JPH08232051A - Production of aluminum alloy forged product - Google Patents

Production of aluminum alloy forged product

Info

Publication number
JPH08232051A
JPH08232051A JP6193195A JP6193195A JPH08232051A JP H08232051 A JPH08232051 A JP H08232051A JP 6193195 A JP6193195 A JP 6193195A JP 6193195 A JP6193195 A JP 6193195A JP H08232051 A JPH08232051 A JP H08232051A
Authority
JP
Japan
Prior art keywords
forging
aluminum alloy
temperature
forged product
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6193195A
Other languages
Japanese (ja)
Inventor
Shinichi Matsuda
眞一 松田
Shinichi Komazawa
真一 駒澤
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP6193195A priority Critical patent/JPH08232051A/en
Publication of JPH08232051A publication Critical patent/JPH08232051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE: To reduce man-hours, to shorten working time, and to reduce the cost of forged products by enabling forging at a temp. in the range of solution heat treatment and performing hardening without delay while obviating the necessity of solution heat treatment after forging. CONSTITUTION: An aluminum alloy, which has a composition consisting of 0.5-1.5% Si, 0.5-1.5% Mg, 0.2-1.2% Cu, 0.05-0.3% Zr, and the balance Al with inevitable impurities and further containing, if necessary, 0.05-1.0% Mn, 0.02-0.35% Cr, and 0.01-0.25% Ti, is used. This aluminum alloy is hot-forged at 450-580 deg.C. After forging the resulting forged product is subjected to solution heat treatment and hardening at 490-580 deg.C, or, after the completion of forging, hardening is done before the temp. of the forged product reaches <490 deg.C. After hardening, artificial aging treatment is done. By this method, the necessity of the energy for reheating can be obviated even in the case where solution heat treatment is done after forging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金鍛造
品の製造方法、とくに、必須合金成分としてSi、M
g、CuおよびZrを含有する6000系アルミニウム
合金鍛造品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a forged aluminum alloy product, and particularly to Si and M as essential alloy components
The present invention relates to a method for producing a 6000 series aluminum alloy forged product containing g, Cu and Zr.

【0002】[0002]

【従来の技術】自動車、オートバイ部品などの軽量化の
要求に伴い、これらの部品用としてアルミニウム合金材
料が使用されるようになってきているが、このうち60
00系アルミニウム合金は優れた鍛造性を有しているた
めに、型打鍛造品あるいは自由鍛造品としてホイール、
サスペンション部品、油圧装置ケースなど各種部品に適
用されている。
2. Description of the Related Art With the demand for weight reduction of automobiles and motorcycles, aluminum alloy materials have been used for these components.
Since 00 series aluminum alloys have excellent forgeability, they can be used as stamped forged products or free forged products for wheels,
It is applied to various parts such as suspension parts and hydraulic system cases.

【0003】6000系アルミニウム合金の鍛造品は、
通常、時効硬化処理を施した状態で提供されるが、従来
その製造プロセスは、例えば350 〜450 ℃の温度で熱間
鍛造し、鍛造後、一旦室温まで冷却して、510 〜550 ℃
程度の温度で溶体化処理し、焼入れ、時効処理を施すも
のであり、溶体化処理温度範囲では結晶粒が粗大となっ
て鍛造加工性が低下するために、熱間鍛造を溶体化処理
温度で行うことができず、熱間鍛造と溶体化処理とを異
なる温度範囲で実施しなければならないため、別の加熱
炉を必要とするという設備的難点があった。
Forged products of 6000 series aluminum alloys are
Usually, it is provided in a state where it has been subjected to age hardening treatment, but conventionally, the manufacturing process is, for example, hot forging at a temperature of 350 to 450 ° C, after forging, once cooled to room temperature, and 510 to 550 ° C.
It is a solution treatment at a certain temperature, quenching, and an aging treatment.In the solution treatment temperature range, the crystal grains become coarse and the forgeability decreases, so hot forging is performed at the solution treatment temperature. Since it cannot be performed and the hot forging and the solution heat treatment have to be performed in different temperature ranges, there is a facility difficulty that another heating furnace is required.

【0004】製品形状などにより鍛造加工度が低い場合
には、溶体化処理温度範囲での熱間鍛造が可能なことも
あるが、6000系合金は焼入れ感受性が高く、溶体化
処理温度からの冷却速度が少しでも遅くなると焼きが入
らなくなるため、溶体化処理温度で熱間鍛造を開始して
も鍛造中の温度降下に対して十分な焼入れ効果が得られ
ず、鍛造後溶体化処理温度に再加熱することなく、直ち
に焼入れ、時効処理を行っても十分な強度特性が得られ
ないことが少なくない。
When the degree of forging is low due to the shape of the product, hot forging may be possible within the solution treatment temperature range, but the 6000 series alloy has high quenching susceptibility and cooling from the solution treatment temperature. If the speed is slowed down, quenching will not occur, so even if hot forging is started at the solution treatment temperature, a sufficient quenching effect will not be obtained against the temperature drop during forging, and the solution treatment temperature after forging will not be restored. Even if quenching and aging treatment are performed immediately without heating, sufficient strength characteristics are often not obtained.

【0005】従って、熱間鍛造後、溶体化処理温度に再
加熱することが必須となるため、生産工数および作業時
間を増大させる原因となっている。熱間鍛造後、熱間鍛
造品の温度が低下しないうちに所定の溶体化処理温度ま
で昇温することにより、溶体化処理温度までの昇温を迅
速にし、生産のリードタイムを減少する方法も提案され
ている(特開平2-185956号公報) が、鍛造温度と溶体化
処理温度が異なるため、再加熱が必要となるから、生産
コストの抜本的解決策とはなっていない。
Therefore, after hot forging, it is essential to reheat to the solution heat treatment temperature, which is a cause of increasing the number of production steps and working time. After hot forging, by raising the temperature to a predetermined solution heat treatment temperature before the temperature of the hot forged product decreases, a method of speeding up the temperature rise to the solution heat treatment temperature and reducing the production lead time is also available. The proposal (Japanese Patent Application Laid-Open No. 2-185956) does not provide a drastic solution to the production cost because reheating is required because the forging temperature and the solution treatment temperature are different.

【0006】[0006]

【発明が解決しようとする課題】本発明は、6000系
アルミニウム合金の熱間鍛造品製造における従来の上記
問題点を解消するためになされたものであり、その目的
は、各合金元素の含有範囲の特定の組み合わせにより溶
体化処理温度での鍛造性を改善するとともに焼入れ感受
性を小さくして強度特性を改良し、また溶体化処理温度
範囲での鍛造加工を可能とし、鍛造後溶体化処理温度に
再加熱することなしに、直ちに焼入れ、人工時効処理を
行うことにより生産工数、作業時間の減少も達成するこ
とができるアルミニウム合金鍛造品の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems in the production of a hot forged product of a 6000 series aluminum alloy, and its purpose is to set the content range of each alloy element. The specific combination of improves the forgeability at the solution heat treatment temperature, reduces the quenching sensitivity to improve the strength characteristics, and enables the forging process within the solution heat treatment temperature range. It is an object of the present invention to provide a method for manufacturing an aluminum alloy forged product, which can achieve reduction in production man-hours and working time by performing quenching and artificial aging treatment immediately without reheating.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるアルミニウム合金鍛造品の製造方法
は、Si:0.5〜1.5 %、Mg:0.5〜1.5 %、Cu:0.2〜
1.2 %、Zr:0.05 〜0.3 %を含有し、必要に応じてさ
らにMn:0.05 〜1.0 %、Cr:0.02 〜0.35%およびT
i:0.01 〜0.25%のうちの1種または2種以上を含み、
残部Alと不可避的不純物からなるアルミニウム合金を
450 〜580 ℃の温度で熱間鍛造したのち、490 〜580 ℃
の温度で溶体化処理を行い、焼入れ、時効処理すること
を第1の特徴とする。
A method for manufacturing an aluminum alloy forged product according to the present invention for achieving the above object is as follows: Si: 0.5-1.5%, Mg: 0.5-1.5%, Cu: 0.2-
1.2%, Zr: 0.05-0.3%, Mn: 0.05-1.0%, Cr: 0.02-0.35% and T if necessary.
i: contains one or more of 0.01 to 0.25%,
Aluminum alloy consisting of balance Al and unavoidable impurities
After hot forging at a temperature of 450 to 580 ℃, then 490 to 580 ℃
The first feature is that the solution treatment is performed at the temperature of, and quenching and aging are performed.

【0008】また、上記アルミニウム合金を450 〜580
℃の温度で熱間鍛造し、熱間鍛造されたアルミニウム合
金の温度が490 ℃未満になる前に焼入れし、さらに時効
処理することを本発明の第2の特徴とする。
Further, the above aluminum alloy is used in the range of 450-580.
The second feature of the present invention is to perform hot forging at a temperature of ℃, quench before the temperature of the hot forged aluminum alloy becomes lower than 490 ° C, and further perform aging treatment.

【0009】上記本発明の目的を達成するためには、ま
ず本発明のAl−Si−Mg系合金の組成を特定の範囲
に限定しなければならない。本発明における合金元素の
意義および限定理由について説明すると、Siは、Mg
と共存してマトリックス中にMg2 Si粒子を析出さ
せ、合金の強度を向上させる。好ましい含有範囲は0.5
〜1.5 %であり、0.5 %未満では十分な強度が得られ
ず、1.5 %を越えて含有すると、マトリックス中に単体
Siが晶出し、加工性および焼入れ性を害する。
In order to achieve the above object of the present invention, first, the composition of the Al--Si--Mg alloy of the present invention must be limited to a specific range. Explaining the meaning and limitation reason of alloying elements in the present invention, Si is Mg
Copresence with Mg to precipitate Mg 2 Si particles in the matrix and improve the strength of the alloy. The preferred content range is 0.5
If it is less than 0.5%, sufficient strength cannot be obtained, and if it exceeds 1.5%, simple Si crystallizes in the matrix, deteriorating workability and hardenability.

【0010】Mgは、SiおよびCuと共存して合金の
強度を高める。好ましい含有範囲は0.5 〜1.5 %であ
り、0.5 %未満では強度が不十分となり、1.5 %を越え
ると加工性および焼入れ性を低下させる。Cuは、Mg
と複合して含有させることによりAl−Cu−Mg系の
粒子を析出し強度向上に役立つ。0.2 〜1.2 %の範囲で
含有させるのが好ましく、0.2 %未満では十分な強度向
上効果が得られず、1.2%を越えると加工性および焼入
れ性がわるくなる。
Mg coexists with Si and Cu to enhance the strength of the alloy. The preferred content range is 0.5 to 1.5%. If it is less than 0.5%, the strength is insufficient, and if it exceeds 1.5%, the workability and the hardenability are deteriorated. Cu is Mg
By including it in combination with Al-Cu-Mg-based particles, it helps to improve the strength. It is preferable to contain it in the range of 0.2 to 1.2%. If it is less than 0.2%, a sufficient strength improving effect cannot be obtained, and if it exceeds 1.2%, workability and hardenability become poor.

【0011】Zrは、再結晶粒を微細化し加工性を向上
させる。好ましい含有範囲は0.05〜0.3 %であり、0.05
%未満ではその効果が小さく、0.3 %を越えると巨大な
不溶性金属間化合物が生成し、延性を劣化させ、再結晶
微細化効果を弱める。選択成分として添加されるMn、
Cr、Tiは、Zrと複合して含有することにより、マ
トリックス中にAl−Mn−(Si)系、Al−Cr
系、Al−Ti系の微細化合物粒子を析出させ、再結晶
粒微細化効果を一層向上させる。それぞれ下限未満では
その効果が小さく、上限を越えると巨大な金属間化合物
が形成され、延性が低下する。
Zr refines recrystallized grains to improve workability. The preferred content range is 0.05 to 0.3%,
If it is less than 0.1%, the effect is small, and if it exceeds 0.3%, a huge insoluble intermetallic compound is formed, which deteriorates the ductility and weakens the recrystallization refining effect. Mn added as a selective component,
By containing Cr and Ti in combination with Zr, Al-Mn- (Si) system and Al-Cr are contained in the matrix.
And Al-Ti type fine compound particles are precipitated to further improve the effect of refining recrystallized grains. If it is less than the lower limit, the effect is small, and if it exceeds the upper limit, a huge intermetallic compound is formed and ductility is lowered.

【0012】本発明においては、上記組成を有するAl
−Si−Mg系アルミニウム合金の鍛造素材を型打鍛造
や自由鍛造により所望の鍛造品に加工し、鍛造終了温度
から再加熱することなしに直接焼入れ、または常温まで
冷却して再加熱あるいは鍛造終了温度から加熱して溶体
化処理温度まで昇温したのちに焼入れ処理し、さらに人
工時効処理することによって所定のアルミニウム合金鍛
造品を得る。
In the present invention, Al having the above composition is used.
-Si-Mg-based aluminum alloy forging material is processed into a desired forged product by stamping forging or free forging, and is directly quenched without reheating from the forging end temperature, or cooled to room temperature and reheated or forged A predetermined aluminum alloy forged product is obtained by heating from the temperature to raise the temperature to the solution heat treatment temperature, followed by quenching treatment and artificial aging treatment.

【0013】鍛造終了温度から溶体化処理温度まで再加
熱する場合にも、また鍛造終了温度から再加熱すること
なく直接焼入れする場合にも、鍛造温度は450 〜580 ℃
の範囲が好ましい。鍛造温度が450 ℃未満では、鍛造後
の温度低下によりMg2 Siが析出し、焼入れ、時効処
理後に十分な強度が得られない。鍛造温度が580 ℃を越
えると加工性が低下するとともに、溶解のおそれも生じ
る。さらに好ましい鍛造温度は520 〜580 ℃の範囲であ
る。
The forging temperature is 450 to 580 ° C. both when reheating from the forging end temperature to the solution treatment temperature and when directly quenching without reheating from the forging end temperature.
Is preferred. If the forging temperature is lower than 450 ° C., Mg 2 Si is precipitated due to the temperature decrease after forging, and sufficient strength cannot be obtained after quenching and aging treatment. If the forging temperature exceeds 580 ° C, the workability deteriorates and the melting may occur. A more preferable forging temperature is in the range of 520 to 580 ° C.

【0014】鍛造後、鍛造終了温度から溶体化処理処理
温度まで再加熱する場合の溶体化処理温度は490 〜580
℃の範囲が好ましく、さらに好ましくは520 〜580 ℃の
範囲とする。490 ℃未満では時効処理後に十分な強度が
得られず、580 ℃を越えると加工性が低下するととも
に、溶解のおそれが生じる。
After forging, the solution treatment temperature when reheating from the forging end temperature to the solution treatment temperature is 490 to 580.
C. is preferably in the range of 520 to 580.degree. If the temperature is lower than 490 ° C, sufficient strength cannot be obtained after the aging treatment, and if the temperature exceeds 580 ° C, the workability is deteriorated and dissolution may occur.

【0015】鍛造中、アルミニウム合金材の温度は加工
熱のため上昇し、通常490 ℃以上に達するから、鍛造終
了温度から直接焼入れを行う場合には、鍛造終了後、鍛
造品の温度が490 ℃未満まで低下する前、好ましくは52
0 ℃未満まで低下する前に焼入れ処理を行う。490 ℃未
満の温度となると、粗大なMg2 Siの析出が起こり、
時効後に十分な強度が得難い。焼入れ処理は、通常、鍛
造品を水槽に投入することにより行われる。焼入れ後、
一般の6000系アルミニウム合金の場合と同様、例え
ば170 〜180 ℃で8hの条件で人工時効処理を施す。
During forging, the temperature of the aluminum alloy material rises due to processing heat and usually reaches 490 ° C. or higher. Therefore, when directly quenching from the forging end temperature, the temperature of the forged product is 490 ° C. after the forging is completed. Before dropping to less than, preferably 52
Quenching is performed before the temperature drops below 0 ° C. At temperatures below 490 ° C, coarse Mg 2 Si precipitation occurs,
It is difficult to obtain sufficient strength after aging. Quenching treatment is usually performed by putting a forged product in a water tank. After quenching,
Similar to the case of a general 6000 series aluminum alloy, artificial aging treatment is performed, for example, at 170 to 180 ° C. for 8 hours.

【0016】[0016]

【作用】本発明においては、6000系アルミニウム合
金を熱間鍛造、溶体化処理、焼入れ、時効処理するに際
し、合金組成を特定することにより焼入れ感受性を小さ
くするとともに再結晶粒の粗大化を防いで加工性を向上
させ、特定の合金組成と所定の鍛造および溶体化処理温
度、焼入れ条件を組み合わせることにより、熱間鍛造と
溶体化処理とを同一の温度範囲で行うことを可能とし、
熱間鍛造終了後、溶体化処理温度に再加熱することなし
に直ちに焼入れ処理することができるから、生産工数お
よび作業時間を大幅に減少し、溶体化処理のためのエネ
ルギーも不要となって鍛造品の低コスト化を達成でき
る。
In the present invention, when the 6000 series aluminum alloy is subjected to hot forging, solution treatment, quenching and aging treatment, the alloy composition is specified to reduce quenching sensitivity and prevent coarsening of recrystallized grains. By improving the workability, by combining a specific alloy composition with a predetermined forging and solution treatment temperature and quenching conditions, it is possible to perform hot forging and solution treatment in the same temperature range,
After hot forging, quenching can be done immediately without reheating to the solution heat treatment temperature, which significantly reduces the production man-hours and working time, and eliminates the need for energy for solution heat treatment. Product cost reduction can be achieved.

【0017】また、熱間鍛造後、溶体化処理温度に再加
熱する場合にも、熱間鍛造と溶体化処理とが同一温度範
囲で行われるから、鍛造素材の加熱および溶体化処理に
同一の加熱炉を使用することも可能となって設備的利点
が得られ、さらに鍛造材の温度は、鍛造中に加工熱によ
り上昇し、ほとんど溶体化処理温度範囲に保たれるか
ら、鍛造終了後直ちに加熱炉に送り込むことによりエネ
ルギー損失も少なくなり、鍛造品のコスト低減に役立
つ。
Further, even when reheating to the solution heat treatment temperature after hot forging, the hot forging and the solution heat treatment are performed in the same temperature range, and therefore, the same for heating and solution heat treatment of the forging material is performed. It is also possible to use a heating furnace, and it is possible to obtain facility advantages.Furthermore, the temperature of the forged material rises due to the processing heat during forging and is maintained within the solution treatment temperature range, so immediately after the forging is completed. Energy loss is reduced by sending it to the heating furnace, which helps reduce the cost of the forged product.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成のアルミニウム合金からなる鍛造用素材
を520 ℃で熱間鍛造し、鍛造終了後、鍛造品が500 ℃の
温度になった時点で水槽に投入して焼入れ処理し、さら
に170 ℃で8hの人工時効処理を行った。得られた鍛造品
について、機械的性質(引張強さ:σB 、耐力:
σ0.2 、伸び率:δ)を測定し、鍛造品外観の割れ、シ
ワ、カブリなどの欠陥の有無を観察することにより鍛造
性を評価した。結果を表1に示す。表1に示されるよう
に、本発明による鍛造品はいずれも330MPa以上の優れた
耐力をそなえ、鍛造品の外観にも何ら欠陥はなく良好な
鍛造性を有している。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 A forging material made of an aluminum alloy having the composition shown in Table 1 was hot forged at 520 ° C, and after the forging, when the forged product reached a temperature of 500 ° C, it was put into a water tank and quenched. Further, artificial aging treatment was performed at 170 ° C for 8 hours. Mechanical properties of the obtained forged product (tensile strength: σ B , yield strength:
The forgeability was evaluated by measuring σ 0.2 and elongation: δ) and observing the presence or absence of defects such as cracks, wrinkles and fog on the appearance of the forged product. The results are shown in Table 1. As shown in Table 1, each of the forged products according to the present invention has an excellent proof stress of 330 MPa or more, and there is no defect in the appearance of the forged product and it has good forgeability.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例1 表2に示す組成のアルミニウム合金からなる鍛造用素材
について、実施例1と同様の条件で鍛造成形、焼入れ、
人工時効処理を行い、得られた鍛造品について、実施例
1と同様、機械的性質の測定および鍛造性の評価を行っ
た。結果を表2に示す。なお、表2において、本発明の
条件を外れたものには下線を付した。
Comparative Example 1 A forging material made of an aluminum alloy having the composition shown in Table 2 was subjected to forging, quenching, under the same conditions as in Example 1.
With regard to the forged product obtained by performing the artificial aging treatment, the mechanical properties were measured and the forgeability was evaluated in the same manner as in Example 1. Table 2 shows the results. In Table 2, those that do not satisfy the conditions of the present invention are underlined.

【0021】[0021]

【表2】 《表注》試験材No.21:6063合金、試験材No.22:6N01合金、試験材No.23:6061合金 鍛造性 ○: 良好[Table 2] <Table Note> Test material No.21: 6063 alloy, test material No.22: 6N01 alloy, test material No.23: 6061 alloy Forgeability ○: Good

【0022】表2に示されるように、試験材No.13 、1
5、17はそれぞれSi、Cu、Mgが本発明の下限未満
であるため、いずれも耐力が300MPaを下回り強度が不足
する。試験材No.14 、16、18はそれぞれSi、Cu、M
gが上限を越えているため、加工性がわるく、いずれも
鍛造成形で割れが生じた。試験材No.19 はZr量が下限
未満であるため再結晶粒が大きく、鍛造時に変形ムラに
よるシワが発生した。試験材No.20 はZrが上限値を越
えているため、鍛造成形で割れが生じた。試験材No.21
〜23は従来合金で、いずれも鍛造時にシワが生じ、強度
も十分でない。
As shown in Table 2, test materials No. 13 and 1
In Nos. 5 and 17, since Si, Cu, and Mg are less than the lower limit of the present invention, respectively, the yield strength is less than 300 MPa and the strength is insufficient. Test materials Nos. 14, 16, and 18 are Si, Cu, and M, respectively.
Since g was above the upper limit, workability was poor, and cracks occurred during forging. Since the Zr content of the test material No. 19 was less than the lower limit, the recrystallized grains were large and wrinkles were generated due to uneven deformation during forging. Since Zr of the test material No. 20 exceeds the upper limit value, cracking occurred during forging. Test material No.21
Nos. 23 to 23 are conventional alloys, and all have wrinkles during forging and insufficient strength.

【0023】実施例2、比較例2 Si:0.9%、Mg:0.8%、Cu:0.5%、Zr:0.10 %を
含有し、残部Alおよび不可避的不純物からなるアルミ
ニウム合金の鍛造用素材を、表3に示す温度で熱間鍛造
し、鍛造終了後、鍛造品の温度が表3に示す温度となっ
た時点で水槽に投入して焼入れ処理した。ついで170 ℃
で8hの人工時効処理を行い、得られた鍛造品について、
実施例1と同様、機械的性質を測定し、鍛造性を評価し
た。結果を表3に示す。なお、表3において、本発明の
条件を外れたものには下線を付した。
Example 2 and Comparative Example 2 A forging material of an aluminum alloy containing Si: 0.9%, Mg: 0.8%, Cu: 0.5%, Zr: 0.10% and the balance Al and unavoidable impurities is shown in Table 1. Hot forging was carried out at the temperature shown in FIG. 3, and after the forging was completed, when the temperature of the forged product reached the temperature shown in Table 3, the forged product was put into a water tank and quenched. Then 170 ℃
About 8 hours of artificial aging treatment, the obtained forged product,
In the same manner as in Example 1, the mechanical properties were measured and the forgeability was evaluated. The results are shown in Table 3. In Table 3, those that do not satisfy the conditions of the present invention are underlined.

【0024】[0024]

【表3】 [Table 3]

【0025】表3に示されるように、本発明の条件に従
う試験材No.24 〜28は、いずれも耐力320MPaを越える優
れた強度と良好な鍛造性をそなえているが、試験材No.2
9 は鍛造温度が高過ぎるため、加工性が低下し鍛造中に
割れが生じた。試験材No.30は鍛造温度が低いため、ま
た試験材No.31 は焼入れ温度が低いため、十分な強度が
得られない。
As shown in Table 3, the test materials No. 24 to 28 according to the conditions of the present invention have excellent strength exceeding 320 MPa in yield strength and good forgeability.
For No. 9, the forging temperature was too high, so the workability deteriorated and cracking occurred during forging. Since test material No. 30 has a low forging temperature and test material No. 31 has a low quenching temperature, sufficient strength cannot be obtained.

【0026】実施例3 表4に示す組成を有するアルミニウム合金からなる鍛造
用素材を520 ℃の温度で熱間鍛造成形し、その後520 ℃
の温度で溶体化処理を行ったのち、水槽に投入して焼入
れ、170 ℃で8h人工時効処理した。得られた鍛造品につ
いて、実施例1と同様、機械的性質を測定し、鍛造性を
評価した。結果を表4に示す。表4にっみられるよう
に、本発明に従う試験材はいずれも優れた強度と良好な
鍛造性をそなえている。
Example 3 A forging material made of an aluminum alloy having the composition shown in Table 4 was hot forged at a temperature of 520 ° C, and then 520 ° C.
After the solution heat treatment was performed at the temperature of 1, the mixture was placed in a water tank, quenched, and artificially aged at 170 ° C. for 8 hours. The mechanical properties of the obtained forged product were measured in the same manner as in Example 1 to evaluate the forgeability. The results are shown in Table 4. As shown in Table 4, all the test materials according to the present invention have excellent strength and good forgeability.

【0027】[0027]

【表4】 [Table 4]

【0028】比較例3 表5に示す組成を有するアルミニウム合金の鍛造用素材
を、実施例3と同様、520 ℃の温度で鍛造成形し、鍛造
後520 ℃の温度で溶体化処理し、水槽に投入して焼入れ
したのち、170 ℃で8h人工時効処理した。得られた鍛造
品について、機械的性質を測定し、鍛造性の評価を行っ
た。結果を表5に示す。なお、表5において、本発明の
条件を外れたものには下線を付した。
Comparative Example 3 A forging material of an aluminum alloy having the composition shown in Table 5 was forged at a temperature of 520 ° C. as in Example 3, and after forging, solution heat treated at a temperature of 520 ° C. to prepare a water tank. After charging and quenching, artificial aging treatment was performed at 170 ° C for 8 hours. The mechanical properties of the obtained forged product were measured and the forgeability was evaluated. The results are shown in Table 5. In Table 5, those that did not satisfy the conditions of the present invention are underlined.

【0029】[0029]

【表5】 《表注》試験材No.52:6063合金、試験材No.53:6N01合金、試験材No.54:6061合金[Table 5] << Table Note >> Test material No.52: 6063 alloy, test material No.53: 6N01 alloy, test material No.54: 6061 alloy

【0030】表5にみられるように、試験材No.44 、4
6、48はそれぞれSi、Cu、Mg量が本発明の下限未
満であるため、いずれも耐力が300MPa以下で十分な強度
が得られていない。試験材No.45 、47、49はそれぞれS
i、Cu、Mgが上限量を越えているため、加工性が劣
り鍛造時に割れが生じた。試験材No.50 はZr量が少な
いため再結晶微細化の効果が小さく、鍛造時に変形ムラ
によるシワが発生した。試験材No.51 はZrが多過ぎる
ため、延性が低下し鍛造加工で割れが生じた。試験材N
o.52 〜54は従来合金で加工性がわるく、いずれも鍛造
時にシワが生じ、強度も十分でない。
As shown in Table 5, test materials No. 44 and 4
In Nos. 6 and 48, since the amounts of Si, Cu, and Mg are less than the lower limit of the present invention, respectively, the yield strength is 300 MPa or less and sufficient strength is not obtained. Test materials No. 45, 47, and 49 are S
Since i, Cu, and Mg exceeded the upper limits, workability was poor and cracking occurred during forging. Since the test material No. 50 had a small amount of Zr, the effect of refinement of recrystallization was small, and wrinkles were generated due to uneven deformation during forging. Since the test material No. 51 contained too much Zr, the ductility decreased and cracking occurred during forging. Test material N
O.52 to 54 are conventional alloys with poor workability, and wrinkles occur during forging, and strength is not sufficient.

【0031】実施例4、比較例4 Si:0.9%、Mg:0.8%、Cu:0.5%、Zr:0.10 %を
含有し、残部Alおよび不可避的不純物からなるアルミ
ニウム合金の鍛造用素材を、表6に示す鍛造温度で熱間
鍛造成形したのち、表6に示す溶体化処理温度で溶体化
処理し、水槽に投入して焼入れ、さらに170 ℃で8hの人
工時効処理を行った。得られた鍛造品について、実施例
1と同様、機械的性質を測定した。結果を表6に示す。
なお、表6において、本発明の条件を外れたものには下
線を付した。
Example 4, Comparative Example 4 A forging material of an aluminum alloy containing Si: 0.9%, Mg: 0.8%, Cu: 0.5%, Zr: 0.10%, and the balance Al and unavoidable impurities was prepared. After hot forging at the forging temperature shown in Table 6, solution treatment was carried out at the solution treatment temperature shown in Table 6, and the solution was placed in a water tank for quenching and further subjected to artificial aging treatment at 170 ° C. for 8 hours. The mechanical properties of the obtained forged product were measured as in Example 1. The results are shown in Table 6.
In Table 6, those that did not satisfy the conditions of the present invention are underlined.

【0032】[0032]

【表6】 [Table 6]

【0033】表6に示されるように、本発明の条件に従
う試験材No.55 〜59はいずれも高強度を示したが、試験
材No.60 、61は鍛造温度が低いため、また試験材No.63
は溶体化処理温度が低いため、十分な強度が得られず、
試験材No.62 は溶体化処理温度が高過ぎるために部分溶
解が生じ、鍛造品が変形した。
As shown in Table 6, all of the test materials No. 55 to 59 according to the conditions of the present invention showed high strength, but the test materials No. 60 and 61 had low forging temperatures, and the test materials No. 63
Since the solution treatment temperature is low, sufficient strength cannot be obtained,
For the test material No. 62, the solution treatment temperature was too high, so partial melting occurred and the forged product was deformed.

【0034】[0034]

【発明の効果】以上のとおり、本発明によれば、溶体化
処理温度での熱間鍛造加工が可能となるから、鍛造後直
ちに焼入れすることにより、生産工数の減少および作業
時間の短縮を図ることができ、アルミニウム合金鍛造品
のコスト低減が達成される。鍛造終了後に溶体化処理を
行う場合も、再加熱に要するエネルギーは少なく、鍛造
素材の加熱と溶体化処理加熱を同一炉で実施することも
可能となるから、設備的な利点も生じる。
As described above, according to the present invention, it is possible to perform hot forging at a solution treatment temperature. Therefore, by quenching immediately after forging, it is possible to reduce the number of production steps and the working time. The cost reduction of the aluminum alloy forged product can be achieved. Even when the solution heat treatment is performed after the forging is completed, the energy required for reheating is small, and the heating of the forging material and the heat treatment for the solution heat treatment can be performed in the same furnace.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.5〜1.5 %(質量%、以下同
じ)、Mg:0.5〜1.5 %、Cu:0.2〜1.2 %およびZ
r:0.05 〜0.3 %を含有し、残部Alおよび不可避的不
純物からなるアルミニウム合金を450 〜580 ℃の温度で
熱間鍛造したのち、490 〜580 ℃の温度で溶体化処理を
行い、焼入れ、時効処理することを特徴とするアルミニ
ウム合金鍛造品の製造方法。
1. Si: 0.5 to 1.5% (mass%, the same applies hereinafter), Mg: 0.5 to 1.5%, Cu: 0.2 to 1.2% and Z
r: 0.05-0.3%, aluminum alloy consisting of balance Al and unavoidable impurities was hot forged at a temperature of 450-580 ° C, then solution heat-treated at a temperature of 490-580 ° C for quenching and aging. A method for manufacturing an aluminum alloy forged product, which comprises processing.
【請求項2】 アルミニウム合金がSi:0.5〜1.5 %、
Mg:0.5〜1.5 %、Cu:0.2〜1.2 %、Zr:0.05 〜0.
3 %を含有し、さらにMn:0.05 〜1.0 %、Cr:0.02
〜0.35%およびTi:0.01 〜0.25%のうちの1種または
2種以上を含み、残部Alおよび不可避的不純物からな
ることを特徴とする請求項1記載のアルミニウム合金鍛
造品の製造方法。
2. The aluminum alloy contains Si: 0.5 to 1.5%,
Mg: 0.5-1.5%, Cu: 0.2-1.2%, Zr: 0.05-0.
3%, Mn: 0.05-1.0%, Cr: 0.02
.About.0.35% and Ti: 0.01 to 0.25% and one or more of them, and the balance Al and unavoidable impurities are contained, and the method for producing an aluminum alloy forged product according to claim 1.
【請求項3】 Si:0.5〜1.5 %、Mg:0.5〜1.5 %、
Cu:0.2〜1.2 %およびZr:0.05 〜0.3 %を含有し、
残部Alおよび不可避的不純物からなるアルミニウム合
金を450 〜580 ℃の温度で熱間鍛造し、熱間鍛造された
アルミニウム合金の温度が490 ℃未満になる前に焼入れ
し、さらに時効処理することを特徴とするアルミニウム
合金鍛造品の製造方法。
3. Si: 0.5-1.5%, Mg: 0.5-1.5%,
Cu: 0.2 to 1.2% and Zr: 0.05 to 0.3%,
An aluminum alloy consisting of the balance Al and unavoidable impurities is hot forged at a temperature of 450 to 580 ° C, quenched before the temperature of the hot forged aluminum alloy falls below 490 ° C, and further aged. And a method for manufacturing an aluminum alloy forged product.
【請求項4】 アルミニウム合金がSi:0.5〜1.5 %、
Mg:0.5〜1.5 %、Cu:0.2〜1.2 %、Zr:0.05 〜0.
3 %を含有し、さらにMn:0.05 〜1.0 %、Cr:0.02
〜0.35%およびTi:0.01 〜0.25%のうちの1種または
2種以上を含み、残部Alおよび不可避的不純物からな
ることを特徴とする請求項3記載のアルミニウム合金鍛
造品の製造方法。
4. The aluminum alloy contains Si: 0.5 to 1.5%,
Mg: 0.5-1.5%, Cu: 0.2-1.2%, Zr: 0.05-0.
3%, Mn: 0.05-1.0%, Cr: 0.02
The method for manufacturing an aluminum alloy forged product according to claim 3, wherein the aluminum alloy forged product contains at least one of 0.3 to 0.35% and Ti: 0.01 to 0.25%, and the balance is Al and inevitable impurities.
JP6193195A 1995-02-24 1995-02-24 Production of aluminum alloy forged product Pending JPH08232051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193195A JPH08232051A (en) 1995-02-24 1995-02-24 Production of aluminum alloy forged product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193195A JPH08232051A (en) 1995-02-24 1995-02-24 Production of aluminum alloy forged product

Publications (1)

Publication Number Publication Date
JPH08232051A true JPH08232051A (en) 1996-09-10

Family

ID=13185417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193195A Pending JPH08232051A (en) 1995-02-24 1995-02-24 Production of aluminum alloy forged product

Country Status (1)

Country Link
JP (1) JPH08232051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114928A1 (en) * 2012-02-02 2013-08-08 株式会社神戸製鋼所 Forged aluminum alloy material and method for producing same
CN106391965A (en) * 2016-09-09 2017-02-15 武汉理工大学 Aluminum alloy forging die with fluid channels and aluminum alloy forging technique
JP2020514550A (en) * 2015-12-04 2020-05-21 レイセオン カンパニー Composition and method for melt processing aluminum alloys

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114928A1 (en) * 2012-02-02 2013-08-08 株式会社神戸製鋼所 Forged aluminum alloy material and method for producing same
JP2013177672A (en) * 2012-02-02 2013-09-09 Kobe Steel Ltd Aluminum alloy forged material and method for producing the same
EP2811042B1 (en) 2012-02-02 2017-06-21 Kabushiki Kaisha Kobe Seiko Sho ALUMINiUM ALLOY forged MATERIAL AND METHOD FOR manufacturING the SAME
JP2020514550A (en) * 2015-12-04 2020-05-21 レイセオン カンパニー Composition and method for melt processing aluminum alloys
CN106391965A (en) * 2016-09-09 2017-02-15 武汉理工大学 Aluminum alloy forging die with fluid channels and aluminum alloy forging technique

Similar Documents

Publication Publication Date Title
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
EP0361524B1 (en) Ni-base superalloy and method for producing the same
JP3638188B2 (en) Manufacturing method of high strength aluminum alloy extruded tube for front fork outer tube of motorcycle with excellent stress corrosion cracking resistance
JP2008516079A5 (en)
JPS59159961A (en) Superplastic al alloy
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH11286758A (en) Production of forged product using aluminum casting material
JPH0665739B2 (en) Method for manufacturing rolled aluminum alloy plate
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JPH08232051A (en) Production of aluminum alloy forged product
JPH08176764A (en) Production of aluminum alloy sheet for forming
JPH10183287A (en) Aluminum alloy for cold forging and its production
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JPS602644A (en) Aluminum alloy
JPS6152345A (en) Superplastic al alloy
JPH1112675A (en) Production of aluminum alloy for hot forging and hot forged product
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JPH0364435A (en) Method for forging ni base superalloy
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH03240939A (en) Manufacture of high ductility and high toughness titanium alloy