it depends on the amount of alloying elements and the manufacturing history (conditions) up to the artificial age hardening treatment, and it is necessary to check in individual manufacturing processes and equipment, but the surface of the Al alloy forging after the artificial age hardening treatment In order to make the electrical conductivity within the range of the present invention, the artificial age hardening treatment is performed at 170 to 200 ° C.
  • the manufacturing method of this invention includes a degassing process between a melt
  • degassing process hydrogen gas is removed (degassing treatment) from the molten metal melted in the melting step, and the hydrogen gas concentration in 100 g of the aluminum alloy is controlled to 0.25 ml or less.
  • the removal of hydrogen gas is performed in a holding furnace for component adjustment of molten metal and removal of inclusions, and is performed by fluxing, chlorine refining, or in-line refining.
  • It is preferable to remove hydrogen gas by blowing an inert gas such as argon into the molten metal using SNIF (Spinning Nozzle Inert Floatation) or porous plug (see JP 2002-146447 A).
  • the hydrogen gas concentration is confirmed by measuring the hydrogen gas concentration of the ingot manufactured in the casting process or the forged material manufactured in the forging process.
  • the hydrogen gas concentration of the ingot is obtained, for example, by cutting a sample from the ingot before homogenization heat treatment and ultrasonically washing with alcohol and acetone.
  • an inert gas flow melting thermal conductivity method (LIS) A06-1993).
  • the hydrogen gas concentration of the forging material is, for example, a sample cut out from the forging material, immersed in a NaOH solution, the surface oxide film is removed with nitric acid, and ultrasonically cleaned with alcohol and acetone. It can be determined by measuring by a vacuum heating extraction volume method (LIS A06-1993).
  • the production method of the present invention can also be provided with a preforming process such as a forging roll before the forging process.
  • An Al alloy ingot ( ⁇ 68 mm diameter ⁇ 580 mm length round bar) having the chemical composition shown in Table 1 was cast at a cooling rate of 20 ° C./sec by a hot top casting method. And this ingot was homogenized and heat-treated at 550 ° C. ⁇ 4 hr at a heating rate of 5 ° C./min.
  • the Al alloy forging was subjected to a solution treatment for 1 hr at 550 ° C. in an air furnace, followed by water cooling (water quenching), and then an artificial age hardening treatment at 190 ° C. for 5 hr in an air furnace.
  • a C-ring test piece S3 shown in FIG. 3 was sampled from an Al alloy forged material and subjected to a stress corrosion cracking test.
  • the stress corrosion cracking test conditions were performed according to the provisions of the ASTMG47 alternate dipping method using the C-ring test piece S3.
  • the test conditions were as follows: C-ring test piece S3 was subjected to stress immersion of 75% of the proof stress in the LT direction of test piece S3 and repeatedly immersed in salt water and pulled up for 90 days. The presence or absence was confirmed.
  • Stress corrosion cracking resistance is x (defect) when stress corrosion cracking has occurred, stress corrosion cracking is the case when intergranular corrosion that is likely to lead to stress corrosion cracking is occurring, but not stress corrosion cracking
  • Table 2 shows the results when the crack resistance is ⁇ (slightly poor) and stress corrosion cracking or intergranular corrosion (including superficial overall corrosion) does not occur. Shown in
  • Al alloy forgings (Nos. 1 to 10, 10A to 10H: Examples) satisfying the claims of the present invention have 0.2% proof stress, Charpy impact value and Excellent resistance to stress corrosion cracking.
  • Al alloy forgings (Nos. 11 to 34: Comparative Examples) that do not satisfy the claims of the present invention were inferior in any of 0.2% proof stress, Charpy impact value, and stress corrosion cracking resistance. .
  • no. No. 11 was inferior in Charpy impact value and stress corrosion cracking resistance because the Mg content was less than the lower limit.
  • No. No. 12 since the Mg content exceeded the upper limit, the conductivity was less than the lower limit, and the stress corrosion cracking resistance was poor.
  • No. No. 13 was inferior in 0.2% yield strength and stress corrosion cracking resistance because the Si content was less than the lower limit.
  • No. 14 since the Si content exceeded the upper limit, the conductivity was less than the lower limit, and the Charpy impact value and the stress corrosion cracking resistance were inferior.
  • No. No. 15 had an inferior 0.2% proof stress because the Cu content was less than the lower limit.
  • the chemical component composition satisfied the claims, but the forging start temperature exceeded the upper limit value, so the conductivity exceeded the upper limit value, and the 0.2% proof stress and stress corrosion cracking resistance were inferior.
  • the chemical component composition satisfies the claims, but the solution treatment temperature is less than the lower limit value, so the conductivity exceeds the upper limit value and the 0.2% yield strength is inferior.
  • the chemical component composition satisfied the claims, but the artificial age hardening temperature exceeded the upper limit, so the conductivity exceeded the upper limit and the 0.2% yield strength was inferior.
  • No. No. 30 had an inferior Charpy impact value because the Fe content exceeded the upper limit.
  • No. No. 32 had an inferior Charpy impact value because the Ti content exceeded the upper limit.
  • No. No. 33 had an inferior Charpy impact value because the B content exceeded the upper limit.
  • No. No. 34 contained no Ti and B, so the cast structure became coarse and cracks occurred during forging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

Provided is a forged aluminum alloy material which contains an excess of Si, which exhibits increased strength due to containing therein a large quantity of a strength-increasing element such as Cu or Mn, and by which high strength and high toughness can be stably obtained even if the forged aluminum alloy material is reduced in thickness, and also provided is a method for producing the same. A forged aluminum alloy material constituted from an aluminum alloy which contains prescribed quantities of Mg, Si, Cu, Fe, Ti and B and further contains prescribed quantities of one or more elements selected from among Mn, Cr and Zr, with the remainder comprising Al and unavoidable impurities, wherein the electrical conductivity at 20°C, as measured on the surface of the forged aluminum alloy material, is greater than 42.5% IACS but not more than 46.0% IACS, and the forged aluminum alloy material has a 0.2% proof stress of 360 MPa or higher and a Charpy impact value of 6 J/cm2 or higher.

Description

アルミニウム合金鍛造材およびその製造方法Aluminum alloy forging and method for producing the same
 本発明は、輸送機などの強度部材、特に、自動車足回り部材に好適に用いられるアルミニウム合金鍛造材およびその製造方法に関するものである。 The present invention relates to an aluminum alloy forged material suitably used for a strength member such as a transport aircraft, in particular, an automobile underbody member, and a manufacturing method thereof.
 従来、車両、船舶、航空機、自動二輪あるいは自動車などの輸送機の構造材には、JIS規格またはAA規格に規定される6000系(Al-Mg-Si系)などのアルミニウム合金が使用されている。この6000系アルミニウム合金は、比較的耐食性にも優れており、また、スクラップを6000系アルミニウム合金溶解原料として再利用できるリサイクル性の点からも優れている。 Conventionally, aluminum alloys such as 6000 series (Al-Mg-Si series) defined in JIS standard or AA standard have been used for structural materials of transportation equipment such as vehicles, ships, aircraft, motorcycles and automobiles. . This 6000 series aluminum alloy is relatively excellent in corrosion resistance, and is also excellent from the viewpoint of recyclability in which scrap can be reused as a 6000 series aluminum alloy melting raw material.
 また、輸送機の構造材には、製造コストの低減や、複雑形状部品への加工の点から、アルミニウム合金鋳造材やアルミニウム合金鍛造材が用いられる。この内、より高強度で高靱性などの機械的性質が要求される強度部材、例えば、アッパーアーム、ロアーアームなどの自動車足回り部材には、アルミニウム合金鍛造材が主として用いられる。そして、これらアルミニウム合金鍛造材は、アルミニウム合金鋳造材を均質化熱処理後、メカニカル鍛造、油圧鍛造などの熱間鍛造を行い、その後溶体化焼き入れ処理や人工時効硬化処理(以下、単に時効処理とも言う)などの調質処理が施されて製造される。なお、鍛造には、鋳造材を均質化熱処理後、押出加工した押出材が用いられることもある。 Also, aluminum alloy castings and aluminum alloy forgings are used as structural materials for transport aircraft from the viewpoint of reducing manufacturing costs and processing into complex shaped parts. Among these, aluminum alloy forgings are mainly used for strength members that require higher strength and mechanical properties such as high toughness, such as automobile underbody members such as upper arms and lower arms. These aluminum alloy forgings are subjected to homogenization heat treatment of the aluminum alloy cast material, followed by hot forging such as mechanical forging and hydraulic forging, and then solution hardening and artificial age hardening (hereinafter, simply referred to as aging treatment). It is manufactured after tempering treatment. For the forging, an extruded material obtained by extruding the cast material after homogenizing heat treatment may be used.
 近年、これら輸送機の強度部材においては、低燃費、低CO排出の要求の高まりから、更なる軽量化(薄肉化)の必要性が生じてきている。しかし、これら用途に従来使用されている6061や6151などの6000系アルミニウム合金鍛造材では、どうしても強度(0.2%耐力)や靱性不足が生じてしまう。 In recent years, in the strength members of these transport aircraft, the need for further weight reduction (thinning) has arisen due to increasing demands for low fuel consumption and low CO 2 emissions. However, 6000 series aluminum alloy forgings such as 6061 and 6151 conventionally used for these applications inevitably have insufficient strength (0.2% yield strength) and toughness.
 このような問題を解決するために、本発明者らは、特許文献1に記載されているように、Mg:0.6~1.8質量%、Si:0.8~1.8質量%、Cu:0.2~1.0質量%を含み、Si/Mgの質量比が1以上であり、更に、Mn:0.1~0.6質量%、Cr:0.1~0.2質量%およびZr:0.1~0.2質量%の一種または二種以上を含み、残部アルミニウムおよび不可避的不純物からなり、最薄肉部の厚みが30mm以下であるアルミニウム合金鍛造材であって、人工時効硬化処理後のアルミニウム合金鍛造材表面で測定した導電率が41.0~42.5IACS%であって、0.2%耐力が350MPa以上であるアルミニウム合金鍛造材を提案した。 In order to solve such a problem, the present inventors, as described in Patent Document 1, Mg: 0.6 to 1.8% by mass, Si: 0.8 to 1.8% by mass Cu: 0.2-1.0% by mass, the mass ratio of Si / Mg is 1 or more, Mn: 0.1-0.6% by mass, Cr: 0.1-0.2% An aluminum alloy forging material comprising one or more of mass% and Zr: 0.1 to 0.2 mass%, consisting of the balance aluminum and unavoidable impurities, the thickness of the thinnest part being 30 mm or less, An aluminum alloy forging material was proposed in which the electrical conductivity measured on the surface of the aluminum alloy forging material after the artificial age hardening treatment was 41.0 to 42.5 IACS% and the 0.2% proof stress was 350 MPa or more.
特許第3766357号公報Japanese Patent No. 3766357
 しかしながら、特許文献1に記載されたアルミニウム合金鍛造材では、厚みが10mm以下の薄肉部を有するようなアルミニウム合金鍛造材を量産しようとする場合、0.2%耐力が360MPa以上という高強度を有し、かつ、高靭性な鍛造材が安定して得られないという問題がある。 However, the aluminum alloy forging described in Patent Document 1 has a high strength of 0.2% proof stress of 360 MPa or more when mass-producing an aluminum alloy forging having a thin portion with a thickness of 10 mm or less. However, there is a problem that a tough material with high toughness cannot be obtained stably.
 通常、6000系アルミニウム合金鍛造材の量産化では、均質化熱処理の諸条件や熱間鍛造の諸条件のある程度の幅やばらつきが許容される。しかし、Siを過剰に含み、CuやMnなどの高強度化元素の含有量を多くして0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化されたアルミニウム合金鍛造材の場合には、通常は許容される前記製造条件の幅やばらつきが、より敏感に鍛造材の0.2%耐力に影響する。この結果、製造条件範囲内で、製品鍛造材の0.2%耐力が大きくばらつき、高強度で高靭性の鍛造材が安定して得られない。 Usually, in mass production of 6000 series aluminum alloy forgings, a certain range and variation of various conditions for homogenization heat treatment and various conditions for hot forging are allowed. However, in the case of an aluminum alloy forging material that contains Si excessively, increases the content of strengthening elements such as Cu and Mn, increases the 0.2% proof stress to 360 MPa or more, and is thinned. However, the width and variation of the manufacturing conditions that are normally allowed affect the 0.2% yield strength of the forging more sensitively. As a result, the 0.2% yield strength of the product forging material varies greatly within the manufacturing condition range, and a high strength and high toughness forging material cannot be obtained stably.
 そして、このように高強度、高靭性な鍛造材を安定して得られない場合には、前記強度部材用途への信頼性が損なわれ、製品鍛造材の歩留り低下や製造コストを押し上げることにもつながる。また、前記製造条件の幅などの許容範囲をいたずらに狭くして鍛造材の0.2%耐力、靭性の安定化を図ることも、製造コストを押し上げることにつながる。 And, when the high strength and high toughness forging material cannot be stably obtained in this way, the reliability of the strength member application is impaired, and the yield of the product forging material is reduced and the manufacturing cost is also increased. Connected. In addition, reducing the allowable range such as the width of the manufacturing conditions to stabilize the 0.2% proof stress and toughness of the forged material also leads to an increase in manufacturing cost.
 この様な事情に鑑み、本発明は、Siを過剰に含み、CuやMnなどの高強度化元素の含有量を多くして高強度化させ、かつ薄肉化されたアルミニウム合金鍛造材であっても、高強度と、高靭性が安定して得られるアルミニウム合金鍛造材およびその製造方法を提供しようとするものである。 In view of such circumstances, the present invention is an aluminum alloy forging material which contains Si in excess, increases the content of elements for increasing the strength such as Cu and Mn, increases the strength, and reduces the thickness. The present invention also aims to provide an aluminum alloy forged material that can stably obtain high strength and high toughness, and a method for producing the same.
 前記課題を解決するため、本発明のアルミニウム合金鍛造材は、Mg:0.60~1.80質量%、Si:0.80~1.80質量%、Cu:0.20~1.00質量%、Fe:0.05~0.40質量%、Ti:0.001~0.15質量%、B:1~500ppmを含み、更に、Mn:0.10~0.60質量%、Cr:0.10~0.40質量%およびZr:0.10~0.20質量%の一種または二種以上を含み、残部がAlおよび不可避的不純物からなるアルミニウム合金から構成されるアルミニウム合金鍛造材であって、前記アルミニウム合金鍛造材の表面で測定した20℃での導電率が42.5IACS%を超え46.0IACS%以下であり、前記アルミニウム合金鍛造材の0.2%耐力が360MPa以上、かつ、シャルピー衝撃値が6J/cm以上であることを特徴とする。 In order to solve the above problems, the forged aluminum alloy of the present invention has Mg: 0.60 to 1.80 mass%, Si: 0.80 to 1.80 mass%, Cu: 0.20 to 1.00 mass%. %, Fe: 0.05 to 0.40 mass%, Ti: 0.001 to 0.15 mass%, B: 1 to 500 ppm, Mn: 0.10 to 0.60 mass%, Cr: An aluminum alloy forging comprising one or more of 0.10 to 0.40 mass% and Zr: 0.10 to 0.20 mass%, the balance being made of an aluminum alloy consisting of Al and inevitable impurities The electrical conductivity at 20 ° C. measured on the surface of the aluminum alloy forging is more than 42.5 IACS% and not more than 46.0 IACS%, and the 0.2% proof stress of the aluminum alloy forging is 360 MPa or more, and , Shar Over impact value is equal to or is 6J / cm 2 or more.
 前記構成によれば、Mg、Si、Cu、Fe、Ti、Bを所定量含み、Mnなどの高強度化元素を所定量含み、0.2%耐力およびシャルピー衝撃値が所定値以上であることによって、アルミニウム合金鍛造材の強度、靭性が向上する。また、アルミニウム合金鍛造材表面で測定した導電率を所定範囲とすることで、鍛造組織における亜結晶粒組織の割合を増加させることができ、アルミニウム合金鍛造材の耐食性を維持しつつ、強度、靭性を向上させることができる。 According to the above configuration, Mg, Si, Cu, Fe, Ti, B are included in a predetermined amount, a strengthening element such as Mn is included in a predetermined amount, and 0.2% proof stress and Charpy impact value are equal to or greater than a predetermined value. This improves the strength and toughness of the aluminum alloy forging. In addition, by setting the conductivity measured on the surface of the aluminum alloy forged material within a predetermined range, the proportion of the subgrain structure in the forged structure can be increased, and the strength and toughness can be maintained while maintaining the corrosion resistance of the aluminum alloy forged material. Can be improved.
 また、本発明のアルミニウム合金鍛造材は、前記アルミニウム合金のSi/Mgの質量比が1以上であることが好ましい。
前記構成によれば、アルミニウム合金鍛造材の0.2%耐力がさらに向上する。
Moreover, it is preferable that the mass ratio of Si / Mg of the said aluminum alloy is 1 or more in the aluminum alloy forging material of this invention.
According to the said structure, the 0.2% yield strength of an aluminum alloy forging material further improves.
 また、本発明のアルミニウム合金鍛造材は、その水素ガス濃度が0.25ml/100gAl以下であることが好ましい。
前記構成によれば、水素ガス濃度が所定値以下であることによって、水素に起因する気泡等の鍛造欠陥が無くなる。その結果、破壊の起点が減少することから、アルミニウム合金鍛造材のシャルピー衝撃値が向上する。
The aluminum alloy forged material of the present invention preferably has a hydrogen gas concentration of 0.25 ml / 100 g Al or less.
According to the said structure, when the hydrogen gas concentration is below a predetermined value, forge defects, such as bubbles caused by hydrogen, are eliminated. As a result, since the starting point of fracture is reduced, the Charpy impact value of the aluminum alloy forged material is improved.
 また、本発明に係るアルミニウム合金鍛造材の製造方法は、前記アルミニウム合金を溶解して溶湯とする溶解工程と、前記溶湯を冷却速度10℃/sec以上で鋳造して鋳塊とする鋳造工程と、前記鋳塊に昇温速度5℃/min以下、保持温度450~550℃で均質化熱処理を施す均質化熱処理工程と、均質化熱処理された前記鋳塊を鍛造素材とし、前記鍛造素材に開始温度460~540℃の熱間鍛造を施す鍛造工程と、前記鍛造工程の後に、520~570℃の溶体化処理と、170~200℃で4~9hrの人工時効硬化処理を施す調質工程と、を含むことを特徴とする。 Moreover, the manufacturing method of the aluminum alloy forging according to the present invention includes a melting step of melting the aluminum alloy to form a molten metal, and a casting step of casting the molten metal at a cooling rate of 10 ° C./sec or more to form an ingot. The ingot is subjected to a homogenization heat treatment at a heating rate of 5 ° C./min or less and a holding temperature of 450 to 550 ° C., and the ingot subjected to the homogenization heat treatment is used as a forging material, and the forging material is started. A forging step for performing hot forging at a temperature of 460 to 540 ° C., a solution treatment for 520 to 570 ° C. after the forging step, and a tempering step for performing an artificial age hardening treatment for 4 to 9 hours at 170 to 200 ° C. , Including.
 前記手順によれば、各工程を所定の条件で行う、特に、鍛造工程を開始温度460~540℃で行うことによって、鍛造組織における亜結晶粒組織の割合が増加し、鍛造組織の粒界が増加するため、MgSiの析出が促進される。その結果、人工時効硬化処理後のアルミニウム合金鍛造材の表面で測定される導電率が所定の範囲となる。 According to the above procedure, by performing each step under predetermined conditions, in particular, by performing the forging step at a start temperature of 460 to 540 ° C., the ratio of the subgrain structure in the forged structure increases, and the grain boundary of the forged structure is increased. Therefore, precipitation of Mg 2 Si is promoted. As a result, the conductivity measured on the surface of the aluminum alloy forged material after the artificial age hardening treatment falls within a predetermined range.
 すなわち、本発明者らは、Siを過剰に含み、CuやMnなどの含有量を多くして0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化された強度部材用鍛造材では、アルミニウム合金鍛造材表面で測定した導電率(以下、表面の導電率とも言う)が、鍛造材の0.2%耐力とより密接に相関することを知見した。 That is, the present inventors have increased the content of Cu, Mn, and the like by excessively containing Si, increasing the 0.2% proof stress to 360 MPa or more, and reducing the thickness of the forging material for strength members. It was found that the conductivity measured on the surface of the aluminum alloy forging (hereinafter also referred to as surface conductivity) more closely correlates with the 0.2% proof stress of the forging.
 従来から、6000系アルミニウム合金鍛造材ならずとも、アルミニウム合金材表面の導電率は、アルミニウム合金材の組織状態を表わしており、アルミニウム合金材の0.2%耐力と密接に相関すること自体は公知である。しかし、通常の6000系アルミニウム合金鍛造材では、アルミニウム合金鍛造材表面の導電率と0.2%耐力との関係は、なだらかな直線状となる。そして、このような相関関係では、アルミニウム合金鍛造材表面の導電率が余程大きく変わらない限り、導電率がアルミニウム合金鍛造材の0.2%耐力に与える影響は比較的小さい。 Conventionally, even if it is not a 6000 series aluminum alloy forged material, the electrical conductivity of the aluminum alloy material surface represents the structural state of the aluminum alloy material, and the fact that it closely correlates with the 0.2% proof stress of the aluminum alloy material itself. It is known. However, in a normal 6000 series aluminum alloy forged material, the relationship between the electrical conductivity of the aluminum alloy forged material surface and the 0.2% proof stress is a gentle linear shape. And in such a correlation, unless the electrical conductivity of the aluminum alloy forging material surface changes so much, the influence of the electrical conductivity on the 0.2% proof stress of the aluminum alloy forging material is relatively small.
 これに対し、Siを過剰に含み、CuやMnなどの含有量を多くして0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化された6000系アルミニウム合金鍛造材では、表面の導電率が42.5IACS%を超え46.0IACS%以下であるとき、0.2%耐力が極大化傾向を示し、導電率がこの範囲外ではアルミニウム合金鍛造材の0.2%耐力が急激に低下するという特異な現象を示す。 On the other hand, in the 6000 series aluminum alloy forged material containing excessive Si, increasing the content of Cu, Mn, etc. to increase the 0.2% proof stress to 360 MPa or more and reducing the thickness, When the electrical conductivity exceeds 42.5 IACS% and 46.0 IACS% or less, the 0.2% yield strength tends to maximize, and when the electrical conductivity is outside this range, the 0.2% yield strength of the aluminum alloy forged material rapidly increases. It shows a unique phenomenon that it decreases.
 したがって、前記0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化された6000系アルミニウム合金鍛造材では、前記製造条件の幅やばらつきによる、アルミニウム合金鍛造材表面の導電率の幅やばらつきが、より敏感に鍛造材の0.2%耐力に影響する。この結果、前記した通り、通常は許容される製造条件の幅やばらつきの範囲では、製品鍛造材の0.2%耐力が大きくばらつき、0.2%耐力が360MPa以上ある鍛造材が安定して得られないことにつながる。 Therefore, in the 6000 series aluminum alloy forged material whose 0.2% proof stress is increased to 360 MPa or more and is thinned, the conductivity width on the surface of the aluminum alloy forged material due to the range or variation of the manufacturing conditions Variations more sensitively affect the 0.2% yield strength of the forging. As a result, as described above, the 0.2% proof stress of the product forging material varies widely within the range of normally acceptable manufacturing conditions and the range of variation, and the forging material having a 0.2% proof stress of 360 MPa or more is stable. It leads to not being obtained.
 本発明では、前記現象を利用して、アルミニウム合金鍛造材表面の導電率を42.5IACS%超え46.0IACS%以下とすることで、360MPa以上のAl合金鍛造材の0.2%耐力を保証するとともに安定的に得ることができる。言い換えると、アルミニウム合金鍛造材表面の導電率が42.5IACS%を超え46.0IACA%以下の範囲となるような製造条件とすれば、0.2%耐力が360MPa以上ある鍛造材を安定して得ることができる。 In the present invention, by utilizing the above phenomenon, the conductivity of the aluminum alloy forging material surface is set to 42.5 IACS% and 46.0 IACS% or less, thereby guaranteeing 0.2% proof stress of the Al alloy forging material of 360 MPa or more. And can be obtained stably. In other words, if the manufacturing conditions are such that the conductivity of the aluminum alloy forging surface exceeds 42.5 IACS% and 46.0 IAC% or less, a forging material having a 0.2% proof stress of 360 MPa or more can be stably produced. Obtainable.
 本発明によれば、Siを過剰に含み、CuやMnなどの高強度化元素の含有量を多くして高強度化させ、かつ薄肉化されたアルミニウム合金鍛造材であっても、耐食性を維持しつつ、高い強度と、高靭性が安定して得られるアルミニウム合金鍛造材およびその製造方法を提供できる。したがって、アルミニウム合金鍛造材の輸送機用への用途の拡大を図ることができる点で、多大な工業的な価値を有するものである。 According to the present invention, corrosion resistance is maintained even in the case of an aluminum alloy forging material that contains Si in excess, increases the strength of elements such as Cu and Mn, increases the strength, and reduces the thickness. However, it is possible to provide an aluminum alloy forged material that can stably obtain high strength and high toughness, and a method for producing the same. Therefore, it has a great industrial value in that the use of the aluminum alloy forging material for transportation equipment can be expanded.
引張強度、0.2%耐力、伸びの測定に用いる試験片を示す正面図である。It is a front view which shows the test piece used for the measurement of tensile strength, 0.2% yield strength, and elongation. シャルピー衝撃値の測定に用いる試験片を示し、(a)は側面図、(b)は正面図、(c)は(b)の切欠部の拡大図である。The test piece used for the measurement of a Charpy impact value is shown, (a) is a side view, (b) is a front view, (c) is an enlarged view of the notch part of (b). 応力腐食割れ試験に用いる試験片を示し、(a)は側面図、(b)は正面図である。The test piece used for a stress corrosion cracking test is shown, (a) is a side view and (b) is a front view.
 先ず、本発明のアルミニウム合金鍛造材(以下、Al合金鍛造材とする)について説明する。本発明のAl合金鍛造材では、360MPa以上の0.2%耐力を保証するとともに安定的に得るために、後記する人工時効硬化処理後のAl合金鍛造材表面の20℃での導電率を42.5IACS%を超え46.0IACS%以下の範囲とする。 First, the aluminum alloy forging material (hereinafter referred to as Al alloy forging material) of the present invention will be described. In the Al alloy forged material of the present invention, in order to guarantee a 0.2% proof stress of 360 MPa or more and to obtain stably, the electrical conductivity at 20 ° C. of the surface of the Al alloy forged material after the artificial age hardening treatment described later is 42 The range is more than 5IACS% and less than 46.0IACS%.
(20℃での導電率:42.5IACS%を超え46.0IACS%以下)
 本発明のように、Siを過剰に含み、CuやMnなどの含有量を多くして0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化されたAl合金鍛造材では、Al合金鍛造材表面の20℃での導電率が42.5IACS%以下、あるいは、46.0IACS%を超えると、0.2%耐力で360MPa以上の高強度が得られない。
(Conductivity at 20 ° C .: more than 42.5 IACS% and 46.0 IACS% or less)
As in the present invention, in an Al alloy forging material containing an excessive amount of Si, increasing the content of Cu, Mn, etc. to increase the 0.2% proof stress to 360 MPa or more and thinning the Al alloy, If the electrical conductivity of the forged material surface at 20 ° C. is 42.5 IACS% or less, or exceeds 46.0 IACS%, a high strength of 360 MPa or more cannot be obtained with a 0.2% proof stress.
 なお、Al合金鍛造材の導電率は、Al合金鍛造材表面の導電率だけではなく、Al合金鍛造材内部(中心部を含む)の導電率でも、表面の導電率と同じ傾向を示す。表面の導電率が測定するのが容易であることから、本発明では、Al合金鍛造材表面の導電率の方を選択する。 The conductivity of the Al alloy forged material shows the same tendency as the conductivity of the surface not only in the conductivity of the Al alloy forged material surface but also in the Al alloy forged material (including the center). In the present invention, the conductivity of the Al alloy forging material surface is selected because it is easy to measure the surface conductivity.
 導電率を測定するAl合金鍛造材は、人工時効硬化処理後のAl合金鍛造材表面を0.05~0.1mm程度機械研磨した後、もしくは数μm程度エッチングした後、その表面の導電率を、例えば、渦電流式導電率測定装置(GEインスペクション・テクノロジーズ・ジャパン社製ホッキングAUTOSIGMA 3000DL)などにより測定する。そして、装置、プローブ、標準片、測定対象(Al合金鍛造材)は同じ検査エリアに放置して温度が同じになるようにし、検査前にAl合金鍛造材の温度が雰囲気温度と±1℃であることを接触温度計で測定して確認する。また、本発明の導電率としては、Al合金鍛造材の温度が20℃の時の測定値または換算値を用いる。なお、以下では、「20℃での導電率」を「導電率」とする。 The Al alloy forged material whose electrical conductivity is to be measured is obtained by mechanically polishing the surface of the Al alloy forged material after the artificial age hardening treatment by about 0.05 to 0.1 mm, or after etching about several μm, and then adjusting the conductivity of the surface. For example, it is measured by an eddy current type conductivity measuring device (GE Inspection Technologies Japan Hocking AUTOSIGMA 3000DL). The device, probe, standard piece, and measurement object (Al alloy forging material) are left in the same inspection area so that the temperature is the same. Before the inspection, the temperature of the Al alloy forging material is the ambient temperature ± 1 ° C. Confirm that there is by measuring with a contact thermometer. In addition, as the electrical conductivity of the present invention, a measured value or a converted value when the temperature of the Al alloy forging is 20 ° C. is used. In the following, “conductivity at 20 ° C.” is referred to as “conductivity”.
 Al合金鍛造材表面の導電率は、Al合金の各合金元素量と、これらの分散状態や結晶粒度などの組織の総合的な状態を表わしている。しかも、これらの材料因子の他に、製造条件の因子が全て加味された集大成の冶金状態を表わしている。 The electrical conductivity of the Al alloy forging material surface represents the total amount of each alloy element of the Al alloy and the overall state of the structure such as the dispersed state and crystal grain size. Moreover, in addition to these material factors, the metallurgical state of the culmination that takes into account all the factors of the manufacturing conditions is shown.
 したがって、Siを過剰に含み、CuやMnなどの含有量を多くして0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化されたAl合金鍛造材では、個々のAl合金の各合金元素量、あるいは、均質化熱処理の保持温度や熱間鍛造の開始温度などの大まかな条件が一致したとしても、Al合金鍛造材表面の導電率が同じとなるとは限らない。 Therefore, in the Al alloy forgings containing excessive Si, increasing the content of Cu, Mn, etc. to increase the 0.2% proof stress to 360 MPa or more and reducing the thickness, each of the individual Al alloys Even if the rough conditions such as the alloying element amount, the holding temperature of the homogenization heat treatment, and the hot forging start temperature coincide, the conductivity of the Al alloy forging material surface is not always the same.
 人工時効硬化処理後のAl合金鍛造材表面の導電率に与える、製造条件の影響因子としては、前記温度条件などの他に、鋳造の際の冷却速度、鋳塊の均質化熱処理の際の昇温速度、保持時間や冷却速度、メカニカル鍛造や油圧鍛造などの熱間鍛造機の種別と鍛造回数や、各回の鍛造の際の加工率配分や鍛造終了温度条件、溶体化処理、焼き入れ処理、人工時効硬化処理の温度、時間条件などのより細かいレベルである。 In addition to the above temperature conditions, etc., the influencing factors on the electrical conductivity of the surface of the Al alloy forged material after artificial age hardening treatment include the cooling rate during casting and the increase during homogenization heat treatment of the ingot. Temperature rate, holding time and cooling rate, types of hot forging machines such as mechanical forging and hydraulic forging and the number of forgings, processing rate distribution and forging end temperature conditions at each forging, solution treatment, quenching, It is a finer level such as temperature and time conditions for artificial age hardening treatment.
 Siを過剰に含み、CuやMnなどの含有量を多くして0.2%耐力を360MPa以上に高強度化させ、かつ薄肉化されたAl合金鍛造材では、これらの細かいレベルでの条件の違いが、Al合金鍛造材表面の導電率に大きく影響することに起因する。 For Al alloy forgings containing excessive Si, increasing the content of Cu, Mn, etc. to increase the 0.2% proof stress to 360 MPa or more and reducing the thickness, conditions at these fine levels The difference is due to the great influence on the conductivity of the Al alloy forging material surface.
 したがって、仮に、前記大まかな材料条件や製造条件が一致した場合に、Al合金鍛造材表面の導電率が同じとなるのであれば、本発明の技術課題である、量産しようとする場合の0.2%耐力のばらつきの問題はむしろ生じない。 Therefore, if the rough material conditions and manufacturing conditions coincide with each other, if the conductivity of the Al alloy forging material surface is the same, the technical problem of the present invention is 0. The problem of variation in 2% yield strength does not occur.
 本発明では、Al合金鍛造材の0.2%耐力を360MPa以上、かつ、シャルピー衝撃値を6J/cm以上とする。
(0.2%耐力:360MPa以上、かつ、シャルピー衝撃値:6J/cm
 Al合金鍛造材の0.2%耐力を360MPa以上、かつ、シャルピー衝撃値を6J/cm以上とすることによって、Al合金鍛造材が高強度と高靭性を有することとなり、Al合金鍛造材を自動車、船舶などの輸送機の構造材あるいは部品用として使用することが可能となる。
In the present invention, the 0.2% proof stress of the Al alloy forged material is 360 MPa or more, and the Charpy impact value is 6 J / cm 2 or more.
(0.2% proof stress: 360 MPa or more and Charpy impact value: 6 J / cm 2 )
By setting the 0.2% proof stress of the Al alloy forging material to 360 MPa or more and the Charpy impact value to 6 J / cm 2 or more, the Al alloy forging material has high strength and high toughness. It can be used as a structural material or a part of a transport device such as an automobile or a ship.
 本発明のAl合金鍛造材における、化学成分組成について説明する。本発明のAl合金鍛造材の化学成分組成は、Al-Mg-Si系(6000系)Al合金からなり、自動車、船舶などの輸送機の構造材あるいは部品用として、高強度、高靱性および耐応力腐食割れ性などの高い耐久性を保証するように規定する。また、本発明のAl合金鍛造材の化学成分組成は、鍛造材表面の導電率を規定する大きな因子の一つとなる。 The chemical component composition in the Al alloy forging material of the present invention will be described. The chemical component composition of the Al alloy forging of the present invention is made of an Al—Mg—Si (6000) Al alloy, and is used for structural materials or parts of transportation equipment such as automobiles and ships, and has high strength, high toughness and resistance. It is specified to guarantee high durability such as stress corrosion cracking. Moreover, the chemical component composition of the Al alloy forging material of the present invention is one of the major factors that define the electrical conductivity of the forging material surface.
 このため、本発明のAl合金鍛造材の化学成分組成は、Mg:0.60~1.80質量%、Si:0.80~1.80質量%、Cu:0.20~1.00質量%、Fe:0.05~0.40質量%、Ti:0.001~0.15質量%、B:1~500ppmを含み、更に、Mn:0.10~0.60質量%、Cr:0.10~0.40質量%およびZr:0.10~0.20質量%の一種または二種以上を含み、残部がAlおよび不可避的不純物からなるものとする。 Therefore, the chemical composition of the Al alloy forging of the present invention is Mg: 0.60 to 1.80 mass%, Si: 0.80 to 1.80 mass%, Cu: 0.20 to 1.00 mass %, Fe: 0.05 to 0.40 mass%, Ti: 0.001 to 0.15 mass%, B: 1 to 500 ppm, Mn: 0.10 to 0.60 mass%, Cr: One or two or more of 0.10 to 0.40 mass% and Zr: 0.10 to 0.20 mass% are included, and the balance is made of Al and inevitable impurities.
 なお、本発明のAl合金鍛造材の化学成分組成は、6000系Al合金のJISなどの各成分規格通りにならずとも、前記本発明の諸特性を阻害しない範囲で、更なる特性の向上や他の特性を付加するための、他の元素を適宜含むなどの成分組成の変更は適宜許容される。また、溶解原料スクラップなどから必然的に混入される不可避的不純物も、本発明の鍛造材の品質を阻害しないため許容される。 The chemical component composition of the Al alloy forged material of the present invention is not limited to the component standards such as JIS of 6000 series Al alloy, and further improvement of the characteristics is possible as long as the various characteristics of the present invention are not impaired. Changes in the component composition such as appropriately including other elements for adding other characteristics are allowed as appropriate. Further, inevitable impurities inevitably mixed from the melting raw material scrap or the like are allowed because they do not impair the quality of the forging material of the present invention.
 次に、本発明のAl合金鍛造材の化学成分組成の各元素の含有量について、臨界的意義や好ましい範囲について説明する。 Next, the critical significance and preferred range of the content of each element of the chemical component composition of the Al alloy forged material of the present invention will be described.
(Mg:0.60~1.80質量%)
 Mgは人工時効硬化処理により、SiとともにMgSi(β’相)として析出し、Al合金鍛造材に高い0.2%耐力を付与するために必須の元素である。Mgの0.60質量%未満の含有では時効硬化量が低下して、Al合金鍛造材にとって高い0.2%耐力とともに重要なシャルピー衝撃値(以下、靭性とする)や耐食性が低下する。一方、1.80質量%を超えて含有されると、0.2%耐力が高くなりすぎ、鋳塊の鍛造性を阻害する。また、後記する溶体化処理後の焼き入れ途中に多量のMgSiが析出しやすく、粒界上に存在するMgSiや、Al、Si、Mn、Cr、Zr、Feが選択的に結合したAl-Fe-Si-(Mn、Cr、Zr)系晶析出物の平均粒径が小さくならず、これら晶析出物同士の平均間隔を大きくすることができない。その結果、Al合金鍛造材の耐食性を低下させる。また、Mg含有量がこの範囲より多過ぎると、製造条件の調整によって、Al合金鍛造材表面の導電率を42.5IACS%を超え46.0IACS%以下の範囲とすることが難しくなる。したがって、Mgの含有量は0.60~1.80質量%の範囲とする。
(Mg: 0.60 to 1.80 mass%)
Mg is an essential element for precipitating as Mg 2 Si (β ′ phase) together with Si by artificial age hardening and imparting a high 0.2% proof stress to the Al alloy forging. When the Mg content is less than 0.60% by mass, the age-hardening amount decreases, and the Charpy impact value (hereinafter referred to as toughness) and corrosion resistance, which are important for the Al alloy forging material, are decreased. On the other hand, if the content exceeds 1.80% by mass, the 0.2% proof stress becomes too high, which hinders the forgeability of the ingot. Further, likely to precipitate a large amount of Mg 2 Si during tempering after solution treatment insertion to be described later, and Mg 2 Si present on the grain boundary, Al, Si, Mn, Cr , Zr, Fe is selectively bind The average grain size of the Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates does not decrease, and the average interval between these crystal precipitates cannot be increased. As a result, the corrosion resistance of the Al alloy forging is reduced. On the other hand, if the Mg content is too much above this range, it becomes difficult to adjust the electrical conductivity of the Al alloy forging material surface to more than 42.5 IACS% and not more than 46.0 IACS% by adjusting the production conditions. Therefore, the Mg content is in the range of 0.60 to 1.80 mass%.
(Si:0.80~1.80質量%)
 SiもMgとともに、人工時効硬化処理により、MgSi(β’相)として析出して、Al合金鍛造材に高い0.2%耐力を付与するために必須の元素である。Siの0.80質量%未満の含有では時効硬化量が低下して、Al合金鍛造材の0.2%耐力が低下すると共に、耐食性が低下する。一方、1.80質量%を超えて含有されると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析出する。また、過剰Siが多くなり過ぎて、粒界上に存在するMgSiやAl-Fe-Si-(Mn、Cr、Zr)系晶析出物の平均粒径が小さくならず、これら晶析出物同士の平均間隔を大きくできない。その結果、前記Mgと同様に、Al合金鍛造材の耐食性と靱性を低下させる。更にAl合金鍛造材の伸びが低くなるなど、加工性も阻害する。また、Si含有量がこの範囲より多過ぎると、製造条件の調整によって、Al合金鍛造材表面の導電率を42.5IACS%を超え46.0IACS%以下の範囲とすることが難しくなる。したがって、Siの含有量は0.80~1.80質量%の範囲とする。
(Si: 0.80 to 1.80 mass%)
Si, together with Mg, is an essential element for precipitating as Mg 2 Si (β ′ phase) by artificial age hardening and imparting a high 0.2% proof stress to the Al alloy forging. When the Si content is less than 0.80% by mass, the age hardening amount decreases, the 0.2% proof stress of the Al alloy forging material decreases, and the corrosion resistance decreases. On the other hand, if the content exceeds 1.80% by mass, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment. In addition, excessive Si is excessive, and the average particle diameter of Mg 2 Si and Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates existing on the grain boundaries is not reduced. The average distance between each other cannot be increased. As a result, like the Mg, the corrosion resistance and toughness of the Al alloy forging are reduced. Furthermore, workability is also hindered, for example, the elongation of the aluminum alloy forging is reduced. Moreover, when there is too much Si content from this range, it will become difficult to make the electrical conductivity of the Al alloy forging material surface over 42.5 IACS% and 46.0 IACS% or less by adjustment of manufacturing conditions. Accordingly, the Si content is in the range of 0.80 to 1.80 mass%.
(Cu:0.20~1.00質量%)
 Cuは、固溶強化にて0.2%耐力の向上に寄与する他、人工時効硬化処理に際して、Al合金鍛造材の時効硬化を著しく促進する効果を有する。Cuの含有量が0.20質量%未満では、これらの効果が期待できず、0.2%耐力が低下する。また、これらの効果を安定的に得るためには好ましくはCuの含有量を0.30質量%以上とする。一方、Cuの含有量が1.00質量%を超えた場合、Al合金鍛造材の組織の応力腐食割れや粒界腐食の感受性を著しく高め、Al合金鍛造材の耐食性を低下させる。また、Cu含有量がこの範囲より多過ぎると、製造条件の調整によって、Al合金鍛造材表面の導電率を42.5IACS%を超え46.0IACS%以下の範囲とすることが難しくなる。したがって、Cuの含有量は0.20~1.00質量%、好ましくは0.30~1.00質量%の範囲とする。
(Cu: 0.20 to 1.00% by mass)
Cu contributes to improvement of 0.2% proof stress by solid solution strengthening, and has the effect of remarkably accelerating the age hardening of the Al alloy forging during the artificial age hardening treatment. If the Cu content is less than 0.20% by mass, these effects cannot be expected, and the 0.2% yield strength decreases. In order to stably obtain these effects, the Cu content is preferably set to 0.30% by mass or more. On the other hand, when the Cu content exceeds 1.00% by mass, the susceptibility to stress corrosion cracking and intergranular corrosion of the structure of the Al alloy forging is remarkably increased, and the corrosion resistance of the Al alloy forging is lowered. Moreover, when there is too much Cu content from this range, it will become difficult to make the electrical conductivity of the Al alloy forging material surface over 42.5 IACS% and the range of 46.0 IACS% or less by adjustment of manufacturing conditions. Therefore, the Cu content is in the range of 0.20 to 1.00% by mass, preferably 0.30 to 1.00% by mass.
(Fe:0.05~0.40質量%)
 Feは、Al合金鍛造材の靭性を向上させるために添加する元素である。しかし、Feは、AlCuFe、Al12(Fe,Mn)Cu、(Fe,Mn)Al、或いは本発明で問題とする粗大なAl-Fe-Si-(Mn、Cr、Zr)系の晶析出物を生成する。これらの晶析出物は、破壊の起点となり、靱性および疲労特性などを劣化させる。特に、Feの含有量が0.40質量%、より厳密には0.35質量%を超えると、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr)系晶析出物の平均粒径が大きくなり、また、晶析出物同士の平均間隔が小さくなる。その結果、靭性が低下する。一方、Feが0.05質量%未満の含有では、鋳造時の割れ、異常組織等を生じる。したがって、Feの含有量は0.05~0.40質量%とする。より好ましくは0.05~0.35質量%である。
(Fe: 0.05-0.40 mass%)
Fe is an element added to improve the toughness of the Al alloy forging. However, Fe is Al 7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (Fe, Mn) Al 6 , or coarse Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates are formed. These crystal precipitates become a starting point of fracture, and deteriorate toughness and fatigue characteristics. In particular, when the Fe content exceeds 0.40 mass%, more strictly 0.35 mass%, the Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates present on the grain boundaries The average particle size increases and the average interval between crystal precipitates decreases. As a result, toughness decreases. On the other hand, if the Fe content is less than 0.05% by mass, cracks during casting, abnormal structures, and the like occur. Therefore, the Fe content is 0.05 to 0.40 mass%. More preferably, it is 0.05 to 0.35% by mass.
(Ti:0.001~0.15質量%)
 Tiは、鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、Tiが0.001質量%未満の含有では、加工性向上の効果が得らない。一方、Tiが0.15質量%を超えて含有されると、粗大な晶析出物を形成し、前記加工性が低下する。したがって、含有させる場合のTiの含有量は0.001~0.15質量%の範囲とする。
(Ti: 0.001 to 0.15 mass%)
Ti is an element added to refine crystal grains of an ingot and improve workability during extrusion, rolling, and forging. However, when the Ti content is less than 0.001% by mass, the effect of improving workability cannot be obtained. On the other hand, if the Ti content exceeds 0.15% by mass, coarse crystal precipitates are formed and the workability is lowered. Therefore, when Ti is contained, the content of Ti is in the range of 0.001 to 0.15 mass%.
(B:1~500ppm)
 Bは、Tiと同様、鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させるために添加する元素である。しかし、Bが1ppm未満の含有では、この効果が得られない。一方、500ppmを超えて含有されると、やはり粗大な晶析出物を形成し、前記加工性が低下する。したがって、含有させる場合のBの含有量は1~500ppmの範囲とする。
(B: 1 to 500 ppm)
B, like Ti, is an element added to refine crystal grains of the ingot and improve workability during extrusion, rolling, and forging. However, when B is less than 1 ppm, this effect cannot be obtained. On the other hand, when the content exceeds 500 ppm, coarse crystal precipitates are formed, and the workability is lowered. Therefore, when B is included, the B content is in the range of 1 to 500 ppm.
(Mn:0.10~0.60質量%、Cr:0.10~0.40質量%およびZr:0.10~0.20質量%の一種または二種以上)
 これらの元素は均質化熱処理時およびその後の熱間鍛造時に、Fe、Mn、Cr、Zr、Si、Alなどがその含有量に応じて選択的に結合したAl-Mn系、Al-Cr系、Al-Zr系金属間化合物であり、(Fe、Mn、Cr、Zr)SiAl12系として総称される分散粒子(分散相)を生成する。
(Mn: 0.10 to 0.60% by mass, Cr: 0.10 to 0.40% by mass, and Zr: 0.10 to 0.20% by mass)
These elements are Al—Mn based, Al—Cr based, in which Fe, Mn, Cr, Zr, Si, Al, etc. are selectively bonded according to their contents during the homogenization heat treatment and the subsequent hot forging. This is an Al—Zr intermetallic compound, and produces dispersed particles (dispersed phase) collectively called (Fe, Mn, Cr, Zr) 3 SiAl 12 system.
 これらの分散粒子は、再結晶後の粒界移動を妨げる効果があるため、鍛造工程中におけるパーティングライン組織のST方向の平均結晶粒径の粗大化を防止するとともに、本発明のAl合金鍛造材全体に渡って、微細な結晶粒や亜結晶粒を得ることができる。また、Mn、Cr、Zrは固溶による0.2%耐力の増大も見込める。 Since these dispersed particles have an effect of hindering the grain boundary movement after recrystallization, the coarsening of the average crystal grain size in the ST direction of the parting line structure during the forging process is prevented and the Al alloy forging of the present invention is performed. Fine crystal grains and sub-crystal grains can be obtained over the entire material. Further, Mn, Cr and Zr can be expected to increase 0.2% proof stress due to solid solution.
 本発明のアルミニウム合金は、Mn、CrおよびZrの一種または二種以上を含み、含有する場合の元素の含有量は前記範囲内である。Mn、Cr、Zrの含有量が少なすぎると、前記効果が期待できず、一方、これらの元素の過剰な含有は、溶解、鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr)系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり、Al合金鍛造材の導電率、0.2%耐力、靭性および耐食性の少なくとも1つを低下させる原因となる。このため、これらの元素は各々、Mn:0.10~0.60質量%、Cr:0.10~0.40質量%およびZr:0.10~0.20質量%の範囲で一種または二種以上含有させる。 The aluminum alloy of the present invention contains one or more of Mn, Cr, and Zr, and the content of elements when contained is within the above range. If the content of Mn, Cr and Zr is too small, the above effect cannot be expected. On the other hand, the excessive content of these elements is coarse Al—Fe—Si— (Mn, Cr, Zr) during melting and casting. It is easy to produce intermetallic compounds and crystal precipitates of the system, and serves as a starting point of fracture, causing a decrease in at least one of the electrical conductivity, 0.2% proof stress, toughness, and corrosion resistance of the Al alloy forged material. Therefore, each of these elements is one or two in the range of Mn: 0.10 to 0.60 mass%, Cr: 0.10 to 0.40 mass%, and Zr: 0.10 to 0.20 mass%. Add more than seeds.
(不可避的不純物)
 不可避的不純物としては、Zn、Be、V等の元素が想定し得るが、いずれも本発明の特徴を阻害しないレベルで含有することは許容される。具体的には、これら不可避的不純物の元素は、個々の元素毎の含有量がそれぞれ0.05質量%以下であり、合計の含有量が0.15質量%以下であることが必要である。
(Inevitable impurities)
As the inevitable impurities, elements such as Zn, Be, and V can be assumed, but any of them is allowed to be contained at a level that does not impair the characteristics of the present invention. Specifically, the elements of these inevitable impurities are required to have a content of each element of 0.05% by mass or less and a total content of 0.15% by mass or less.
(Si/Mgの質量比:1以上)
 本発明のアルミニウム合金は、Si/Mgの質量比が1以上であることが好ましい。前記各含有量範囲を前提に、Si/Mgの質量比を1以上とすることによって、0.2%耐力がさらに向上する。Si/Mgの質量比が1未満では、0.2%耐力のさらなる向上効果が得られない。
(Si / Mg mass ratio: 1 or more)
The aluminum alloy of the present invention preferably has a mass ratio of Si / Mg of 1 or more. On the premise of each content range, the 0.2% proof stress is further improved by setting the mass ratio of Si / Mg to 1 or more. When the mass ratio of Si / Mg is less than 1, a further improvement effect of 0.2% proof stress cannot be obtained.
 また、本発明のAl合金鍛造材は、その水素ガス濃度を以下の範囲に規定することが好ましい。
(水素:0.25ml/100gAl以下)
 水素(H)は、特に、Al合金鍛造材の加工度が小さくなる場合、水素に起因する気泡等の鍛造欠陥が生じやすく、破壊の起点となるため、靱性や疲労特性が低下し易い。そして、高強度化した輸送機の構造材などにおいては、特に水素による影響が大きい。したがって、水素は0.25ml/100gAl以下のできるだけ少ない含有量とすることが好ましい。
Moreover, it is preferable that the Al alloy forging material of this invention prescribe | regulates the hydrogen gas concentration to the following ranges.
(Hydrogen: 0.25ml / 100gAl or less)
Hydrogen (H 2 ) is prone to forging defects such as bubbles caused by hydrogen, particularly when the degree of processing of the Al alloy forging material is small, and is a starting point of fracture, so that toughness and fatigue characteristics are likely to deteriorate. And in the structural material etc. of the transport aircraft which strengthened, the influence by hydrogen is especially large. Therefore, it is preferable that the content of hydrogen is as low as possible with 0.25 ml / 100 g Al or less.
 次に、本発明に係るAl合金鍛造材の製造方法について説明する。本発明の製造方法は、溶解工程と、鋳造工程と、均質化熱処理工程と、鍛造工程と、調質工程とを含むものである。本発明におけるAl合金鍛造材の製造自体は、製造条件の調整による、Al合金鍛造材表面の導電率を42.5IACS%を超え46.0IACS%以下の範囲への制御、0.2%耐力および靭性の制御以外は、常法により製造が可能である。以下に、前記導電率を範囲内とするなど、Al合金鍛造材の特性を向上させる各工程の条件について説明する。 Next, a method for producing an Al alloy forged material according to the present invention will be described. The manufacturing method of the present invention includes a melting step, a casting step, a homogenizing heat treatment step, a forging step, and a tempering step. In the production of the Al alloy forged material in the present invention, the control of the electrical conductivity of the surface of the Al alloy forged material to a range of more than 42.5 IACS% and less than 46.0 IACS%, 0.2% proof stress and Except for control of toughness, it can be produced by conventional methods. Below, the conditions of each process which improves the characteristic of Al alloy forging material, such as making the said electric conductivity into the range, are demonstrated.
(溶解工程)
 溶解工程は、前記化学成分組成のAl合金を溶解して溶湯とする工程である。
(Dissolution process)
The melting step is a step of melting the Al alloy having the chemical component composition to form a molten metal.
(鋳造工程)
 鋳造工程は、前記化学成分組成に溶解調整された溶湯を鋳造して鋳塊とする工程である。そして、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を適宜選択して鋳造する。なお、鋳塊の形状は、丸棒などのインゴットやスラブ形状などがあり、特に制限されるものではない。
(Casting process)
The casting step is a step of casting the molten metal adjusted to the chemical component composition into an ingot. Then, a normal melt casting method such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), or a hot top casting method is appropriately selected for casting. The shape of the ingot includes ingots such as round bars and slab shapes, and is not particularly limited.
 また、鋳塊の結晶粒を微細化し、かつ、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr)系晶析出物の平均粒径を小さくし、晶析出物同士の平均間隔を大きくするためには、溶湯を、10℃/sec以上の冷却速度で冷却して鋳塊とする。冷却速度が遅いと、粒界上に存在するAl-Fe-Si-(Mn、Cr、Zr)系晶析出物の平均粒径を小さくすることができず、晶析出物同士の平均間隔を大きくすることができない。この結果、人工時効硬化処理後のAl合金鍛造材の0.2%耐力が低下する。ここで、溶湯の冷却速度は、液相線温度から固相線温度までの平均冷却速度とする。 In addition, the crystal grains of the ingot are refined, and the average grain size of the Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates existing on the grain boundaries is reduced, so that the average of crystal precipitates is reduced. In order to increase the interval, the molten metal is cooled at a cooling rate of 10 ° C./sec or more to form an ingot. If the cooling rate is slow, the average particle size of the Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates existing on the grain boundary cannot be reduced, and the average interval between the crystal precipitates is increased. Can not do it. As a result, the 0.2% yield strength of the Al alloy forged material after the artificial age hardening treatment is lowered. Here, let the cooling rate of a molten metal be an average cooling rate from liquidus temperature to solidus temperature.
(均質化熱処理工程)
 均質化熱処理工程は、前記鋳塊に所定の均質化熱処理を施す工程である.そして、昇温速度5℃/min以下、保持温度450~550℃で鋳塊に均質化熱処理を施す。
(Homogenization heat treatment process)
The homogenization heat treatment step is a step of subjecting the ingot to a predetermined homogenization heat treatment. Then, the ingot is subjected to a homogenization heat treatment at a heating rate of 5 ° C./min or less and a holding temperature of 450 to 550 ° C.
 保持温度が550℃を超えて高過ぎると、前記(Fe、Mn、Cr、Zr)SiAl12系分散粒子自体が粗大化し、分散粒子自体の数も不足する。そして、結晶粒内に微細な分散粒子を比較的多数分散存在させることができず、結晶粒微細化が得られない。この結果、人工時効硬化処理後のAl合金鍛造材の0.2%耐力が低下する。 If the holding temperature exceeds 550 ° C. and is too high, the (Fe, Mn, Cr, Zr) 3 SiAl 12 -based dispersed particles themselves become coarse and the number of dispersed particles themselves is insufficient. Further, a relatively large number of fine dispersed particles cannot be dispersed in the crystal grains, so that the crystal grains cannot be refined. As a result, the 0.2% yield strength of the Al alloy forged material after the artificial age hardening treatment is lowered.
 一方、保持温度が450℃未満と低過ぎても、前記(Fe、Mn、Cr、Zr)SiAl12系分散粒子の析出数が少なくなり、分散粒子自体の数が不足する。また、Al-Fe-Si-(Mn、Cr、Zr)系晶析出物を十分に固溶させることができず、後記する調質工程後のAl合金鍛造材の組織の粒界上に存在するMgSiやAl-Fe-Si-(Mn、Cr、Zr)系晶析出物の平均粒径を小さくできず、これら晶析出物同士の平均間隔を大きくすることが難しくなる。この結果、人工時効硬化処理後のAl合金鍛造材表面の導電率を42.5IACS%を超え46.0IACS%以下の範囲(以下、本発明範囲)へ制御できなくなる。 On the other hand, even if the holding temperature is too low as less than 450 ° C., the number of (Fe, Mn, Cr, Zr) 3 SiAl 12 -based dispersed particles deposited decreases and the number of dispersed particles themselves is insufficient. Further, Al—Fe—Si— (Mn, Cr, Zr) -based crystal precipitates cannot be sufficiently dissolved, and exist on the grain boundaries of the structure of the Al alloy forged material after the tempering step described later. The average particle size of Mg 2 Si or Al—Fe—Si— (Mn, Cr, Zr) based crystal precipitates cannot be reduced, and it is difficult to increase the average interval between these crystal precipitates. As a result, the electrical conductivity of the surface of the Al alloy forged material after the artificial age hardening treatment cannot be controlled to a range exceeding 42.5 IACS% and 46.0 IACS% (hereinafter referred to as the present invention range).
 なお、人工時効硬化処理後のAl合金鍛造材の0.2%耐力を維持するために、保持温度への昇温速度は5℃/min以下と遅くする。また、保持温度での保持時間は、2hr以上が好ましい。さらに、均質化熱処理には、空気炉、誘導加熱炉、硝石炉などが適宜用いられる。ここで、鋳塊の昇温速度は、室温から保持温度到達までの平均昇温速度とする。 In addition, in order to maintain the 0.2% yield strength of the Al alloy forged material after the artificial age hardening treatment, the rate of temperature increase to the holding temperature is slowed to 5 ° C./min or less. Further, the holding time at the holding temperature is preferably 2 hours or more. Furthermore, an air furnace, an induction heating furnace, a glass stone furnace, or the like is appropriately used for the homogenization heat treatment. Here, the heating rate of the ingot is the average heating rate from room temperature to the holding temperature.
(鍛造工程)
 鍛造工程は、均質化熱処理された前記鋳塊を鍛造素材として使用し、メカニカル鍛造や油圧鍛造などにより鋳塊に熱間鍛造を施す工程である。この際、鍛造素材の熱間鍛造の開始温度は、460~540℃とする。開始温度が460℃未満では、鍛造組織における亜結晶粒組織の割合が減少し、鍛造組織の粒界が減少するため、MgSiの析出が抑制される。その結果、人工時効硬化処理後のAl合金鍛造材表面の導電率を本発明範囲へ制御できなくなり、0.2%耐力が低下する。一方、開始温度が540℃を超える場合では、鍛造時の加工発熱により、組織の一部が溶融する場合があり、導電率を本発明範囲へ制御できなくなり、0.2%耐力および耐食性が低下する。
(Forging process)
The forging process is a process in which the ingot subjected to the homogenization heat treatment is used as a forging material and hot forging is performed on the ingot by mechanical forging, hydraulic forging, or the like. At this time, the starting temperature of hot forging of the forging material is set to 460 to 540 ° C. When the starting temperature is less than 460 ° C., the ratio of the subgrain structure in the forged structure is reduced, and the grain boundaries in the forged structure are reduced, so that the precipitation of Mg 2 Si is suppressed. As a result, the electrical conductivity of the surface of the Al alloy forged material after the artificial age hardening treatment cannot be controlled within the range of the present invention, and the 0.2% yield strength decreases. On the other hand, when the starting temperature exceeds 540 ° C., part of the structure may melt due to processing heat generated during forging, and the conductivity cannot be controlled within the range of the present invention, and the 0.2% proof stress and corrosion resistance are reduced. To do.
 また、鍛造素材の熱間鍛造の終了温度は、導電率を本発明範囲内に入れる点からは、350~540℃であることが好ましい。さらに、Al合金鍛造材に残留する鋳造組織を無くし、0.2%耐力と靱性をより向上させるために、鍛造素材として、鋳塊を均質化熱処理後、押出や圧延加工したものを使用してもよい。
 そして、鍛造素材の熱間鍛造の終了温度を350~540℃にするためには、熱間鍛造の前に再加熱を実施したり、高温に保持できる金型を使用する等の工夫が必要である。
The end temperature for hot forging of the forging material is preferably 350 to 540 ° C. from the viewpoint of bringing the conductivity into the range of the present invention. Furthermore, in order to eliminate the cast structure remaining in the Al alloy forging material and to further improve the 0.2% proof stress and toughness, as the forging material, the ingot is subjected to homogenization heat treatment, extruded or rolled. Also good.
And, in order to set the forging material hot forging end temperature to 350-540 ° C, it is necessary to devise such as reheating before hot forging or using a mold that can be kept at high temperature. is there.
 なお、人工時効硬化処理後のAl合金鍛造材表面の導電率を本発明範囲内に収め易くするために、熱間鍛造はメカニカル鍛造方式で行うことが好ましく、鍛造回数も3回以内で行うことが好ましい。また、Al合金鍛造材の形状は、最終製品形状に近いニアネットシェイプ形状(near net shape)などがあり、特に制限されるものではない。 In addition, in order to make the electrical conductivity of the Al alloy forged material surface after the artificial age hardening treatment easily fall within the scope of the present invention, the hot forging is preferably performed by the mechanical forging method, and the number of forgings is also performed within 3 times. Is preferred. Further, the shape of the Al alloy forged material includes a near net shape (near net shape) close to the final product shape, and is not particularly limited.
(調質工程)
 調質工程は、Al合金鍛造材の必要な0.2%耐力、靱性および耐食性を得るために、鍛造工程の後に、溶体化処理と人工時効硬化処理を行う工程である。調質工程は、具体的には、T6(520~570℃での溶体化処理後、最大強さを得る人工時効硬化処理)、T7(前記溶体化処理後、最大強さを得る人工時効硬化処理条件を超えて過剰時効処理)、T8(前記溶体化処理後、冷間加工を行い、更に最大強さを得る人工時効硬化処理)等である。
(Refining process)
The tempering step is a step of performing solution treatment and artificial age hardening treatment after the forging step in order to obtain the required 0.2% proof stress, toughness and corrosion resistance of the Al alloy forged material. Specifically, the tempering process includes T6 (artificial age hardening treatment for obtaining the maximum strength after solution treatment at 520 to 570 ° C.), T7 (artificial age hardening for obtaining the maximum strength after the solution treatment). Excessive aging treatment exceeding the treatment conditions), T8 (artificial age hardening treatment to obtain the maximum strength by performing cold working after the solution treatment) and the like.
 溶体化処理は、保持温度:520~570℃の範囲で行う。この保持温度が低過ぎると、溶体化が不足して、MgSiの固溶が不十分となり、導電率を本発明範囲へ制御できなくなり、0.2%耐力が低下する。また、保持温度が高過ぎると、局所的な溶融、結晶粒の粗大化が生じ、0.2%耐力が低下する。なお、溶体化処理における保持時間、昇温速度は、0.2%耐力を保証するために、保持時間20分~20時間、昇温速度100℃/hr以上とすることが好ましい。ここで、Al合金鍛造材の昇温速度は、溶体化処理の投入時温度から保持温度到達までの平均昇温速度とする。 The solution treatment is performed at a holding temperature of 520 to 570 ° C. If the holding temperature is too low, solutionization is insufficient, Mg 2 Si is not sufficiently dissolved, the conductivity cannot be controlled within the range of the present invention, and the 0.2% yield strength is reduced. On the other hand, if the holding temperature is too high, local melting and coarsening of crystal grains occur, and the 0.2% proof stress decreases. In addition, it is preferable that the holding time and the heating rate in the solution treatment are a holding time of 20 minutes to 20 hours and a heating rate of 100 ° C./hr or more in order to guarantee 0.2% proof stress. Here, the rate of temperature rise of the Al alloy forging is the average rate of temperature rise from the temperature at the time of solution treatment to the arrival of the holding temperature.
 なお、溶体化処理後に焼入れ処理を行ってもよい。そして、焼入れ処理は、水中、温湯中への冷却により行い、冷却速度は、靭性、疲労特性の低下を防止するため、40℃/sec以上で行うことが好ましい。また、溶体化処理には、空気炉、誘導加熱炉、硝石炉などが適宜用いられる。 In addition, you may perform a quenching process after solution treatment. The quenching treatment is preferably performed by cooling into water or hot water, and the cooling rate is preferably 40 ° C./sec or more in order to prevent deterioration of toughness and fatigue characteristics. In addition, an air furnace, an induction heating furnace, a glass stone furnace, or the like is appropriately used for the solution treatment.
 人工時効硬化処理は、その温度と時間が人工時効硬化処理後のAl合金鍛造材表面の導電率に大きく影響する。このため、それまでの製造履歴を考慮した上で、導電率を本発明範囲内に収めて必要な0.2%耐力を得るとともに、他に必要な靱性や耐食性を得るための条件を選択する必要がある。この点、合金元素量や人工時効硬化処理までの製造履歴(条件)によっても異なり、個々の製造工程や製造設備での確認が必要ではあるが、人工時効硬化処理後のAl合金鍛造材表面の導電率を本発明範囲とするために、人工時効硬化処理は、前記T6、T7、T8の調質処理材となる条件(最大強さ)を考慮しながら、170~200℃×4~9hrの範囲から選択する。なお、人工時効硬化処理には、空気炉、誘導加熱炉、オイルバスなどが適宜用いられる。 The artificial age hardening treatment greatly affects the electrical conductivity of the surface of the Al alloy forged material after the artificial age hardening treatment. For this reason, in consideration of the manufacturing history so far, the conductivity is kept within the range of the present invention to obtain the required 0.2% proof stress, and other conditions for obtaining the required toughness and corrosion resistance are selected. There is a need. In this respect, it depends on the amount of alloying elements and the manufacturing history (conditions) up to the artificial age hardening treatment, and it is necessary to check in individual manufacturing processes and equipment, but the surface of the Al alloy forging after the artificial age hardening treatment In order to make the electrical conductivity within the range of the present invention, the artificial age hardening treatment is performed at 170 to 200 ° C. × 4 to 9 hours in consideration of the conditions (maximum strength) to be the temper treatment material of T6, T7, and T8. Select from a range. For the artificial age hardening treatment, an air furnace, an induction heating furnace, an oil bath, or the like is appropriately used.
 また、本発明の製造方法は、溶解工程と鋳造工程との間に脱ガス工程を含むことが好ましい。
(脱ガス工程)
 脱ガス工程は、溶解工程で溶解された溶湯から水素ガスを除去(脱ガス処理)し、アルミニウム合金100g中の水素ガス濃度を0.25ml以下に制御する工程である。そして、水素ガスの除去は、溶湯の成分調整、介在物の除去のための保持炉において行い、溶湯をフラクシング、塩素精錬、または、インライン精錬することによって行われるが、脱水素ガス装置にスニフ(SNIF;Spining Nozzle Inert Floatation)またはポーラスプラグ(porous plug)(特開2002-146447号公報参照)を用いて、溶湯にアルゴン等の不活性ガスを吹き込むことによって水素ガスを除去することが好ましい。
Moreover, it is preferable that the manufacturing method of this invention includes a degassing process between a melt | dissolution process and a casting process.
(Degassing process)
In the degassing step, hydrogen gas is removed (degassing treatment) from the molten metal melted in the melting step, and the hydrogen gas concentration in 100 g of the aluminum alloy is controlled to 0.25 ml or less. The removal of hydrogen gas is performed in a holding furnace for component adjustment of molten metal and removal of inclusions, and is performed by fluxing, chlorine refining, or in-line refining. It is preferable to remove hydrogen gas by blowing an inert gas such as argon into the molten metal using SNIF (Spinning Nozzle Inert Floatation) or porous plug (see JP 2002-146447 A).
 ここで、水素ガス濃度の確認は、鋳造工程で製造された鋳塊、または、鍛造工程で製造された鍛造材の水素ガス濃度を測定することによって行われる。そして、鋳塊の水素ガス濃度は、例えば、均質化熱処理前の鋳塊からサンプルを切り出し、アルコールとアセトンで超音波洗浄を行ったものを、例えば、不活性ガス気流融解熱伝導度法(LIS A06-1993)により測定することによって求めることができる。また、鍛造材の水素ガス濃度は、例えば、鍛造材からサンプルを切り出し、NaOH溶液に浸漬後、硝酸で表面の酸化皮膜を除去し、アルコールとアセトンで超音波洗浄を行ったものを、例えば、真空加熱抽出容量法(LIS A06-1993)により測定することによって求めることができる。 Here, the hydrogen gas concentration is confirmed by measuring the hydrogen gas concentration of the ingot manufactured in the casting process or the forged material manufactured in the forging process. The hydrogen gas concentration of the ingot is obtained, for example, by cutting a sample from the ingot before homogenization heat treatment and ultrasonically washing with alcohol and acetone. For example, an inert gas flow melting thermal conductivity method (LIS) A06-1993). The hydrogen gas concentration of the forging material is, for example, a sample cut out from the forging material, immersed in a NaOH solution, the surface oxide film is removed with nitric acid, and ultrasonically cleaned with alcohol and acetone. It can be determined by measuring by a vacuum heating extraction volume method (LIS A06-1993).
 また、本発明の製造方法は、鍛造工程の前にフォージングロール等によるプリフォーム工程を設けることも可能である。 Moreover, the production method of the present invention can also be provided with a preforming process such as a forging roll before the forging process.
 次に、本発明の実施例を説明する。表1に示す化学成分組成のAl合金鋳塊(φ68mm径×580mm長さの丸棒)を、ホットトップ鋳造法により、20℃/secの冷却速度により鋳造した。そして、この鋳塊を、昇温速度5℃/minとして、550℃×4hrで均質化熱処理した。 Next, examples of the present invention will be described. An Al alloy ingot (φ68 mm diameter × 580 mm length round bar) having the chemical composition shown in Table 1 was cast at a cooling rate of 20 ° C./sec by a hot top casting method. And this ingot was homogenized and heat-treated at 550 ° C. × 4 hr at a heating rate of 5 ° C./min.
 更に、表2に示す鍛造開始温度、鍛造終了温度で、上下金型を用いたメカニカル鍛造により合計の鍛造加工率が75%となるように3回の熱間鍛造を行い、自動車足回り部材形状のAl合金鍛造材を製造した。この鍛造材は最薄肉部の厚みが6mmであった。 Furthermore, at the forging start temperature and forging end temperature shown in Table 2, three times of hot forging is performed by mechanical forging using upper and lower molds so that the total forging rate becomes 75%, and the shape of the automobile underbody member A forged Al alloy was produced. This forged material had a thickness of the thinnest portion of 6 mm.
 次に、Al合金鍛造材を空気炉で550℃で1hrの溶体化処理した後、水冷(水焼入れ)を行い、引き続いて空気炉で190℃で5hrの人工時効硬化処理を行った。 Next, the Al alloy forging was subjected to a solution treatment for 1 hr at 550 ° C. in an air furnace, followed by water cooling (water quenching), and then an artificial age hardening treatment at 190 ° C. for 5 hr in an air furnace.
 そして、前記Al合金鍛造材から3個の試験片を採取し、表2に示すように、表面の導電率、強度の指標となる引張強度、0.2%耐力、伸びなどの引張特性や、靱性の指標となるシャルピー衝撃値(機械的性質)の調査を行った。また、表2の各値は、各々3個の採取試験片の平均値を示す。そして、引張強度、0.2%耐力、伸びの測定は、図1に示す試験片S1をAl合金鍛造材より採取し、JISZ2241の規定に準じて行った。また、シャルピー衝撃値は、図2に示す試験片S2をAl合金鍛造材より採取し、JISZ2242の規定に準じて行った。なお、0.2%耐力が360MPa以上、シャルピー衝撃値が6J/cm以上であるとき、良好であるとした。 And, three test pieces were collected from the Al alloy forging material, and as shown in Table 2, tensile properties such as surface conductivity, tensile strength, 0.2% proof stress, elongation, and the like, The Charpy impact value (mechanical property), which is an index of toughness, was investigated. Moreover, each value of Table 2 shows the average value of three collection test pieces, respectively. The tensile strength, 0.2% proof stress, and elongation were measured according to JISZ2241 by taking the specimen S1 shown in FIG. 1 from an Al alloy forged material. Further, the Charpy impact value was obtained in accordance with the provisions of JISZ2242 by collecting the specimen S2 shown in FIG. In addition, when the 0.2% proof stress was 360 MPa or more and the Charpy impact value was 6 J / cm 2 or more, it was considered good.
 また、別途、Al合金鍛造材から図3に示すCリングの試験片S3を採取し、応力腐食割れ試験を行った。応力腐食割れ試験条件は、前記Cリング試験片S3を用いてASTMG47の交互浸漬法の規定に準じて行った。試験条件は、Cリング試験片S3に、試験片S3のLT方向の耐力の75%の応力を負荷した状態で、塩水への浸漬と引き上げを繰り返して90日間行い、試験片の応力腐食割れ発生の有無を確認した。応力腐食割れが発生している場合を耐応力腐食割れ性が×(不良)、応力腐食割れではないが、応力腐食割れに至る可能性の高い粒界腐食が発生している場合を耐応力腐食割れ性が△(やや不良)、応力腐食割れや粒界腐食(表面的な全面腐食を含む)が発生していない場合を耐応力腐食割れ性が○(良好)として、これらの結果を表2に示す。 Separately, a C-ring test piece S3 shown in FIG. 3 was sampled from an Al alloy forged material and subjected to a stress corrosion cracking test. The stress corrosion cracking test conditions were performed according to the provisions of the ASTMG47 alternate dipping method using the C-ring test piece S3. The test conditions were as follows: C-ring test piece S3 was subjected to stress immersion of 75% of the proof stress in the LT direction of test piece S3 and repeatedly immersed in salt water and pulled up for 90 days. The presence or absence was confirmed. Stress corrosion cracking resistance is x (defect) when stress corrosion cracking has occurred, stress corrosion cracking is the case when intergranular corrosion that is likely to lead to stress corrosion cracking is occurring, but not stress corrosion cracking Table 2 shows the results when the crack resistance is △ (slightly poor) and stress corrosion cracking or intergranular corrosion (including superficial overall corrosion) does not occur. Shown in
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、表2に示すように、本発明の特許請求の範囲を満足するAl合金鍛造材(No.1~10、10A~10H:実施例)は、0.2%耐力、シャルピー衝撃値および耐応力腐食割れ性が優れていた。一方、本発明の特許請求の範囲を満足しないAl合金鍛造材(No.11~34:比較例)は、0.2%耐力、シャルピー衝撃値および耐応力腐食割れ性のいずれかが劣っていた。 As shown in Tables 1 and 2, Al alloy forgings (Nos. 1 to 10, 10A to 10H: Examples) satisfying the claims of the present invention have 0.2% proof stress, Charpy impact value and Excellent resistance to stress corrosion cracking. On the other hand, Al alloy forgings (Nos. 11 to 34: Comparative Examples) that do not satisfy the claims of the present invention were inferior in any of 0.2% proof stress, Charpy impact value, and stress corrosion cracking resistance. .
 具体的には、No.11は、Mg含有量が下限値未満であるため、シャルピー衝撃値および耐応力腐食割れ性が劣っていた。No.12は、Mg含有量が上限値を超えるため、導電率が下限値未満となり、耐応力腐食割れ性が劣っていた。No.13は、Si含有量が下限値未満であるため、0.2%耐力、耐応力腐食割れ性が劣っていた。No.14は、Si含有量が上限値を超えるため、導電率が下限値未満となり、シャルピー衝撃値および耐応力腐食割れ性が劣っていた。No.15は、Cu含有量が下限値未満であるため、0.2%耐力が劣っていた。No.16は、Cu含有量が上限値を超えるため、導電率が下限値未満となり、耐応力腐食割れ性が劣っていた。No.17は、Mg、SiおよびCuの含有量が上限値を超えるため、導電率が下限値未満となり、シャルピー衝撃値および耐応力腐食割れ性が劣っていた。 Specifically, no. No. 11 was inferior in Charpy impact value and stress corrosion cracking resistance because the Mg content was less than the lower limit. No. No. 12, since the Mg content exceeded the upper limit, the conductivity was less than the lower limit, and the stress corrosion cracking resistance was poor. No. No. 13 was inferior in 0.2% yield strength and stress corrosion cracking resistance because the Si content was less than the lower limit. No. In No. 14, since the Si content exceeded the upper limit, the conductivity was less than the lower limit, and the Charpy impact value and the stress corrosion cracking resistance were inferior. No. No. 15 had an inferior 0.2% proof stress because the Cu content was less than the lower limit. No. In No. 16, since the Cu content exceeded the upper limit, the conductivity was less than the lower limit, and the stress corrosion cracking resistance was poor. No. In No. 17, since the contents of Mg, Si and Cu exceeded the upper limit, the conductivity was less than the lower limit, and the Charpy impact value and the stress corrosion crack resistance were inferior.
 No.18は、Mn、CrおよびZrを含有してないため、0.2%耐力が劣っていた。No.19は、Mn含有量が上限値を超えるため、導電率が下限値未満となり、0.2%耐力が劣っていた。No.20は、Cr含有量が上限値を超えるため、0.2%耐力および耐応力腐食割れ性が劣っていた。No.21は、Zr含有量が上限値を超えるため、0.2%耐力および耐応力腐食割れ性が劣っていた。No.22は、Mn、CrおよびZrの含有量が上限値を超えるため、導電率が下限値未満となり、0.2%耐力が劣っていた。 No. Since 18 contained no Mn, Cr and Zr, the 0.2% yield strength was inferior. No. In No. 19, since the Mn content exceeded the upper limit, the conductivity was less than the lower limit, and the 0.2% yield strength was inferior. No. No. 20 was inferior in 0.2% proof stress and stress corrosion cracking resistance because the Cr content exceeded the upper limit. No. No. 21 had inferior 0.2% yield strength and stress corrosion cracking resistance because the Zr content exceeded the upper limit. No. In No. 22, since the contents of Mn, Cr and Zr exceeded the upper limit, the conductivity was less than the lower limit and the 0.2% yield strength was inferior.
 No.23は、化学成分組成は特許請求の範囲を満足するが、鋳造時の冷却速度が下限値未満であるため、0.2%耐力が劣っていた。No.24は、化学成分組成は特許請求の範囲を満足するが、均質化熱処理時の昇温速度が上限値を超えるため、0.2%耐力が劣っていた。No.25は、化学成分組成は特許請求の範囲を満足するが、均質化熱処理時の保持温度が上限値を超えるため、0.2%耐力が劣っていた。No.26は、特許文献1のAl合金鍛造材であって、化学成分組成は特許請求の範囲を満足するが、鍛造開始温度が下限値未満であるため、導電率が下限値未満となり、0.2%耐力が劣っていた。No.27は、化学成分組成は特許請求の範囲を満足するが、鍛造開始温度が上限値を超えるため、導電率が上限値を超え、0.2%耐力および耐応力腐食割れ性が劣っていた。No.28は、化学成分組成は特許請求の範囲を満足するが、溶体化処理温度が下限値未満であるため、導電率が上限値を超え、0.2%耐力が劣っていた。No.29は、化学成分組成は特許請求の範囲を満足するが、人工時効硬化処理温度が上限値を超えるため、導電率が上限値を超え、0.2%耐力が劣っていた。 No. Although the chemical composition of No. 23 satisfied the scope of the claims, the cooling rate during casting was less than the lower limit value, so the 0.2% yield strength was inferior. No. No. 24, although the chemical component composition satisfies the scope of the claims, the rate of temperature rise during the homogenization heat treatment exceeds the upper limit value, so the 0.2% yield strength was inferior. No. No. 25, the chemical component composition satisfied the claims, but the holding temperature during the homogenization heat treatment exceeded the upper limit value, so the 0.2% yield strength was inferior. No. 26 is an Al alloy forging material of Patent Document 1, and the chemical component composition satisfies the claims, but because the forging start temperature is less than the lower limit value, the conductivity is less than the lower limit value, 0.2 % Proof stress was inferior. No. In No. 27, the chemical component composition satisfied the claims, but the forging start temperature exceeded the upper limit value, so the conductivity exceeded the upper limit value, and the 0.2% proof stress and stress corrosion cracking resistance were inferior. No. In No. 28, the chemical component composition satisfies the claims, but the solution treatment temperature is less than the lower limit value, so the conductivity exceeds the upper limit value and the 0.2% yield strength is inferior. No. In No. 29, the chemical component composition satisfied the claims, but the artificial age hardening temperature exceeded the upper limit, so the conductivity exceeded the upper limit and the 0.2% yield strength was inferior.
 No.30は、Fe含有量が上限値を超えるため、シャルピー衝撃値が劣っていた。No.31は、Fe含有量が下限値未満であるため、鋳造時に割れが発生し鍛造不可であった。No.32は、Ti含有量が上限値を超えるため、シャルピー衝撃値が劣っていた。No.33は、B含有量が上限値を超えるため、シャルピー衝撃値が劣っていた。No.34は、TiおよびBが含有されていないため、鋳造組織が粗大となり鍛造時に割れが発生した。 No. No. 30 had an inferior Charpy impact value because the Fe content exceeded the upper limit. No. In No. 31, since the Fe content was less than the lower limit, cracking occurred during casting, and forging was impossible. No. No. 32 had an inferior Charpy impact value because the Ti content exceeded the upper limit. No. No. 33 had an inferior Charpy impact value because the B content exceeded the upper limit. No. No. 34 contained no Ti and B, so the cast structure became coarse and cracks occurred during forging.
  S1…試験片
  S2…試験片
  S3…試験片
S1 ... Test piece S2 ... Test piece S3 ... Test piece

Claims (4)

  1.  Mg:0.60~1.80質量%、Si:0.80~1.80質量%、Cu:0.20~1.00質量%、Fe:0.05~0.40質量%、Ti:0.001~0.15質量%、B:1~500ppmを含み、更に、Mn:0.10~0.60質量%、Cr:0.10~0.40質量%およびZr:0.10~0.20質量%の一種または二種以上を含み、残部がAlおよび不可避的不純物からなるアルミニウム合金から構成されるアルミニウム合金鍛造材であって、
     前記アルミニウム合金鍛造材の表面で測定した、20℃での導電率が42.5IACS%を超え46.0IACS%以下であり、前記アルミニウム合金鍛造材の0.2%耐力が360MPa以上、かつ、シャルピー衝撃値が6J/cm以上であることを特徴とするアルミニウム合金鍛造材。
    Mg: 0.60 to 1.80 mass%, Si: 0.80 to 1.80 mass%, Cu: 0.20 to 1.00 mass%, Fe: 0.05 to 0.40 mass%, Ti: 0.001 to 0.15 mass%, B: 1 to 500 ppm, Mn: 0.10 to 0.60 mass%, Cr: 0.10 to 0.40 mass%, and Zr: 0.10 to An aluminum alloy forging material comprising one or two or more of 0.20 mass%, the balance being made of an aluminum alloy consisting of Al and inevitable impurities,
    The electrical conductivity at 20 ° C. measured on the surface of the aluminum alloy forged material is more than 42.5 IACS% and not more than 46.0 IACS%, the 0.2% proof stress of the aluminum alloy forged material is 360 MPa or more, and Charpy An aluminum alloy forged material having an impact value of 6 J / cm 2 or more.
  2.  前記アルミニウム合金は、Si/Mgの質量比が1以上であることを特徴とする請求項1に記載のアルミニウム合金鍛造材。 The aluminum alloy forging according to claim 1, wherein the aluminum alloy has a Si / Mg mass ratio of 1 or more.
  3.  前記アルミニウム合金鍛造材の水素ガス濃度が、0.25ml/100gAl以下であることを特徴とする請求項1または請求項2に記載のアルミニウム合金鍛造材。 3. The aluminum alloy forging according to claim 1, wherein a hydrogen gas concentration of the aluminum alloy forging is 0.25 ml / 100 g Al or less.
  4.  請求項1または請求項2に記載のアルミニウム合金鍛造材の製造方法であって、
     前記アルミニウム合金を溶解して溶湯とする溶解工程と、
     前記溶湯を冷却速度10℃/sec以上で鋳造して鋳塊とする鋳造工程と、
     前記鋳塊に昇温速度5℃/min以下、保持温度450~550℃で均質化熱処理を施す均質化熱処理工程と、
     均質化熱処理された前記鋳塊を鍛造素材とし、前記鍛造素材に開始温度460~540℃の熱間鍛造を施す鍛造工程と、
     前記鍛造工程の後に、520~570℃の溶体化処理と、170~200℃で4~9hrの人工時効硬化処理を施す調質工程と、を含むことを特徴とするアルミニウム合金鍛造材の製造方法。
    It is a manufacturing method of the aluminum alloy forging material according to claim 1 or 2,
    A melting step of melting the aluminum alloy to form a molten metal;
    A casting process in which the molten metal is cast at a cooling rate of 10 ° C./sec or more to form an ingot;
    A homogenization heat treatment step in which the ingot is subjected to a homogenization heat treatment at a heating rate of 5 ° C./min or less and a holding temperature of 450 to 550 ° C .;
    A forging process in which the ingot subjected to homogenization heat treatment is used as a forging material, and hot forging at a starting temperature of 460 to 540 ° C. is performed on the forging material;
    A method for producing an aluminum alloy forged material comprising: after the forging step, a solution treatment at 520 to 570 ° C. and a tempering step of performing an artificial age hardening treatment at 170 to 200 ° C. for 4 to 9 hours. .
PCT/JP2013/050314 2012-02-02 2013-01-10 Forged aluminum alloy material and method for producing same WO2013114928A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380004213.5A CN103975085B (en) 2012-02-02 2013-01-10 Forged aluminum alloy material and method for producing same
US14/370,605 US20140367001A1 (en) 2012-02-02 2013-01-10 Aluminum alloy forged material and method for manufacturing the same
EP13744215.8A EP2811042B1 (en) 2012-02-02 2013-01-10 ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-020956 2012-02-02
JP2012020956 2012-02-02
JP2012250374A JP5863626B2 (en) 2012-02-02 2012-11-14 Aluminum alloy forging and method for producing the same
JP2012-250374 2012-11-14

Publications (1)

Publication Number Publication Date
WO2013114928A1 true WO2013114928A1 (en) 2013-08-08

Family

ID=48904972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050314 WO2013114928A1 (en) 2012-02-02 2013-01-10 Forged aluminum alloy material and method for producing same

Country Status (5)

Country Link
US (1) US20140367001A1 (en)
EP (1) EP2811042B1 (en)
JP (1) JP5863626B2 (en)
CN (1) CN103975085B (en)
WO (1) WO2013114928A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103484736A (en) * 2013-10-10 2014-01-01 东北大学 Ultrahigh strength 6000 series aluminium alloy and preparation method thereof
WO2014077391A1 (en) * 2012-11-19 2014-05-22 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
CN104117549A (en) * 2014-08-12 2014-10-29 山东裕航特种合金装备有限公司 Method for manufacturing large-sized 6082T6 aluminum alloy bars for electric power equipment
CN104120312A (en) * 2014-08-12 2014-10-29 山东裕航特种合金装备有限公司 Manufacturing method of 6A02T651 aluminum alloy seam pipe for air separators
CN107039104A (en) * 2015-11-26 2017-08-11 矢崎总业株式会社 Aluminum alloy wire and wire harness
EP3115473A4 (en) * 2014-03-06 2017-11-08 Furukawa Electric Co. Ltd. Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
CN112916788A (en) * 2021-01-19 2021-06-08 建龙北满特殊钢有限责任公司 Production method for forging axle for railway vehicle by adopting continuous casting billet
JPWO2021230080A1 (en) * 2020-05-13 2021-11-18
CN114517256A (en) * 2022-03-08 2022-05-20 先导薄膜材料有限公司 Aluminum alloy backboard for target and processing method thereof
CN117291477A (en) * 2023-11-27 2023-12-26 沈阳华钛实业有限公司 Metal hot working quality control method and system
WO2024142830A1 (en) * 2022-12-27 2024-07-04 株式会社レゾナック Aluminum alloy forging material, aluminum alloy forged product, and method for manufacturing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553327B2 (en) * 2014-05-26 2020-02-04 Furukawa Electric Co., Ltd. Aluminum alloy conductor wire, aluminum alloy stranded wire, coated wire, wire harness and method of manufacturing aluminum alloy conductor wire
JP6079818B2 (en) * 2015-04-28 2017-02-15 株式会社オートネットワーク技術研究所 Aluminum alloy wire, aluminum alloy twisted wire and manufacturing method thereof, automotive electric wire and wire harness
JP2017002388A (en) * 2015-06-16 2017-01-05 株式会社神戸製鋼所 High strength aluminum alloy hot forging material
SI24911A (en) 2016-03-04 2016-07-29 Impol 2000, d.d. High-strength aluminum alloy Al-Mg-Si and procedure for its manufacture
EP3464659B2 (en) 2016-06-01 2023-07-12 Aleris Aluminum Duffel BVBA 6xxx-series aluminium alloy forging stock material and method of manufacting thereof
JP7182435B2 (en) * 2018-11-28 2022-12-02 昭和電工株式会社 Al-Mg-Si based aluminum alloy extruded material
CN110129597A (en) * 2019-05-23 2019-08-16 捷安特轻合金科技(昆山)股份有限公司 A kind of shock resistance structure 6XXX containing zirconium line aluminium alloy and preparation method thereof
JP2022142180A (en) * 2021-03-16 2022-09-30 本田技研工業株式会社 Processing method of aluminum alloy, and processed article of aluminum alloy
JP2023094446A (en) * 2021-12-23 2023-07-05 株式会社レゾナック Aluminum alloy forging
EP4275812A1 (en) 2022-05-13 2023-11-15 TRIMET Aluminium SE Aluminum alloy structural components, precursor material and method of manufacturing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232051A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd Production of aluminum alloy forged product
JP2002146447A (en) 2000-11-01 2002-05-22 Daido Steel Co Ltd Degassing apparatus for non-ferrous metal
JP2003277868A (en) * 2002-03-19 2003-10-02 Kobe Steel Ltd Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP2004043907A (en) * 2002-07-12 2004-02-12 Kobe Steel Ltd Aluminum alloy forging for reinforcement member and raw material for forging
JP2004084058A (en) * 2002-06-27 2004-03-18 Kobe Steel Ltd Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) * 2003-03-28 2004-10-21 Kobe Steel Ltd Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2004315938A (en) * 2003-04-18 2004-11-11 Kobe Steel Ltd Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2006274415A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Aluminum alloy forging for high strength structural member
WO2007114078A1 (en) * 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697400B2 (en) * 1991-08-28 1998-01-14 日本軽金属株式会社 Aluminum alloy for forging
JPH07145440A (en) * 1993-11-22 1995-06-06 Mitsubishi Alum Co Ltd Aluminum alloy forging stock
JPH09249951A (en) * 1996-03-12 1997-09-22 Nippon Light Metal Co Ltd Production of aluminum forged product having fine structure
US6630037B1 (en) * 1998-08-25 2003-10-07 Kobe Steel, Ltd. High strength aluminum alloy forgings
JP3684313B2 (en) * 1998-08-25 2005-08-17 株式会社神戸製鋼所 High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP4768925B2 (en) 2001-03-30 2011-09-07 昭和電工株式会社 Method for manufacturing aluminum alloy ingot for plastic working, method for manufacturing aluminum alloy plastic processed product, and aluminum alloy plastic processed product
JP4801386B2 (en) 2005-06-30 2011-10-26 昭和電工株式会社 Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP5180496B2 (en) 2007-03-14 2013-04-10 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5723192B2 (en) * 2010-03-31 2015-05-27 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232051A (en) * 1995-02-24 1996-09-10 Sumitomo Light Metal Ind Ltd Production of aluminum alloy forged product
JP2002146447A (en) 2000-11-01 2002-05-22 Daido Steel Co Ltd Degassing apparatus for non-ferrous metal
JP2003277868A (en) * 2002-03-19 2003-10-02 Kobe Steel Ltd Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP2004084058A (en) * 2002-06-27 2004-03-18 Kobe Steel Ltd Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004043907A (en) * 2002-07-12 2004-02-12 Kobe Steel Ltd Aluminum alloy forging for reinforcement member and raw material for forging
JP3766357B2 (en) 2002-07-12 2006-04-12 株式会社神戸製鋼所 Aluminum alloy forging material for strength member and forging material
JP2004292937A (en) * 2003-03-28 2004-10-21 Kobe Steel Ltd Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2004315938A (en) * 2003-04-18 2004-11-11 Kobe Steel Ltd Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP2006274415A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Aluminum alloy forging for high strength structural member
WO2007114078A1 (en) * 2006-03-31 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy forging member and process for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811042A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014077391A1 (en) * 2012-11-19 2014-05-22 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
JP2014101541A (en) * 2012-11-19 2014-06-05 Kobe Steel Ltd Aluminum alloy material for high-pressure hydrogen gas container and method of producing the same
CN103484736A (en) * 2013-10-10 2014-01-01 东北大学 Ultrahigh strength 6000 series aluminium alloy and preparation method thereof
EP3115473A4 (en) * 2014-03-06 2017-11-08 Furukawa Electric Co. Ltd. Aluminum alloy wire, aluminum alloy strand wire, coated electric wire, wire harness, process for producing aluminum alloy wire, and method for examining aluminum alloy wire
US9899118B2 (en) 2014-03-06 2018-02-20 Furukawa Electric Co., Ltd. Aluminum alloy wire rod, alluminum alloy stranded wire, coated wire, wire harness, method of manufacturing aluminum alloy wire rod, and method of measuring aluminum alloy wire rod
CN104117549A (en) * 2014-08-12 2014-10-29 山东裕航特种合金装备有限公司 Method for manufacturing large-sized 6082T6 aluminum alloy bars for electric power equipment
CN104120312A (en) * 2014-08-12 2014-10-29 山东裕航特种合金装备有限公司 Manufacturing method of 6A02T651 aluminum alloy seam pipe for air separators
CN107039104A (en) * 2015-11-26 2017-08-11 矢崎总业株式会社 Aluminum alloy wire and wire harness
WO2021230080A1 (en) * 2020-05-13 2021-11-18 日本軽金属株式会社 Aluminum alloy forging material and method for manufacturing same
JPWO2021230080A1 (en) * 2020-05-13 2021-11-18
CN112916788A (en) * 2021-01-19 2021-06-08 建龙北满特殊钢有限责任公司 Production method for forging axle for railway vehicle by adopting continuous casting billet
CN114517256A (en) * 2022-03-08 2022-05-20 先导薄膜材料有限公司 Aluminum alloy backboard for target and processing method thereof
CN114517256B (en) * 2022-03-08 2023-12-01 先导薄膜材料(安徽)有限公司 Aluminum alloy backboard for target material and processing method thereof
WO2024142830A1 (en) * 2022-12-27 2024-07-04 株式会社レゾナック Aluminum alloy forging material, aluminum alloy forged product, and method for manufacturing same
CN117291477A (en) * 2023-11-27 2023-12-26 沈阳华钛实业有限公司 Metal hot working quality control method and system
CN117291477B (en) * 2023-11-27 2024-01-30 沈阳华钛实业有限公司 Metal hot working quality control method and system

Also Published As

Publication number Publication date
EP2811042A4 (en) 2016-06-08
CN103975085B (en) 2017-02-22
US20140367001A1 (en) 2014-12-18
EP2811042B1 (en) 2017-06-21
JP5863626B2 (en) 2016-02-16
CN103975085A (en) 2014-08-06
EP2811042A1 (en) 2014-12-10
JP2013177672A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP5901738B2 (en) Aluminum alloy forging and method for producing the same
KR101148421B1 (en) Aluminum alloy forgings and process for production thereof
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
JP5872443B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
EP2921567B1 (en) Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
CN102066596B (en) There is the Al-Zn-Mg alloy product of the quenching sensitive of reduction
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
JP5276341B2 (en) Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance
CN104959393A (en) Production method of aluminium alloy hot extrusion bar used for high-quality aviation blade
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
US20170073802A1 (en) Forged aluminum alloy material and method for producing same
CN111575554A (en) Production method of high-strength wear-resistant aluminum alloy
JP2006274415A (en) Aluminum alloy forging for high strength structural member
CN110551928A (en) Production method of 5654 aluminum alloy welding wire blank
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP5308907B2 (en) Method for producing Al alloy forged product
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP2009041113A (en) Automobile component
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof
CN116657002A (en) Method for producing aluminum alloy extrusion material having excellent hardenability, high toughness and high strength

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744215

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013744215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013744215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14370605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE