JPH11209839A - High strength aluminum alloy powder excellent in workability, preformed body thereof, forming method therefor, and manufacture of high strength aluminum alloy member - Google Patents

High strength aluminum alloy powder excellent in workability, preformed body thereof, forming method therefor, and manufacture of high strength aluminum alloy member

Info

Publication number
JPH11209839A
JPH11209839A JP10011057A JP1105798A JPH11209839A JP H11209839 A JPH11209839 A JP H11209839A JP 10011057 A JP10011057 A JP 10011057A JP 1105798 A JP1105798 A JP 1105798A JP H11209839 A JPH11209839 A JP H11209839A
Authority
JP
Japan
Prior art keywords
powder
aluminum alloy
strength aluminum
alloy powder
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10011057A
Other languages
Japanese (ja)
Other versions
JP3424156B2 (en
Inventor
Atsushi Kuroishi
農士 黒石
Shigeru Tsuboi
茂 壺井
Setsuhisa Fujino
摂央 藤野
Masanori Yoshino
正規 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP01105798A priority Critical patent/JP3424156B2/en
Publication of JPH11209839A publication Critical patent/JPH11209839A/en
Application granted granted Critical
Publication of JP3424156B2 publication Critical patent/JP3424156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy powder having high speed superplasticity for manufacturing a high strength aluminum alloy member with economical advantage, a preformed body of the aluminum alloy powder, and a plastic working method therefor. SOLUTION: This aluminum alloy powder has a composition consisting of 1-15% of one or >=2 kinds among transition metals of Fe, Cr, Ni, Zr, and Mn, 10-30% Si, 0.5-5% Cu, 1-5% Mg, and the balance Al and also has <=2 μm microcrystal structure and 150 μm powder grain size. If necessary, proper amounts of ceramic powder of Al2 O3 , SiC, Si3 N4 , etc., having fine grain size are blended. This powder is preformed by means, preferably, of electric discharge plasma sintering and then subjected to compression plastic working. The compression plastic working is performed in the region right under the liquidus line. Strain working rate is regulated to >=10<-2> /sec. High ductility of >=200% elongation percentage is provided, and working stress is <=20 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用エンジン
部材などの各種装置・機器部材として有用な高強度アル
ミニウム合金部材を経済的に有利に製造するための、加
工性にすぐれたアルミニウム合金粉末、その予備成形体
および成形方法並びに熱間塑性加工によるアルミニウム
合金部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy powder having excellent workability for economically and advantageously producing a high-strength aluminum alloy member useful as various equipment and equipment members such as engine parts for automobiles. The present invention relates to a preform, a forming method, and a method of manufacturing an aluminum alloy member by hot plastic working.

【0002】[0002]

【従来の技術】アルミニウム合金は、比重が鉄の約3分
の1と小さく、軽量素材として広く使用されている。し
かし、耐熱性,耐摩耗性などの機械性質は鉄系材料に及
ばない。その特性改善策として、近年粉末冶金法による
新しいアルミニウム合金の開発が進められている。これ
は、合金元素を多量に添加したアルミニウム合金溶湯を
ガスマトマイズ等の急冷噴霧処理に付して粉末となし、
熱間押出し法等で所要形状に成形加工するものである。
粉末冶金法によれば、溶解・鋳造法では製造困難な、S
i,Fe,Mn,Ni 等を多量に含有するアルミニウム合金部材
を製造することができ、合金元素量の富化効果として、
優れた機能特性がもたらされる。
2. Description of the Related Art Aluminum alloys have a specific gravity as small as about one third of iron and are widely used as lightweight materials. However, mechanical properties such as heat resistance and abrasion resistance are inferior to iron-based materials. As a measure to improve the characteristics, development of a new aluminum alloy by powder metallurgy has been advanced in recent years. This is because the molten aluminum alloy with a large amount of alloying elements is subjected to a quenching spray treatment such as gas atomization to form powder,
It is formed into a required shape by hot extrusion or the like.
According to powder metallurgy, S
Aluminum alloy members containing a large amount of i, Fe, Mn, Ni, etc. can be manufactured, and as an effect of enriching the amount of alloy elements,
Excellent functional properties result.

【0003】[0003]

【発明が解決しようとする課題】このように粉末冶金法
の適用によりアルミニウム合金部品の機械性質を高める
ことが可能となるが、いまだ未だ広く普及するに至って
いない。その理由は、原料粉末を含む加工コストが高い
ことにある。その要因の第1は、原料粉末の製造歩留り
が低いことである。ガス等を冷却媒体とする粉末製造法
では、粒子径50μm以下の粉末しか対象とならず、そ
れを越える粗い粒子は分級除去する必要があり、粉末の
収率は約30%程度と極端に低くなるのである。
As described above, the application of powder metallurgy makes it possible to enhance the mechanical properties of aluminum alloy parts, but they have not yet become widespread. The reason is that the processing cost including the raw material powder is high. The first factor is that the production yield of the raw material powder is low. In a powder production method using a gas or the like as a cooling medium, only powders having a particle size of 50 μm or less are targeted, and coarse particles exceeding the particle size need to be classified and removed, and the powder yield is extremely low at about 30%. It becomes.

【0004】第2の要因は、粉末の加工性が悪いことで
ある。すなわち多量の合金元素を含有する粉末は硬質で
しかも耐熱性を有するため、成形加工は一般に約500
℃以上の温度域で、加工応力200MPa以上の高加圧
力を必要とする。また、高圧加工のために金型の耐用寿
命も短く、複雑形状の部品を精度よく成形することも困
難となる。本発明は、上記問題を解決することを目的と
するものであり、機械性質にすぐれたアルミニウム合金
部材を経済的に有利に製造するための加工性にすぐれた
アルミニウム合金粉末、その粉末を固化した予備成形体
およびその成形方法並びに目的部材を形成する圧縮塑性
加工法を提供する。
[0004] The second factor is that the processability of the powder is poor. That is, since a powder containing a large amount of alloy elements is hard and has heat resistance, the forming process is generally performed for about 500 times.
It requires a high pressing force of 200 MPa or more in a temperature range of not less than ℃. In addition, the service life of the mold is short due to high-pressure processing, and it is difficult to accurately mold a component having a complicated shape. An object of the present invention is to solve the above problems, and an aluminum alloy powder excellent in workability for economically and advantageously producing an aluminum alloy member excellent in mechanical properties, and the powder is solidified. Provided are a preform, a forming method thereof, and a compression plastic working method for forming a target member.

【0005】[0005]

【課題を解決するための手段】本発明のアルミニウム合
金粉末は、Fe,Cr,Ni,Zr,Mnの遷移金属元
素より選ばれる1種ないし2種以上の元素: 1〜15wt
%, Si: 10〜30wt%,Cu: 0.5〜5wt%,M
g: 1〜5wt%,残部実質的にAlからなり、2μm以
下の微細結晶粒径を有し、粉体粒子径は50μm以上で
ある。このアルミニウム合金粉末は、所望により、セラ
ミックス粉末粒子が配合される。セラミックス粉末は、
粒径5μm以下の微細粉末であり、配合量は1〜10vo
l%の範囲に調整される。
The aluminum alloy powder of the present invention comprises one or more elements selected from transition metal elements of Fe, Cr, Ni, Zr and Mn: 1 to 15 wt.
%, Si: 10 to 30 wt%, Cu: 0.5 to 5 wt%, M
g: 1 to 5 wt%, the balance being substantially composed of Al, having a fine crystal grain size of 2 μm or less, and a powder particle size of 50 μm or more. This aluminum alloy powder is blended with ceramic powder particles, if desired. Ceramic powder
It is a fine powder with a particle size of 5 μm or less.
Adjusted to the l% range.

【0006】上記アルミニウム合金粉末およびこれにセ
ラミックス粉末を配合した混合粉末(以下、両者を単に
アルミニウム合金と称することもある)は、粉体のま
ま、または適宜形状の固化体(焼結体)に予備成形され
たうえ、圧縮塑性加工により目的とする製品部材に成形
される。予備成形体の形成は、後記するように、放電プ
ラズマ焼結法により好適に達成される。
The above-mentioned aluminum alloy powder and a mixed powder obtained by mixing the same with a ceramic powder (hereinafter, both may be simply referred to as an aluminum alloy) may be used as a powder or as a solidified body (sintered body) having an appropriate shape. After being preformed, it is formed into a target product member by compression plastic working. The formation of the preform is preferably achieved by a spark plasma sintering method as described later.

【0007】本発明のアルミニウム合金粉末およびその
予備成形体は、高速超塑性特性を有する。後述のよう
に、液相線直下の温度域で、歪み加工速度(ε)10-2
/sec以上の高速加工を行うことができ、この加工条件下
に、伸び率約200%以上の高延性を示し、その変形流
動応力は約20MPa以下と著しく低い。合金元素を多
量に含むアルミニウム合金は、一般に硬質かつ耐熱性の
ため、通常結晶材の塑性加工は、500℃以上の高温域
で200MPa以上の高加工力を必要とし、また超塑性
を利用した加工プロセス(結晶粒径: 約10〜100 μm)
を適用した場合でも、その加工速度は約10-3〜10-4/sec
と低く、10-2/sec以上の高速加工は不可能であり生産性
に劣る。本発明のアルミニウム合金粉末およびその予備
成形体は、上記合金粉末の化学組成,超微細結晶構造お
よび粉体粒径の効果として、高速度・低加圧力下の効率
的な圧縮塑性加工を実現している。
[0007] The aluminum alloy powder of the present invention and its preform have high-speed superplastic properties. As described later, in the temperature range immediately below the liquidus line, the strain processing speed (ε) 10 −2
It can perform high-speed processing at a rate of not less than / sec, and exhibits high ductility with an elongation of about 200% or more under these processing conditions, and its deformation flow stress is remarkably low at about 20 MPa or less. Aluminum alloys containing a large amount of alloying elements are generally hard and heat-resistant, so plastic working of crystal materials usually requires high working force of 200 MPa or more in a high temperature range of 500 ° C. or more, and processing using superplasticity. Process (crystal grain size: about 10-100 μm)
Even if is applied, the processing speed is about 10 -3 ~ 10 -4 / sec
Therefore, high speed processing of 10 -2 / sec or more is impossible, resulting in poor productivity. The aluminum alloy powder and the preform thereof according to the present invention realize efficient compression plastic working under high speed and low pressure as effects of the chemical composition, ultrafine crystal structure and powder particle size of the alloy powder. ing.

【0008】[0008]

【発明の実施の形態】アルミニウム合金粉末の化学組成
を前記のように規定したのは、構造部材等として要求さ
れる機械的性質を保証すると共に、超塑性特性を確保す
るためである。すなわち、Si,Cu,Mg等は、強
度,耐熱性,耐摩耗性等を高める元素であり、その含有
量が上記下限値に満たないと、材質改善効果が不足し、
他方上限値を超えると、材質が硬脆化し超塑性特性を確
保し得なくなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reason why the chemical composition of the aluminum alloy powder is specified as described above is to ensure the mechanical properties required for structural members and the like and to ensure superplastic properties. That is, Si, Cu, Mg, and the like are elements that increase strength, heat resistance, wear resistance, and the like. If the content is less than the above lower limit, the material improvement effect is insufficient,
On the other hand, if it exceeds the upper limit, the material becomes hard and brittle, and it becomes impossible to secure superplastic properties.

【0009】Fe,Cr,Ni,ZrおよびMnの遷移
金属元素は、機械性質の改善に奏効する元素であるが、
本発明の狙いは、その添加効果として超塑性特性を高め
ることにある。つまり、これらの元素はAlと化合し、
微細な化合物相として析出することによりアルミニウム
合金の結晶成長を抑制し、超塑性特性の発現に必要な微
細結晶構造を得ることを可能にする。含有量(2種以上
を複合含有する場合は合計量)を1wt%以上とするの
は、その添加効果を十分ならしめるためであり、10wt
%を上限とするのは、それを超えると、材料の硬質化を
きたし超塑性特性が損なわれるからである。
[0009] Transition metal elements of Fe, Cr, Ni, Zr and Mn are elements that are effective for improving mechanical properties.
An object of the present invention is to enhance superplastic properties as an effect of the addition. That is, these elements combine with Al,
By precipitating as a fine compound phase, it is possible to suppress the crystal growth of the aluminum alloy, and to obtain a fine crystal structure required for developing superplastic properties. The content (the total amount when two or more kinds are combined) is set to 1 wt% or more in order to enhance the effect of addition.
The reason for setting the upper limit to% is that if it exceeds this, the material becomes hard and the superplastic properties are impaired.

【0010】アルミニウム合金粉末の結晶粒径は2μm
以下であることを要する。このような超微細構造として
いるのは、高速超塑性を確保するためである。またその
粉体粒子径を50μm以上に制限しているのは、粉末の
圧縮性,成形性、および塑性変形能を良好にするためで
ある。超急冷凝固により製造される粉末は、微細なほ
ど、歪み硬化が大きく、また圧縮塑性加工における粒子
界面の摩擦抵抗が増大し、塑性変形能が低下するからで
ある。この超微細結晶構造および粉体粒径を有するアル
ミニウム合金粉末は、スピニング・ウォーター・アトマ
イゼイション・プロセス(SWAP法:Spining Water atomi
zation Process)の噴霧処理(冷却速度:104 ℃/sec以
上) により収率よく得ることができる。
The crystal grain size of the aluminum alloy powder is 2 μm
It must be: Such an ultrafine structure is used to ensure high-speed superplasticity. The reason why the particle diameter of the powder is limited to 50 μm or more is to improve the compressibility, moldability and plastic deformability of the powder. This is because the finer the powder produced by rapid quenching and solidification, the greater the strain hardening, the higher the frictional resistance at the particle interface in compression plastic working, and the lower the plastic deformability. The aluminum alloy powder having the ultrafine crystal structure and the powder particle size is subjected to a spinning water atomization process (SWAP method: Spinning Water atomi
A high yield can be obtained by spray treatment (cooling rate: 10 4 ° C / sec or more) of the zation process.

【0011】上記アルミニウム合金粉末は、所望により
セラミックス粉末が配合される。セラミックス粒子は、
アルミニウム合金マトリックス中に分散して製品部材の
機械性質を高めるとともに、マトリックスのアルミニウ
ム合金の結晶成長を抑制する。セラミックスの材種は、
酸化物系,窒化物系,炭化物系,硼化物系などであり、
その1種ないし複数種が適宜選択使用される。殊に、炭
化けい素(SiC),アルミナ(Al2 3 ),窒化けい素
(Si3 4 )等の単独または複合使用は効果的であ
る。
The above aluminum alloy powder is mixed with a ceramic powder if desired. Ceramic particles are
It is dispersed in the aluminum alloy matrix to enhance the mechanical properties of the product member, and suppresses the crystal growth of the aluminum alloy in the matrix. The grade of ceramics is
Oxides, nitrides, carbides, borides, etc.
One or more of them are appropriately selected and used. In particular, the use of silicon carbide (SiC), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ) or the like alone or in combination is effective.

【0012】セラミックス粉末は、粒径5μm以下の微
細粒子であることを要する。これより粗大な粒径では、
アルミニウム合金粉末の超塑性特性の低下をきたし、高
速超塑性加工が困難となり、また仕上げ加工(機械加
工)も困難となるからである。その配合量を、1〜10
vol%とするのは、1 vol%に満たないと、配合効果に
乏しく、他方10 vol%を越えて多量に配合すると、合
金の脆化を招き高速超塑性特性が損なわれるからであ
る。
The ceramic powder must be fine particles having a particle size of 5 μm or less. For coarser particle sizes,
This is because the superplastic properties of the aluminum alloy powder are reduced, and high-speed superplastic working becomes difficult, and finishing (machining) becomes difficult. The compounding amount is 1 to 10
The reason for the vol% is that if it is less than 1 vol%, the compounding effect is poor, while if it exceeds 10 vol%, the alloy is embrittled and the high-speed superplastic properties are impaired.

【0013】本発明のアルミニウム合金粉末(単体粉末
またはセラミックスとの混合粉末)は、製品部材の成形
(鍛造等の圧縮塑性加工)に先立って、適宜形状の成形
固化体(焼結体)とするのが好ましい。粉末のまま圧縮
塑性加工に付して目的部材を得ることも可能ではある
が、予備成形することは、圧縮塑性加工の効率を高める
のに有利である。
The aluminum alloy powder (single powder or mixed powder with ceramics) of the present invention is formed into a suitably shaped and solidified body (sintered body) prior to molding (compression plastic working such as forging) of a product member. Is preferred. It is possible to obtain the target member by subjecting the powder to compression plastic working, but preforming is advantageous in increasing the efficiency of the compression plastic working.

【0014】その予備成形は、放電プラズマ焼結法(SP
S 法: Spark plasma Sintering)により好適に行われ
る。放電プラズマ焼結は、パルス通電を利用して加圧焼
結するものであり、粉体粒子間隙に発生する瞬間・断続
的な火花放電による高温プラズマの高エネルギを利用し
た内部発熱方式の焼結法である。粉体試料内の放電点
は、電流・電圧印加のオン・オフの繰り返しに伴って試
料全体に移動分散する。この内部発熱による均一な加熱
効果により、短時間かつ低温度(結晶粒成長・粗大化が
抑制防止される)の処理条件下に均質な焼結を達成する
ことができる。
The preforming is performed by a spark plasma sintering method (SP
S method: Spark plasma sintering). In spark plasma sintering, pressure sintering is performed using pulsed electric current. Internal heat generation sintering that utilizes the high energy of high-temperature plasma generated by instantaneous and intermittent spark discharge generated in the gap between powder particles Is the law. The discharge points in the powder sample move and disperse throughout the sample as the current / voltage application is repeatedly turned on / off. Due to the uniform heating effect due to the internal heat generation, homogeneous sintering can be achieved in a short time and at a low temperature (the crystal grain growth and coarsening are prevented from being suppressed).

【0015】上記焼結処理温度は500℃以下に規制す
るのが好ましい。結晶粒の成長粗大化を防止し、微細結
晶構造に基づく高速超塑性特性を保持するためである。
処理温度は、パルス電流,オン・オフ周期,処理時間等
により容易に制御することができる。また、加圧力は約
70〜180MPaの範囲が適当である。加圧力がこれ
より低いと、高温焼結が必要となり、結晶粒の成長粗大
化の不都合をきたす。他方180MPaを超える高圧力
とする必要はなく、それ以上の加圧力の増加は金型の消
耗を助長するので好ましくない。
The sintering temperature is preferably regulated to 500 ° C. or less. This is for preventing growth coarsening of crystal grains and maintaining high-speed superplastic properties based on a fine crystal structure.
The processing temperature can be easily controlled by the pulse current, ON / OFF cycle, processing time, and the like. The pressure is suitably in the range of about 70 to 180 MPa. If the pressure is lower than this, high-temperature sintering is required, which causes inconvenience of coarsening of crystal grains. On the other hand, it is not necessary to use a high pressure exceeding 180 MPa, and a further increase in the pressing force is not preferable because it promotes the consumption of the mold.

【0016】放電プラズマ焼結処理において、アルミニ
ウム合金粉末の結晶中に、各種の金属間化合物(Cu-Al,
Mg-Si,Al-Cu-Fe,Al-Mn等)を析出生成する。本発明のア
ルミニウム合金粉末は、合金元素を多量に含有している
が、SWAP法等の超急冷凝固処理(冷却速度: 104
/sec以上)で製造されるため、析出物の生成は殆どな
く,析出しても生成量は少なく、過飽和の固溶状態にあ
る。放電プラズマ焼結過程で、これらの元素は金属間化
合物として析出する。その焼結処理は、低温・短時間の
条件下に達成されるので、析出化合物相は微細(粒径1
μm以下)であり、粉末の超塑性特性を損なうことな
く、またアルミニウム合金製品の機械性質の強化に寄与
する。
In the spark plasma sintering, various intermetallic compounds (Cu-Al,
Mg-Si, Al-Cu-Fe, Al-Mn). Although the aluminum alloy powder of the present invention contains a large amount of alloying elements, it is subjected to ultra-rapid solidification treatment such as a SWAP method (cooling rate: 10 4 ° C).
/ sec or more), there is almost no generation of precipitates, and even if they precipitate, the amount of generation is small and they are in a supersaturated solid solution state. These elements precipitate as intermetallic compounds during the spark plasma sintering process. Since the sintering is achieved under low-temperature and short-time conditions, the precipitated compound phase is fine (particle size 1).
μm or less) and contributes to strengthening the mechanical properties of the aluminum alloy product without impairing the superplastic properties of the powder.

【0017】本発明のアルミニウム合金粉末(単体粉末
もしくはセラミックスとの混合粉末)および予備成形体
の圧縮塑性加工は、該合金の液相線(T liq ) 直下の温
度域において、歪み加工速度10-2/sec以上の条件下に
行われる。塑性加工温度(T)の最適領域は、 Tliq
35℃≦T≦T liq −10℃である。図1は、アルミニウム
合金粉末(予備成形体)の超塑性特性とその流動変形応
力(歪み加工速度: 10-1/sec) を示している(供試材:
化学組成(wt%) Si 17.1,Cu 0.96, Mg 1.86, Fe 1.92, N
i 1.0, Mo 0.56, Al Bal,結晶粒径 2μm, 粉体粒径 50
μm,液相線 550℃)。図示のように、液相線直下の
温度域(約515〜540℃)での高歪み速度加工にお
いて、伸び率200%以上の高延性を示し、その変形流
動応力は20MPa以下と著しく低い。
In the compression plastic working of the aluminum alloy powder (single powder or mixed powder with ceramics) and the preform of the present invention, the strain working rate is 10 in the temperature range just below the liquidus line (T liq ) of the alloy. It is performed under the condition of 2 / sec or more. The optimal region for the plastic working temperature (T) is T liq
35 ° C. ≦ T ≦ T liq −10 ° C. FIG. 1 shows the superplastic properties of the aluminum alloy powder (preformed body) and its flow deformation stress (strain processing speed: 10 -1 / sec) (sample material:
Chemical composition (wt%) Si 17.1, Cu 0.96, Mg 1.86, Fe 1.92, N
i 1.0, Mo 0.56, Al Bal, crystal particle size 2μm, powder particle size 50
μm, liquidus 550 ° C). As shown in the drawing, in high strain rate processing in a temperature range (approximately 515 to 540 ° C.) immediately below the liquidus line, a high ductility with an elongation of 200% or more is exhibited, and its deformation flow stress is extremely low at 20 MPa or less.

【0018】このように本発明のアルミニウム合金粉末
およびその予備成形体は、高速度・低加圧力下の効率的
な圧縮塑性加工を可能とし、粉末冶金法による各種部材
の生産性を高め、また金型の損耗を軽減緩和してその耐
用寿命の改善に奏効すると共に、複雑形状の部材の形状
精度を高めることを可能にするものである。
As described above, the aluminum alloy powder and the preform thereof according to the present invention enable efficient compression plastic working under a high speed and a low pressing force, enhance the productivity of various members by powder metallurgy, and The present invention is effective in improving the useful life of the mold by reducing and alleviating the wear of the mold, and at the same time, it is possible to enhance the shape accuracy of a member having a complicated shape.

【0019】[0019]

【実施例】アルミニウム合金粉末(単体粉末および混合
粉末)を予備成形し、鍛造加工に付して部材を製作す
る。 (1)アルミニウム合金粉末 SWAP法による粉末およびガスアトマイズ法による粉
末を使用。SWAP粉末の粉体粒径は 50 〜420 μmで
あり、ガスアトマイズ粉末は、粗大粒径(粉体粒径:50
〜420 μm)と微細粒径(同: <50μm)の2種を用意
した。 (2)セラミックス粉末 a: 炭化けい素(SiC) b: アルミナ(Al2 3 ) c: 窒化けい素(Si3 4
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Aluminum alloy powder (single powder and mixed powder) is preformed and subjected to forging to produce a member. (1) Aluminum alloy powder The powder by SWAP method and the powder by gas atomization method are used. The SWAP powder has a particle size of 50 to 420 μm, and the gas atomized powder has a coarse particle size (powder particle size: 50 μm).
420420 μm) and a fine particle size (<50 μm). (2) Ceramic powder a: Silicon carbide (SiC) b: Alumina (Al 2 O 3 ) c: Silicon nitride (Si 3 N 4 )

【0020】(3)予備成形(成形固化体の形成) 放電プラズマ焼結または熱間押出加工法により、円柱状
ブロック(φ 60 ×30l,mm )を形成。 〔SPS焼結焼結処理〕 焼結温度 400℃, 処理時間 20 min,加圧力 1.5tf/cm
2 。 〔熱間押出成形〕成形温度 480℃, 押出比 11 。
(3) Preforming (formation of a solidified body) A cylindrical block (φ60 × 30 l, mm) is formed by spark plasma sintering or hot extrusion. [SPS sintering and sintering] Sintering temperature 400 ° C, processing time 20 min, pressure 1.5tf / cm
2 . [Hot extrusion molding] Molding temperature 480 ° C, extrusion ratio 11.

【0021】(4)圧縮塑性加工 油圧プレス機により、ピストン部材(外径: 62, 長さ:
65, 肉厚: 天部3,側部5, mm)を成形。 加工速度: 10-1/sec 加工温度: 液相線−35〜10℃
(4) Compression plastic working The piston member (outer diameter: 62, length:
65, wall thickness: Top part 3, side part 5, mm). Processing speed: 10 -1 / sec Processing temperature: Liquidus line -35 to 10 ° C

【0022】原料粉末、成形・加工条件、加工結果等を
表1および表2に示す。表中、「合金粉末の種類」欄の
「W」はSWAP粉末、「G」はガスアトマイズ粉末であ
り、は粉体粒径: 50〜420 μm, は粉体粒径: <50
μmである。また、W粉末の結晶粒径≦1μm、G粉末
の結晶粒径≧1μm,G粉末の結晶粒径<1μmで
ある。「鍛造結果」は、鍛造で得られた部材の目視観察
およびカラーチェックによる検査結果であり、○マーク
は割れがなく健全な品質であることを示している。同欄
の空白(No.114, No.115)は、予備成形工程で、鍛造に
供し得る予備成形体を形成できず、鍛造を実施できなか
ったものである。
Tables 1 and 2 show raw material powders, molding / processing conditions, processing results, and the like. In the table, "W" in the "Type of alloy powder" column is a SWAP powder, "G" is a gas atomized powder, powder particle size: 50 to 420 μm, and powder particle size: <50
μm. Further, the crystal grain diameter of W powder ≦ 1 μm, the crystal grain diameter of G powder ≧ 1 μm, and the crystal grain diameter of G powder <1 μm. The “forging result” is an inspection result by visual observation and color check of the member obtained by forging, and a mark “○” indicates that there is no crack and sound quality. Blanks (No. 114 and No. 115) in the same column indicate that a preform that could be used for forging could not be formed in the preforming step, and forging could not be performed.

【0023】比較例において、No.101(アルミ合金粉末
のSi量過多),No.103(Cu量過多),No.105(Mg
量過多),No.107(遷移金属元素量過多)の鍛造部材に
割れが発生したのは、合金元素の過剰含有により合金粉
末が硬質化し、材料の割れ感受性が高くなったからであ
る。No.102(アルミ合金粉末のSi量不足),No.104
(Cu量不足),No.106(Mg量不足),No.108(遷移
金属元素量不足)は、合金粉末の元素含有量の不足によ
る結晶粒径の粗大化のため、加工応力の低い鍛造条件に
も拘らず、割れが発生している。これは最適加工速度領
域が低速度側へ移行したことによる。No.109およびNo.1
10の鍛造部材に割れが発生しているのは、前者ではセラ
ミックス粉末が過剰に配合され、後者ではセラミックス
粒径が粗大であることにより、それぞれ予備成形体の超
塑性特性が損なわれたからである。
In Comparative Examples, No. 101 (excessive Si content in aluminum alloy powder), No. 103 (excessive Cu content), No. 105 (excessive Cu content)
The reason why cracks occurred in the forged members of No. 107 (excess amount of transition metal element) and No. 107 (excess amount of transition metal element) is that the alloy powder became too hard due to the excessive content of the alloy element, and the crack sensitivity of the material was increased. No.102 (Insufficient amount of Si in aluminum alloy powder), No.104
No. 106 (insufficient amount of Mg) and No. 108 (insufficient amount of transition metal element) are forged with low processing stress due to coarsening of the crystal grain size due to insufficient element content of the alloy powder. Despite the conditions, cracking has occurred. This is because the optimum processing speed region has shifted to the lower speed side. No.109 and No.1
The cracks occurred in the forged members of No. 10 because the former was excessively mixed with ceramic powder, and the latter was because the ceramic particle size was large, and the superplastic properties of the preforms were impaired. .

【0024】No.111〔微細結晶のSWAP粉末(粉体粒径≧
50μm)使用〕の鍛造部材に割れが発生しているのは、
予備成形(熱間押出)過程で結晶粒が粗大化し、予備成
形体の超塑性変形能が低下したからである。No.112の鍛
造部材の割れ発生は、合金粉末(ガスアトマイズ粉末)
の結晶粒が粗大(粒径>2 μm)で、予備成形体の超塑
性変形能が低いことによる。No.113に示すように、予備
成形法として放電プラズマ焼結を適用しても、予備成形
体の超塑性変形能は低く、鍛造加工での割れを回避する
ことができない。また、No.114およびNo.115のように、
合金粉末として微細粉末(粉体粒径<50μm)を使用す
る場合は、粉体の圧縮性, 成形性が悪く、鍛造に供し得
る予備成形体を形成することができない。
No. 111 [fine crystalline SWAP powder (powder particle size ≧
50μm) use] forged member is cracked,
This is because the crystal grains became coarse during the preforming (hot extrusion) process, and the superplastic deformability of the preformed body was reduced. The cracking of the forged member of No. 112 is caused by alloy powder (gas atomized powder)
Is due to the coarse (grain size> 2 μm) and low superplasticity of the preformed body. As shown in No. 113, even if spark plasma sintering is applied as a preforming method, the superplastic deformability of the preformed body is low, and cracking during forging cannot be avoided. Also, like No.114 and No.115,
When a fine powder (powder particle size <50 μm) is used as the alloy powder, the powder is inferior in compressibility and moldability, and a preform that can be used for forging cannot be formed.

【0025】他方、発明例では、高加工速度(加工速
度:10 -1/sec)の条件下に、20MPa以下の低加圧力
で、効率よく鍛造加工を達成し割れのない健全な部品を
得ている。機械特性も良好であり、例えばNo.2の部材の
引張強さは、398MPa, No.5のそれは376MPa
と、自動車エンジン用ピストン部材等の構造部材に要求
される改良された高強度を有している。
On the other hand, in the example of the invention, under a condition of a high working speed (working speed: 10 -1 / sec), forging is efficiently achieved at a low pressing force of 20 MPa or less to obtain a sound part without cracks. ing. The mechanical properties are also good. For example, the tensile strength of No. 2 member is 398 MPa, that of No. 5 is 376 MPa.
And improved high strength required for structural members such as a piston member for an automobile engine.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によれば、高強度を要求される各
種構造部材、例えば自動車エンジンのピストン,ギア
ー、その他の各種電機・精密機械部品などを、高速度・
低加圧力の加工条件下に効率よく製造することができ
る。高速度加工は、生産性の大幅な向上を可能とし、低
加工応力は、金型の損耗の軽減・耐用寿命の向上に奏効
すると共に、製品形状精度を高め、ネットシェイプ加工
による材料歩留りの向上・工程の短縮等の効果をもたら
す。このように、本発明は、高強度アルミニウム合金部
材の機能特性を高めると共に、省エネルギー・コストダ
ウン等に大きく寄与するものである。
According to the present invention, various structural members requiring high strength, for example, pistons and gears of an automobile engine, and other various electric / precision machine parts, can be manufactured at high speeds.
It can be manufactured efficiently under low pressure processing conditions. High-speed machining enables a significant increase in productivity, while low machining stress is effective in reducing mold wear and improving service life, as well as improving product shape accuracy and improving material yield through net shaping.・ Effects such as shortening of the process are provided. As described above, the present invention not only enhances the functional characteristics of the high-strength aluminum alloy member but also greatly contributes to energy saving and cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルミニウム合金粉末の塑性変形能と加工温度
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the plastic deformation ability of aluminum alloy powder and the processing temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉野 正規 茨城県龍ケ崎市向陽台5−6 株式会社ク ボタ基盤技術研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tadashi Yoshino 5-6 Koyodai, Ryugasaki, Ibaraki Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Fe,Cr,Ni,Zr,Mnの遷移金
属元素より選ばれる1種ないし2種以上の元素: 1〜1
5wt%, Si: 10〜30wt%,Cu: 0.5〜5wt
%,Mg: 1〜5wt%,残部実質的にAlからなり、結
晶粒径2μm以下,粉体粒子径50μm以上である加工
性にすぐれた高強度アルミニウム合金粉末。
1. One or more elements selected from transition metal elements of Fe, Cr, Ni, Zr and Mn: 1-1
5wt%, Si: 10-30wt%, Cu: 0.5-5wt
%, Mg: 1 to 5% by weight, with the balance being substantially Al, a high-strength aluminum alloy powder excellent in workability and having a crystal grain size of 2 μm or less and a powder particle size of 50 μm or more.
【請求項2】 請求項1に記載のアルミニウム合金粉末
に、粒径5μm以下のセラミックス粉末1〜10 vol%
を配合された混合粉末である加工性にすぐれた高強度ア
ルミニウム合金粉末。
2. The aluminum alloy powder according to claim 1, wherein 1 to 10 vol% of ceramic powder having a particle size of 5 μm or less.
High-strength aluminum alloy powder with excellent workability, which is a mixed powder containing
【請求項3】 セラミックス粉末は、アルミナ,炭化け
い素,窒化けい素から選ばれる1種ないし2種以上の粉
末である請求項2に記載の加工性にすぐれた高強度アル
ミニウム合金粉末。
3. The high-strength aluminum alloy powder having excellent workability according to claim 2, wherein the ceramic powder is one or more powders selected from alumina, silicon carbide, and silicon nitride.
【請求項4】 請求項1ないし請求項3のいずれか1項
に記載の粉末の焼結体である加工性にすぐれたアルミニ
ウム合金予備成形体。
4. An aluminum alloy preform having excellent workability, which is a sintered body of the powder according to any one of claims 1 to 3.
【請求項5】 請求項1ないし請求項3のいずれか1項
に記載の粉末を放電プラズマ焼結により固化することよ
りなる請求項4に記載の加工性にすぐれた高強度アルミ
ニウム合金予備成形体の形成方法。
5. The high-strength aluminum alloy preform having excellent workability according to claim 4, wherein the powder according to claim 1 is solidified by spark plasma sintering. Formation method.
【請求項6】 焼結処理温度が500℃以下である請求
項5に記載の加工性にすぐれた高強度アルミニウム合金
予備成形体の形成方法。
6. The method for forming a high-strength aluminum alloy preform having excellent workability according to claim 5, wherein the sintering temperature is 500 ° C. or lower.
【請求項7】 請求項1ないし請求項3のいずれか1項
に記載の粉末または請求項4に記載の予備成形体を、液
相線直下の温度域において、10-2/ sec 以上の歪み速
度で圧縮塑性加工することよりなる高強度アルミニウム
合金部材の製造方法。
7. A strain of the powder according to any one of claims 1 to 3 or the preform according to claim 4 in a temperature range immediately below a liquidus line, of 10 −2 / sec or more. A method for producing a high-strength aluminum alloy member, comprising compression plastic working at a high speed.
JP01105798A 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member Expired - Fee Related JP3424156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01105798A JP3424156B2 (en) 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01105798A JP3424156B2 (en) 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member

Publications (2)

Publication Number Publication Date
JPH11209839A true JPH11209839A (en) 1999-08-03
JP3424156B2 JP3424156B2 (en) 2003-07-07

Family

ID=11767400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01105798A Expired - Fee Related JP3424156B2 (en) 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member

Country Status (1)

Country Link
JP (1) JP3424156B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495881B1 (en) * 2003-01-24 2005-06-16 한국야금 주식회사 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering
WO2008123258A1 (en) 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
CN102304652A (en) * 2009-11-19 2012-01-04 江苏麟龙新材料股份有限公司 Hot dip plated cast aluminum alloy containing Al-Zn-Si-Mg-RE-Ti and preparation method thereof
CN103131882A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 Aluminum alloy degassing modification method
JP2015508446A (en) * 2011-09-22 2015-03-19 ピーク ヴェアクシュトフ ゲゼルシャフト ミット ベシュレンクテル ハフツングPEAK Werkstoff GmbH Method for producing a member from MMC (metal matrix composite) with melt sprayed powder in an inert gas atmosphere
CN107267812A (en) * 2017-05-16 2017-10-20 苏州莱特复合材料有限公司 A kind of reinforced aluminum matrix composites and its gravity casting method
CN109158585A (en) * 2018-07-26 2019-01-08 华南理工大学 A kind of lightweight binary aluminum matrix composite and preparation method thereof
CN109930050A (en) * 2017-12-19 2019-06-25 宜兴市江华环保科技有限公司 A kind of water process flow blocking plate material
JP2020515714A (en) * 2017-04-05 2020-05-28 アーエムアーゲー キャスティング ゲーエムベーハー Starting materials, their use, and additional manufacturing processes using the starting materials
CN112805107A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN114807687A (en) * 2022-04-11 2022-07-29 潍柴动力股份有限公司 Aluminum alloy micro powder, insert ring containing aluminum alloy micro powder and piston containing insert ring

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495881B1 (en) * 2003-01-24 2005-06-16 한국야금 주식회사 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering
WO2008123258A1 (en) 2007-03-26 2008-10-16 National Institute For Materials Science Sintered binary aluminum alloy powder, and method for production thereof
CN102304652A (en) * 2009-11-19 2012-01-04 江苏麟龙新材料股份有限公司 Hot dip plated cast aluminum alloy containing Al-Zn-Si-Mg-RE-Ti and preparation method thereof
CN102312140A (en) * 2009-11-19 2012-01-11 江苏麟龙新材料股份有限公司 Hot-dip cast aluminium alloy containing Al-Zn-Si-Re-Ni and preparation method thereof
CN102312141A (en) * 2009-11-19 2012-01-11 江苏麟龙新材料股份有限公司 Hot-dip cast aluminium alloy containing Al-Zn-Si-Re-Mg-Ni and preparation method thereof
CN102312139A (en) * 2009-11-19 2012-01-11 江苏麟龙新材料股份有限公司 Hot-dip cast aluminium alloy containing Al-Zn-Si-RE-Mg and preparation method thereof
JP2015508446A (en) * 2011-09-22 2015-03-19 ピーク ヴェアクシュトフ ゲゼルシャフト ミット ベシュレンクテル ハフツングPEAK Werkstoff GmbH Method for producing a member from MMC (metal matrix composite) with melt sprayed powder in an inert gas atmosphere
CN103131882A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 Aluminum alloy degassing modification method
JP2020515714A (en) * 2017-04-05 2020-05-28 アーエムアーゲー キャスティング ゲーエムベーハー Starting materials, their use, and additional manufacturing processes using the starting materials
US11597984B2 (en) 2017-04-05 2023-03-07 Amag Casting Gmbh Starting material, use thereof, and additive manufacturing process using said starting material
CN107267812A (en) * 2017-05-16 2017-10-20 苏州莱特复合材料有限公司 A kind of reinforced aluminum matrix composites and its gravity casting method
CN109930050A (en) * 2017-12-19 2019-06-25 宜兴市江华环保科技有限公司 A kind of water process flow blocking plate material
CN109158585A (en) * 2018-07-26 2019-01-08 华南理工大学 A kind of lightweight binary aluminum matrix composite and preparation method thereof
CN112805107A (en) * 2018-10-05 2021-05-14 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN112805107B (en) * 2018-10-05 2023-10-27 肯联铝业技术中心 Method for manufacturing aluminum alloy parts
CN114807687A (en) * 2022-04-11 2022-07-29 潍柴动力股份有限公司 Aluminum alloy micro powder, insert ring containing aluminum alloy micro powder and piston containing insert ring

Also Published As

Publication number Publication date
JP3424156B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
CN1084393C (en) Iron aluminide useful as electrical resistance heating element
CN1009741B (en) Nickel base superalloy articles and method for making
JP2003533594A (en) .GAMMA.-TiAl alloy-based material with multiple regions consisting of graded microstructure
JPH02258935A (en) Manufacture of 7000 series aluminum alloy and composite material, which has high mechanical strength and good ductility and consists of discontinuous reinforcement and matrix formed from said alloy, by spray up method
JP4764094B2 (en) Heat-resistant Al-based alloy
JP3424156B2 (en) Manufacturing method of high strength aluminum alloy member
CN1030447A (en) The high temperature siliceous aluminum base alloy of rapid solidification
US3787205A (en) Forging metal powders
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
WO2021056806A1 (en) Aluminum alloy powder and manufacturing method therefor, and aluminum alloy product and manufacturing method therefor
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
EP0600474A1 (en) High heat resisting and high abrasion resisting aluminum alloy
JP2017222893A (en) Aluminum alloy forging article and manufacturing method therefor
JP6315241B2 (en) Wear-resistant copper-based sintered alloy
JPH11293374A (en) Aluminum alloy with resistance to heat and wear, and its production
JPH11500784A (en) Powder metallurgy production of composite materials
CN113897520A (en) High-strength heat-resistant cast aluminum-silicon alloy for engine piston
JP2003277867A (en) Aluminum powder alloy having excellent high temperature strength, method of producing piston for internal combustion engine and piston for internal combustion engine
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
WO2001023629A1 (en) Preliminarily formed article and formed article and parts for internal-combustion engine
JP2909569B2 (en) Manufacturing method of wear resistant high strength aluminum alloy parts
JP2003096531A (en) Piston for internal combustion engine
DE102014002583B3 (en) Method for producing a wear-resistant light metal component
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP3128041B2 (en) Cylinder block and its manufacturing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees